
A Karatsuba-based Montgomery Multiplier
Gary C.T. Chow∗, Ken Eguro†, Wayne Luk∗ and Philip Leong‡

∗Department of Computing, Imperial College London, UK
Email: {cchow, wl}@doc.ic.ac.uk

†Embedded and Reconfigurable Computing Group, Microsoft Research, Redmond, WA, USA
Email: eguro@microsoft.com

‡School of Electrical and Information Engineering, University of Sydney, Australia
Email: philip.leong@sydney.edu.au

Abstract—Modular multiplication of long integers is an im-
portant building block for cryptographic algorithms. Although
several FPGA accelerators have been proposed for large modular
multiplication, previous systems have been based on O(N2)
algorithms. In this paper, we present a Montgomery multiplier
that incorporates the more efficient Karatsuba algorithm which is
O(N (log 3/ log 2)). This system is parameterizable to different bit-
widths and makes excellent use of both embedded multipliers and
fine-grained logic. The design has significantly lower LUT-delay
product and multiplier-delay product compared with previous
designs. Initial testing on a Virtex-6 FPGA showed that it is
60-190 times faster than an optimized multi-threaded software
implementation running on an Intel Xeon 2.5 GHz CPU. The
proposed multiplier system is also estimated to be 95-189 times
more energy efficient than the software-based implementation.
This high performance and energy efficiency makes it suitable
for server-side applications running in a datacenter environment.

I. INTRODUCTION

Montgomery multiplication [1] is critical for many crypto-
graphic algorithms such as RSA, Digital Signature Algorithm
(DSA), Elliptic Curve DSA and other emerging cryptographic
algorithms, such as pairing-based systems. Despite improve-
ments in the clock frequency and the level of parallelism
of conventional microprocessors, software-based implementa-
tions of Montgomery multiplication remain insufficient, both
in terms of performance and energy efficiency. This has led
to research investigating more efficient hardware accelerators.
We focus on Montgomery multiplication for long integers e.g.
such as required for operations over the finite field GF(p)
where p is a 512-bit prime number. These computations have
long carry chains and their implementations are fundamentally
different from systems that use composite fields with small
characteristic (e.g. GF(2167)).

Existing FPGA Montgomery multiplier implementations for
large integer systems have one major weakness: they all
use algorithms with O(N2) complexity i.e. the area and/or
runtime increases quadratically with the bit-width of the
computation. In this paper, we improve the implementation of
Montgomery multiplication of long integers at the algorithmic
level in order to lower complexity and increase throughput.
We have developed a parameterized Karatsuba multiplier us-
ing a combination of multiple-precision and coarse-grained
carry-save addition techniques. This method has complexity

O(N (log 3/ log 2)).
The major contributions of this work are:

• An FPGA-optimized design for irregular, recursive Karat-
suba multiplication that is parameterizable to different
bit-widths and a batch-pipelined Montgomery multiplier
based on the Karastuba multiplier. (Section III)

• We compare the performance and energy efficiency of the
proposed Montgomery multiplier with existing software
and hardware implementations. (Section IV)

II. BACKGROUND

A. Software-Based Montgomery Multiplication

Software implementations of Montgomery multiplication
usually utilize the straightforward algorithm described in [1]
or the multiple-precision algorithms discussed in [2]. Algo-
rithm 1 shows the straightforward Montgomery multiplication
algorithm for two k-bit inputs ā and b̄. It requires three k-bit
multiplications, one 2k-bit addition and one k-bit subtraction.
The complexity of the straightforward Montgomery multipli-
cation depends on the complexity of the underlying integer
multiplications.

