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Abstract

Systems biology is a rapidly growing field which seeks a refined quantitative under-

standing of organisms, particularly studying how molecular species such as metabo-

lites, proteins and genes interact in cells to form the complex emerging behaviour

exhibited by living systems. Synthetic biology is a related and emerging field which

seeks to engineer new organisms for practical purposes. Both fields can benefit from

formal languages for modelling, simulation and analysis.

In systems biology there is however a trade-off in the landscape of existing formal

languages: some are modular but may be difficult for some biologists to understand

(e.g. process calculi) while others are more intuitive but monolithic (e.g. rule-based

languages). The first major contribution of this thesis is to bridge this gap with a Lan-

guage for Biochemical Systems (LBS). LBS is based on the modular Calculus of Bio-

chemical Systems and adds e.g. parameterised modules with subtyping and a notion of

nondeterminism for handling combinatorial explosion. LBS can also incorporate other

rule-based languages such as Kappa, hence adding modularity to these. Modularity is

important for a rational structuring of models but can also be exploited in analysis as

is shown for the specific case of Petri net flows.

On the synthetic biology side, none of the few existing dedicated languages allow

for a high-level description of designs that can be automatically translated into DNA

sequences for implementation in living cells. The second major contribution of this

thesis is exactly such a language for Genetic Engineering of Cells (GEC). GEC exploits

the recent advent of standard genetic parts (“biobricks”) and allows for the composition

of such parts into genes in a modular and abstract manner using logical constraints.

GEC programs can then be translated to DNA sequences using a constraint satisfaction

engine based on a given database of genetic parts.
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Chapter 1

Introduction

1.1 Background

Systems and synthetic biology Systems biology [50] is a rapidly growing field

which seeks a refined quantitative understanding of organisms, particularly studying

how molecular species such as metabolites, proteins and genes interact in cells to form

the complex emerging behaviour exhibited by living systems. Such an understand-

ing is, for example, important for the discovery and development of new drugs and to

predict the impact of these on an organism [12].

Synthetic biology [34] is a related emerging field which seeks to engineer new

organisms for practical purposes. Promising prospects include for example bacteria

that produce hydrogen from sunlight and water, thus addressing the problem of global

warming, and bacteria that detect environmental pollutants in an economically viable

manner, thus leading to improved quality of life in impoverished regions [36].

Despite having seemingly different aims, systems and synthetic biology are in fact

highly complementary. The process of engineering new organisms sheds light onto

how evolution may have shaped existing organisms, and the knowledge of how existing

organisms function in turn yields building blocks which can be used in the engineering

of new organisms.

Mathematical modelling Mathematical modelling plays a key role in systems biol-

ogy where it facilitates the generation of new knowledge of existing biological sys-

tems through the cycle of simulation, experimental validation, and model refinement

[50, 57]. In synthetic biology the design of a new system is likewise validated through

mathematical modelling and simulation before its in-vivo implementation [33]. Math-

1



2 Chapter 1. Introduction

ematical modelling has traditionally been based on ordinary differential equations

(ODEs) or variants thereof which can be simulated through numerical integration.

When stochastic effects are important, other mathematical structures such as continu-

ous time Markov chains (CTMCs) are employed.

Modelling languages As our biological knowledge-base increases through rapid im-

provements of e.g. high-throughput genome sequencing methods, the models under

study in systems biology also increase in size and complexity. Synthetic systems are

likewise increasing in size following improvements of e.g. gene synthesis techniques.

New methods are therefore needed to support the structured development of large mod-

els, and also to complement simulations with appropriate analysis methods.

Hence an abundance of formal modelling languages and frameworks inspired by

computer science have found their way to biological modelling over the past decade.

These include Petri nets [65,77] and coloured Petri nets [48,55]; process calculi such as

the π-calculus [78], the stochastic π-calculus [75,9,17], the continuous π-calculus [53],

Beta binders [76, 41], BlenX [32], PEPA [45, 15] and BioPEPA [24, 25, 2]; rule-based

languages such as κ [30, 29], BioNetGen [35] and BIOCHAM [20]; state-based for-

malisms such as Statecharts [42]; and languages such as Bioambients [79], the Brane

calculi [16], P-systems [67] and Bigraphs [27, 26, 63] with specialised features for de-

scribing biological compartments and membranes.

Limitations of existing modelling languages Some of the above mentioned lan-

guages, in particular those from the process calculus family, support modularity by al-

lowing large systems to be described in terms of their components. Modularity allows

for more structured models which are easier to maintain and understand, and can po-

tentially be exploited to obtain more efficient simulation and analysis methods. These

languages may however be difficult for non-specialists, including some biologists, to

use and to understand. Other languages, for example from the rule-based family, are

more intuitive to use but only allow flat, non-modular descriptions.

Any language used for modelling in systems biology can in principle also be used

to model a novel system in synthetic biology. In fact one may argue that modelling

in synthetic biology poses certain advantages, e.g. that the modeller can decide on the

modules, whereas the extent to which natural systems exhibit modularity is a subject

of much debate. However, the above mentioned languages are limited by their lack

of dedicated support for the modelling of genes, requiring ad hoc approaches which
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may be overly complicated and do not match the domain particularly well. It is indeed

widely recognised that new methods supporting a structured approach to the engineer-

ing of genes and genetic networks are needed [4].

1.2 Contributions

Aim The general aim of this thesis is to close the gap in the above landscape by

developing formal languages for biology which:

1. allow one to write modular models of large cellular systems, and

2. allow one to write intuitively and concisely.

The specific contributions towards this aim are two languages. The first, entitled a Lan-

guage for Biochemical Systems (LBS), lies in the realm of systems biology and allows

existing biological systems found in nature to be modelled and subsequently analysed.

The second, a language for Genetic Engineering of Cells (GEC), lies in the realm of

synthetic biology and allows for the modelling of desired phenotypical characteristics

of new systems and the subsequent simulation and translation to a number of possible

genetic devices.

A language for biochemical systems LBS is based on the Calculus of Biochem-

ical Systems (CBS) [74] which allows the modular modelling of cellular systems as

biochemical reactions of complexes of modified species, taking place in parallel and

inside a hierarchy of compartments. CBS has a formal compositional semantics, trans-

lating programs into semantical objects such as ODEs, CTMCs, Petri nets and coloured

Petri nets. The first two allow continuous and stochastic simulations to be carried out,

and Petri nets are supported by a large range of established analysis methods that are

useful in the biological setting.

CBS forms a good starting point because it combines the intuition associated with

standard chemical reactions with a notion of modularity, but it does not go all the way

towards our aim. The notion of modularity is limited because there is no means of

parameterisation. Conciseness also suffers for large models because of a frequent need

for duplication of molecular complexes and because of limited support for handling

the combinatorial complexity inherent in many signalling pathways.

LBS is an extension of CBS, designed to address these practical problems. It allows

for module reuse through parameterisation and a notion of subtyping and parametric
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type; it facilitates the handling of large molecular complexes through dedicated species

expressions; and it addresses the problem of combinatorial explosion through a notion

of nondeterminism. In addition, LBS generalises the representation of species by al-

lowing arbitrary modification site types. This allows for example for more detailed

models at the level of species binding sites corresponding to that found in rule-based

languages such as κ and BioNetGen. This in turn enables a translation of LBS models

into κ and BioNetGen which excel in their support for handling combinatorial ex-

plosion and for which a growing number of novel analysis techniques are becoming

available.

Modular flow analysis Modularity in LBS facilitates a structured engineering ap-

proach to modelling, but there is also the hope that modularity can be exploited in

analysis. Another contribution of this thesis is to show that this is indeed the case in

the particular context of Petri net flows (also known as invariants). Informally, transi-

tion flows (or T-flows) represent chemical reactions which together have no net effect

on species populations in a model. They hence correspond to a notion of cyclic path-

ways, and they coincide with the notion of flux modes [84] in cases where reactions

are irreversible [43]. Place flows (or P-flows) represent weighted sums of species pop-

ulations which are always constant. They hence correspond to chemical conservation

relations.

Flow analysis has proven an important tool in biological model validation: the

modeller should be able to give biological justification for each flow, otherwise it is

likely that the model is incorrect for the intended purpose [44, 43]. Flows are further-

more important in the general analysis of Petri nets; for example, P-flows can be used

for determining boundedness, and T-flows for investigating liveness [80].

Our results on modular analysis show how the flows of a system can be computed

based on the flows of its components, and how this can be exploited in a modular

definition of flows of LBS programs. Flow analysis is computationally expensive, and

a modular approach can potentially reduce the computational complexity of analysis

dramatically and enable parallel computation. It also allows analysis results to be

reused in different contexts. Related work in this area is discussed after presenting the

technical results.

A language for genetic engineering of cells GEC is based on the recent advent

of standard genetic parts [34], e.g. “biobricks” [64], which can be composed to form
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genes and gene networks that encode living organisms. A GEC model specifies the

phenotypical characteristics of such organisms at a high level of abstraction through

logical properties and interrelationships between parts. Such logical properties could,

for example, specify that a part should code for a specific protein which can form a

complex with another, and that the resulting complex should be a transcription factor

for a part regulating the expression of a third protein. Modules allow further abstraction

away from individual parts, much as designs in electronic engineering abstract away

from individual boolean gates.

The process of translating a GEC model to concrete DNA sequences relies on a

given database of known parts which could be based on e.g. the MIT Registry [64].

However, for our purposes, we employ a minimal proof-of-concept database.

GEC includes compartments and reactions which are used both as a basis for sim-

ulation but also to impose constraints on parts. Therefore GEC could be designed

as an extension of LBS. However, in order to focus on the central problem of trans-

lating from high-level descriptions to genetic devices, GEC is designed as a separate

language with simpler representations of species and reactions. Ultimately the two

languages may merge.

Implementation Compilers for LBS and GEC have been implemented in the func-

tional programming language F# [87]. The compiler for LBS translates directly to

the Systems Biology Markup Language (SBML) [47] rather than to e.g. Petri nets or

ODEs because SBML is adequate for the examples and the case studies in this thesis

and because it is supported by a large body of tools. The translation to SBML relies

on the libSBML library [10]. The compiler for GEC translates both to textual strings

representing DNA sequences, and also to LBS programs which can subsequently be

translated to SBML for simulation.

A tool with a graphical user interface for both compilers has furthermore been

implemented in C#. The tool includes an editor for the GEC database; textual editors

for GEC and LBS programs; and a simulator allowing both deterministic and stochastic

simulations to be carried out and plotted. The latter relies on the third-party simulators

provided through the Systems Biology Workbench (SBW) [6].

Closely related languages A few other languages share some of our general design

aims. Most notably, Little b [59] and Antimony [85] combine the intuitive rule- or

reaction-based approach with modularity. However, they do not have a formally de-
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fined semantics (barring the standard semantics of Lisp, on which Little b is based,

which is not particularly well suited for the biological domain). Hence their meaning

may not always be clear and they are not readily amenable to modular analysis. They

also do not have a direct counterpart of the LBS species expressions, nondeterminism

and subtyping.

Antimony and another language called GenoCad [13, 14] furthermore have dedi-

cated constructs for modelling genes following the genetic part approach that we also

adopt for GEC. However, neither of these allow the abstraction away from individual

parts through logical properties that GEC does. Hence large models in these languages

may be difficult to comprehend.

1.3 Thesis outline

Outline We start in Chapter 2 with an overview of relevant existing modelling lan-

guages and frameworks, and focus in particular on CBS and its limitations. In Chapter

3 we introduce LBS informally through a number of small examples and we outline

two larger case studies of the yeast pheromone [51] and ErbB [56] signalling pathways

which are included in full in Appendix A and B. The formal presentation of LBS starts

in Chapter 4 with an abstract syntax. Chapter 5 presents a general semantics of LBS

which is independent of any particular choice of target semantical objects. Concrete

semantics in terms of Petri nets, coloured Petri nets, ODEs, CTMCs, and κ are given

in Chapter 6 by appropriate instantiations of the general framework. The results on

modular analysis of Petri net flows are presented as yet another concrete semantics in

Chapter 7. In Chapter 8 we turn to synthetic biology with an informal introduction

to GEC through small examples and case studies; Chapter 9 defines GEC formally

through an abstract syntax and semantics. Finally, Chapter 10 concludes and gives an

overview of future work. Detailed proofs are given in Appendix C.

Publications Parts of this thesis were published elsewhere. An early version of LBS,

without full details of the semantics, was published in [70] with Gordon Plotkin. This

has been subsumed by [71], published with Gordon Plotkin, which essentially consists

of the material in Chapters 3, 4, 5 and 6 but without the case studies and without the

examples and formal definitions relating to κ. The material in Chapter 7 on compo-

sitional definitions of Petri net flows was published in [68]. The material on GEC in

Chapters 8 and 9 was published in [69] with Andrew Phillips.
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Prerequisites and Chapter Dependencies We have endeavoured to keep the thesis

self-contained with respect to the necessary biological background, although an ele-

mentary understanding of cell biology is assumed. The technical chapters (4, 5, 6, 7

and 9) assume some familiarity with ideas from programming language theory and ba-

sic mathematics. The non-technical chapters (2, 3 and 8) can be read independently of

the rest, and the chapters on LBS can be read independently of the chapters on GEC.





Chapter 2

Existing Formalisms for Biology

Overview In this chapter we give an informal overview of some existing formalisms

for biology which have direct relevance to LBS and GEC. We start with Petri nets in

Section 1 and rule-based languages in Section 2. Both are significant in the context of

this thesis because LBS affords a translation to these. In Section 3 we consider two

rule- or reaction-based languages which share our design objective of modularity and

in Section 4 we consider two dedicated languages for synthetic biology.

In Section 5 we introduce CBS in some detail through a number of examples.

The aim of doing so is two-fold. First, CBS is the basis of LBS, and therefore CBS

is a natural starting point for introducing LBS. Second, the examples highlight the

limitations of CBS; we show in the next chapter how these can be overcome with LBS.

This chapter is not intended as a comprehensive literature review. Particularly, we

omit a treatment of the large body of work on process calculi which is not of direct

relevance to the work presented in this thesis.

A categorisation of intra-cellular systems Intra-cellular systems are often divided

into three principal categories. The first category is that of metabolic pathways which

involve an enzyme-catalysed transformation of chemicals, for example of glucose into

pyruvate as in the glycolysis pathway [3]. The second category is that of gene reg-

ulatory networks which map the effects that the activation of one gene may have on

the activation of others, as for example in the repressilator circuit [33]. The third cate-

gory is that of signal transduction pathways which involve the propagation of a signal

from the extracellular space into the nucleus of a cell where a gene may be activated

to initiate a response, as for example in the yeast pheromone pathway [51]; the signal

is typically propagated through a series of protein phosphorylations.

9
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Although the three categories are closely interrelated and one formalism is often

capable of modelling systems spanning them all, we choose to focus on the latter two

in this thesis. Gene regulatory networks play a central role in GEC because genes

are the primary target of a translation of GEC programs. We discuss gene regulatory

networks briefly in Section 4 in the context of languages for synthetic biology. Signal

transduction pathways are of interest because they are difficult to model concisely,

and conciseness is one of the overall aims for the languages presented in this thesis.

The problem is one of combinatorial explosion as we illustrate next through a small

example.

A small example exhibiting combinatorial explosion Consider the two reactions in

Figure 2.0.1a in which proteins A and B bind to form a complex and where B is subse-

quently phosphorylated, a scenario typical of signal transduction pathways. There are

three potential sources of combinatorial explosion of the number of reactions needed

to model such a system:

1. Internal combinatorial explosion. Suppose that there is an additional modifi-

cation site on protein A and that the reactions can take place regardless of the

phosphorylation state of this site. One then obtains two copies of each reaction,

one for each of the two phosphorylation states, as shown in Figure 2.0.1b. Gen-

erally, the number of reactions grows exponentially with the number of new sites

that are added.

2. Species variant combinatorial explosion. Proteins sometimes exist in different

variants with common functionality. Suppose for example that protein A has

variants A1 and A2, both of which can participate in the reactions. One then

obtains the four reactions shown in Figure 2.0.1c, one for each choice of the

As. Generally, the number of reactions grows exponentially with the number of

variants of each protein.

3. Contextual combinatorial explosion. Proteins can sometimes participate in a

reaction regardless of which other proteins they are in complex with. Suppose

for example that a third protein, C, can bind A regardless of whether or not A is

bound to B, and that A can participate in the reactions regardless of whether or

not it is bound to C. One then obtains two copies of each reaction, one where A is

bound and one where it is not, as shown in Figure 2.0.1d. This complexity may

resemble that of modification sites but is in fact worse because C can generally
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(a) The basic reactions with no com-

binatorial explosion.

(b) Internal combinatorial explosion, arising from an additional modification site on

protein A.

(c) Species variant combinatorial explosion, arising from two possible variants of

protein A.

(d) Contextual combinatorial explosion, arising from the possible context of com-

plexes that protein A is in.

Figure 2.0.1: Graphical representations of reactions for the binding of proteins A and

B with subsequent phosphorylation of B illustrated with three possible sources of com-

binatorial explosion. Modification sites in their unphosphorylated and phosphorylated

states are represented with labels u and p, respectively.
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A

B

AB ABp

Figure 2.1.1: A basic Petri net representation of the two reactions in Figure 2.0.1a.

have many possible bindings itself. In fact, in cases where polymerisation takes

place, this can even give rise to infinitely many concrete reactions.

When discussing existing formalisms in the following, we also outline any support that

these provide for ameliorating the problem of combinatorial explosion.

2.1 Petri nets

Since their introduction in the sixties, Petri nets have been applied to the modelling

of a wide range of distributed systems and have also been the subject of extensive

theoretical studies. They are well suited for modelling biological systems because of

their intuitive visual representation and the way in which they directly capture chemical

reactions. We first introduce the basic notion of Petri nets and then one of their many

extensions.

2.1.1 Basic Petri nets

Basic Petri nets [65] are weighted, directed bipartite graphs with nodes that are either

places or transitions. A Petri net modelling the example in Figure 2.0.1a is shown

in Figure 2.1.1 where places, depicted as circles, represent species, and transitions,

depicted as rectangles, represent reactions. In the general case arc weights represent

reaction stoichiometry, but in the example all weights are 1 and have thus been omitted.

Applications of basic Petri nets to biological modelling were first reported in [77] and

many others have since followed, e.g. in [38, 43, 39, 82, 86].

The state of a basic Petri net is given by a marking, which is an assignment of a non-

negative integer number of tokens to each place, typically representing a population

count or concentration level of the corresponding species. A transition can fire and

when doing so, it removes a number of tokens from its input places and adds a number

of tokens to its output places. The number of tokens removed (respectively added) by
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a transition is given by the weights on the corresponding in-going (respectively out-

going) arcs, and a transition can fire only if its input places contain at least the number

tokens specified by the corresponding ingoing arc weights. The rules of this “token

game” can be formalised to define the qualitative semantics of a basic Petri net and we

do so in Chapter 6. Transitions can also be equipped with rates, giving rise to stochastic

Petri nets [40] from which CTMCs can be derived for stochastic simulation.

In addition to simulation, a number of well-understood analysis methods have

found applications in the biological setting [43]. These include e.g. model-checking

using Computation Tree Logic (CTL) and methods for flow analysis which give in-

sights into chemical conservation relations and cyclic pathways in a model. Flow anal-

ysis will be treated in depth in Chapter 7 where a modular method is presented.

The examples in Figures 2.0.1b, 2.0.1c and 2.0.1d can be modelled in a similar,

straightforward fashion. However, separate places and transitions are needed for each

possible species and reaction. Basic Petri nets are hence susceptible to the problem of

combinatorial explosion. In the context of large-scale modelling they are also limited

by their lack of modularity, although there have been efforts towards modular basic

Petri nets [83, 91, 23].

2.1.2 Coloured Petri Nets

Coloured Petri Nets (CPNs) [48] provide higher levels of abstraction by allowing to-

kens to have “colour”, i.e. to be marked with elements of a given datatype. Arc weights

are replaced by more general arc expressions operating on the types of tokens in the

associated places, and transitions may be equipped with boolean guards. An example

CPN model of the reactions in Figure 2.0.1a is shown in Figure 2.1.2a; note how a

single place now represents a species with modification sites by a record with boolean

fields for each site. Other types than the booleans can be used for record fields, allow-

ing for example DNA sequences (strings) or location (real-valued pairs) to be repre-

sented explicitly. Applications of CPNs to biological modelling have been reported in

e.g. [88, 81, 55].

This added structure can be used to give a compact representation of systems which

suffer from combinatorial explosion at the level of modification sites as demonstrated

by the CPN representation in Figure 2.1.2b of the reactions in Figure 2.0.1b. Only

the types and arc expressions are changed, the latter now including variables, and no

new places or transitions are added. Combinatorial explosion at the level of atomic
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A ()

{s:bool}B

AB
{s:bool}

()

{s=ff}

{s=ff}

{s=ff}

{s=tt}

(a) CPN representation of the two reactions in Figure 2.0.1a.

A {s1:bool}

{s2:bool}B

AB
{s1:bool ,s2:bool}

{s1=x}

{s2=ff}

{s1=x,s2=ff}

{s1=y,s2=ff}

{s1=y,s2=tt}

(b) CPN representation of the four reactions in Figure 2.0.1b illustrating

how combinatorial explosion at the level of modification sites can be han-

dled. Arc expressions here contain the variables x and y.

Figure 2.1.2: Coloured Petri net representations of the reactions in Figures 2.0.1a and

2.0.1b. Types are specified to the right of the places and arcs are labelled with expres-

sions of the type associated with the appropriate input and output places.
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species and complexes still requires addition of new places and transitions if one uses

the approach outlined here, although an approach along the lines of κ or BioNetGen,

discussed below, may be conceivable.

CPNs additionally have a notion of modularity. Modules, termed pages, can be

defined and used, possibly multiple times, as building blocks of a more complex super-

net. This is done by defining substitution transitions in the super-net, which can then

be replaced by a particular page instance. This in turn requires a port assignment

specifying how the places of the page are connected to the places of the substitution

transition in the super-net. These features support the modelling process by allowing

large models to be composed from their components.

2.2 Rule-based languages

In contrast to Petri nets which are general-purpose formalisms, rule-based languages

have been designed specifically for the modelling of biological systems. Common to

them all is that they describe systems in terms of rules which are abstract representa-

tions of one or more reactions.

2.2.1 BIOCHAM

BIOCHAM [20] is based on a notion of rules, originating from [22, 19], which may

contain variables for modification site states, for atomic species names and for com-

plexes, hence providing support for handling all three sources of combinatorial explo-

sion. Variables must range over specified finite sets of values. Here is the BIOCHAM

representation of the reactions in Figure 2.0.1a:�
1 A + B => A−B

2 A−B => A−B˜ s �
Complexes are formed using the − operator and B˜s means that B is phosphorylated on

a site called s. Reactions may also include compartments and rates.

The next example shows how variables, identified by the $ symbol, can be used to

model the four reactions in Figure 2.0.1b which arise due to combinatorial explosion

at the level of modification sites:�
1 A˜ $s + B => A˜ $s−B where $s i n { {} , { s } }
2 A˜ $s−B => A˜ $s−B˜ s where $s i n { {} , { s } } �
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Here $s can take two values, namely the empty set of modification sites (meaning

unphosphorylated) and the singleton set of one modification site (meaning phospho-

rylated on that site). The “where” part of the rules can be omitted if the species A is

predefined with a specification of its possible modifications.

The following example shows how variables can be used to model the four reac-

tions in Figure 2.0.1c which arise due to combinatorial explosion at the level of atomic

species:�
1 $A + B => $A−B where $A i n { A1 , A2 }
2 $A−B => $A−B˜ s where $A i n { A1 , A2 } �

A similar mechanism is used for modelling the reactions in Figure 2.0.1d which arise

due to combinatorial explosion at the level of complexes:�
1 $AC + B => $AC−B where $AC i n { A, A−C }
2 $AC−B => $AC−B˜ s where $AC i n { A, A−C } �

2.2.2 BioNetGen

As the name suggests, BioNetGen [35] is a language designed for generating a bio-

chemical network, essentially a set of reactions or a basic Petri net, from an abstract,

rule-based description. More recently, BioNetGen also allows simulation to be carried

out directly at the level of rules [8], without generating the underlying network which

may be very large or even infinite.

In contrast to BIOCHAM, there is no direct support for compartments, and rules

do not use variables to range over atomic species or complexes. Instead they describe

complexes at the lower level of binding sites, and bindings may be left unspecified

which gives rise to a notion of pattern matching. Here is a BioNetGen representation

of the reactions in Figure 2.0.1a:�
1 A( s ) + B( s ˜ u ) −> A( s ! 1 ) . B( s ˜ u ! 1 )

2 A( s ! 1 ) . B( s ˜ u ! 1 ) −> A( s ! 1 ) . B( s ˜ p ! 1 ) �
A(s) represents A with the site s unbound but in any state of modification, and B(s˜u) rep-

resents B with s unbound and unphosphorylated. Complexes are formed using the . op-

erator and bindings within complexes are specified using natural number labels which

have scope of the complexes in which they occur. The product side of the first rule

then represents a complex where the site s in A is bound to the site s in B.
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The first rule can be applied to any instances of A and B that are unbound on site

s and where B is unphosphorylated on this site, with the condition that they are not

otherwise bound in the same complex. In particular it can be applied to instances

of A which have other modification sites as in Figure 2.0.1b, or to instances which

are bound to other proteins as in Figure 2.0.1d. In this way BioNetGen transparently

supports combinatorial explosion at the level of species modifications and at the level

of complexes. There is however no support for combinatorial explosion at the level

of atomic species, so the reactions in Figure 2.0.1c are modelled using two additional

rules.

The explicit representation of binding sites in support of contextual combinatorial

explosion leads to increased expressiveness compared to e.g. Petri nets: BioNetGen,

and also κ to be discussed next, are Turing-complete [18].

2.2.3 κ

The κ calculus [30] is syntactically very similar to BioNetGen although there are some

subtle differences. Here is the κ representation of the reactions in Figure 2.0.1a:�
1 A( s ) , B( s ˜ u ) −> A( s ! 1 ) , B( s ˜ u ! 1 )

2 A( s ! 1 ) , B( s ˜ u ! 1 ) −> A( s ! 1 ) , B( s ˜ p ! 1 ) �
Compared to the corresponding BioNetGen representation, there is only the single

“comma” operator in place of the sum and complex formation operators. Semantically,

the difference is that the rule may be applied to instances of A and B which are already

bound together in some complex, either directly on some other site than s or through

some intermediary, which allows for more efficient simulation of rules [31]. There are

also some semantical subtleties regarding (the lack of) commutativity of the comma

operator, and we return to this in Chapter 6 where we give a concrete semantics of

LBS in terms of κ.

As for BioNetGen, κ excels in its support for handling combinatorial explosion at

the level of modification sites and complexes but not at the level of atomic species. A

recent meta-language [29] addresses this problem through a notion of generic agents.

The reactions in Figure 2.0.1c can then be represented as follows:�
1 g e n e r i c A( s ) ;

2 c o n c r e t e A1 <: A;

3 c o n c r e t e A2 <: A;

4 c o n c r e t e B( s ) ;

5
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6 A( s ) , B( s ˜ u ) −> A( s ! 1 ) , B( s ˜ u ! 1 )

7 A( s ! 1 ) , B( s ˜ u ! 1 ) −> A( s ! 1 ) , B( s ˜ p ! 1 ) �
Note how the rules remain the same, but the definition of A as a generic agent with two

concrete variants yields the expected result. There are some semantics design choices

when for example A occurs multiple times on the reactant side, and we return to this

question in Chapter 5 when treating the nondeterminism feature of LBS.

2.3 Rule-based Languages with Modularity

Although other formalisms such as process calculi provide support for modularity, this

is not generally the case for rule-based languages such as the ones discussed above. In

this section we briefly discuss two languages which combine the reaction or rule-based

approach with a notion of modularity.

2.3.1 Little b

Little b [59] is designed to support the sharing and reuse of models through modularity

and is built around the functional language Lisp. The Lisp foundation provides a high

degree of flexibility since any custom functionality can in principle be programmed

into a model. The module system supports parameterisation and is in some respects

more powerful than the module system for LBS, introduced in the next chapter; for

example, Little b allows for modules which phosphorylate a variable number of sites

on a species parameter, which is not currently possible in LBS.

Little b employs a notion of rules [60] at a similar level of abstraction to those of

BioNetGen and κ. The reactions in Figure 2.0.1a can be represented in BioNetGen as

follows:�
1 ( defmonomer A s )

2 ( defmonomer B s1 ( s2 : s t a t e s ( member : u : p ) ) )

3

4 ( d e f i n e r1 { [A ] + [B : u ] −>> [ [A 1 ] [B 1 : u ] ] } )

5 ( d e f i n e r2 { [ [A 1 ] [B 1 : u ] ] −>> [ [A 1 ] [B 1 : p ] ] } ) �
Lines 1 and 2 define the two species A and B, and in the case of B, two separate sites

are required for binding (s1) and for phosphorylation (s2). The latter is specified to take

two modification values representing the unphosphorylated and phosphorylated states.



2.3. Rule-based Languages with Modularity 19

Lines 4 and 5 then define the two rules, r1 and r2. Both species and rules evaluate to

Lisp objects which can subsequently be manipulated or simulated.

Little b has a notion of wild cards. These can be used to handle combinatorial ex-

plosion at the level of modification sites and bindings following the approach in κ and

BioNetGen, the difference being that wild cards are implicit in these latter languages.

Wild cards can also be used in place of atomic species names, providing a means of

handling combinatorial explosion arising from species variants. A tagging mechanism

furthermore provides a means of restricting wild card matches.

The flexibility of Little b does however come at a price. For example it requires

users of the language to have some familiarity with Lisp. Although e.g. infix notation

helps to achieve a more natural representation of reactions, the syntax does not appear

to be particularly close to the biological domain. And although Little b by virtue of

its Lisp foundation does have a formal semantics, the semantics is not very transparent

and it is not well suited for e.g. the compositional Petri net analysis that we study later

in this thesis.

2.3.2 Antimony

Antimony [85] is designed as a human-readable and modular language for both sys-

tems and synthetic biology; we discuss the latter aspect in the next subsection. Models

are specified in terms of reactions which are simpler than those of Little b, as can be

seen from the following Antimony representation of the reactions in Figure 2.0.1a:�
1 A + B −> A B

2 A B −> A Bs �
There is no language-level support for modification sites and complexes: all species

are treated as atomic identifiers, i.e. the underscore used in the complex A B is not an

operator and the s, indicating phosphorylation, is arbitrarily appended to the identifier

A B. Reactions do not allow for rule-based abstraction, so there is no direct support for

handling combinatorial explosion.

Antimony does however provide a range of other features with a particular focus

on those found in SBML. These include for example dynamic compartment volumes

and events for e.g. instantaneous changes to species populations. The module system

allows parameterisation on species, compartments and rates.

A significant limitation of Antimony is its lack of a formal semantics. There are

tools for translating Antimony to SBML, but the mechanism of this translation is not
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Figure 2.4.1: Illustration of gene expression in bacteria (and other prokaryotes) and the

role of four principal DNA parts constituting the gene.

formally defined, and neither is the semantics of SBML itself. The lack of any formal

semantics, let alone a compositional one, also means that Antimony is not readily

suited for the kind of compositional Petri net analysis that we study later in this thesis.

2.4 Languages for Synthetic Biology

We now turn briefly to languages which explicitly support synthetic biology through

abstractions for standard genetic parts. Parts are sequences of DNA that can be com-

posed to form genes. A typical gene is composed of at least four parts as shown in Fig-

ure 2.4.1. The promoter is responsible for binding a “transcriber”, RNAP, which tran-

scribes the down-stream DNA into mRNA. The ribosome binding site is transcribed

into mRNA which binds to a “translator”, the ribosome. The ribosome translates the

down-stream mRNA resulting from the protein coding region into a target protein.

Finally, the terminator signals end-of-transcription to the RNAP.

Graphical tools for designing genes based on standard parts and for simulating the

dynamics of gene expression have recently started to emerge [61]. As of yet there are

however only two languages, other than our GEC, which support this process.

2.4.1 GenoCad

The first is GenoCad [13], a simple context-free language consisting of biologically

meaningful sequences of part names. Any sequence of part names adhering to the

scheme of promoter, ribosome binding site, protein coding region and terminator
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shown in Figure 2.4.1 is for example included, as for example the following Geno-

Cad program with part names referring to those found in the MIT Registry:�
1 r0040 b0034 c0040 b0015 �

Sequences with e.g. the promoter (r0040) and ribosome binding site (b0034) swapped

are not included.

A recent extension [14] gives a semantics to GenoCad programs in terms of re-

actions which represent the emerging dynamics of gene expression. This semantics is

defined using attribute grammars and relies on having appropriate mass-action rates as-

sociated with the various parts; a rate of transcription is for example associated with a

promoter part. We give a similar translation to reactions from GEC models in Chapter

9 using standard ideas from denotational semantics rather than attribute grammars.

2.4.2 Antimony

We have already described the central features of Antimony for systems biology mod-

elling. Antimony models can furthermore contain sequences of standard genetic parts

for representing gene networks. In contrast to GenoCad, these sequences can be com-

posed in a modular fashion and models can be parameterised on part names. Models

can be simulated as in GenoCad, but rather than using mass-action rates, Antimony

employs the notion of Polymerases Per Second (PoPS) and Ribosomes Per Second

(RiPS) as in [61]. These are measures of how many RNAPs, respectively ribosomes,

pass over a specified area of DNA, respectively mRNA, per second, and can be used to

derive ODEs.

2.5 CBS by Example

CBS is syntactically very similar to BIOCHAM. The reactions in Figure 2.0.1a can be

written as follows:�
1 A + B{ s= f f } −> A−B |
2 A−B −> A−B{ s= t t } �

Complexes are formed by composing modified primitive species using the complex for-

mation operator, -, as in BIOCHAM. Modifications sites have boolean values with ff

(false) representing “unphosphorylated” and tt (true) representing “phosphorylated”.

As a shorthand we may write e.g. Fus3 instead of Fus3{p=ff} and Fus3{p} instead of
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A

B

AB AB ABp

Figure 2.5.1: Petri nets arising from the individual rules of a CBS program. These can

be composed by merging the common places (highlighted) to obtain the Petri net in

Figure 2.1.1 arising from the full CBS program.

Fus3{p=tt}, again following the approach of BIOCHAM. In contrast to BIOCHAM

however, reactions are separated by the parallel composition operator, |, which forms

the basis of a modular semantics of CBS.

Semantically, the above CBS program gives rise to the Petri net previously encoun-

tered in Figure 2.1.1, and this can be computed in a modular manner as illustrated in

Figure 2.5.1. The first reaction gives rise to a Petri net with the three places A, B and

AB together with a transition connecting these. The second reaction gives rise to a

Petri net with two places AB and ABp and an associated transition. The full Petri net

associated with the parallel composition is obtained by merging the common places as

determined by syntactic equality on names, in this case just AB. We observe that the

sum and parallel composition operators are commutative, and so is the complex forma-

tion operator because place names are formally multisets of modified atomic species.

Modular semantics in terms of ODEs and CTMCs can also be defined assuming that

reactions are labelled with rate constants.

CBS allows the assignment of general boolean expressions to modification sites,

and boolean expressions may include variables, hence ameliorating the problem of

combinatorial explosion at this level. The reactions in Figure 2.0.1b can for example

be represented as follows, where x is a variable:�
1 A{ s=x} + B −> A{ s=x}−B |
2 A{ s=x}−B −> A{ s=x}−B{ s } �

Semantically the above CBS program gives rise to the CPN previously encountered

in Figure 2.1.2b, and this can be computed in a modular manner as for the previous

example. CBS does not allow variables in place of atomic species or complexes as

in BIOCHAM, so there is no support for handling the other sources of combinatorial

explosion.
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Figure 2.5.2: An informal pictorial diagram of eukaryotic gene expression taking place

in three steps: 1) transcription, 2) transport and 3) translation.

Listing 2.5.1: A CBS program for gene expression.�
1 c [

2 n [ gene + rnap −> gene + rnap + mrna ] |
3 n [ mrna ] −> mrna |
4 r s + mrna −> r s + p r o t

5 ] �
The remainder of this section gives some further, larger examples of CBS models.

These examples serve to demonstrate additional features of CBS, namely compart-

ments and modules, and they also form the basis of the presentation of LBS in the next

chapter.

2.5.1 Gene Expression

We first consider a basic model of gene expression. We abstract away from individual

parts and consider a gene as an atomic entity. In order to illustrate the use of compart-

ments, we furthermore consider eukaryotic rather than prokaryotic gene expression.

Eukaryotes have a nucleus and gene expression involves the additional step of trans-

porting mRNA from the nucleus into the cytosol as outlined in Figure 2.5.2.

A corresponding CBS program is shown in Listing 2.5.1. The program consists of

three reactions composed in parallel and taking place inside a cytosol compartment c.
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The first reaction models transcription. It is located inside a nested nucleus compart-

ment n and produces mRNA from a gene and an RNAP. The second reaction models

transport of mRNA out of the nucleus into the enclosing cytosol compartment, and

the third reaction models translation of mRNA into protein by a ribosome. Observe

how compartments are used both at the level of individual species and at the level of

entire programs; in contrast, compartments in BIOCHAM, Little b and Antimony are

restricted to individual species or reactions.

Semantically, compartments give rise to renamings of e.g. Petri net places such

that species which have the same name but are located in different compartments are

represented by different places. Compartments distribute over parallel compositions

and reactant/product sums. In this example we could have omitted the cytosol com-

partment in which case a default top level compartment would be assumed.

2.5.2 A MAPK Cascade

We now shift the focus to a MAPK cascade which is ubiquitous in many signalling

pathways. For the next example we choose an adapted (but not identical) version of a

previously published Ras/Raf/MEK/ERK cascade [28]. An informal graphical repre-

sentation is shown in Figure 2.5.3 and has three levels: in level one Ras (the MAPK4)

phosphorylates Raf; in level two phosphorylated Raf (the MAPK3) phosphorylates

MEK twice; and in level three, doubly-phosphorylated MEK (the MAPK2) phospho-

rylates ERK (the MAPK) twice. Each phosphorylation step involves three reactions:

binding of the kinase and ligand, phosphorylation of the bound ligand, and dissociation

of the phosphorylated ligand from its kinase. We furthermore include the correspond-

ing dephosphorylation steps.

A CBS model of this MAPK cascade is shown in Listing 2.5.2. Each phospho-

rylation/dephosphorylation cycle is modelled separately using module definitions, and

the main body of the program in line 42 simply invokes the modules in parallel. Such

a modular approach simplifies the presentation and should be contrasted with other

rule-based approaches using e.g. BIOCHAM where the program would consist of one

long, unstructured list of reactions.

We do however observe a high degree of redundancy. All five modules have the

same structure, consisting of two sets of three reactions for binding, modification and

unbinding. A shorter version of the program could in principle be obtained through

appropriate derived forms for enzymatic reactions. But it appears unlikely that a small,
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Listing 2.5.2: A modular CBS program for the Ras/Raf/MEK/ERK MAPK cascade.�
1 module r a f C y c l e {
2 Ras + Raf −> Ras−Raf |
3 Ras−Raf −> Ras−Raf{m} |
4 Ras−Raf{m} −> Ras + Raf{m} |
5 PP2A1 + Raf{m} −> PP2A1−Raf{m} |
6 PP2A1−Raf{m} −> PP2A1−Raf |
7 PP2A1−Raf −> PP2A1 + Raf

8 } ;

9 module mekCycle1 {
10 Raf{m} + MEK −> Raf{m}−MEK |
11 Raf{m}−MEK −> Raf{m}−MEK{S218} |
12 Raf{m}−MEK{S218} −> Raf{m} + MEK{S218} |
13 PP2A2 + MEK{S218} −> PP2A2−MEK{S218} |
14 PP2A2−MEK{S218} −> PP2A2−MEK |
15 PP2A2−MEK −> PP2A2 + MEK

16 } ;

17 module mekCycle2 {
18 Raf{m} + MEK{S218} −> Raf{m}−MEK{S218} |
19 Raf{m}−MEK{S218} −> Raf{m}−MEK{S218 , S222} |
20 Raf{m}−MEK{S218 , S222} −> Raf{m} + MEK{S218 , S222} |
21 PP2A2 + MEK{S218 , S222} −> PP2A2−MEK{S218 , S222} |
22 PP2A2−MEK{S218 , S222} −> PP2A2−MEK{S218} |
23 PP2A2−MEK{S218} −> PP2A2 + MEK{S218}
24 } ;

25 module e r k C y c l e 1 {
26 MEK{S218 , S222} + ERK −> MEK{S218 , S222}−ERK |
27 MEK{S218 , S222}−ERK −> MEK{S218 , S222}−ERK{T185} |
28 MEK{S218 , S222}−ERK{T185} −> MEK{S218 , S222} + ERK{T185} |
29 MKP3 + ERK{T185} −> MKP3−ERK{T185} |
30 MKP3−ERK{T185} −> MKP3−ERK |
31 MKP3−ERK −> MKP3 + ERK

32 } ;

33 module e r k C y c l e 2 {
34 MEK{S218 , S222} + ERK{T185} −> MEK{S218 , S222}−ERK{T185} |
35 MEK{S218 , S222}−ERK{T185} −> MEK{S218 , S222}−ERK{T185 , Y187} |
36 MEK{S218 , S222}−ERK{T185 , Y187} −>
37 MEK{S218 , S222} + ERK{T185 , Y187} |
38 MKP3 + ERK{T185 , Y187} −> MKP3−ERK{T185 , Y187} |
39 MKP3−ERK{T185 , Y187} −> MKP3−ERK{T185} |
40 MKP3−ERK{T185} −> MKP3 + ERK{T185}
41 } ;

42 r a f C y c l e | mekCycle1 | mekCycle2 | e r k C y c l e 1 | e r k C y c l e 2 �
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Figure 2.5.3: A Ras/Raf/MEK/ERK MAPK cascade represented by five phosphoryla-

tion/dephosphorylation cycles. Each phosphorylation and dephosphorylation step cov-

ers three underlying reactions for binding, phosphorylation/dephosphorylation, and un-

binding.

fixed set of derived forms can cater for all the variants that a modeller may encounter.

We may for example wish to consider variants of the above model in which all the

binding reactions are reversible, or in which binding and phosphorylation are combined

into a single reaction. Hence we seek to address the problem of reusability through

language-level support for parameterised modules in LBS.

2.5.3 A Scaffolded MAPK Cascade.

The next example is based on a scaffolded MAPK cascade from the yeast pheromone

pathway [51]. This model is simpler than the previous one in that we only consider a

single phosphorylation site in each species and each reaction represents an autophos-

phorylation involving only a single reactant. The model is however more complicated

in that relatively large scaffolding complexes are used. An informal graphical repre-

sentation is shown in Figure 2.5.4 and the corresponding CBS program is shown in

Listing 2.5.3.

The first five reactions in lines 1−12 model the formation of the scaffold complex

and correspond to the left part of Figure 2.5.4. The last three reactions in lines 14−21

model the actual MAPK cascade, with each reaction phosphorylating a single atomic
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Figure 2.5.4: Scaffold formation and a scaffolded MAPK cascade [51].

Listing 2.5.3: A CBS program for a scaffolded MAPK cascade in yeast.�
1 Ste5 + Ste11 −> Ste5−Ste11 |
2

3 Ste7 + Fus3 −> Ste7−Fus3 |
4

5 Ste5−Ste11 + Ste7−Fus3 −>
6 Ste5−Ste11−Ste7−Fus3 |
7

8 Ste5−Ste11−Ste7−Fus3 + Gbg −>
9 Ste5−Ste11−Ste7−Fus3−Gbg |

10

11 Ste5−Ste11−Ste7−Fus3−Gbg + Ste20 −>
12 Ste5−Ste11−Ste7−Fus3−Gbg−Ste20 |
13

14 Ste5−Ste11−Ste7−Fus3−Gbg−Ste20 −>
15 Ste5−Ste11 {p}−Ste7−Fus3−Gbg−Ste20 |
16

17 Ste5−Ste11 {p}−Ste7−Fus3−Gbg−Ste20 −>
18 Ste5−Ste11 {p}−Ste7 {p}−Fus3−Gbg−Ste20 |
19

20 Ste5−Ste11 {p}−Ste7 {p}−Fus3−Gbg−Ste20 −>
21 Ste5−Ste11 {p}−Ste7 {p}−Fus3{p}−Gbg−Ste20 �
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species in a complex reactant, and correspond to the right part of Figure 2.5.4. The

scaffold is formed by the atomic species Ste5, Ste20 and Gbg, and the species Fus3, Ste7

and Ste11 serve the MAPK, MAPK2 and MAPK3 roles, respectively. All species except

Ste20 and Gbg have a single modification site, p, which can be either phosphorylated or

unphosphorylated, indicated by the presence of the site name as before.

As in the previous example one immediately notices a high level of redundancy,

but here for a different reason. As is common in signalling pathways, some reactions

change just a single state of modification in a large complex, yet unaffected parts of

the complexes are listed repeatedly. We address this problem with dedicated language

constructs for species expressions in LBS.