Algorithm 1 Montgomery multiplication algorithm
Input: 0 ≤ (ā, b̄) < p, 2k−1 ≤ p < 2k

Precompute: r = 2k, p′ and r−1 satisifying r · r−1−p ·p′ = 1
Output: c̄ = ā · b̄ · r−1

1: t1 ← ā · b̄
2: t2 ← t1 · p′ (mod r)
3: u← (t1 + t2 · p)/r
4: if u ≥ p then return u− p else return u

Multiple-precision algorithms are also commonly used for
computing Montgomery multiplication. Large bit-width inte-
gers are broken down into smaller limbs that are computed
sequentially. Different multiple-precision algorithms have been
proposed. Koc et al. analyzed these algorithms and classified
them into 5 categories. All of them require (2s2 + s) w-bit
multiplications1.

1Number of limb (s) = d Total bit-width (N) / word-width (w) e.

B. Related Hardware Implementations

Existing FPGA implementations of Montgomery multipli-
cation can be classified into two major categories: bit-wise
and block-wise approaches. Bitwise implementations can be
found in [3], [4], [5], [6], [7], [8]. These systems do not use
any explicit multiplication, implementing the entire algorithm
using solely addition. They require O(N) additions, each with
bit-width of N . Thus, they have at least O(N2) complexity
where N is the bit-width of the computation. Such systems
typically need to use carry save techniques to overcome the
problem of long carry chains. Not only do these systems
suffer from problems stemming from the massive summations
involved, they are unable to make efficient use of a resource
that most modern FPGAs provide. Since they do not use
multiplication, the embedded multipliers in these FPGAs are
wasted.

Block-wise Montgomery multiplier designs typically use
one of the five multiple-precision algorithms from [2] or
similar algorithms with quotient pipelining from [9]. Found
in [10], [9], [11], [12], these systems use embedded multipliers
and have O(s2) multiplication complexity.

III. PARAMETRIC KARATSUBA INTEGER MULTIPLIER

The key to our Montgomery multiplier design is the
recursive Karatsuba algorithm. This allows us to com-
pute modular multiplication with a complexity approaching
O(N (log 3/ log 2)). Background on the Karatsuba algorithm is
provided in Section A. Our design uses multiple-precision
arithmetic techniques so that the critical path delay is inde-
pendent of the multiplier’s bit-width.

Unless stated otherwise, we assume we are multiplying
two 2k-bit unsigned integers and the limb-widths of all
components are w. The number of limbs in a 2k-bit word
is (2s = d2k/we). We use either a coarse-grained carry-save
technique or a pipelined multiple-precision technique in all
of our adders and subtracters. The critical path of the circuit
primarily depends upon the limb-width w.

A. Karatsuba algorithm

The Karatsuba multiplication algorithm was proposed by
Karatsuba and Ofman in 1962 [13].To illustrate the algorithm,
we let X and Y be two 2k-bit unsigned integers and split
them both in half.

X = 2kX1 +X0 and Y = 2kY1 + Y0

In conventional long multiplication, the product XY is com-
puted with four k-bit multiplications and three additions as
shown Equation 1.

XY = 22kz2 + 2kz1 + z0

z2 = X1Y1, z1 = X0Y1 +X1Y0, z0 = X0Y0 (1)

As shown in Equation 2, Karatsuba noticed that the middle
term z1 can be computed reusing the terms z2 and z0. Reusing
these terms allow us to replace two of the multiplications

X

X1 Y1

L(z2)

X

X0 Y0

z2 z0

U(z0)

U(z0) L(z2)

U(z2) L(z0)+

3-input GCCSA

c1 [2s-1]

k k k k

2k 2k

|X1 - X0|

X1

k k

X0

|Y1 - Y0|

Y1

k k

Y0

X

k k

+/-

c2

+

2k

2k

2s-1

c0

coarse-

grained

carries (c1)

partial

sum (s1)

2k

c3

final adder

& carry

logic

L(z0)

k
k

XY

U(z2)

pipelined

ripple-carry

adder /

subtractor

pipeline

stages

sign

Fig. 1. Block diagram of recursive Karatsuba multiplier.

and one addition with four additions/subtractions and one
multiplication.

z1 = X0Y1 +X1Y0

= X1Y1 +X0Y0 − (X1 −X0)(Y1 − Y0)

= z2 + z0 − (X1 −X0)(Y1 − Y0)

XY = T1 − T2

T1 = 22kz2 + z0 + 2k(z2 + z0)

T2 = 2k(X1 −X0)(Y1 − Y0) (2)

B. High-level architecture

We designed a parameterizable Karatsuba layer and apply
it recursively. In our prototype architecture, we achieve high
performance by fully parallelizing and pipelining all Karatsuba
layers.