Chapter 3

LBS by Example

The previous chapter introduced a number of existing formalisms, including CBS

which forms the foundation of LBS. We demonstrated how CBS is limited by the

lack of parameterised modules, and by the lack of support for handling combinatorial

explosion and large complexes in a concise manner. This chapter introduces LBS in-

formally through examples showing how LBS constructs can be used to improve, and

go beyond, the CBS models given in the previous chapter. Two LBS case studies, on

the yeast pheromone and the ErbB signalling pathways, are also outlined.

3.1 Gene Expression

We start with the model of eukaryotic gene expression shown earlier in Figure 2.5.2 on

page 23. First the exact CBS model is replicated in LBS, demonstrating the concept

of new species and compartment definitions. We then go beyond the CBS model by

showing how to model the expression of multiple genes in a compact manner using

parameterised modules.

3.1.1 New Species and Compartment Definitions

CBS has a static semantics which catches typos by requiring that only species names

in a given set are used in programs. In LBS we include both new species definitions

and new compartment definitions directly in the language. New species definitions in-

clude a list of modification sites, if any, together with their type, and new compartment

definitions include a specification of the parent, if any, and an optional volume. The

volume is used when compartments are referred to in rate expressions. The seman-

29
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Listing 3.1.1: An LBS program for gene expression.�
1 spec gene = new{} , mrna = new{} , p r o t = new {} ;

2 spec r nap = new{} , r s = new {} ;

3 comp c = new comp ;

4 comp n = new comp i n s i d e c ;

5

6 c [

7 n [ gene + rnap −> gene + rnap + mrna ] |
8 n [ mrna ] −> mrna |
9 r s + mrna −> r s + p r o t

10 ] �
tics of LBS requires that species are only used with their defined modification types

and that compartments are only used inside their defined parents. New species and

compartment definitions are demonstrated by the program in Listing 3.1.1 which is

identical to the corresponding CBS program in Listing 2.5.1 on page 23 except for the

added definitions in the first four lines.

The expression new{} is formally a species expression which evaluates to a species

value with no modification sites and with a globally unique name that is used in e.g.

the underlying Petri net semantics. New species are bound to species identifiers such

as mrna which do not themselves hold any identity of a species; we may hence bind the

same identifier to an entirely different species in another part of the program. This al-

lows different modules, possibly developed by different people, to use the same species

identifier for mRNA species which are semantically and biologically different, and

subsequently combine the modules into a single program without unintended cross-

talk. On the other hand, when species are intended to be shared between modules, the

species should be defined globally or made parameters of modules as we demonstrate

next.

3.1.2 Parameterised Modules

We extend the basic gene expression program to express two proteins, prot1 and prot2,

from two different genes, gene1 and gene2. We do so by abstracting the gene expression

process into a parameterised module and invoking the module twice with the relevant

parameters. The result is shown in Listing 3.1.2.

The RNAP and the ribosome are defined globally in lines 1−2, meaning that they
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Listing 3.1.2: A modular LBS program for gene expression instantiated with two genes

and two target proteins.�
1 spec r nap = new {} ;

2 spec r s = new {} ;

3

4 module m( comp nuc ; spec gene , p r o t ) {
5 spec mrna = new {} ;

6 nuc [ gene + rnap −> gene + rnap + mrna ] |
7 nuc [ mrna ] −> mrna |
8 r s + mrna −> r s + p r o t

9 } ;

10

11 spec gene1 = new{} , p r o t 1 = new {} ;

12 spec gene2 = new{} , p r o t 2 = new {} ;

13 comp c = new comp ;

14 comp n = new comp i n s i d e c ;

15

16 c [ m( n , gene1 , p r o t 1 ) | m( n , gene2 , p r o t 2 ) ] �
will be shared between all instances of the module defined in lines 4−9. This is biolog-

ically meaningful since the same RNAP and ribosome species are used for transcription

and translation independently of the gene in question. The module is parameterised on

the nucleus compartment, the gene and the target protein. The body is similar to be-

fore, except that a new mRNA species is defined locally in line 5. This means that

each instance of the module uses semantically distinct mRNA, which again is biologi-

cally meaningful. Lines 11−14 define the genes and proteins to be expressed together

with the relevant compartments, and line 16 is a parallel composition of two module

invocations inside the cytosol compartment. We could choose to define the nucleus

compartment globally in this particular case, but instead give it as a common parame-

ter in both module invocations in order to illustrate how this can be done in the more

general case.

3.2 A MAPK Cascade

Parameterised modules can also be used to improve the CBS model of the MAPK cas-

cade in Figure 2.5.3 on page 26. In order to do so, two further LBS features, parametric
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type and subtyping, are needed and we start by demonstrating these. We then go be-

yond the CBS model and show how to handle combinatorial explosion both explicitly

through the use of nondeterminism and implicitly by incorporating the approach of

κ and BioNetGen into LBS. Finally, we show how a variant operator can be used to

generate multiple variants of the MAPK cascade model for subsequent computational

investigation.

3.2.1 Parametric Type and Subtyping

Recall how all the cycle modules used by the CBS program in Listing 2.5.2 on page 25

have the same structure, each with two sets of reactions for representing, respectively,

phosphorylation and dephosphorylation. The LBS program in listing 3.2.1 shows how

a general, parameterised cycle module can be defined, which in turn relies on two

general modules for phosphorylation and dephosphorylation.

The phosphorylation module named ph in lines 1-5 contains three reactions: bind-

ing of a kinase k and substrate s, phosphorylation of s in the bound state, and unbinding

after phosphorylation. The two species are formal parameters, but in contrast to ear-

lier examples, the formal parameter s has an annotation specifying that it must have

a modification site m. The dephosphorylation module named dph in lines 7-11 fol-

lows a similar structure but is parameterised on a phosphatase p rather than a kinase.

The cycle module in lines 13-15 is parameterised on a kinase, a phosphatase and a sub-

strate and invokes the phosphorylation and dephosphorylation modules in parallel. The

invocations provide annotations for matching up the modification sites in the actual pa-

rameters with the corresponding modification sites in the formal parameters, which in

this case is trivial since there is only the single choice, m. Note that there is scope

for further abstraction since the phosphorylation and dephosphorylation modules are

very similar. In fact they could be abstracted into a single module, but we refrain from

doing so for the sake of clarity.

Lines 17-21 define the new species participating in the program and the remaining

lines invoke modules for the appropriate cycles. Let us consider the invocation in line

24 in more detail. The first actual parameter, Raf{m}, provides Raf in its phosphory-

lated state as the kinase, and the second parameter provides PP2A2 as the phosphatase.

The third parameter, MEK:{S218}, provides unphosphorylated MEK as the substrate and

the annotation {S218} specifies the target site for phosphorylation. This raises two

important points. First, the names of modification sites in the actual and formal an-
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Listing 3.2.1: A modular LBS program for the Ras/Raf/MEK/ERK signalling cascade.�
1 module ph ( spec k , s :{m} ) {
2 k + s −> k−s |
3 k−s −> k−s {m} |
4 k−s {m} −> k + s {m}
5 } ;

6

7 module dph ( spec p , s :{m} ) {
8 p + s {m} −> p−s {m} |
9 p−s {m} −> p−s |

10 p−s −> p + s

11 } ;

12

13 module c y c l e ( spec k , p , s :{m} ) {
14 ph ( k , s :{m} ) | dph ( p , s :{m} )

15 } ;

16

17 spec Ras = new {} ;

18 spec Raf = new{m: bool } ;

19 spec MEK = new{S218 : bool , S222 : bool } ;

20 spec ERK = new{T185 : bool , Y187 : bool } ;

21 spec PP2A1 = new{} , PP2A2 = new{} , MKP3 = new {} ;

22

23 c y c l e ( Ras , PP2A1 , Raf :{m} ) |
24 c y c l e ( Raf{m} , PP2A2 , MEK:{ S218 } ) |
25 c y c l e ( Raf{m} , PP2A2 , MEK{S218 } :{ S222 } ) |
26 c y c l e (MEK{S218 , S222 } , MKP3, ERK:{ T185 } ) |
27 c y c l e (MEK{S218 , S222 } , MKP3, ERK{T185 } :{Y187 } ) �
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notations differ, resulting in a notion of parametric type. The underlying semantics

maintains a mapping from formal to actual modification site names when evaluating

the body of a module. Second, there are two possible choices of modification sites

to be phosphorylated in the actual parameter, namely S218 and S222. The annotation

picks out the former, and the latter then plays no role from the perspective of the mod-

ule. This results in a notion of subtyping: any actual parameter will do, as long as it

contains at least the sites specified in the annotation and with types that match the cor-

responding formals. This corresponds to record subtyping in classical programming

languages [73]. The module invocation in line 25 is similar but picks out the second

site, S222, for phosphorylation, and also specifies that MEK is already phosphorylated

on site S218.

In general, parameters may be complexes rather than atomic species. Suppose for

example that MEK is in a complex with some other species, a, in the actual parameter

in line 25. This can be written as follows:�
1 . . .

2 c y c l e ( Raf{m} , PP2A2 , MEK{S218}−a :MEK{S222 } ) |
3 . . . �

This results in an additional layer of subtyping: any actual parameter will do, as long

as it contains at least the atomic species specified in the annotation. The annotation is

here extended in order to specify that it is the atomic species MEK rather than a that

should be mapped to the substrate. In fact the annotations used in Listing 3.2.1 are

abbreviations of this more general form, so e.g. MEK{S218}:{S222} is an abbreviation

of MEK{S218}:MEK{S222}. Similarly, the annotated formal parameter s:{m} in the cycle

module abbreviates s : s{m}, and formal annotations may in general contain multiple

atomic species.

We end the discussion of parameterised modules with an abstraction of the entire

MAPK cascade into a module which is itself reusable. This, together with a module

invocation, is shown in Listing 3.2.2.

3.2.2 Nondeterminism

Nondeterminism for contextual combinatorial explosion In the CBS MAPK cas-

cade model we assumed that species only participate in reactions when they are atomic

or when they are in the context of a fully specified complex. Recall that contextual

combinatorial explosion arises from proteins taking part in the same reaction while be-
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Listing 3.2.2: A general, modular LBS program for the Ras/Raf/MEK/ERK signalling

cascade. The species and module definitions from Listing 3.2.1 are omitted.�
1 . . .

2 module mapk (

3 spec k4 , k3 :{m} , k2 :{m1 , m2} , k1 :{m1 , m2} ,

4 p3 , p2 , p1 ) {
5

6 c y c l e ( k4 , p3 , k3 :{m} ) |
7 c y c l e ( k3{m} , p2 , k2 :{m1} ) |
8 c y c l e ( k3{m} , p2 , k2{m1} :{m2} ) |
9 c y c l e ( k2{m1 , m2} , p1 , k1 :{m1} ) |

10 c y c l e ( k2{m1 , m2} , p1 , k1{m1} :{m2} )

11 } ;

12

13 mapk ( Ras , Raf :{m} , MEK:{ S218 , S222 } , ERK:{ T185 , Y187} ,

14 PP2A1 , PP2A2 , MKP3) �
Listing 3.2.3: Phosphorylation using nondeterministic species.�

1 spec NMEK = MEK{S218 , S222}−( SNi l or Raf{m} or PP2A2 ) ;

2 spec NERK = ERK−( SNi l or MKP3 ) ;

3

4 ph (NMEK, NERK:ERK{T185 } ) �
ing bound in multiple different complexes. In the MAPK cascade example, MEK may

for example continue to function as a kinase for ERK when it is bound to its own ki-

nase and/or phosphatase and when ERK is bound to its own phosphatase, and similarly

for other participating species.

One approach to handling this complexity is to adopt a κ or BioNetGen approach

as indeed we demonstrate later. We start however with a middle ground in which all

possible species contexts continue to be specified in reactions, but in a syntactically

compact manner through the notion of nondeterministic species. Listing 3.2.3 shows

an example of phosphorylation using nondeterministic versions of MEK and ERK

The or operator expresses that either of its operands can take part in reactions where

the expression is used. The distinguished species SNil is a neutral element under the

complex formation operator, i.e. the axiom a−SNil = a holds for any species a. The

distributivity axiom a−(b or c) = a−b or a−c also holds for all species a, b and c. Hence
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Listing 3.2.4: The MAPK cascade module instantiated with nondeterministic species.�
1 . . .

2 spec Ras = new {} ;

3 spec RafA = new{m: bool } ;

4 spec RafB = new{m: bool } ;

5 spec RafC = new{m: bool } ;

6

7 spec MEK1 = new{S218 : bool , S222 : bool } ;

8 spec MEK2 = new{S218 : bool , S222 : bool } ;

9

10 spec ERK1 = new{T185 : bool , Y187 : bool } ;

11 spec ERK2 = new{T185 : bool , Y187 : bool } ;

12

13 spec PP2A1 = new{} , PP2A2 = new{} , MKP3 = new {} ;

14

15 spec NRaf = RafA :{m} or RafB :{m} or RafC :{m} ;

16 spec NMEK = MEK1:{ S218 , S222} or MEK2:{ S218 , S222 } ;

17 spec NERK = ERK1:{ T185 , Y187} or ERK2:{ T185 , Y187 } ;

18

19 mapk ( Ras , NRaf , NMEK, NERK, PP2A1 , PP2A2 , MKP3) �
line 1 in Listing 3.2.3 expands to a choice of three species, namely MEK{S218,S222} in

isolation or in complex with Raf{m} or PP2A2, and line 2 expands to a choice of two

species, namely ERK in isolation or in complex with MKP3.

A reaction with nondeterministic species semantically gives rise to a number of

parallel reactions, one for each possible choice of species. For example, the first re-

action k + s −> k−s in the ph module now gives rise to a parallel composition of 6

reactions:�
1 MEK{S218 , S222} + ERK −> MEK{S218 , S222}−ERK |
2 MEK{S218 , S222}−Raf{m} + ERK −> MEK{S218 , S222}−Raf{m}−ERK |
3 MEK{S218 , S222}−PP2A2 + ERK −> MEK{S218 , S222}−PP2A2−ERK |
4

5 MEK{S218 , S222} + ERK−MKP3 −> MEK{S218 , S222}−ERK−MKP3 |
6 MEK{S218 , S222}−Raf{m} + ERK−MKP3 −> MEK{S218 , S222}−Raf{m}−ERK−MKP3 |
7 MEK{S218 , S222}−PP2A2 + ERK−MKP3 −> MEK{S218 , S222}−PP2A2−ERK−MKP3 �

The two other reactions in the ph module have similar expansions, and the ph module

invocation hence results in a total of 18 reactions.
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Nondeterminism for species variant combinatorial explosion The above example

demonstrates how nondeterminism can be used to drastically reduce the size of pro-

grams in which the combinatorial explosion is contextual. Nondeterminism can also

be used to handle species variant combinatorial explosions, i.e. arising from variants

of individual proteins which largely react in the same way. For example, Raf has three

variants RafA, RafB and RafC; MEK has two variants MEK1 and MEK2; and ERK has

two variants ERK1 and ERK2 [72]. As mentioned in Chapter 2, rule-based languages

such as κ and BioNetGen do not per se have any dedicated means of handling this

source of combinatorial explosion, but a recent meta-language provides some level of

syntactical support [29]. Indeed this meta-language, together with our need to handle

contextual combinatorial explosion, are the two motivating factors for the introduction

of nondeterminism into LBS. Listing 3.2.4 shows how the MAPK cascade module

can be used with species variants. In order to be of interest, one would expect that

some reactions distinguish between the variants, but we omit this aspect in the present

example.

Each individual member of the nondeterministic species in lines 15-17 is given a

separate annotation at time of definition rather than at time of module invocation. The

reason is that the members do not have any common atomic species, and in general

they may not have common modification sites either, so it is necessary to identify the

atomic species and sites to be mapped from the corresponding formals on an individual

basis; recall here that e.g. RafA:{m} and RafB:{m} abbreviate respectively RafA:RafA{m}

and RafB:RafB{m}, so the annotations do indeed differ between different members of the

nondeterministic species. For that reason also semantically, annotations are associated

with species rather than with module invocations, and the mappings between formals

and actuals are maintained locally within individual species rather than globally. Invo-

cation of the mapk module results in 102 reactions as opposed to the 30 reactions in the

original model.

The mechanism of nondeterministic selection An important point about Listing

3.2.4 is that nondeterministic species are expanded at the level of reactions and not at

the level of modules. This means that the mapk module invocation is not equivalent

to a parallel composition of module invocations for each choice of species. Such an

interpretation would result in 360 reactions, but 360−102 = 258 of these would be

duplicates, effectively adding up the rates of duplicated reactions, which is certainly

not what we intend. In this respect LBS has a call-by-name semantics. On the other
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hand, species identifiers are resolved at time of module invocation where actual species

parameters are evaluated to sets of species values, so in this respect LBS has a call-by-

value semantics.

An additional subtlety arises in reactions where the same species occurs multiple

times as a reactant or product. Consider for example the following:�
1 spec a1 = new{} , a2 = new{} , b = new{} ;

2 spec a = a1 or a2 ;

3 a + a + b −> a−a−b �
There are two reasonable, but very different, possibilities for expansion of the reaction.

The first requires that the same choice for a is made within the scope of the reaction:�
1 a1 + a1 + b −> a1−a1−b |
2 a2 + a2 + b −> a2−a2−b �

The second possibility allows different copies of the same identifier to take different

values, but with the correspondence between the occurrences on the reactant and prod-

uct sides being preserved:�
1 a1 + a1 + b −> a1−a1−b |
2 a1 + a2 + b −> a1−a2−b |
3 a2 + a1 + b −> a2−a1−b |
4 a2 + a2 + b −> a2−a2−b �

The correct expansion depends on the specific application. Although the first may seem

most appropriate in the general case, the second is for example useful for modelling the

combinatorial dimerisation of different variants of ErbB receptors [29] (note that two

of the resulting reactions are equivalent, effectively duplicating their rates). In order to

cater for these different possibilities, LBS has two reaction arrows. The basic reaction

arrow, −>, which has been used in the examples so far, results in the first expansion,

and we call this a selection arrow. The double-headed reaction arrow, −>>, results in

the second expansion, and we call this an identity-preserving arrow.

In order to give a uniform semantical treatment of nondeterminism, and to enable

other expansions than the two described above, LBS has a dedicated force operator for

forcing nondeterministic choice. For example, the program:�
1 spec a = f o r c e a1 or a2 ;

2 P �
results in a parallel composition of P with a binding of a to a1 in one parallel component

and P with a binding to a2 in the other parallel component. Reactions using either of
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the two arrows are then derived forms expressed in terms of the force operator and a

third deterministic reaction arrow, =>, which requires that reactants and products do

not contain nondeterministic species. For example, the program:�
1 a + a + b −> a−a−b �

abbreviates the program:�
1 spec a = f o r c e ( a ) ;

2 spec b = f o r c e ( b ) ;

3 a + a + b => a−a−b �
and the program:�

1 a + a + b −>> a−a−b �
abbreviates the program:�

1 spec a1 = f o r c e ( a ) ;

2 spec a2 = f o r c e ( a ) ;

3 spec b1 = f o r c e ( b ) ;

4 a1 + a2 + b1 −> a1−a2−b1 �
Nondeterministic species expressions which are not bound to identifiers are not

allowed in reactions with any of the three arrows. This is because the implicit forc-

ing is done on identifiers rather than on general species expressions, which allows

the identity between different occurrences of e.g. the species a to be preserved after

nondeterministic selection.

Restricting combinations of nondeterministic choices In the above examples we

assume that reaction rates are independent of the combinations of nondeterministic

choices. Some combinations may however need different rates than others, and some

combinations may not react at all. Consider the following example of a nondetermin-

istic degradation reaction:�
1 spec a1 = new{} , a2 = new{} , b1 = new{} , b2 = new {} ;

2 spec s = ( a1 or a2 )−( b1 or b2 ) ;

3 s −>{0.1} �
A rate of 0.1 is given in curly brackets. Suppose now that the combination with a1 and

b1 takes place at the lower rate of 0.01. This can be expressed in a compact manner

using the restriction operator, not, which semantically is interpreted as a set difference

operator:
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�
1 spec a1 = new{} , a2 = new{} , b1 = new{} , b2 = new {} ;

2 spec s = ( a1 or a2 )−( b1 or b2 ) not a1−b1 ;

3 s −>{0.1} |
4 a1−b1 −>{0.01} �

Different rates can also be selected based on the state of modification of species

by using variables and conditionals in rate expressions. The following example shows

reactions which have a high rate when either an a or b is phosphorylated, and a low rate

otherwise:�
1 spec a1 = new{m: bool } , a2 = new{m: bool } ;

2 spec b1 = new{n : bool } , b2 = new{n : bool } ;

3 spec s = ( a1{m=$x} or a2{m=$x})−( b1{n=$y} or b2{n=$y } ) ;

4 s −>{ i f $x or $y then 0 . 1 e l s e 0 .01} �
In non-quantitative cases, conditionals can be used directly in boolean guards of re-

actions. Following on from the above example, the nondeterministic reaction below

expands to only the reactions in which either an a or b is phosphorylated:�
1 s −> i f $x or $y �

The not operator can only be used to restrict combinations within the same non-

deterministic species. In contrast, conditionals can be used to restrict combinations

across different nondeterministic species, although only based on the internal state of

species. One can however encode species identity as internal state and thus use condi-

tionals to restrict different combinations of species based on identity.

3.2.3 A Modification Site Type with Binding

All of the previous examples have used boolean modification site types for representing

phosphorylation state, and complexes have been understood as multisets of modified

atomic species. But LBS allows arbitrary choices of modification site types. One such

choice leads to a representation of complexes at the more detailed level of bindings.

This in turn enables a translation to κ and BioNetGen, and we give a formal definition

of the former translation in Chapter 6.

In contrast to solutions using nondeterminism, the support for handling combina-

torial explosion in κ and BioNetGen is largely transparent to the modeller. The sup-

porting tools work without generating the set of all possible fully specified complexes.

This set may be too large for analysis or simulation using traditional methods; it may
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even be infinite. From the perspective of κ and BioNetGen, their integration into the

LBS framework allows features such as compartments and modularity to be exploited.

Listing 3.2.5 shows how the idea of explicit binding can be incorporated into LBS.

The concrete syntax of species modifications differs from that used in the previous

examples in order to closer match that of κ and BioNetGen as outlined in Section 2.2;

the distinguished binding, ?, used in the last four lines, is a wild card meaning any

binding. We preserve the explicit separation of different complexes in reactants and

products, hence following the syntax of BioNetGen more than that of κ; semantically,

whether or not separate complexes can match a single connected complex depends on

whether a translation to κ or BioNetGen is chosen.

The crucial point, however, is that the abstract syntax remains unaffected by the

introduction of explicit binding: species modifications can still be considered values of

an appropriate type assigned to modification sites. As shown in the species definitions

in lines 17-23, the type is here called binding. Its values are formally pairs of an internal

state and a binding.

The default value, given to sites which are not mentioned explicitly such as the site

m of Ras in line 25, is the pair consisting of the wild cards any internal state and any

binding. Furthermore, either or both of the internal and binding states may be omitted.

If the binding state is omitted, such as for the site m of Raf in line 26, the unbound

state is assumed. More subtly, however, if the internal state is omitted, the identity

internal state is assumed which has the effect of preserving any previous internal state.

This is important in e.g. the second reaction in the ph module, line 3, which binds

the site m of the kinase k; it must do so without affecting the original modification of

this site. For example, the module invocation in line 26 specifies that the site must be

phosphorylated, while the module invocation in line 25 specifies that the site can have

any internal state.

The outlined choices of default values for sites not mentioned explicitly and for

derived forms achieve the standard semantics of κ in scenarios where species are only

ever bound to identifiers at the time of creation. The choices also result in a reasonable

semantics in the more general case, which includes parameterised modules, as shown

in the example.

Note, finally, that in contrast to earlier examples without explicit binding, choices

must now be made about which specific sites species bind on. For example, Raf uses the

site m, which is itself subject to phosphorylation in the MAPK cascade, to bind MEK,

whereas MEK uses an additional site, m, which is never phosphorylated, to bind ERK.
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Listing 3.2.5: A MAPK cascade model at the level of protein binding.�
1 module ph ( spec k :{m} , s :{m} ) {
2 k{m} + s {m˜ u} −> k{m!1}− s {m˜ u !1} |
3 k{m!1}− s {m˜ u !1} −> k{m!1}− s {m˜ p !1} |
4 k{m!1}− s {m˜ p !1} −> k + s {m˜ p}
5 } ;

6

7 module dph ( spec p :{m} , s :{m} ) {
8 p{m} + s {m˜ p} −> p{m!1}− s {m˜ p !1} |
9 p{m!1}− s {m˜ p !1} −> p{m!1}− s {m˜ u !1} |

10 p{m!1}− s {m˜ u !1} −> p{m} + s {m˜ u}
11 } ;

12

13 module c y c l e ( spec k :{m} , p :{m} , s :{m} ) {
14 ph ( k :{m} , s :{m} ) | dph ( p :{m} , s :{m} )

15 } ;

16

17 spec Ras = new{m: binding } ;

18 spec Raf = new{m: binding } ;

19 spec MEK = new{S218 : binding , S222 : binding , m: binding } ;

20 spec ERK = new{T185 : binding , Y187 : binding } ;

21 spec PP2A1 = new{m: binding } ;

22 spec PP2A2 = new{m: binding } ;

23 spec MKP3 = new{m: binding } ;

24

25 c y c l e ( Ras :{m} , PP2A1 :{m} , Raf :{m} ) |
26 c y c l e ( Raf{m˜ p } :{m} , PP2A2 :{m} , MEK{S222 ˜ u ?} :{ S218 } ) |
27 c y c l e ( Raf{m˜ p } :{m} , PP2A2 :{m} , MEK{S218 ˜ p ?} :{ S222 } ) |
28 c y c l e (MEK{S218 ˜ p ? , S222 ˜ p ? , m} :{m} , MKP3:{m} , ERK{Y187 ˜ u ?} :{ T185 } ) |
29 c y c l e (MEK{S218 ˜ p ? , S222 ˜ p ? , m} :{m} , MKP3:{m} , ERK{T185 ˜ p ?} :{Y187 } ) �
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Listing 3.2.6: An extension of the MAPK program in Listing 3.2.4 (not repeated here)

with variations for generating one semantical object for each possible initial condition.�
1 . . . |
2 ( i n i t RafA 500 | | PNil ) |
3 ( i n i t RafB 500 | | PNil ) |
4 ( i n i t RafC 500 | | PNil ) |
5

6 ( i n i t MEK1 500 | | PNil ) |
7 ( i n i t MEK2 500 | | PNil ) |
8

9 ( i n i t ERK1 500 | | PNil ) |
10 ( i n i t ERK2 500 | | PNil ) �

We also note that only LBS programs which are written using the binding modification

site types can be translated to meaningful κ programs. The problem of translating gen-

eral LBS programs in which complexes are represented as multisets is an interesting

one that we have left for future work.

3.2.4 Model Variation

Given an LBS program it is sometimes of interest to vary it in a number of ways

and examine the resulting effect on behaviour. In support of a structured approach to

variations, LBS has a variation operator, || , which semantically gives the union of

its operands, i.e. programs evaluate to sets of semantical objects. Listing 3.2.6 shows

how the variation operator can be used to generate a semantical object for each possible

combination of the given initial conditions of species variants in the MAPK cascade

program.

Initial condition statements such as init RafA 500 are first-class programs and spec-

ify a given initial population or concentration for a species. If no initial conditions are

specified in a program, the 0 initial population or concentration is assumed for all par-

ticipating species. The distinguished program PNil is a neutral element under parallel

composition, i.e. the axiom P | PNil = P holds for all programs P; also the distributiv-

ity axiom P1 | (P2 || P3) = (P1 | P2) || (P1 | P3) holds for all programs P1, P2 and P3.

Hence the parallel composition shown above is a power set construction and expands

to a variation composition of all 27 = 128 possible combinations of initial conditions

in parallel with the program represented by dots in line 1, in this case the previously
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Listing 3.3.1: An LBS program for a scaffolded MAPK cascade in yeast.�
1 spec Fus3 = new{p : bool } , S t e7 = new{p : bool } , S t e11 =new{p : bool } ;

2 spec Ste5 = new{p : bool } , S t e20 = new{} , Gbg = new {} ;

3

4 Ste5 + Ste11 −> Ste5−Ste11 as a ;

5 Ste7 + Fus3 −> Ste7−Fus3 as b ;

6 a + b −> a−b as c ;

7 c + Gbg −> c−Gbg as d ;

8 d + Ste20 −> d−Ste20 as e ;

9

10 e −> e<Ste11 {p}> as f ;

11 f −> f<Ste7 {p}> as g ;

12 g −> g<Fus3{p}> �
defined MAPK cascade.

3.3 A Scaffolded MAPK Cascade

The CBS scaffolded MAPK cascade model suffers from redundancy due to frequent

repetition of large complexes. In this section we show how the model can be written

more concisely in LBS through the use of species expressions. We also show how a

notion of output species parameters can be used to link the scaffolded MAPK cascade

module with a separate module for scaffold formation in a natural manner.

3.3.1 Species Expressions

New species, species identifiers and complexes are technically considered species ex-

pressions. Species identifiers can be bound to any species expressions, not just the

new atomic ones, allowing large complexes to be defined once and used repeatedly.

Species expressions also include a construct for updating the modification state of

atomic species inside a complex. We illustrate this in Listing 3.3.1 which gives a more

concise version of the CBS scaffolded MAPK cascade previously shown in Listing

2.5.3 on page 27.

The first two lines consist of new species definitions as before, but now some of

the species are defined with a modification site called p of boolean type. Lines 4-8 rep-

resent scaffold formation, but now the intermediate complexes are bound to identifiers
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using the as keyword. This in-line approach to binding is an abbreviation for binding a

species expression to an identifier, then using the identifier in subsequent reactions, so

e.g. the program:�
1 Ste5 + Ste11 −> Ste5−Ste11 as a ; . . . �

is an abbreviation for the program:�
1 Ste5 + Ste11 −> Ste5−Ste11 |
2 spec a = Ste5−Ste11 ;

3 . . . �
Reactions which have in-line definitions are composed in sequence, using the ; opera-

tor rather than the parallel one, as the order of such reactions matters since identifiers

defined in one reaction can only be used in the following ones.

The species bound to e in line 8 is the full scaffold complex in its unphosphorylated

form. Lines 10-12 represent the actual MAPK cascade. In line 10, the complex bound

to e becomes the same complex, but updated by changing the phosphorylation state

of site p in Ste11 to true. The result is then bound to a new identifier, f. The last two

lines follow a similar pattern. When updates are made on atomic species we use an

abbreviation and write e.g. Fus3{p} instead of Fus3<Fus3{p}>; this abbreviation has

been used extensively in the previous section but is not used in the above example.

The reactions in the above LBS program avoid the redundancy which impairs the

reactions in the corresponding CBS program. This improves readability. It also facili-

tates the process of program revision since adding e.g. a new phosphorylated site to the

definition of Ste5 only involves a subsequent change to the first reaction. Contrast this

to the corresponding CBS program in which the same revision requires two changes in

each of the eight reactions.

There are two further, perhaps less commonly used, species expression operators

which enable complex species to be taken apart. Assuming the definition of g given

above, the selection expression g.Ste7 results in the atomic species from g identified by

Ste7; the removal expression g\Ste7 results in the complex species g without Ste7. Hence

the reaction g −> g.Ste7 + g\Ste7 represents dissociation of Ste7 from g and could in this

case be written explicitly, if more laboriously, as follows:�
1 Fus3−Ste7 {p}−Ste11 {p}−Ste5−Ste20−Gbg −>
2 Ste7 {p} + Fus3−Ste11 {p}−Ste5−Ste20−Gbg �

However, the species selection and removal operators are needed language constructs,

not just notational conveniences. A species identifier used as the target of the selection
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Listing 3.3.2: A modular LBS program for scaffold formation and a scaffolded MAPK

cascade in yeast.�
1 spec Fus3 = new{p : bool } , S t e7 = new{p : bool } ;

2 spec Ste11 = new{p : bool } , S t e5 = new {p : bool } ;

3

4 module f o r m a t i o n ( specout e : Fus3−Ste7−Ste11−Ste5 ) {
5 spec Ste20 = new{} , Gbg = new {} ;

6 Ste5 + Ste11 −> Ste5−Ste11 as a ;

7 Ste7 + Fus3 −> Ste7−Fus3 as b ;

8 a + b −> a−b as c ;

9 c + Gbg −> c−Gbg as d ;

10 d + Ste20 −> d−Ste20 as e

11 } ;

12

13 module mapk ( spec a : k1{m}−k2{m}−k3{m} ; specout d : a ) {
14 a −> a<k3{m= t t }> as b ;

15 b −> b<k2{m= t t }> as c ;

16 c −> c<k1{m= t t }> as d

17 } ;

18

19 f o r m a t i o n ( spec l i n k 1 ) ;

20 mapk ( l i n k 1 : Fus3{p}−Ste7 {p}−Ste11 {p } , spec l i n k 2 ) ;

21 . . . �
and removal operators could be a formal parameter and, as a consequence of subtyping,

its complete make-up in terms of atomic species may not generally be known.

If the complex bound to g is a homo-multimer and has several copies of e.g. Ste7,

then selection and removal operate on all copies. This convention also applies to the

update operator: if the target of an update contains multiple copies of the given species

name, all copies are updated accordingly. It is however possible to make distinctions

between different copies of the same species in homo-multimers, and we give an ex-

ample of this when presenting the formal semantics of LBS.

3.3.2 Output Species Parameters

Manipulations of large complexes are often spread across multiple modules. Some-

times there is a natural input-output relationship between these modules where a species

which is constructed in one module may be the starting point for further manipulation



3.4. Case Study: The Yeast Pheromone Pathway 47

in another. This applies for example to the scaffolded MAPK cascade program in List-

ing 3.3.1 which can benefit from a decomposition into two modules, one for scaffold

formation, and one for the actual MAPK cascade. The fully formed scaffold in its un-

phosphorylated state can be considered as an output of the first module and as an input

to the second. Although one could simply pass this connecting species as a common

parameter to both modules, this would involve the entire scaffold to be written out at

the time of module invocation, thus repeating the definitions already given during scaf-

fold formation. In order to avoid this, we introduce the notion of output species, and a

modular version of the yeast MAPK cascade using this idea is shown in Listing 3.3.2.

The first two lines define four new species while the remaining two species used

in the program are defined locally in the formation module. The formation module has a

single formal parameter which specifies that the species e defined in the module body

is given as an output, and the associated annotation specifies that the output contains

the species Fus3, Ste7, Ste11 and Ste5. In fact the output also contains Ste20 and Gbg,

but these are not exposed, which gives rise to a notion of subtyping similar to that of

standard species parameters.

The mapk module has a parameter a and also an output species parameter d which

is defined in the module body and is specified by the annotation to contain at least

the species of a. In line 19 the formation module is invoked and results in a binding

of the identifier link1 to the output scaffold species. In line 20 this is passed on as a

parameter to the mapk module which in turn results in a binding of the identifier link2

to the phosphorylated scaffold. In the full model of the yeast pheromone pathway, Ste5

dissociates from the scaffold link2 resulting from the MAPK cascade. We can deduce

by inspection of the program that the complex bound to link2 does indeed contain the

species Ste5, since link1 contains Ste5 and link2 contains at least the same species as

link1 .

3.4 Case Study: The Yeast Pheromone Pathway

3.4.1 Overview of the Pathway

The yeast pheromone pathway controls the cell mating response to pheromone signals.

An informal pictorial diagram of the pathway, divided into 7 modules, is presented

in [51]. Two of the modules involve scaffold formation and a MAPK cascade similar

to those depicted in Figure 2.5.4 and modelled in LBS in the previous section. Two
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other modules, upstream of the MAPK cascade, are concerned with receptor activation

and a G-protein cycle; the remaining modules are concerned with down-stream effects

on gene expression. An ODE model of the pathway is also presented in [51]. It is

based on a total of 47 reactions and 35 species.

3.4.2 The LBS Model

The corresponding LBS model is listed in Appendix A. It is composed from 7 modules

corresponding to those of the original informal diagram, but it also includes two other

small, nested modules. One of these (lines 107-109) is a parameterised module with

a single reaction for complex degradation, and this is invoked four times. There is

otherwise no reuse of modules in this model.

In addition to demonstrating how modularity naturally reflects the informal rea-

soning of biologists, the LBS model benefits from compartments and inline species

definitions, and from output species parameters for connecting modules and hiding lo-

cal species definitions following the approach outlined in the previous section. The

model also uses three features of LBS not yet introduced, namely enzymatic reactions,

reversible reactions and general rate expressions. These are all demonstrated by lines

83-84, repeated below:�
1 r a t e v46 = k46 ∗ ( Fus3{p } ˆ2 / ( 4 ˆ 2 + Fus3{p } ˆ 2 ) ) ;

2 Fus3{p} ˜ S s t 2 <−>[v46 ]{ k47} S s t 2 {p} �
A general rate expression is bound to the rate identifier v46. The following reversible

reaction uses this general rate expression for the forward direction, and the mass-action

constant k47 for the backward direction; expressions enclosed in square brackets are

interpreted as general rates, and expressions enclosed in curly brackets are interpreted

as rate constants. The tilde symbol, ˜, is used for enzymatic reactions, in this case with

Fus3{p} as the enzyme.

3.4.3 Model Validation

The LBS model was validated by a translation to SBML and subsequently to ODEs us-

ing the COPASI tool [46]. The resulting ODEs were determined by manual inspection

to coincide with the published ODEs. As an additional step of validation, the SBML

model was simulated and the resulting graphs were determined to match the published

graphs by visual inspection.
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3.5 Case Study: The ErbB Pathway

3.5.1 Overview of the Pathway

The ErbB pathway controls cell division and has been widely studied due to its impli-

cation in human cancers [90]. The pathway includes four receptors, ErbB1 to ErbB4,

which can dimerise after ligand binding. ErbB1 binds e.g. the ligand EGF, ErbB3 and

ErbB4 bind e.g. the ligand HRG, and ErbB2 has no known ligand but nevertheless

plays a role in dimerisation with other receptors. Dimerised receptors bind to scaffolds

and activate down-stream MAPK and PI3K/Akt cascades, which in turn result in a

change of gene expression.

An ODE model of the ErbB pathway is presented in [21]. In addition to receptor

binding and dimerisation, scaffold formation, MAPK and PI3K/Akt cascades, it in-

cludes receptor internalisation. It does however not include gene activation. It is nev-

ertheless one of the largest published ODE models with 499 species and 828 reversible

reactions. These large numbers arise mainly from species variant combinatorial ex-

plosion with respect to the ErbB1-ErbB4 receptors, and from contextual combinatorial

explosion in e.g. scaffold formation.

3.5.2 The LBS Model

A corresponding LBS model is listed in Appendix B. It contains a total of 197 reac-

tions, which is a substantial reduction from the 828 reactions in the original model.

The reduction is achieved through the use of nondeterminism and, to a lesser extent,

through the use of modification site variables and parameterised modules. Modifi-

cation site variables are used in lines 426-429. The model has a total of 26 module

definitions and 31 module invocations.

Reusable modules for phosphorylation/dephosphorylation cycles are exploited in

the MAPK and PI3K/Akt cascades (lines 744-800 and 969-1015) following the ap-

proach shown in Section 3.2; these reusable modules are however not shared between

the two cascades due to differences in the way that phosphorylation is modelled.

Reusable modules are also exploited for reactions which take place in two different

compartments, namely in the plasma membrane and in the endosomal membrane (lines

439-452 and 634-667). Finally, a reusable module is used for reactions which take

place with different rates for two different reactants (lines 942-962).

The remaining modules are used for structuring the model as in the yeast pheromone
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pathway model, and the main body of the model (lines 1076-1090) consists of a large

parallel composition of module invocations.

The model uses two language constructs not previously introduced. One is used for

writing homomultimers as illustrated e.g. by the species expression 2.( EGF−ATP−ErbB1)

in line 412 which is simply the homodimer of (EGF−ATP−ErbB1). Another construct

allows the renaming of species names and modification site names in species using the

:: operator. This can e.g. be used to refer to all members of a nondeterministic species

with a common name, or to distinguish between different members of a homomultimer.

The former is illustrated by the definition in line 305:�
1 spec ErbB234 = ( ErbB2 :{ p1} or ErbB3 :{ p1} or ErbB4 :{ p1 } ) : : ErbB234{p1 } ; �

All the members of the nondeterministic species bound to ErbB234 can now be refer-

enced collectively through the name ErbB234, which is conveniently chosen to coincide

with the identifier to which the expression is bound. This renaming construct can be

defined as a derived form using modules as we show in Subsection 4.5.2.

3.5.3 The Modelling Process and Model Validation

The original ErbB model is available as supplementary material of [21] in an SBML

file; this was the starting point for developing the LBS model. The SBML model es-

sentially encapsulates a list of species and reactions, but the species are encoded as

identifiers which bear no resemblance to their human-readable, biological names. For

example, the EGF species is called “mw07c8092f eb20 4e3f 968c 9ae4601fa697”.

Fortunately, the human-readable names of species are included as annotations in the

SBML file.

The first step of the modelling process was to implement a tool for translating the

annotated SBML file into an LBS program consisting of one big parallel composition

of reactions. A parallel composition of this size has in turn required an optimisation of

the LBS compiler with tail recursion in order to avoid a stack overflow.

There are however inconsistencies in the SBML annotations: some species which

have identical human-readable names, or more precisely, represent the same multisets

of atomic species, have different identifiers in the SBML file. The tool for translating

the SBML file into LBS registers such inconsistencies and compensates by adding a

distinguished atomic species, called COPY, to one of the clashing species. The tool

verifies that there is a one-to-one correspondence between the resulting LBS species

names and the SBML species identifiers.
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The second step was to manually inspect the LBS reactions in which species were

adjusted with the COPY species. In some cases the inconsistencies are due to mistakes

in the SBML annotations. For example, there are two distinct SBML species identifiers

which are both annotated with the human-readable name PI3K, but one of these should

instead be annotated with the name ErbB4{p1}−ErbB2{p1}−Gab1{p1}−GAP−Grb2−PI3K.

In other cases, the inconsistencies are due to two complex species with the same mul-

tiset representation having different binding structure. These inconsistencies can be

resolved by e.g. using modification sites of the binding type introduced in Subsec-

tion 3.2.3, but we have not done this because of time constraints. Further information

about the correct binding structure may also be needed, perhaps in dialogue with the

authors of the original model who have already been helpful in answering our ques-

tions. Hence some of the species in the LBS model in Appendix B still contain the

COPY atomic species.

After these manual adjustments of the LBS model, a second tool was implemented

and used to check that the one-to-one correspondence between LBS species and SBML

species identifiers is preserved. The tool relies on the reactions in the LBS model and

the SBML file to be given in the same order; without this assumption, the verification

problem may be intractable (the general graph isomorphism problem, for example, has

no known polynomial-time algorithm).

The third step was to add structure to the parallel compositions of reactions by us-

ing species expressions, nondeterminism and modularity. Since this alters the ordering

of reactions compared to the original SBML file, a third tool was implemented to ver-

ify that the revised program has the same “normal form” as the parallel composition of

reactions resulting from the second step; the normal form of an LBS program is here

the expansion to a single, ordered parallel composition.

The fourth and final step was to adjust a small number of reactions containing

species that are marked as having constant concentrations in the original SBML model.

There is no corresponding feature in LBS, so the adjustment was done by manually

adding the relevant species as products in reactions where the species occur as reac-

tants.

The resulting LBS program is the one listed in Appendix B. It corresponds to the

original SBML model by construction and by the three automated validation steps. As

an additional validation step, the model was simulated and the resulting graphs were

determined to coincide with the graphs from a simulation of the original SBML model

by visual inspection. We note that in contrast, an entirely manual reproduction of the
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model, without any tool support or automated validation steps, would be extremely

difficult to get right.

The resulting LBS model is highly structured compared to the list of reactions cap-

tured by the original SBML model. More can however be done once the COPY species

have been eliminated since these prevent further symmetries from being exploited us-

ing nondeterminism. Parts of the LBS model remain relatively unstructured for other

reasons. There are several blocks consisting of reactions which appear to be similar,

yet they are not amenable to abstraction using nondeterminism because of small devia-

tions which appear to be arbitrary. Such blocks of reactions are marked with comments,

preceded by // , in the LBS model. One example is the definition of the nondetermin-

istic species in line 700. The receptor ErbB4 is not included in this nondeterministic

expression because the corresponding reaction involves the world compartment, rather

than the plas compartment which is used in the reactions for the other receptors. Such

deviations may be due to biological reality, but they may also be due to errors in the

model and should hence be investigated. Shedding light onto potential errors is one

important benefit of a structured approach to modelling: deviations and inconsisten-

cies are difficult to detect from an unstructured list of reactions involving very large

complexes.
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The Abstract Syntax of LBS

The previous chapter gave an informal introduction to the concrete syntax and main

features of LBS. This chapter formally defines the abstract syntax of LBS which forms

the basis of the general semantics given in the next chapter. The formal definition of

the concrete syntax and its mapping into the abstract syntax are omitted, since both can

be deduced without surprises from the examples and from the abstract syntax.