We also optimized the original Karatsuba algorithm to suit
our hardware implementation. First, instead of computing the
product of two 2’s complement numbers (T2) in Equation 2,
we compute the absolute value of (X1 −X0) and (Y1 − Y0).
These absolute values are then added to or subtracted from the
first term (T1). Second, we take advantage of the fact that the
sum (lower half z2 + upper half z0) actually appears twice and
rearrange T1 as Equation 3. This allows us to remove some
logic required for the addition.

T1 = z00 + (22k + 2k)(z01 + z20)

+ 2kz00 + 22kz20 + 23kz21

z0 = 2kz01 + z00 (3)

Figure 1 shows the block diagram of a single level of
our recursive Karatsuba multiplier for 2k-bit inputs. It is
constructed from three k-bit Karatsuba multipliers (or em-
bedded multipliers if k is equal to or smaller than the native
multiplier bit-width). We use a coarse-grained carry-save adder

e0
w

d0

f0

e1d1

f1

c0[3]

c1[3]

s0c1[0]c1[1]c1[2]

f2f3

s1s2s3

w

Fig. 2. An example 3-input coarse grained carry-save adder with 4 limbs.

s0s1s2s3
w

+ + +

+/-

borrow/

carry

c4

0

middle 2k-bit of XY

carry

c3

add/sub add/sub

+/-+/- +/-

c1[0]

g0g1g2g3

c1[1]c1[2]

w

Fig. 3. Multiple-precision 3-input adder / subtracter.

(CGCSA) for the first three additions in the middle 2k-bits.
Pipelined multiple-precision adders are used in the 3-input
adder, the final adder logic and the absolute value units. They
are carefully pipelined to minimize latency while achieving
high clock frequency.

C. Detailed implementation

We denote (d = L(z2),U(z0)) as the first input to the coarse-
grained carry-save adder, (e = U(z0),L(z2)) as the second
and (f = U(z2),L(z0)) as the third. Figure 2 shows a block
diagram of an example 3-input CGCSA with 4 limbs. In the
first cycle, the lower half of inputs d and e are summed limb-
wise, producing a k-bit partial sum and an s-bit coarse-grained
carry. These sums and carries are then duplicated and added
to a registered version of input f . The 3-input adder generates
a 2k-bit partial sums (s), coarse-grained carries (c1[2s−2..0])
and two MSB carries (c0 and c1[2s− 1]). Shown in Figure 1,
the partial sum and coarse-grained carries are fed into the 3-
input multiple-precision adder/subtracter, while the two MSB
carries are pipelined and fed into the final adder.

As shown in Figure 1, the 3-input pipelined ripple-carry
adder / subtracter is used to combine the partial sum and
coarse-grained carries from the CGCSA and add or subtract
the third partial product (X1−X0)(Y1−Y0), depending on the
signs from the absolute value units. Figure 3 shows an example

290

300

310

320

330

340

350

360

1000

10000

100000

0 100 200 300 400 500 600

F
re

q
u

e
n

cy
 (

M
H

z)

LU
T

-r
e

g
is

te
r

p
a

ir
s

bit-width

LUT-reg pairs

clock frequency

Fig. 4. Result of our batch-pipelined Montgomery multipliers.

3-input adder/subtracter with 4 limbs. g, s, and C1[i] represent
the partial product from the third multiplier, and the partial
sum and coarse-grained carries from the GCCSA, respectively.
The absolute value units and the final adder have a similar
construction as the ripple-carry adder. A special circuit is used
to reduce the four 1-bit carries to a 2-bits sum before it is fed
into a k-bit adder.