In order to achieve our aim of generality, the abstract syntax is parameterised on

a set of modification site types ρ and modification site expressions em. We divide the

language into four main syntactic categories, for compartments, species, programs and

definitions, and consider each in turn. But first we introduce the notation used in this

chapter and the following.

4.1 Notation

We let R denote the set of real numbers and N denote the set of natural numbers. We

write x for lists, x.i for the ith element (starting from 1) of a list, |x| for the length

of a list and ε for the empty list. When a list should be thought of as representing a

set, we write x
:

instead of x. The set of indices of a list x is {i | 1 ≤ i ≤ |x|}. The

sublist of x consisting of the elements at some subset I of the indices of x is written

x.I. The Cartesian product x×◦ y, where ◦ is a pairing operator on elements of the

respective lists, is the list of length |x| · |y| s.t. (x×◦ y).((i−1)|x|+ j)
∆' x.i◦ y. j. The

concatenation of lists x and y is written xy, and the prefix and postfix of an element a

to a list x are written ax and xa, respectively.

We write {xi}i∈I for a finite indexed set and omit I and/or i and write {xi}I , {xi}
or {x} when they are understood from the context. The power set of a set S is written

53
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2S. The set of multisets of a set S is denoted by MS(S) and is defined as the set of total

functions from S to the natural numbers, i.e. MS(S)
∆' S→ N. We adopt the usual

multiset notation and write e.g. x + 2 · y for the multiset containing the element x and

two copies of y, and we write MS(x) for the multiset representation of a list x. We also

use the standard notation ∏i∈I Xi for dependent sets.

We write x
∆' y for definitions where x equals y if y is defined, and where x is

undefined otherwise. When a notion of well-typedness applies to y, we furthermore

write x
∆'t y for definitions where x equals y if y is defined and well-typed, and where

x is undefined otherwise.

Partial finite functions f : X ↪→fin Y are denoted by finite indexed sets of pairs

{xi 7→ yi} where f (xi) = yi. The empty function is correspondingly denoted by /0. The

domain of definition and image of a function f are denoted by dom( f ) and im( f ),

respectively. For functions f and g we define the update of f by g, written f 〈g〉, as

follows:

f 〈g〉(x) ∆'

 f (x) if x ∈ dom( f )\dom(g)

g(x) if x ∈ dom(g)

If g consists of a single binding x 7→ y we write f 〈x 7→ y〉 instead of f 〈{x 7→ y}〉. We

specify the type of a partial function f by writing f (x) = y where x and y are given

variables ranging over two sets; these sets are then understood to form the domain and

image of f .

When an element of a list or an indexed set is referred to without explicit quantifi-

cation in a semantical definition, the index is assumed to be universally quantified over

a set which is understood from the context. Under such circumstances we often omit

the index and write e.g. x instead of x.i. If ◦ is an operation on the elements of lists x

and y both of length n, we write x◦ y for the list of length n in which the ith element is

x.i◦ y.i.

4.2 Compartments

4.2.1 Compartment Expressions

The abstract syntax for basic compartment expressions is shown in Table 4.2.1, where

idc ranges over the set of compartment identifiers and w ∈R ranges over compartment

volumes. New compartments are created using the new compartment expression which
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Table 4.2.1: The abstract syntax for compartment expressions.

ec ::= COMPARTMENT EXPRESSION

| new comp vol w inside ec NEW COMPARTMENT

| > WORLD COMPARTMENT

| idc COMPARTMENT IDENTIFIER

| 1c in ec NIL COMPARTMENT

explicitly records a parent compartment and a volume. In cases where a compartment

is used at the top level, the world compartment can be specified as a parent, hence

allowing compartment hierarchies to be terminated. A compartment is generally used

in multiple contexts by binding it to an identifier at time of creation.

The nil compartment functions as a neutral element for the composition of com-

partment lists. It is paired with a parent compartment, which is necessary for type-

checking of compartment hierarchies. Nil compartments can for example be used to

decrease the depth of a module hierarchy when passed as parameters to modules.

Although the world compartment figures as a general compartment in the abstract

syntax, it is only intended for use as a parent of new compartments and of the nil com-

partment. It is not intended for use in e.g. reactions, and its proper usage is enforced

in the semantics for programs. One could enforce this intended usage syntactically by

introducing separate production rules for top level and nested new compartment and

nil compartment expressions. However, whether or not a compartment features at the

global top level of a program is not generally known at time of definition: take for

example compartment definitions inside a module, where the parent compartment may

be a formal parameter.

4.2.2 Derived Compartment Expressions

The volume in new compartment expressions may be omitted, in which case a default

volume of 1.0 is assumed. The parent compartment in new compartment and nil com-

partment expressions may also be omitted, in which case the world parent compartment

is assumed.
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Table 4.3.1: The abstract syntax for boolean expressions.

eb ::= BOOLEAN EXPRESSION

| tt TRUE

| ff FALSE

| x : bool TYPED VARIABLE

| eb or e′b | not eb BOOLEAN OPERATORS

4.3 Species

4.3.1 Modification Site Expressions

Recall that the abstract syntax for species expressions is parameterised on a set of

modification site types ρ and a set of modification site expressions em. Since boolean

expressions are of widespread practical use as demonstrated in the examples, we as-

sume that the set of modification types contains the boolean type bool, and that the set

of modification site expressions contains the boolean expressions eb generated by the

grammar in Table 4.3.1 where x ranges over the set of variables.

The boolean expressions contain the usual tt/ff base values and a minimal set of

connectives from which the full set of boolean connectives can be defined as derived

forms in the usual manner. Variables are used to create species expressions which

can match multiple concrete species. We assume that the set of variables is closed

by prefixing of underscore-terminated binary strings, i.e. that b x is a variable for all

b ∈ {0,1}∗; this is needed to confine variables to their appropriate namespace when

defining the semantics. The type annotation of variables is likewise used for technical

convenience.

4.3.2 Species Expressions

The abstract syntax for species expressions is shown in Table 4.3.2, where ns ranges

over the set of species names, nm ranges over the set of modification site names and ids

ranges over the set of species identifiers. Species names identify atomic species inde-

pendently of any modification sites, while species identifiers refer to possibly complex

species including both the names and modification states of atomic species in the com-
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plex. We assume for technical reasons that both the set of species identifiers and the

set of binary strings is contained in the set of species names. We assume furthermore,

as for variables, that the set of species identifiers is closed by prefixing of underscore-

terminated binary strings, i.e. that b ids is also a species identifier for all b ∈ {0,1}∗.

The grammar distinguishes between species expressions es and extended species

expressions es+ which add the new atomic species expression. This is because new

species expressions only make sense in the context of definitions, where the result-

ing new species value can be bound to an identifier. Species bound to an identifier

can then be used in multiple contexts and given an initial population through the con-

struct given in the abstract syntax for programs. Technically, separating out the new

species expression alleviates the need to consider fresh names in the semantics for the

remaining expressions and for certain cases of programs; this significantly simplifies

the presentation.

New atomic species are created by specifying a name and a type consisting of a

partial finite function from modification site names to modification site types. The

modification sites are assigned default expressions appropriate for the corresponding

type, e.g. ff in the case of the bool type. In contrast to new compartment expressions,

a new species expression explicitly includes a species name. Often this name is the

same as the identifier to which the new species expression is assigned, which is re-

flected in a derived form of definitions. Although semantically the underlying unique

species name will be freshly generated, the specified name is used to identify spe-

cific atomic species in subsequent species selection, removal and update expressions.

Species names rather than general species expressions are used here for two reasons.

First, the update expression updates a specific atomic species in a complex. Second,

atomic species names are local to a species, meaning that the same atomic species name

in two different species may map to different underlying fresh species names. This is

used to cater for nondeterminism in the context of parametric types in species param-

eters of modules. Similar considerations of nondeterminism apply to compartments,

which are only used in species expressions indirectly through compartment identifiers

rather than through general compartment expressions.

The species annotations necessary to match the names and sites of actual param-

eters to those of formal parameters are handled in the abstract syntax for species ex-

pressions rather than in the abstract syntax for module invocation in programs. This

too is because of nondeterminism where separate annotations may be required for each

member of a nondeterministic species expression as shown in Listing 3.2.4.
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Table 4.3.2: The abstract syntax for species expressions.

es+ ::= es EXTENDED SPECIES EXPRESSION

| new ns,σ NEW ATOMIC SPECIES

es ::= SPECIES EXPRESSION

| idc[es] LOCATION

| es− e′s COMPOSITION

| es.idc[ns] SELECTION

| es\idc[ns] REMOVAL

| es〈idc[ns,α]〉 UPDATE

| es or e′s CHOICE

| es not e′s CHOICE RESTRICTION

| es : ξ ANNOTATION

| ids IDENTIFIER

| 0s NIL

ξ ::= idc[ns,nm] ANNOTATION

σ ::= {nm 7→ ρ} MODIFICATION TYPE

α ::= {nm 7→ em} MODIFICATION ASSIGNMENT



4.4. Programs 59

4.3.3 Derived Species Expressions

The derived form n.es, where n ∈ N, is used for writing homomultimers and abbrevi-

ates:

es−·· ·− es︸ ︷︷ ︸
n times

Two further derived forms, used repeatedly in the previous chapter, allow updates and

annotations of atomic species without having to repeat atomic species names. Specifi-

cally, the expressions:

ids{α} and ids : nm

abbreviate respectively the expressions:

ids〈ε[ids,α]〉 and ids : ε[ids,nm]

4.4 Programs

4.4.1 Basic Programs

The abstract syntax for programs is shown in Table 4.4.1, where n ∈ N, idm ranges

over the set of module identifiers and ida ranges over the set of algebraic rate function

identifiers. Definitions, ranged over by D, are treated in the next section. Module invo-

cations include actual parameters for compartments, species, rates and output species,

and as already pointed out, the annotations of actual species parameters necessary to

match the formal parameters are handled in the abstract syntax for species expressions.

Reaction rate expressions can either be constant rate expressions, given inside curly

brackets, or general algebraic rate expressions, given inside square brackets. Note that

constant rate expressions are represented by algebraic expressions in the abstract syn-

tax because this allows for a uniform treatment of defined constants and conditionals.

Semantically however, constant rate expressions are required to evaluate to constants.

Algebraic rate expressions include rate constants, compartments and species, where

the latter two are interpreted as respectively a volume and a population. Algebraic rate

expressions also include a number of basic functions and arithmetic operators which

feature regularly in the biological literature; these are inspired by similar features found

in BioPEPA. Custom rate functions which are parameterised on compartments, species
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Table 4.4.1: The abstract syntax for basic programs.

P ::= PROGRAM

| n · es ⇒er n′ · e′s if eb REACTION

| 0p NIL PROGRAM

| P | P′ PARALLEL COMPOSITION

| P || P′ VARIATION COMPOSITION

| idc[P] LOCATED PROGRAM

| D ; P DEFINITION

| idm(ec;es+;ea;out ids) ; P MODULE INVOCATION

| ids = force es ; P NONDETERMINISTIC SELECTION

| init es = r INITIAL POPULATION

er ::= RATE EXPRESSION

| {ea} CONSTANT RATE EXPRESSION

| [ea] ALGEBRAIC RATE EXPRESSION

ea ::= ALGEBRAIC RATE EXPRESSION

| r CONSTANT

| idc VOLUME

| es POPULATION

| if eb then ea else e′a CONDITIONAL

| ida(ec;es;ea) FUNCTION INVOCATION

| exp(ea) | log(ea) | sin(ea) | cos(ea) STANDARD FUNCTIONS

| ea + e′a | ea - e′a ARITHMETIC OPERATORS

| ea × e′a | ea / e′a | eaˆe′a
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Table 4.4.2: The abstract syntax for derived programs.

P ::= . . . DERIVED PROGRAM

| e′′s ∼ n · es Aer n′ · e′s if eb ; P GENERAL REACTION

| e′′s ∼ n · es Aer,e′r
2 n′ · e′s ∼ e′′′s if eb,e′b ; P GENERAL REVERSIBLE REACTION

A ::= REACTION ARROWS

| ⇒ DETERMINISTIC ARROW

| → SELECTION ARROW

| � IDENTITY-PRESERVING ARROW

A2 ::= ⇔ | ↔ | �� REVERSIBLE REACTION ARROWS

es ::= . . . DERIVED SPECIES EXPRESSIONS

| es as ids IN-LINE DEFINITION

and algebraic rate expressions can be defined and invoked repeatedly. These also al-

low the definition of common rate functions for e.g. Michaelis-Menten or Hill kinetics.

Conditionals enable different rates to be chosen depending on the state of modification

of reactants as recorded by match variables as outlined in Subsection 3.2.2.

Only the simplest possible reaction is included in the abstract syntax for programs.

Species expressions are assumed to be deterministic, requiring any nondeterministic

selection to be carried out in advance through the use of the force operator; there are

no in-line species definitions; and there are no reversible or enzymatic reactions.

4.4.2 Derived Programs

More complicated reactions are generated by the abstract syntax for derived programs

in Table 4.4.2, all of which are defined in terms of basic programs in the next chap-

ter. The dots in the grammar indicate extension of the grammar for basic programs.
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Derived programs include the two additional reaction arrows which cater for nondeter-

ministic species and which implicitly force nondeterministic selection in two different

manners, as exemplified in Subsection 3.2.2. Enzymatic reactions are given by a list

of enzymes to the left of the tilde symbol. All types of reactions can be reversible with

any combination of constant rate expressions and general algebraic rate expressions

for each of the two directions. Finally, species expressions in derived reactions may

contain in-line definitions which go into scope in the sequential program following the

reaction.

Further derived forms arise by omitting the enzyme or boolean expression parts of

reactions. The absence of an enzyme part is understood as an enzyme part with an

empty list of species, and the absence of a boolean expression part is understood as

a boolean expression part with the expression tt. Stoichiometry in reactions can be

omitted, in which case stoichiometry 1 is assumed. Finally, the sequential programs

following reactions and module invocations can be omitted when there are no in-line

species definitions or output species parameters, respectively. In these cases the nil

sequential program is assumed.

4.5 Definitions

4.5.1 Basic Definitions

The abstract syntax for definitions is shown in Table 4.5.1 and should be self-explanatory.

Formal species parameters have annotations ξ as defined in the abstract syntax for

species expressions. Together with the corresponding annotation of actual species pa-

rameters, this is sufficient to construct a mapping that allows use of the species inside

the module body.

4.5.2 Derived Definitions

Recall from the abstract syntax for species that a new species expression includes a

species name. But in many cases this name is identical to the identifier that the new

species expression is bound to. The name can then be omitted, i.e. the expression:

ids = new σ

abbreviates the expression:

ids = new ids,σ
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Table 4.5.1: The abstract syntax for definitions.

D ::= DEFINITION

| ids = es+ SPECIES

| idc = ec COMPARTMENT

| ida(idc; ids : ξ; ida) = ea FUNCTION

| idm(idc; ids : ξ; ida;out id′s : es) = P MODULE

This is the reason that the set of species names is assumed to contain the set of species

identifiers.

Another derived form allows the renaming of species names and modification site

names in species as demonstrated in Subsection 3.5.2. Formally, the expression:

ids = es :: ξ; P

abbreviates a module definition and invocation:

idm(ids : ξ) = P; idm(es)

for some arbitrary module identifier, idm.





Chapter 5

The General Semantics of LBS

This chapter defines a denotational framework for compositionally assigning semanti-

cal objects such as Petri nets to LBS programs. Our aim is to abstract away from the

specific kind of semantical object under consideration.

Assumptions We achieve our aim of abstraction by assuming a given concrete se-

mantics structure (S, |S,0S,RS, IS) consisting of:

• A set S of semantical objects ranged over by O.

• A partial binary composition function |S on semantical objects.

• A distinguished nil semantical object 0S ∈ S.

• A partial reaction assignment function of the form RS(R,b) = O assigning a

semantical object to a given reaction R, named b, in a normal form, defined

below (b is used to name e.g. Petri net transitions).

• A partial initial condition assignment function of the form IS(vgns,r) = O assign-

ing a semantical object to an initial population or concentration r of species vgns

in a ground normal form, defined below.

The last implies that semantical objects have a representation of initial conditions, e.g.

an initial marking in the case of a Petri net. Specific examples of concrete semantics

are given in the next chapter.

Recall that the abstract syntax is parameterised on modification site types ρ and

modification site expressions em. We assume the following relations and functions

pertaining to these:

65
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• A typing relation of the form em : ρ giving types to modification site expressions.

This is used for determining well-typedness of species expressions.

• A default expression function of the form default(ρ) = em giving default ex-

pressions to types. This is used for assigning modification site expressions to

unassigned sites in species expressions.

• A variable function of the form FV(em) = {xi : ρi} giving the set of (typed)

variables in a modification site expression. This is used for assigning semantical

objects to reactions in some of the concrete semantics.

• An expression denotation function of the form JemKmΓx = vm for evaluating a

modification site expression to a value vm in a given set JρKt where em : ρ, given

a variable environment of the form Γx(x : ρ) = vm assigning values vm ∈ JρKt

to typed variables. This is used for assigning semantical objects to reactions in

some of the concrete semantics.

• An update function of the form em〈e′m〉= e′′m for updating one modification site

expression with another. This is used in the semantics of species update expres-

sions. While this operation is trivial for e.g. boolean expressions in which the

original expression is simply disregarded, the situation is more subtle for e.g.

binding expressions.

• A seal function of the form seal(em,b) = e′m for confining names in modifica-

tion site expressions to a namespace given by a binary string b ∈ {0,1}∗. The

namespace is used to avoid capture of e.g. variables in actual species parameters

when used inside the body of a module.

In the case where only the boolean modification site type is given, and where the

set of modification site expressions is hence the set of boolean expressions, the above

functions can be defined as follows:

• em : bool for all em

• default(bool)
∆' ff

• FV(em) is defined inductively as follows:

– FV(tt)
∆' /0

– FV(ff)
∆' /0
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– FV(x : bool)
∆' {x : bool}

– FV(eb or e′b)
∆' FV(eb)∪FV(e′b)

– FV(not eb)
∆' FV(eb)

• JebKmΓx = JebKbΓx is defined inductively as follows:

– JttKbΓx
∆' tt

– JffKbΓx
∆' ff

– Jx : boolKbΓx
∆' Γx(x)

– Jeb or e′bKbΓx
∆'

tt if JebKbΓx = tt or Je′bKbΓx = tt

ff otherwise

– Jnot ebKbΓx
∆'

tt if JebKbΓx = ff

ff otherwise

• em〈e′m〉= e′m

• seal(em,b) is defined inductively as follows:

– seal(tt,b)
∆' /0

– seal(ff,b)
∆' /0

– seal(x : bool,b)
∆' b x : bool

– seal(eb or e′b,b)
∆' seal(eb,b) or seal(e′b,b)

– seal(not eb,b)
∆' not seal(eb,b)

Overview As for the abstract syntax, the semantics is presented in four sections each

treating one of the four syntactic categories in detail. An overview of the denotation

functions and associated symbols is given in Tables 5.0.1 and 5.0.2. The environments

are partial finite functions from appropriate sets of identifiers and other relevant pa-

rameters to appropriate sets of values. For the rate function and module environments

these values are themselves functions mapping actual parameters to some other appro-

priate values. The binary string b is a parameter of some of the denotation functions

which pass it on to the seal and RS functions. Freshness of b is ensured by appropriate

extensions as denotation functions are computed. This follows the approach of CBS,

except that in CBS, fresh names are computed bottom-up, whereas we compute them

top-down in order to avoid some unpleasant technicalities.
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Table 5.0.1: Denotation functions.

Function signature Denotation of

JecKcΓc,b = vc Compartment expressions

JesKsΓc,Γs = vs
::

Species expressions

Jes+Ks+Γc,Γs,b = vs
::

Extended species expressions

JeaKaΓc,Γs,Γa,vc = va Algebraic rate expressions

JemKmΓx = vm Modification site expressions

JPKpΓc,Γs,Γa,Γm,b,vc = {(Oi,Γsoi)} Programs

JDKdΓc,Γs,Γa,Γm,b = Γ′c,Γ
′
s,Γ
′
a,Γ
′
m,Γso Definitions

Table 5.0.2: Symbols in the denotation function signatures.

Symbol Description

vc Compartment value

vs Species value

va Algebraic rate value

vm Modification site value

O Semantical object

b Binary string

Γc Compartment environment

Γs Species environment

Γa Algebraic rate function environment

Γx Variable environment

Γm Module environment

Γso Output species environment
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5.1 Compartments

5.1.1 Compartment Values

We let nc range over a given set of compartment names which is assumed to include the

set of binary strings and contain the nil compartment name 1c. In contrast to compart-

ment identifiers, which are language constructs used for binding compartment values,

compartment names other than 1c are used to uniquely and globally identify a com-

partment. Compartment values are of the following form:

vc ::= COMPARTMENT VALUE

| (nc,w,v′c) NESTED COMPARTMENT

| > WORLD COMPARTMENT

We let Vc denote the set of all compartment values generated by this grammar. Parent

compartments v′c are recorded as values rather than names, since the name 1c does

not identify a value uniquely. Compartment volumes w represent the volume of a

compartment in the “biological sense” that the volume of a child compartment does

not count towards the volume of its enclosing parent.

5.1.2 The Denotation Function

A compartment environment is a partial finite function of the form Γc(idc) = vc map-

ping compartment identifiers to compartment values. The denotation function for com-

partment expressions is of the form:

JecKcΓc,b = vc

and is defined inductively as follows:

• Jnew comp vol w inside ecKcΓc,b
∆' (b,w,vc) where

– vc
∆' JecKcΓc,0b

• J>KcΓc,b
∆' >

• J1c inside ecKcΓc,b
∆' (1c,0.0,vc) where

– vc
∆' JecKcΓc,b

• JidcKcΓc,b
∆' Γc(idc)
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The denotation function is partial since it is not defined for identifiers which do not

have bindings in the given environment. New compartments are named by the binary

string argument to the denotation function. The denotation of the parent compartment

is computed recursively, but with a 0 prefixed to the fresh name, hence resulting in a

new fresh name. Nil compartment values are arbitrarily given the volume 0.0.

5.1.3 Well-Typedness of Compartment Value Lists

Compartments generally occur in the context of lists of other compartments, and we

are only interested in such lists which respect the hierarchy captured in compartment

values. Formally, we say that a list (nc,w,vc) is well-typed if vc.i = (nc,w,vc).(i−1) for

i ∈ {2 . . . |vc|}. Any other lists, including those which contain the world compartment

in any other position than possibly the first, are ill-typed.