Although our recursive Karatsuba multiplier provides in-
teger multiplication with low complexity, its input to output
latency grows quickly with the number of bits. To solve this
problem, we propose a batch-pipelined architecture that can
hide the long latency with data level parallelism. A universal
datapath is constructed using the Karatsuba multiplier, ripple
adder / subtracter and shifter to compute step 1, 2, (3 and 4)
of Algorithm 1 in three passes. We fed batch data into the
datapath to keep the datapath fully utilized in every clock
cycle. The Karatsuba-based Montgomery multiplier has an
average throughtput of f/3 where f is the operating clock
freqnecy.

IV. RESULT AND COMPARISON

We synthesized our design on a Xilinx Virtex-6
XC6VSX475T-2 FPGA using ISE 11.5. Karatsuba multipliers
are constructed by applying Karatsuba layers recursively down
to 32-bit multipliers generate by Xilinx coregen. We found that
a 32-bit fast carry-chain has a maximum clock frequency of
400 MHz, which is close to the maximum frequency of the
32-bit multipliers. Thus, we select 32-bits as our limb-width in
every Karatsuba layer. Figure 4 shows the resource utilization
of batch-pipelined Montgomery multipliers with different bit-
widths.

We found the designs’ clock frequencies are lower than the
theoretical 400 MHz limit. A major contributor to this is
likely increased routing delay in large designs as the average
separation between components increases. We could reduce
this routing delay by inserting additional pipelining registers.

We implemented software Montgomery multiplication using
Algorithm 1 with the long integer multiplication functions
provided by the GMP multiple-precision library [14]. We
benchmarked this software implementation on an Intel Xeon
E5420 CPU running at 2.5 GHz. The single-threaded perfor-
mance was multiplied by 4 to estimate the maximum aggre-
gate performance of using all four cores. The CPUs thermal
design power (TDP) specification was used to estimate power

TABLE I
COMPARISON OF DIFFERENT OUR MONTGOMERY MULTIPLIERS WITH SOFTWARE IMPLEMENTATION.

bit-
width

num
of
cores

freq
(MHz)

FPGA
throughput
(M MontMul
/ s)

FPGA
power con-
sumption
(W)

FPGA
energy
efficiency
(µJ / Mul)

software
throughput
(M MontMul
/ s)

software
energy
efficiency
(µJ / Mul)

speedup
(times)

energy effi-
ciency gain
(times)

128 55 349 6400 80.5 0.0126 33.6 2.38 190 189
256 17 336 1900 67 0.0352 17.9 4.48 106 127
512 4 300 400 51 0.127 6.6 12.12 60.6 95

TABLE II
COMPARISON TO PREVIOUS 512-BIT BLOCK-WISE MONTGOMERY MULTIPLIERS.

Design normalized LUTs embedded multiplier iterations normalized fre-
quency (MHz)

areaL-delay
product

areaM -delay
product

Tang [10] 8235 32 74 500 1219 4.74
Suzuki [9] 3937 17 152 500 1197 5.2

Ours 62557 324 3 300 625 3.24

consumption. We estimate the maximum number of different
bit-width multiplier cores that could be mapped to the Virtex-6
and their performance. The power consumption of these FPGA
implementations is estimated using the Xilinx power estimator
tool with an activity rate of 50 %, a very pessimistic estimate.
Table I shows the performance speedup and per-multiplication
energy efficiency of our FPGA implementations against the
software implementations.

We normalized the performance and resource requirements
of previous 512-bit block-wise Montgomery multiplier designs
with the architecture proposed in this paper. It is impossible to
determine the exact operating frequency of these designs, we
optimistically assume they can all operate at 500 MHz when
mapped to our target Virtex-6 device. We also normalized the
fine-grained logic usage of [10] to the Virtex-6 LUT by as-
suming that each Virtex-6 LUT can realize one Virtex-2 slice.
We calculated both the normalized areaL-delay product (i.e.
LUTs) and areaM -delay product (i.e. embedded multiplier)
as shown in Table II. We achieve significantly lower area-
delay products thanks to the O(N (log 3/ log 2)) complexity of
the Karatsuba algorithm.