Compartment lists in turn occur in the context of sets of other compartment lists,

and we are only interested in such sets where all compartment lists agree on parent

compartments. To formalise this, we define a function of the form parent(vc) = {vc
′
i}

which gives the set of legal parent compartments of a compartment list:

parent(vc)
∆'


Vc if vc = ε

{v′c} if |vc|> 0 and vc.1 = (nc,w,v′c)

/0 if |vc|> 0 and vc.1 =>

In words, the empty list of compartments can be put inside any compartment; a non-

empty list of compartments can only be put inside the compartment specified by the

first element of the list unless this is the world compartment, in which case it can be put

nowhere. Formally, we then say that a set {vci} is well-typed if all vci are well-typed

and either parent(vci) = /0 for all i or
⋂

i parent(vci) 6= /0.

The forest structure of well-typed sets of compartment value lists The motiva-

tion for defining well-typedness of sets of compartment value lists is that only physi-

cally meaningful compartment hierarchies should be allowed in programs. By this we

mean that sets of compartment value lists should form a forest structure, here a directed

acyclic graph in which each node has at most one parent.

Observe first that one can obtain a directed graph from a well-typed set of compart-

ment value lists in which nodes are compartment values and edges are determined by

left-to-right neighbourhood in lists. Formally, given a well-typed set {vci} we define
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G{vci}
∆' (V,E) where

V
∆' {vci. j}

E
∆' {(vci. j,vci.( j +1))}

(Recall from our notational convention that the above definitions give indexed sets

where i is an index into the set of compartment value lists and j is an index into list

positions). We then have that these graphs are indeed forests:

Proposition 5.1.1. G{vci} is a forest.

The proof is given in Appendix C.

5.1.4 Normal Forms of Compartment Value Lists

Parent compartments in compartment values are necessary for type-checking in the

general semantics, and volumes are necessary in algebraic rate expressions. But from

the view of any concrete semantics, we are interested in a normal form of compartment

lists in which only compartment names are retained and in which the nil compartments

are removed. The normal form function is of the form nf(vc) = nc and is defined as

nf(nc,w,vc)
∆' nc.I where I

∆' {i | nc.i 6= 1c} if vc is a well-typed compartment value

list and is undefined otherwise. The graph arising from the normal form of a set of

compartment value lists is also a forest if all non-nil compartment values have distinct

compartment names, i.e. if the same non-nil compartment name does not occur with

different parents or with different volumes. This is always the case for graphs in which

compartment values arise from compartment expressions.

5.2 Species

5.2.1 Species Values

Recall from the abstract syntax for species expressions that ξ is an annotation used

to provide a match between actual and formal species parameters. Recall also that

ρ ranges over modification site types, that nm ranges over modification site names,

and that ns ranges over species names. Species values are generated by the following
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grammar where we use Q (fin N to range over sets of list indices:

vs ::= vι:ξ
us SPECIES VALUE

vus ::= vc[ns,ασ] UNBOXED SPECIES VALUE

ασ ::= {nm 7→ (ρ,em)} TYPED ASSIGNMENT

ι ::= {idc[ns] 7→ (Q, ιm)} SPECIES INTERFACE

ιm ::= {nm 7→ n′m} MODIFICATION SITE INTERFACE

An unboxed species value represents a possibly complex species by a list of located

atomic species, each of which is represented by a name and a typed assignment map-

ping modification site names to pairs of modification types and expressions. Species

values add annotations and interfaces. Annotations are as in the abstract syntax for

species expressions: they are used for selecting the located atomic species and mod-

ification sites in an actual species parameter which should be mapped from the cor-

responding atomic species and modification sites in a formal parameter. Interfaces

capture this mapping from formals to actuals and can hence be viewed as a product of

module invocation. The need for a local mapping from formals to actuals arises from

our having nondeterministic species, where different members of the set of values de-

noted by a nondeterministic actual species parameter may require different mappings

from formals to actuals as demonstrated in Listing 3.2.4.

Interfaces map formal located names to pairs consisting of a set of position indices

in the associated unboxed species values and a modification site interface. The sets

of indices are used to cater for the general case of homo-multimers in which there

are multiple instances of some atomic species. Modification site interfaces map formal

modification site names to actual modification site names in the unboxed species value.

Interfaces may expose only a subset of species indices in an unboxed species value, and

for each exposed set of species indices, the associated modification site interface may

expose only a subset of the modification sites recorded in the unboxed species value.

Hence interfaces give rise to a notion of subtyping. For species values which have

not been subjected to module invocations, the interface exposes all atomic species and

all modification sites. Interfaces also support a notion of parametric type since they

provide means of renaming atomic species and modification site names.

Examples of species values Examples of some species values arising from Listing

3.3.2 on page 46 are shown informally in Figure 5.2.1 where we let f be the pair
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vus : [Ste5′, p 7→ f], [Ste11′, p 7→ f], [Ste7′, p 7→ f], [Fus3′, p 7→ f], [Gbg′], [Ste20′]

ι : [ Ste5, p ], [ Ste11, p ], [ Ste7, p ], [ Fus3, p ], [ Gbg ], [ Ste20 ]

ξ : ε

(a) The species value bound to e in the formation module, line 10.

vus : [Ste5′, p 7→ f], [Ste11′, p 7→ f], [Ste7′, p 7→ f], [Fus3′, p 7→ f], [Gbg′], [Ste20′]

ι : [ Ste5, p ], [ Ste11, p ], [ Ste7, p ], [ Fus3, p ]

ξ : ε

(b) The species value bound to the output species identifier link1 after invocation of the formation mod-
ule in line 19.

vus : [Ste5′, p 7→ f], [Ste11′, p 7→ f], [Ste7′, p 7→ f], [Fus3′, p 7→ f], [Gbg′], [Ste20′]

ι : [ Ste5, p ], [ Ste11, p ], [ Ste7, p ], [ Fus3, p ]

ξ : [Fus3, p], [Ste7, p], [Ste11, p]

(c) The species value resulting from evaluating the first actual parameter of the mapk module invocation
in line 20.

vus : [Ste5′, p 7→ f], [Ste11′, p 7→ f], [Ste7′, p 7→ f], [Fus3′, p 7→ f], [Gbg′], [Ste20′]

ι : [ k3, m ], [ k2, m ], [ k1, m ]

ξ : ε

(d) The species value bound to a in the body of the mapk cascade module in line 14.

vus : [Ste5′, p 7→ f], [Ste11′, p 7→ t], [Ste7′, p 7→ t], [Fus3′, p 7→ t], [Gbg′], [Ste20′]

ι : [ Ste5, p ], [ Ste11, p ], [ Ste7, p ], [ Fus3, p ]

ξ : ε

(e) The species value bound to the identifier link2, line 20, after invocation of the mapk module.

Figure 5.2.1: Examples of species values from Listing 3.3.2 represented in an informal
graphical notation.
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(bool, ff) and t be the pair (bool, tt). Interfaces are depicted in the top part of each

figure, with solid lines representing the mapping from atomic species names to indices,

and dotted lines representing the embedded mapping between modification site names.

Note that none of these examples are homo-multimers, so interfaces map to singleton

sets of indices. Unboxed species values are depicted in the center part of each figure,

and annotations are depicted at the bottom.

Figure 5.2.1a shows a complex species value before it has been subjected to any

module invocation, hence all primitive species and their modification sites are exposed

by the interface. The species names in the unboxed value are primed, indicating that

these are fresh. Figure 5.2.1b shows the species value after it has been output from the

formation module where Gbg and Ste20 have been removed from the interface. In Fig-

ure 5.2.1c the annotation of the actual species parameter of the mapk module has been

recorded in the species value. Figure 5.2.1d shows the species value after the interface

has been updated based on the annotation in Figure 5.2.1c and the corresponding for-

mal annotation, ξ′ : [k1,m], [k2,m], [k3,m]; together these provide a mapping from e.g.

k1 to Fus3, which is traced through the interface in Figure 5.2.1c down to the fourth

index of the unboxed species value. The annotation has now served its purpose and is

discarded. Finally, figure 5.2.1e shows the species value where three atomic species

have been phosphorylated, and following output from the mapk module, the interface of

this species value has been restored to the interface of the original input species value

in Figure 5.2.1d.

A smaller example, which illustrates how homomultimers can be represented, is

shown in Figure 5.2.2a; here the same atomic species name, s, maps to two occurrences

of the same underlying fresh species name, s′. An interface may however also map

different located names to indices with the same located fresh species names as shown

in Figure 5.2.2b. This allows multiple instances of the same atomic species within a

homo-multimer to be distinguished.

5.2.2 Well-Typedness of Species Values

For an unboxed species value vc[ns,ασ] we require that the set of lists of compartment

values is well-typed and hence forms a forest structure, and that assignments respect

their associated type. These conditions can be phrased formally as follows:

1. {vc.i} is a well-typed set of compartment value lists

2. ∀(ρ,em) ∈ im(ασ). em : ρ
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vus : [s′, p 7→ f], [s′, p 7→ t], [r′, p 7→ f]

ι : [ s, m ]

ξ : ε

(a) A homomultimer species value with a single atomic species in its interface.

vus : [s′, p 7→ f], [s′, p 7→ t], [r′, p 7→ f]

ι : [ s1, m ], [ s2, m ]

ξ : ε

(b) A homomultimer species value with two atomic species in its interface, mapping to different occur-
rences of the same underlying fresh atomic species.

Figure 5.2.2: Examples of homomultimer species values.

For a species value vι:ξ
us we furthermore require that the interface maps to 1) non-

empty and 2) disjoint sets of indices; that 3) all indices in a set exist in the unboxed

species value and 4) contain species with identical located fresh names and modifica-

tion site names; that 5) the modification site interfaces map to sites which exist in the

assignments at the corresponding indices; that 6) the annotation only mentions located

species and sites which exist in the interface. These conditions can be summarised

formally as follows, where vc[ns,ασ] = vus and idc[ns,nm] = ξ.

1. ∀(Q, ιm) ∈ im(ι). |Q|> 0

2. ∀l, l′ ∈ dom(ι). l 6= l′⇒ ind(ι(l))∩ ind(ι(l′)) = /0

where ind(Q, ιm)
∆' Q

3. ∀(Q, ιm) ∈ im(ι). Q⊆fin {1, . . . , |vus|}

4. ∀(Q, ιm) ∈ im(ι). ∀q,q′ ∈ Q. vc[ns].q = vc[ns].q′∧ t(ασ.q) = t(ασ.q′)

where t({nm 7→ (ρ,em)}) ∆' {nm 7→ ρ}

5. ∀(Q, ιm) ∈ im(ι). ∀q ∈ Q. im(ιm)⊆fin dom(ασ.q)

6. idc[ns] ∈ dom(ι)∧∀(Q, ιm). (Q, ιm) = ι(idc[ns])⇒{nm.i} ⊆fin dom(ιm)
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5.2.3 The Denotation Function

We now turn to the semantics for species expressions. A species environment is a

partial finite function of the form Γs(ids) = vs
::

mapping species identifiers to lists of

species values. The denotation function for species expressions is of the form:

JesKsΓc,Γs = vs
::

and is parametric on compartment and species environments. The denotation of a

species is a list of species values. More than one species value may arise because

of nondeterminism, and we use lists rather than sets to cater for output species in

module parameters, as will be apparent in the semantics for programs; however, for

most purposes we may think of these lists as sets, hence the wavy underline notation.

The definition of the denotation function for species expressions is given in the

following. In order to simplify notation, we write Γ instead of Γc,Γs for cases where

the environments are not used. Let us also reiterate the subtle notational convention

that given e.g. a list vus we write vus for vus.i, and that i is implicitly assumed to be

universally quantified over the indices of vus in definitions; see for example the last 3

lines of the first case below.

• Jidc[es]KsΓc,Γs
∆' vι:ξ

us
:::

where

– vc
∆' Γc(idc)

– vus
ι1:ξ1
1

:::::::

∆' JesKsΓc,Γs

– vus
∆'t vcvc1[ns,ασ] where vc1[ns,ασ]

∆' vus1

– ι
∆' {idcidc1[ns] 7→ ι1(idc1[ns]) | idc1[ns] ∈ dom(ι1)}

– ξ
∆' idcidc1[ns,nm] where idc1[ns,nm]

∆' ξ1

• Jes1− es2KsΓ
∆'t vs1

:::
×◦ vs2

:::
where

– vs1
:::

∆' Jes1KsΓ

– vs2
:::

∆' Jes2KsΓ

– vus
ι1:ξ1
1 ◦ vus

ι2:ξ2
2

∆' vι:ξ
us where

∗ vus
∆' vus1vus2
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∗ ι(l)
∆'



ι1(l) if l ∈ dom(ι1)\dom(ι2)

(A(Q2), ιm2) if l ∈ dom(ι2)\dom(ι1)∧

(Q2, ιm2) = ι2(l)

(Q1∪A(Q2), ιm) if l ∈ dom(ι1)∩dom(ι2)∧

(Q1, ιm1) = ι1(l)∧ (Q2, ιm2) = ι2(l)∧

ιm = ιm1 = ιm2

where A(Q) = {q+ |vus1| | q ∈ Q}

∗ ξ
∆' ξ1 ξ2

• Jes.idc[ns]KsΓ
∆' vι:ξ

us
:::

where

– vus
ι1:ξ1
1

:::::::

∆' JesKsΓ

– (Q, ιm)
∆' ι1(idc[ns])

– vus
∆' vus1.Q

– ι
∆' {idc[ns] 7→ ({1 . . . |Q|}, ιm)}

– ξ
∆' ξ1.{q | ∃nm. ξ1.q = (idc[ns,nm])}

• Jes\idc[ns]KsΓ
∆' vι:ξ

us
:::

where

– vus
ι1:ξ1
1

:::::::

∆' JesKsΓ

– (Q, ιm)
∆' ι1(idc[ns])

– vus
∆' vus1.({1 . . . |vus1|} \Q)

– ι
∆' {l 7→ (A(Q′), ιm) | l ∈ dom(ι1)\{idc[ns]}∧ (Q′, ιm) = ι1(l)}

where

∗ A(Q′)
∆' {q′−|{q ∈ Q | q≤ q′}| | q′ ∈ Q′}

– ξ
∆' ξ1.{q | ¬∃nm. ξ1.q = (idc[ns,nm])}

• Jes〈idc[ns,α]〉KsΓ
∆'t vc[n′s,ασ

′′]ι:ξ
:::::::::::::

where

– vc[n′s,ασ
′]ι:ξ

::::::::::::

∆' JesKsΓ

– (Q, ιm)
∆' ι(idc[ns])
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– ασ
′′.q

∆'

ασ
′.q〈α◦ (ιm

−1)〉 if q ∈ Q

ασ
′.q otherwise

where

∗ ασ
′〈α′〉(nm)

∆'

ασ
′(nm)〈α′(nm)〉 if nm ∈ dom(ασ

′)∩dom(α′)

ασ
′(nm) if nm ∈ dom(ασ

′)\dom(α′)
for all ασ

′, α′ and nm

• Jes1 or es2KsΓ
∆' vs1

:::
vs2
:::

where

– vs1
:::

∆' Jes1KsΓ

– vs2
:::

∆' Jes2KsΓ

• Jes1 not es2KsΓ
∆' vs

::
where

– vs1
:::

∆' Jes1KsΓ

– vs2
:::

∆' Jes2KsΓ

– vs
::

∆' vs1
:::

.{q | ¬∃q′. vs2
:::

.q′ = vs1
:::

.q}

• Jes : ξKsΓ
∆'t vι:ξ

us
:::

where

– vι:ξ1
us

::::

∆' JesKsΓ

• JidsKsΓc,Γs
∆' Γs(ids)

• J0sKsΓ
∆' ε

:

The denotation function is partial because some species expressions do not result

in lists of well-typed species values or in environments which are functions, or because

some operations are undefined for some of the intermediate objects which arise. Given

suitable environments, we say that a species expression is well-typed if its denotation

is defined.

The denotation function for extended species expressions is of the form:

Jes+Ks+Γc,Γs,b = vs
::

It is parametric on compartment and species environments, and also on a binary string

b used to create fresh names for new species. Here is the definition:
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• JesKs+Γc,Γs,b
∆' JesKsΓc,Γs

• Jnew ns,σKs+Γc,Γs,b
∆' ε[b,ασ]

:::::::

ι:ε where

– ασ

∆' {nm 7→ (ρ,default(ρ)) | nm ∈ dom(σ)∧ρ = σ(nm)}

– ι
∆' {ε[ns] 7→ ({1},{nmi 7→ nmi}) where {nmi 7→ ρi}

∆' σ

Explanation of the denotation function In the case of located species, the compart-

ment value assigned to the compartment identifier is looked up in the compartment

environment and the species value denoting the nested species expression is obtained

recursively. The denotation of the located species expression is obtained from this

species value by adding the compartment value to the left of every located atomic

species in the unboxed species value, by adding the compartment identifier to the left

of each list of compartment identifiers in the domain of the interface, and by likewise

adding the compartment identifier to each list of compartments in the annotation. Note

that the interface records the compartment identifier rather than the compartment value.

The expression is well-typed when the compartment identifier is defined in the given

environment and when the resulting sets of compartment value lists are well-typed.

The denotation of a composite species expression is given by a Cartesian product

of the denotations of the two operands. The corresponding pairing operation on species

values concatenates the two unboxed species values and composes the interfaces in a

manner that reflects this concatenation. The composed interface essentially maps lo-

cated names to the union of indices given by the individual interfaces, with the twist

that indices from the second interface are increased by the length of the first unboxed

species value. This adjustment of indices is handled by an auxiliary function A. An-

notations are composed simply by list concatenation. The resulting species value is

well-typed when the two components agree on atomic species names and modification

site interfaces for any common members of their interface.

In the case of species selection, the resulting unboxed species value is obtained

by selecting the indices determined by the interface of the target species on the given

located name. The resulting interface maps the given located name to a set of con-

secutive indices together with the original modification site interface. The resulting

annotation is obtained by selecting for those entries which contain the given located

name. The expression is well-typed when the located name is in the domain of the

interface, which is necessary for the list selection operations to be well-defined. The
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case of species removal follows a similar idea, although special care is needed for the

appropriate adjustment of indices using an auxiliary function A.

In the case of species update, the interface and annotation of the denotation of the

operand are preserved, and an updated unboxed species is obtained by updating the as-

signments at the indices with the given located name. The modification site names in

the given update expression are first renamed by function composition with the inverse

of the modification site interface, and the result is given as an argument to an update

operation on typed assignments which is defined as an auxiliary function. Here, the

assignment to modification sites which are not mentioned in the update are preserved.

For sites which are both in the original assignment and in the update, the expression

update function (which is a parameter of the general semantics) is used; the update

function is assumed extended to pairs of modification site types and expressions. The

expression is well-typed if the located species name is in the domain of the target

species interface, if the domain of the update is in the domain of the relevant modifi-

cation site interface, and if the update respects the relevant species types.

The remaining cases are simpler. For nondeterministic species expressions, the

species value lists obtained from the denotations of the operands are simply concate-

nated. The species annotation expression replaces the annotation in the denotation of

the nested species expression with a new annotation. For this to be well-typed, the new

annotation must mention only located names and sites which exist in the domain of the

interface of the operand. In the case of species identifier expressions, the correspond-

ing value is simply looked up in the species environment which must be defined for

the given identifier in order for the expression to be well-typed. Finally, the nil species

evaluates to a singleton list containing just the empty species value.

For extended species expressions, the new species expression evaluates to a single-

ton unboxed species with a fresh species name given by the binary string parameter to

the denotation function, together with a typed assignment which extends the given type

with default modification expressions. The interface simply maps the given species

name in the empty list of compartment identifiers to the first and only index of the

unboxed species value, together with the identity interface on modification site names.

5.2.4 Normal Forms of Species Values and Further Functions

Normal form species values Interfaces, annotations and parent definitions in com-

partment values are needed for determining well-typedness and for making module
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invocation work, as detailed in the next section, but they are not needed for normal

form reactions. All that is needed here is a normal form:

vns ::= nc[ns,ασ]

of species values. The normal form function then takes the form nf(vs,vc) = vns where

vc is a list of compartment values which is required to go all the way from the world

compartment down to the compartment enclosing the species value. The function is

used in the semantics for programs and is applied to species values in a located re-

action. In the following definition we use the normal form function for compartment

value lists defined in the previous section:

nf(v′c[ns,ασ]ι,ξ,vc)
∆' nf(vc v′c)[ns,ασ]

The function is defined only when vc v′c is a well-typed list of compartment values.

Although retaining the full list of compartment names (rather than just the enclosing

compartment) is unnecessary for some concrete semantics such as Petri nets, this in-

formation may be relevant in other cases. For example, it allows the compartment

forest structure of programs to be obtained through the general semantical framework

by defining an appropriate concrete semantics for representing and composing forests.

Ground normal form species values We introduce one further ground normal form

of species values:

vgns ::= nc[ns,βσ]

βσ ::= {nm 7→ (ρ,vm)}

Here modification sites map to pairs of modification types and values, rather than

to pairs of modification types and expressions with variables. Ground normal form

species values are used in the semantics for programs in the case of initial conditions;

indeed, as described above, the general semantics is parameterised on a function of the

form IS(vgns,r) = O for assigning semantical objects to initial populations or concen-

trations of ground normal form species values. Recall also that the general semantics

is parameterised on a function of the form JemKmΓx = vm which assigns values to mod-

ification site expressions given a variable environment. This function can be extended

in an evident manner to a function from normal form species values to ground normal

form species values; this is needed when defining concrete semantics.
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Further functions on species values We define two functions on species values

which are required for the semantics of module invocations. For the first function,

the intuition is that one can update an interface ι1 given the associated annotation ξ1

together with a second matching annotation ξ2 obtained from a corresponding formal

species parameter. The updated interface is then used to access the species within the

body of the module. An example of this is shown in the transition from the species

value in Figure 5.2.1c to that in Figure 5.2.1d on page 73. Formally, the function takes

the form close(vs1,ξ2) = vs2 and is defined as follows:

close(vι1:ξ1
us ,ξ2)

∆' vι2:ε
us

where, for idc[ns,nm]1
∆' ξ1 and idc[ns,nm]2

∆' ξ2,

ι2
∆' {idc[ns]2.i 7→ (Q,{nm2.i. j 7→ ιm(nm1.i. j)}) | (Q, ιm) = ι1(idc[ns]1.i)}

The function is only defined if the lists ξ and ξ′ have the same length, and if all of the

embedded lists nm1.i and nm2.i also have the same length.

The second function enables one species value to take on the interface and anno-

tation of another species value. This is needed in the semantics for output species in

programs, and an example is shown in the transition from the species value in Figure

5.2.1a to that in Figure 5.2.1b, and from the species value in Figure 5.2.1d to that in

Figure 5.2.1e. Formally, we first need two supporting functions. The first gives the

located name of an unboxed species value at a given index, and the second counts the

number of previous occurrences of the located species name at a given index:

lq(vus)
∆' idc[ns] where ∃ασ. idc[ns,ασ] = vus.q

cq(vus)
∆' |{q′ | lq(vus) = lq′(vus)∧q′ < q}|

The function of interest then takes the form adapt(vs1,vs2) = vs3 and is defined as

follows:

adapt(vus
ι1:ξ1
1 ,vus

ι2:ξ2
2 )

∆'t vus
ι3:ξ2
1

where, for all l ∈ dom(ι2):

(Q2, ιm2)
∆' ι2(l)

Q3
∆' {q | ∃q2 ∈ Q2. lq(vus1) = lq2(vus2)∧ cq(vus1) = cq2(vus2)}

ι3(l)
∆' (Q3, ιm2)
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Here the new interface ι3 maps a located species name l to the indices in vus1 which

have the same located fresh name l′ as the indices in vus2 mapped from l by ι2. If there

are multiple choices of such indices, the index which results in the same number of

previous occurrences of the fresh name l′ in the two unboxed species values is chosen.

The function is defined only when the resulting species value is well-typed, which is

the case whenever the resulting sets of indices are non-empty and the modification site

interfaces map to sites which exist in the resulting unboxed species value.

5.2.5 Species Value Design Choices

We end the treatment of species values with some remarks about possible alternative

representations. First note that we choose to include modification types in species val-

ues. However, since new species values are always created with fresh names and there

are no expressions which allow modification sites to change type, species values with

identical names also have identical modification types. Hence it would also be possible

to maintain modification types separately from species values as indeed was done in a

previous version of the language [70], with the benefit of reduced redundancy. But this

approach would have the downside of cluttering the presentation of the semantics with

an additional environment needing to be maintained.

Alternative representations of species interfaces are also possible. We choose for

example to include compartment identifiers in the renaming of interfaces, which allows

compartments to differ between different members of a nondeterministic species in the

same way that atomic species may differ. But interfaces could instead provide local

mappings for only species and modification site names, and require compartments to

be evaluated externally. This would ensure that two species with the same location in

their interface are indeed in the same location. Such guarantees cannot be made when

location is included in the interface.

Another design choice involves the relatively relaxed conditions on interfaces. For

example, an interface may map a located name to indices in which the compartment

structure is completely different, and different located names may map to indices with

the same species names. The latter allows the elements of a homomultimer to be

distinguished within the same species as demonstrated by the earlier example in Figure

5.2.2b. This is one reason why unboxed species values are lists rather than multisets.

The ordering of atomic species within a complex is however also significant when

giving a concrete semantics in terms of κ as we see in the next chapter; the concrete
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semantics in terms of Petri nets, ODEs and CTMCs, on the other hand, disregard the

ordering.

Annotations are maintained explicitly in species values. This incurs some overhead

in the semantics for species expressions since all operations must take annotations into

account. Alternatively, the interface could be represented by lists and the annotation

could be captured by an appropriate ordering and restriction of the interface. This

would give a more compact semantics at the cost of reduced transparency. It is how-

ever impossible for another reason pertaining to output species: these can adopt the

interface of actual species values at time of module invocation using the adapt func-

tion, so interfaces of actual species parameters must be preserved.

5.3 Programs

5.3.1 Normal Form Reactions

Recall that the general semantics is parameterised on a structure (S, |S,0S,RS, IS) and

that RS is a function of the form RS(R,b)= O assigning a semantical object to a reaction

R, named b, in a suitable normal form. More precisely, R takes the form:

n · vns ⇒vr n′ · v′ns if eb

where vns and v′ns are normal form species values as defined in the semantics for species

and vr is a rate value, i.e. a rate expression in which species expressions have been

evaluated to their normal forms, compartment expressions have been replaced by their

resulting volumes, and rate function invocations have been evaluated. Rate values, and

their underlying algebraic rate values, are generated by the grammar in Table 5.3.1.

The denotation function for algebraic rate expressions is of the form:

JeaKaΓc,Γs,Γa,vc = va

Here Γa is an algebraic rate function environment of the form Γa(ida) = f where f in

turn is a function of the form f (vc,::
vs ,va,v′c) = va mapping actual parameters, together

with a list v′c of parent compartment values at time of invocation, to algebraic rate

values. The denotation function is defined below, but with some standard cases for

functions and arithmetic operators omitted. We adopt a convention here and throughout

where any parameters of a denotational function that are not explicitly used by a given

case are represented by Γ; in the second case below, for example, Γ hence represents

the parameters Γs, Γa and vc.
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Table 5.3.1: The abstract syntax for rate values.

vr ::= RATE VALUE

| {va} RATE CONSTANT RATE VALUE

| [va] ALGEBRAIC RATE VALUE

va ::= ALGEBRAIC RATE VALUE

| r CONSTANT

| vns POPULATION

| if eb then va else v′a CONDITIONAL

| exp(va) | log(va) | sin(va) | cos(va) FUNCTIONS

| va + v′a | va - v′a ARITHMETIC OPERATORS

| va × v′a | va / v′a | vaˆv′a

• JrKaΓ
∆' r

• JidcKaΓ,Γc
∆' w where

– (nc,w,vc)
∆' Γc(idc)

• JesKaΓc,Γs,Γa,vc
∆' nf(vs

::
.1,vc) where

– vs
::

∆' JesKsΓc,Γs

if |vs
::
|= 1

• Jida(idc;es;ea)KaΓc,Γs,Γa,v′c
∆' Γa(ida)(vc,::

vs,va,v′c) where

– vc
∆' Γc(idc)

– vs
::

∆' JesKsΓc,Γs

– va
∆' JeaKaΓc,Γs,Γa,v′c

if |vs
::
|= 1
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• Jif eb then ea else e′aKaΓ
∆' if eb then JeaKaΓ else Je′aKaΓ

• Jexp(ea)KaΓ
∆' exp(JeaKaΓ)

• Jea + e′aKaΓ
∆' JeaKaΓ + Je′aKaΓ

The case of compartments is only defined for non-world compartment expressions,

reflecting our convention that the world compartment should only be used as a parent in

definitions of new compartments. The case of species is only defined when the species

expression does not contain nondeterminism because any nondeterministic choice is

forced in the appropriate derived forms of reactions. In the case of algebraic rate

function invocation, the semantic function is looked up in the algebraic rate function

environment and applied to the actual parameters after these have been evaluated.

The remaining cases simply evaluate components recursively. Note in particular

that conditionals are preserved in rate values, since a full evaluation requires an as-

signment to variables. As for normal form species expressions, this assignment is left

as a concern for the concrete semantics because certain semantical objects, such as

coloured Petri nets, have their own distinct way of handing variables.

5.3.2 The Denotation Function for Basic Programs

The denotation function for basic programs is of the form:

JPKpΓc,Γs,Γa,Γm,b,vc = {(Oi,Γsoi)}

Here Γm is a module environment of the form Γm(idm) = g where g in turn is a function

of the form g(vc,::
vs,va, ids,b,vc) = {(Oi,Γsoi)} mapping actual parameters to a set of

pairs of semantical objects and output species environments Γsoi which have the same

form as species environments. Note that we obtain a set of semantical objects and

output species environments in order to account for variation composition. The output

species environments allows the formal output species, defined inside a module, to

become available in the program following module invocation where they are bound

to the corresponding actual output species identifiers. Note also that g is parameterised

on a fresh name b and a list vc of parent compartments. The latter is because parent

compartments for a module are determined dynamically rather than statically.

The denotation function is defined below and relies on the function

δ
m
n

∆' {0}n−1 1{0}m−n
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for constructing a binary string of length m with zeros everywhere except in the nth

position which holds a one.

• Jn · es ⇒er n′ · e′s if ebKpΓc,Γs,Γa,Γm,b,vc
∆' {(O, /0)} where

– vr
∆' JerKaΓc,Γs,Γa,vc

– vs
::

∆' JesKsΓc,Γs

– v′s
::

∆' Je′sKsΓc,Γs

– vns
∆' nf(vs

::
.1,vc)

– v′ns
∆' nf(v′s

::
.1,vc)

– O ∆' RS(n · vns⇒vr n′ · v′ns if eb,b)

if |vs
::
|= |v′s

::
|= 1

• J0pKpΓ
∆' {(0S, /0)}

• JP | P′KpΓ,b
∆' {(Oi|SO ′j,Γsoi〈Γ′so j〉)} where

– {(Oi,Γsoi)}
∆' JPKpΓ,0b

– {(O ′j,Γ′so j)}
∆' JP′KpΓ,1b

• JP || P′KpΓ,b
∆' {(Oi,Γsoi)}∪{(O ′j,Γ′so j)} where

– {(Oi,Γsoi)}
∆' JPKpΓ,0b

– {(O ′j,Γ′so j)}
∆' JP′KpΓ,1b

• Jidc[P]KpΓ,Γc,vc
∆' JPKpΓ,Γc,v′cvc where

– v′c
∆' Γc(idc)

• Jidm(ec;es+;ea;out ids);PKpΓc,Γs,Γa,Γm,b,vc
∆' {(Oi|SO ′ji,Γsoi〈Γ′so ji〉)}where

– m
∆' |ec|+ |es+|+2

– bi
∆' δm

i

– b′j
∆' δm

|es+|+ j
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– b1 ∆' δm
|es+|+|ec|+1

– b2 ∆' δm
|es+|+|ec|+2

–
::
vs.i

∆' Jes+.iKsΓc,Γs,bib,

– vc. j
∆' Jec. jKcΓc,b′jb

– va.k
∆' Jea.kKaΓc,Γs,Γa,vc

– {(Oi,Γsoi)}
∆' Γm(idm)(vc,::

vs,va, ids,vc,b1b)

– {{(O ′j,Γ′so j)}i}
∆' JPKpΓc,Γs〈Γsoi〉,Γa,Γm,b2b,vc

• JD ; PKpΓ,b,vc
∆' {(Oi,Γ

′
so〈Γsoi〉)} where

– Γ′,Γ′so
∆' JDKdΓ,0b

– {(Oi,Γsoi)}
∆' JPKpΓ′,1b,vc

• Jids = force(es) ; PKpΓc,Γs,Γa,Γm,b,vc
∆' {(O j1.1 |S . . . |S O jm .m, /0)} where

– vs
::

∆' JesKsΓc,Γs

– {(O j,Γso j)}.i
∆' JPKpΓc,Γs〈ids 7→ vs

::
.i〉,Γa,Γm,δ

|vs: |

i b,vc

• Jinit es = rKpΓc,Γs,Γa,Γm,b,vc
∆' {(O, /0)} where

– vs
::

∆' JesKsΓc,Γs

– vns
∆' nf(vs

::
.1,vc)

– O ∆' IS(vns,r)

if |vs
::
|= 1

We furthermore define JPKp
∆' JPKp /0, /0, /0, /0,ε,> for programs which constitute a

complete model, i.e. which have no free identifiers.

Explanation of the denotation function The case of reactions relies on the given

concrete semantic function for assigning a semantical object to the reaction evaluated

to its normal form. This normal form reaction is in turn obtained by evaluating the

species expressions to their normal forms, which involves completing the compartment
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hierarchy in species values, and by evaluating rate expressions to rate values. The latter

assumes the denotation function for algebraic rate expressions to be extended to rate

expressions in an evident manner. There is one explicit condition for well-typedness,

namely that species expressions must be deterministic, i.e. evaluate to singleton lists of

species values. There is also the implicit condition that the concrete semantic function

must be defined for the computed normal form reaction, which may e.g. fail if non-

mass-action rates are used with a concrete ODE semantics.

The denotation of the nil program is simply the singleton set with the nil semantical

object and the empty output species environment.

The denotation of a parallel composition is the pairwise composition of all seman-

tical objects in the denotations of the operands, together with the pairwise update of

output species environments from the first component with those of the second. The

fresh name prefixes are extended appropriately. This case is well-typed when the com-

position operation, which is a parameter of the general semantic function, is defined.

The denotation of a variation composition is similar to that of parallel composition

but results in a union of semantical objects rather than a Cartesian product.

In the case of located programs, the compartment identifier is looked up in the com-

partment environment and appended to the list of compartment values used to compute

the denotation of the nested program. The denotation is defined when the compartment

identifier is in the given compartment environment and when the resulting list of com-

partment values is well-typed.

The case of module invocation evaluates the actual parameters and passes the re-

sulting values as parameters to the function denoting the module as given by the mod-

ule environment. This function takes two additional parameters, namely the parent

compartments at time of invocation and a fresh name string. From the function we

obtain a set of semantical objects together with output species environments with bind-

ings for the actual output species parameters. The sequential program is then evalu-

ated in the species environment updated with the appropriate bindings for the output

species. The result is the set of all pairwise compositions of semantical objects from

the module and from the sequential program, together with the pairwise update of out-

put species environments from the module with those from the sequential program.

Hence the sequential program is treated as a parallel program with respect to semanti-

cal objects.

Special care must be taken to ensure the proper extension of fresh name strings

for evaluating compartment expressions, species expressions, the module body and the
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sequential program. The crucial characteristic of these strings is that none is a postfix

of another, ensuring that there is no way of extending one string to match another. So

far we have achieved this in the semantics of binary operators by prefixing respectively

a 0 and a 1 to the fresh name string. But here we are faced with lists of expressions to

be evaluated. We then achieve the desired property by letting all prefixes be of length

|es|+ |es+|+ 2, where the plus two term accounts for the module body and for the

sequential program. For the ith compartment expression we choose a prefix in which

the ith symbol is 1 and the remaining symbols are 0s, and a similar construction is used

for the remaining prefixes. The denotation function for module invocation is defined

when the module identifier is in the given environment and the associated function is

defined for the given arguments.

The case of definitions relies on the denotation function for definitions to obtain

an updated collection of environments in which the sequential program following the

definition is evaluated.

The case of nondeterministic selection evaluates the species expression, and for

each resulting species value, it evaluates the sequential program. As for module in-

vocation, special care is needed to ensure that the fresh name strings are extended

appropriately. The resulting set of semantical objects consists of all possible composi-

tions of semantical objects associated with each species value, and is hence effectively

a Cartesian product. The output species environments resulting from repeated evalua-

tion of the sequential program are disregarded, since there does not appear to be any

meaningful way to reconcile them. They all have the same domain, but generally differ

in their images, since each is a result of evaluating the same sequential program with

different bindings for the forced species.

Finally, the case of initial population or concentration definitions evaluates the

given species expression, obtains the corresponding normal form based on the current

parent compartments, and uses the concrete semantic function to obtain a semantical

object.

5.3.3 The Definition of Derived Programs

Next we define the denotation of derived forms in terms of basic programs. We start

by considering in-line species definitions which intuitively give rise to a basic reaction

without in-line definitions in parallel with the following program put in scope of the

relevant definitions; an example of this is given in Subsection 3.3.1. The formal presen-
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tation relies on an auxiliary definition extraction function of the form JesKdsD = e′s,D
′

where es is a derived species expression as defined in the abstract syntax for derived

programs, e′s is a basic species expression and D, D′ are lists of extracted species def-

initions. Selected cases of the definition are shown below; the remaining cases are

similar:

• Jidc[es]KdsD
∆' idc[e′s],D

′ where

– e′s,D
′ ∆' JesKdsD

• Jes− e′sKdsD
∆' e′′s − e′′′s ,D′′ where

– e′′s ,D
′ ∆' JesKdsD

– e′′′s ,D′′
∆' Je′sKdsD′

• JidsKdsD
∆'

es,D if ∃i. D.i = (ids = es)

ids,D otherwise

• Jes as idsKdsD
∆' e′s,(ids = e′s)D

′ where

– e′s,D
′ ∆' JesKdsD

We extend the function to the form JesKdsD = e′s,D
′ in order to rename species identi-

fiers in reactant and product lists:

• JεKdsD
∆' ε,D

• Jese′sKdsD
∆' e′′s e′′′s ,D′′ where

– e′′s ,D
′ ∆' JesKdsD

– e′′′s ,D′′
∆' Je′sKds,D′

We also assume the function extended to rate expressions in an evident manner.

The definition of identity-preserving arrows, outlined informally in Subsection

3.2.2, relies on an auxiliary linearisation function for renaming identifiers in species

expressions in a linear manner. Informally, the renaming is such that all species iden-

tifiers in the reactants become distinct, all species identifiers in the products become

distinct, and the ith occurrences of a given identifier in the original reactants and prod-

ucts are given the same name.
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The linearisation function is of the form lin(es,M)
∆' e′s,M

′ where M and M′ are

multisets of species identifiers. Two key cases of the definition are given below where,

for i ∈ N, bs(i) is the binary string representation of i:

• lin(ids,M)
∆' bs(M(ids)) ids,M + ids

• lin(es− e′s,M)
∆' e′′s − e′′′s ,M′′ where

– e′′s ,M
′ ∆' lin(es,M)

– e′′′s ,M′′
∆' lin(e′s,M

′)

The base case prefixes an identifier with the binary string representation of the number

of the identifier’s previous occurrences, and adds the identifier to the multiset. The case

of complex formation evaluates the first expression in the given multiset, resulting in a

new multiset in which the second expression is evaluated. The remaining cases which

are not shown here simply evaluate components recursively in the original multisets.

We extend the linearisation function to the form lin(es,M) = e′s,M
′ in order to

rename species identifiers in reactant and product lists:

• lin(ε,M)
∆' ε,M

• lin(ese′s,M)
∆' e′′s e′′′s ,M′′ where

– e′′s ,M
′ ∆' lin(es,M)

– e′′′s ,M′′
∆' lin(e′s,M

′)

We also assume the linearisation function extended to rate expressions in an evident

manner.

The derived forms are then defined by a denotation function of the form:

JPKdp = P′

where P is a derived form program and P′ is a basic program. In the following, we

assume a function of the form ;©D;P = P′ which, given a list D of definitions and

a program P, gives a program P′ in which the definitions in D have been composed

sequentially following the order of D and have scope P. We assume a function of the

form order(D) = D which orders a set D of definitions in some arbitrary but definite

order. The function FS gives the set of species identifiers in a species expression and

is defined along standard lines.
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− Je′′s ∼ n · es Aer,e′r
2 n′ · e′s ∼ e′′′s if eb,e′b ;PKdp

∆'

Je′′s ∼ n · es A(A2)er n′ · e′s if eb ;0pKdp |

Je′′′s ∼ n′ · e′s A(A2)e′r n · es if e′b ;PKdp

where

– A(⇔)
∆' ⇒

– A(↔)
∆' →

– A(��)
∆' �

−Je′′s ∼ n · es Aer n′ · e′s if eb ;PKdp
∆' J1 · e′′s n · es Aer 1 · e′′s n′ · e′s if eb ;PKdp

− Jn · es Aer n′ · e′s if eb ;PKdp
∆' Jn · e′′s Ae′r n′ · e′′′s if ebKdp | ;©D′′;P

where

– e′′s ,D = JesKdsε

– e′r,D
′ ∆' JerKdsD

– e′′′s ,D′′ = Je′sKdsD′

− Jn · es →er n′ · e′s if ebKdp
∆'

;©order{ids = force ids | ids ∈ FS(es,e′s)} ; n · es ⇒er n′ · e′s if eb

− Jn · es �er n′ · e′s if ebKdp
∆'

;©order{bs(i) ids = force ids | ids ∈ dom(M)∧ i ∈M(ids)} ;

n · e′′s ⇒e′r n′ · e′′′s if eb

where

– e′r,M
′ ∆' lin(er, /0)

– e′′s ,M
′′ ∆' lin(es, /0)

– e′′′s ,M′′′
∆' lin(e′s, /0)

– M(ids)
∆' {1 . . .max(M′(ids),M′′(ids),M′′′(ids))}
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The first case defines a reversible reaction as the parallel composition of two re-

actions, one for each direction. The second case defines an enzymatic reaction as a

non-enzymatic reaction in which the enzymes are included in both the reactants and

the products and hence do not get consumed. This is the interpretation needed in the

yeast pheromone case study, although other choices, following e.g. Michaelis-Menten

kinetics, could also be made.

The third case defines a reaction with in-line definitions as a reaction where defi-

nitions have been extracted, in parallel with the following program which is put in the

scope of the extracted definitions. Note that identifiers defined in-line are expanded in

the reaction rather than put in scope of the extracted definitions; this is necessary in

order to obtain a meaningful interplay with nondeterministic selection.

The last two cases define nondeterministic reaction arrows in terms of the force op-

erator and the deterministic reaction arrow. Note that nondeterministic species must be

bound to identifiers in reactions in order to preserve the relationship between identical

nondeterministic species in reactants and products. Reactions with explicit nondeter-

minism are therefore ill-typed. Note also that for reactions with the identity-preserving

arrow, a given identifier should generally have the same number of occurrences in the

reactants and products to obtain meaningful results, although this condition is not ex-

plicitly enforced. In particular, reactions such as 2 s −>> s−s and s + s −>> s−s are

not equivalent according to the above definition of derived forms.

The order of evaluation of derived forms is significant. Specifically, in-line species

definitions are expanded before nondeterministic selection. This ensures that e.g. the

program:�
1 s + t −> s−t as a ; P �

expands correctly, i.e. to:�
1 ( spec s = f o r c e s ;

2 spec t = f o r c e t ;

3 s + t => s−t ) | spec a = s−t ; P �
rather than to:�

1 spec s = f o r c e s ;

2 spec t = f o r c e t ;

3 ( s + t => s−t | spec a = s−t ; P ) �
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5.4 Definitions

The denotation function The denotation function for definitions updates the envi-

ronments with bindings for a given definition. It takes the following form:

JDKdΓc,Γs,Γa,Γm,b = Γ
′
c,Γ
′
s,Γ
′
a,Γ
′
m,Γso

The output species environment is created by the denotation function and is always

empty except for the case of species definitions, where it captures the binding for the

defined species. This is in contrast to the other environments which are updated by the

denotation function. Here is the definition:

• Jids = es+KdΓc,Γs,Γa,Γm,b
∆' Γc,Γs〈ids 7→ vs

::
〉,Γa,Γm,{ids 7→ vs

::
} where

– vs
::

∆' Jes+Ks+Γc,Γs,b

• Jidc = ecKdΓ,Γc
∆' Γ,Γc〈idc 7→ vc〉, /0 where

– vc
∆' JecKcΓc,b

• Jida(idc; ids : ξ; ida) = eaKdΓc,Γs,Γa,Γm,b
∆' Γc,Γs,Γa〈ida 7→ f 〉,Γm, /0

where

– f (vc,::
vs,va,vc

′)
∆' JeaKaΓ′c,Γ

′
s,Γ
′
a,vc

′

– Γ′c
∆' Γc〈{idc 7→ vc}〉

– Γ′s
∆' Γs〈{ids 7→ close(vs

::
,ξ)}〉

– Γ′a
∆' Γa〈{ida 7→ va}〉

− Jidm(idc; ids : ξ; ida; out id′s : e′s) = PKdΓc,Γs,Γa,Γm,b
∆'

Γc,Γs,Γa,Γm〈idm 7→ g〉, /0

where

– g(vc,::
vs,va, id′′s ,b

′,vc
′)

∆' {(Oi,Γsoi)}

– Γ′c
∆' Γc〈{idc 7→ vc}〉

– Γ′s
∆' Γs〈{ids 7→ seal(close(vs

::
,ξ),b)}〉

– Γ′′s
∆' Γs〈{ids 7→ vs

::
}〉
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– Γ′a
∆' Γa〈{ida 7→ seal(va,b)}〉

– {(Oi,Γ
′
soi)}

∆' JPKpΓ′c,Γ
′
s,Γ
′
a,Γm,b′,vc

′

– Γsoi
∆' {id′′s 7→ adapt(v′s

::
,v′′s

::
)} where

∗ v′s
::

∆' Γ′soi(id
′
s)

∗ v′′s
::

, /0 = Je′sKsΓ
′
c,Γ
′′
s

Explanation of the denotation function The cases for species and compartment

definitions are straightforward since they rely on the respective denotation functions.