One major disadvantage of our Karatsuba-based Mont-
gomery multiplier is the size. Although fully parallelized
designs provide high throughput and require little to no control
logic, large multipliers may encounter difficulty operating
at high clock frequencies due to routing delay. This may
be improved in future work by exploring different ways of
serializing parts of the architecture.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a Karatsuba-based Montgomery
multiplier for cryptography applications using long integers.
The multipliers have significantly lower area-delay products
compared with previous designs. They also provide excellent
performance and energy efficiency compared with software
implementations. Future work includes research on serializing

the design so that it can reach parts of the design space using
fewer resources.

REFERENCES

[1] P. Montgomery, “Modular multiplication without trial division,” Math-
ematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[2] C. Kaya Koc, T. Acar, and J. Kaliski, B.S., “Analyzing and comparing
Montgomery multiplication algorithms,” IEEE Micro, vol. 16, no. 3, pp.
26 –33, jun 1996.

[3] A. L. Masle, W. Luk, J. Eldredge, and K. Carver, “Parametric encryption
hardware design,” in Reconfigurable Computing: Architectures, Tools
and Applications, ser. Lecture Notes in Computer Science, vol. 5992.
Springer Berlin / Heidelberg, 2010, pp. 68–79.

[4] Y.-Y. Zhang, Z. Li, L. Yang, and S.-W. Zhang, “An efficient CSA
architecture for Montgomery modular multiplication,” Microprocessors
and Microsystems, vol. 31, no. 7, pp. 456 – 459, 2007.

[5] C. McIvor, M. McLoone, and J. McCanny, “Modified Montgomery
modular multiplication and RSA exponentiation techniques,” in IEE
Proceedings of Computers and Digital Techniques, vol. 151, no. 6, nov.
2004, pp. 402 – 408.

[6] A. Daly and W. Marnane, “Efficient architectures for implementing
Montgomery modular multiplication and RSA modular exponentiation
on reconfigurable logic,” in Proc. FPGA. New York, NY, USA: ACM,
2002, pp. 40–49.

[7] D. Narh Amanor, C. Paar, J. Pelzl, V. Bunimov, and M. Schimmler,
“Efficient hardware architectures for modular multiplication on FPGAs,”
in Proc. FPL, aug. 2005, pp. 539 – 542.

[8] S. Ors, L. Batina, B. Preneel, and J. Vandewalle, “Hardware imple-
mentation of a Montgomery modular multiplier in a systolic array,” in
in Proc. International Parallel and Distributed Processing Symposium,
april 2003, p. 8 pp.

[9] D. Suzuki, “How to maximize the potential of FPGA resources for mod-
ular exponentiation,” Cryptographic Hardware and Embedded Systems-
CHES 2007, pp. 272–288, 2007.

[10] S. Tang, K. Tsui, and P. Leong, “Modular exponentiation using parallel
multipliers,” in Proc. ICFPT, dec. 2003, pp. 52 – 59.

[11] N. Jiang and D. Harris, “Quotient Pipelined Very High Radix Scalable
Montgomery Multipliers,” in Asilomar Conference on Signals, Systems
and Computers, 29 2006-nov. 1 2006, pp. 1673 –1677.

[12] E. Oksuzoglu and E. Savas, “Parametric, secure and compact implemen-
tation of RSA on FPGA,” in International Conference on Reconfigurable
Computing and FPGAs, 2008, pp. 391 –396.

[13] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers
by automatic computers,” in Doklady Akad. Nauk SSSR, vol. 145, no.
293-294, 1962, p. 85.

[14] T. Granlund and the GMP development team, The GNU Multiple
Precision Arithmetic Library, Edition 5.0.1, Feb 2010.