The case of rate function definitions updates the rate function environment with a new

binding to a function f from actual parameters and parent compartments to an alge-

braic rate value. This algebraic rate value is computed in the environments at time of

definition updated with bindings for the actual parameters, and with the parent com-

partments at time of invocation. The interfaces of the actual species parameters are up-

dated based on the annotations of the corresponding formal parameters using the close

function defined in Section 5.2 which here is assumed extended to lists of species val-

ues. The function f is only defined when the number of actual and formal parameters

match, and when the species interface update function is defined.

The case of module definitions updates the module environment with a new bind-

ing to a function from actual parameters, a fresh name string and parent compartments,

to a set of semantical objects and species output environments. The semantical objects

are computed in the environments at time of definition updated with bindings for ac-

tual parameters, and with the fresh name string and parent compartments at time of

invocation. As for algebraic rate expressions, the interfaces of actual species values

are updated. But an additional step is taken to confine species values to a names-

pace given by the fresh name string at time of definition, ensuring that e.g. variables

in actual parameters are not captured inside the module. This is done using the seal

function on modification site expressions, which is given as a parameter of the general

semantics; we assume this to be extended appropriately to lists of species values and

also to algebraic rate values. Finally, the resulting output species environment is given

by a mapping from actual output species identifiers to the values of the corresponding

formal output species identifiers as recorded in the output species environment of the

body, but with interfaces updated using the adapt function defined in Section 5.2. The

function is assumed extended to pairs of species value lists of the same length. Hence
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the updates are carried out in a pair-wise manner by matching up corresponding posi-

tions in the lists constituting the nondeterministic species values; this is the reason for

having nondeterministic species represented by lists rather than sets.





Chapter 6

Some Concrete Semantics of LBS

Practical applications of LBS require specific choices of concrete semantics to be

made, and any questions of language expressiveness must also be addressed in the

context of a specific concrete semantics. This chapter therefore gives five examples of

concrete semantics, namely: basic Petri nets; coloured Petri nets; ordinary differential

equations; continuous time Markov chains; and κ. The first four of these follow the

ideas in [74], but are adapted to adhere to the general semantics of LBS.

The concrete semantics have not been implemented in the tool. As mentioned in

the introduction, a translation to SBML has instead been implemented because this

suffices as a proof of concept for our case studies. The implementation does however

follow the general semantics presented in the previous chapter (with the exception

that fresh names are generated imperatively for the sake of simplicity), and in fact

the translation to SBML can be considered a concrete semantics in its own right. The

concrete semantics defined in this chapter can therefore readily be incorporated into the

tool as needed. We note that although SBML suffices for many practical applications

and can indeed be translated to for example Petri nets, the direct definition of a Petri

net concrete semantics is necessary when seeking to exploit modularity in analysis.

We return to this topic in the next chapter in the context of Petri net flows.

6.1 Preliminaries

The general semantics preserves variables in species modification sites because vari-

ables can be exploited by some concrete semantics. But for other concrete semantics

this is not the case, and we can instead parameterise the general semantic function on

a structure (S, |S,0S,GS, IS) which is the same as before, except that GS is a function

99
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Table 6.1.1: The abstract syntax for ground rate values.

vgr ::= GROUND RATE VALUE

| {r} RATE CONSTANT

| [vga] GROUND ALGEBRAIC RATE VALUE

vga ::= GROUND ALGEBRAIC RATE VALUE

| r CONSTANT

| vgns POPULATION

| exp(vga) | log(vga) | sin(vga) | cos(vga) FUNCTIONS

| vga + v′ga | vga - v′ga ARITHMETIC OPERATORS

| vga × v′ga | vga / v′ga | vgaˆv′ga

assigning semantical objects to named ground normal form reactions. These are nor-

mal form reactions in which expressions have been appropriately evaluated based on

a variable environment: species values have been evaluated to ground normal form

species values as defined previously; rate values have been evaluated to obtain ground

rate values defined below; and reaction conditionals are omitted because reactions with

conditionals which evaluate to ff are simply discarded.

In this section we define the general assignment RS of semantical objects to named

normal form reactions in terms of an assignment GS to named ground normal form

reactions, allowing a concrete semantics to be defined in terms of either of these.

6.1.1 Ground Normal Form Reactions

Ground algebraic rate values differ from algebraic rate values in that species values

are replaced by ground normal form species values and conditionals are not included.

Ground rate values contain ground algebraic rate values rather than algebraic rate val-

ues, and for the rate constant case, these must indeed be constants. The formal defini-

tion is given by the grammar in Table 6.1.1.

A denotation function of the form JvaKaΓx = vga assigning ground algebraic rate

values to algebraic rate values, given a variable environment, is defined below. Only
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selected cases for functions and arithmetic operators are shown since the remaining

cases are similar.

• JrKaΓx
∆' r

• JvnsKaΓx
∆' JvnsKmΓx

• Jif eb then va else v′aKaΓx
∆'

JvaKaΓx if JebKbΓx = tt

Jv′aKaΓx otherwise

• Jexp(va)KaΓx
∆' exp(JvaKaΓx)

• Jva + v′aKaΓx
∆' JvaKaΓx + Jv′aKaΓx

In the case of normal form species values we assume the denotation function for mod-

ification site expressions extended in an evident manner.

Ground normal form reactions are then of the form:

G ::= n · vgns ⇒vgr n′ · v′gns

6.1.2 The General Semantics in Terms of Ground Normal Form Re-

actions

The idea in the following construction is to obtain a ground normal form reaction for

each possible variable environment associated with a normal form reaction, then get the

semantical object of each ground normal form reaction, and finally apply the parallel

composition operator to these objects. We therefore start by defining a function of the

form RS(R,b,Γx) = O assigning a semantical object O to a normal form reaction R,

named b, given a variable environment Γx:

RS(n · vns ⇒vr n′ · v′ns if eb,b,Γx)
∆'GS(n · JvnsKmΓx ⇒JvrKaΓx n′ · Jv′nsKmΓx,b) if JebKbΓx = tt

0S otherwise

If the conditional evaluates to ff, the reaction is assigned the nil object, and otherwise

the assignment relies on the function GS for assigning a semantical object to the ground

normal form of the reaction. Again we assume the denotation function on modification

site expressions to be extended to normal form species values in an evident manner.



102 Chapter 6. Some Concrete Semantics of LBS

We also assume the denotation function for ground algebraic rate values to be extended

to ground rate values in an evident manner; note that this function is only defined

when ground algebraic rate values which are used as constants do indeed evaluate to

constants.

The set of all variable environments associated with a normal form reaction is de-

fined as follows, using the standard notation for dependent sets:

VE(R)
∆' ∏

(x:ρ)∈FV(R)
JρKt

We here assume the variable function FV on modification site expressions to be ex-

tended to reactions in an evident manner. Observe that variable environments are re-

stricted to only assign values of the given types to variables, and that for finite types,

we get a finite set of variable environments.

In order to construct appropriate binary strings for naming reactions, we assume

an arbitrary but fixed total ordering ≤ on variable environments Γx. In practise this

can for example be obtained from a lexicographical ordering on variables together

with a suitable ordering on values. We assume an operator |S© which gives the parallel

composition in some definite order of its operands. Recall also that the function δm
i

gives a binary string of length m with 0s everywhere except for the ith entry. The

assignment RS can then be defined in terms of GS as follows:

RS(R,b)
∆'

|S©{RS(R,δm
i b,Γx) | Γx ∈ VE(R)∧ i = |{Γ′x ∈ VE(R) | Γ′x ≤ Γx}|∧m = |VE(R)|}

6.2 A Basic Petri Net Semantics

6.2.1 Basic Petri Nets

We have already encountered a graphical representation of a basic Petri net in Figure

2.1.1 on page 12, and we have demonstrated how this can be obtained as a composition

of two component Petri nets. To recap, places, depicted as circles, represent species,

and transitions, depicted as rectangles, represent reactions. Flow functions, depicted

as weighted arcs between places and transitions, represent stoichiometry. Finally, a

marking defines the state of a Petri net by the number of tokens contained in each

place, representing the number of individual molecules or concentration levels of the

corresponding species.
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The formal definition of our Petri nets is given below, where Vgns is the set of all

ground normal form species values vgns.

Definition 1. An LBS-Petri net PN is a tuple (S,T,F in,Fout,M0) where

• S (fin {MS(vgns) | vgns ∈Vgns} is the set of places.

• T (fin {0,1}∗ is the set of transitions.

• F in,Fout : T ×S→ N are the flow-in and flow-out functions, respectively.

• M0 ∈MS(S) is the initial marking.

Recall in the above definition that MS(x) gives the multiset representation of a list

x. The set of places hence contains multiset-representations of ground normal form

species values, reflecting that the ordering of atomic species within ground normal

form species values is insignificant, i.e. that the complex formation operator is com-

mutative. Transitions are binary strings since these are used to name reactions in the

general semantics. We use the notation SPN to refer to the places S of a Petri net PN,

and similarly for the other Petri net elements. The set of all Petri nets is denoted by

P N .

6.2.2 The Qualitative Semantics of Basic Petri Nets

The qualitative semantics determines how the marking of a Petri net changes over

discrete time, and we outlined this “token game” informally in Section 2.1. Formally,

the set of all markings of a Petri net is the set of multisets of places:

M (PN)
∆' MS(SPN)

The behaviour of a Petri net is defined in terms of a transition relation which captures

all possible moves in the token game.

Definition 2. Let PN be a Petri net, let X ∈ MS(TPN) and let M,N ∈M (PN). Then

define M X−→ N iff

1. M ≥ ∑t∈X F in
PN(t)

2. N = M +∑t∈X Fout
PN (t)−F in

PN(t)
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Note that a flow function applied to only one argument, a transition, is interpreted

as a function on places, here a marking. The arithmetic operations and relations are

understood to be extended to markings in the expected way, e.g. M≥N iff M(s)≥N(s)

for all s. Condition 1 hence states that the marking M must have sufficient tokens for

transitions in X to fire, and condition 2 states that N is the marking resulting from firing

the transitions from X in the marking M.

6.2.3 The Concrete Basic Petri Net Semantics of LBS

Definition 3. The concrete semantics for LBS in terms of Petri nets is given by the

tuple (P N , |P N ,0P N ,GP N , IP N ) where

• PN1 |P N PN2
∆' PN where

– SPN
∆' SPN1 ∪SPN2

– TPN
∆' TPN1 ∪TPN2

– F io
PN(t,s)

∆'


F io

PN1
(t,s) if t ∈ TPN1 ∧ s ∈ SPN1

F io
PN2

(t,s) if t ∈ TPN2 ∧ s ∈ SPN2

0 otherwise

for io ∈ {in,out}

– M0
PN

∆' M0
PN1

+M0
PN2

if TPN1 ∩TPN2 = /0

• 0P N
∆' ( /0, /0, /0, /0, /0)

• GP N (n · vgns ⇒vgr n′ · v′gns, t)
∆' PN where

– SPN
∆' {MS(vgns.i)}∪{MS(v′gns. j)}

– TPN
∆' {t}

– F in
PN(t,s)

∆' ∑MS(vgns.i)=s n.i

– Fout
PN (t,s)

∆' ∑MS(v′gns. j)=s n′. j

– M0
PN

∆' /0

• IP N (vgns,n)
∆' ({MS(vgns)}, /0, /0, /0,{MS(vgns) 7→ n})
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The function IP N is only defined for natural-numbered initial populations, not for

real-numbered initial concentrations, because markings in Petri nets are discrete. The

parallel composition operator is only defined for Petri nets with disjoint sets of tran-

sitions. The transition sets of two Petri nets resulting from the general semantics are

however always disjoint because reactions have fresh names. This is in contrast to CBS

where a bottom-up approach is taken: the semantics for parallel composition renames

transitions before composition.

6.3 A Coloured Petri Net Semantics

Coloured Petri nets (CPNs) allow a single place to represent a species in any of its

possible states of modification as we demonstrated in Figure 2.1.2 on page 14. CPNs

hence allow for a compact description of models and can potentially lead to more

efficient simulation and analysis, and in contrast to basic Petri nets, they are capable of

representing species with infinite modification site types such as strings.

6.3.1 Coloured Petri Nets

Recall from Section 2.1 that places in CPNs are assigned types (or colour), and tokens

are structured values of the type assigned to the place in which they reside. In our

case, the type of a place is given by a multiset of located atomic species names and

their modification site types, hence representing a complex species independently of

its state of modification. Tokens are multiset representations of ground normal form

species values, and arcs are equipped with multiset representations of normal form

species values which are not necessarily ground. This enables a transition to operate

selectively on species in a given state of modification, or indeed to ignore the state of

certain sites. Boolean guards with variables allow transitions to assert further control

over tokens.

We give a definition of coloured Petri nets which is tailored to our needs and which

avoids some details of the standard definition [48]. For example, the standard definition

distinguishes between place names and place types, but for our purposes a place is

identified uniquely by its type. Our definition can however be recast in standard terms,

as would be necessary for exploiting existing CPN tools.
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Formally, we define a species type τ as follows:

τ ::= ∑
i

nci[nsi,σi]

and we let Types be the set of all species types. We define a function of the form

type(vns) = τ giving the type of a normal form species value:

type(nc[ns,ασ])
∆' ∑

i
nci[nsi,σi]

where σi is ασ.i in which each pair of the image has been projected to the type com-

ponent. We assume a similar definition for a function of the form type(vgns) = τ for

ground normal form species values.

The formal definition of our coloured Petri nets is given below, where Ebool is set

of boolean expressions eb.

Definition 4. An LBS-coloured Petri net CPN is a tuple (S,T,F in,Fout,B,M0) where

• S (fin Types is a finite set of places.

• T (fin {0,1}∗ is a finite set of transitions.

• F in,Fout : ∏(t,τ)∈T×S MS({MS(vns) | type(vns) = τ}) are the flow-in and flow-out

functions, respectively.

• B : T → Ebool is the transition guard function.

• M0 : ∏τ∈S MS({MS(vgns) | type(vgns) = τ}) is the initial marking.

As for basic Petri nets, we use the notation SCPN to refer to the places S of a

coloured Petri net CPN, and similarly for the other elements. The set of all coloured

Petri nets is denoted by CP N .

6.3.2 The Qualitative Semantics of Coloured Petri Nets

The set of all markings of a coloured Petri net CPN is defined as follows:

M (CPN)
∆' ∏

τ∈SCPN

MS({MS(vgns) | type(vgns) = τ})

We furthermore let

VEX
∆' {Γx | dom(Γx) = X}
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be the set of variable environments with domain X , and we let

FV(t,CPN)
∆' FV(F in

CPN(t))∪FV(Fout
CPN(t))∪FV(BCPN(t))

be the set of typed variables associated with a transition t in CPN; here FV is assumed

extended in an evident manner. The behaviour of a coloured Petri net is defined in

terms of a transition relation as follows.

Definition 5. Let CPN be a coloured Petri net, let X ∈MS(∏t∈TCPN VEFV(t,CPN)) and

let M,N ∈M (CPN). Then define M X−→ N iff

1. M ≥ ∑(t,Γx)∈XJF in
CPN(t)KmΓx

2. N = M +∑(t,Γx)∈XJFout
CPN(t)KmΓx− JF in

CPN(t)KmΓx

3.
∧

(t,Γx)∈XJBCPN(t)KmΓx = tt

Recall that the modification site denotation function is a parameter of the species

semantics, and in the above definition we assume this function to be extended from

modification site expressions to normal form species values and to markings in an

evident manner. A flow function applied to a transition is here interpreted as a marking,

i.e. a mapping from places to multisets, and the multiset operations are assumed to be

appropriately extended. Conditions 1 and 2 then correspond to conditions 1 and 2 in

the qualitative semantics of basic Petri nets. Condition 3 states that the guards of all

fired transitions must evaluate to tt.

6.3.3 The Concrete Coloured Petri Net Semantics of LBS

Definition 6. The concrete semantics for LBS in terms of coloured Petri nets is given

by the tuple (CP N , |CP N ,0CP N ,RCP N , ICP N ) where

• CPN1 |CP N CPN2
∆' CPN where

– SCPN
∆' SCPN1 ∪SCPN2

– TCPN
∆' TCPN1 ∪TCPN2

– F io
CPN(t,τ)

∆'


F io

CPN1
(t,τ) if t ∈ TCPN1 ∧ τ ∈ SCPN1

F io
CPN2

(t,τ) if t ∈ TCPN2 ∧ τ ∈ SCPN2

/0 otherwise

for io ∈ {in,out}
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– BCPN(t)
∆'

BCPN1(t) if t ∈ TCPN1

BCPN2(t) if t ∈ TCPN2

– M0
CPN

∆' M0
CPN1

+M0
CPN2

if TCPN1 ∩TCPN2 = /0

• 0CP N
∆' ( /0, /0, /0, /0, /0, /0)

• RCP N (n · vns ⇒vr n′ · v′ns if eb, t)
∆' CPN where

– SCPN
∆' {type(vns.i)}∪{type(v′ns. j)}

– TCPN
∆' {t}

– F in
CPN(t,τ)

∆' ∑type(vns.i)=τ n.i ·MS(vns.i)

– Fout
CPN(t,τ)

∆' ∑type(v′ns. j)=τ n′. j ·MS(v′ns. j)

– BCPN(t)
∆' eb

– M0
CPN

∆' /0

• ICP N (vgns,n)
∆' ({type(vgns)}, /0, /0, /0, /0,{MS(vgns) 7→ n})

The definition is similar to that for basic Petri nets, but differs in the inclusion of

guards and in the definition of reactions where species types and normal form values

are used rather than ground values.

6.4 An ODE Semantics

The Petri net and coloured Petri net semantics presented above are qualitative in that

they do not take reaction rates into account. In this section we give a quantitative

semantics in terms of ordinary differential equations (ODEs). ODEs are continuous

since they define system dynamics in terms of species concentrations. They are also

deterministic since they, given initial conditions, uniquely determine the state of a

system at any point of time in terms of species concentrations.
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6.4.1 ODEs

A set of ODEs specifies how the concentration [si] of a species si changes over time

and is traditionally written in the following notation:

d[s1]
dt

= p1

...

d[sn]
dt

= pn

where the pi are real polynomials over [si]. The initial conditions of a set of ODEs are

specified by the concentration of each species at time 0.

Formally, let (Pol(X),+, ·) be the ring of real polynomials over variables in the set

X . We then define the structure of ODEs with initial conditions as follows:

Definition 7. A structure D of LBS-ODEs with initial conditions is given by a tuple

(X,P, I) where

• X (fin {MS(vgns) | vgns ∈Vgns} is the set of variables.

• P : X→ Pol(X) is the assignment of polynomials to variables.

• I : X→ R is the initial condition.

The set of all structures of ODEs with initial conditions is denoted by D , and we

denote e.g. X in D by XD. Although non-linear ODEs cannot generally be solved in

closed form, numerical integration methods are available and described in standard

text books [7].

6.4.2 The Concrete ODE Semantics of LBS

Given two total functions f1 : X1→Y and f2 : X2→Y with a binary operator + on the

elements of Y , we define f1 + f2 : X1∪X2→ Y as follows:

( f1 + f2)(x)
∆'


f1(x) if x ∈ X1 \X2

f2(x) if x ∈ X2 \X1

f1(x)+ f2(x) if x ∈ X1∩X2

The semantics of LBS in terms of ODEs is defined below.
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Definition 8. The concrete semantics for LBS in terms of ODEs is given by the tuple

(D, |D ,0D ,GD , ID) where

• D1 |D D2
∆' D where

– XD
∆' XD1 ∪XD2

– PD
∆' PD1 +PD2

– ID
∆' ID1 + ID2

• 0D
∆' ( /0, /0, /0)

• GD(n · vgns ⇒vgr n′ · v′gns,b)
∆' D where

– XD
∆' {MS(vgns.i)}∪{MS(v′gns. j)}

– PD(s)
∆'

(N(s)−M(s)) · r ·∏i(MS(vgns.i))n.i if vgr = {r}

vga if vgr = [vga]
where

∗ M(s)
∆' ∑MS(vgns.i)=s n.i

∗ N(s)
∆' ∑MS(v′gns. j)=s n′. j

– ID(s) = 0

• ID(vgns,r)
∆' ({s},{s 7→ 0},{s 7→ r}) where

– s
∆' MS(vgns)

In the case of reactions, rate expressions are constructed from mass-action rate

constants in the standard way [89].

6.5 A CTMC Semantics

We now give another quantitative semantics in terms of continuous time Markov chains

(CTMCs). In contrast to ODEs, CTMCs are discrete since they describe the system

state in terms of species populations rather than concentrations, and they give rise to

stochastic behaviour.
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6.5.1 CTMCs

The state of a CTMC corresponds to a marking of a Petri net and is hence given by a

multiset of ground normal form species values in their multiset form. State transitions

are described directly in terms of a transition rate matrix. Here is the formal definition:

Definition 9. An LBS-continuous time Markov chain V with initial state is a tuple

(X,Q, I) where

1. X⊂MS({MS(vgns) | vgns ∈Vgns}) is the set of states.

2. Q : X2→ R is the transition rate matrix satisfying

(a) Q(M,N)≥ 0 for all M,N ∈ X with M 6= N

(b) Q(M,M) =−∑M 6=N Q(M,N)

3. I ∈ X is the initial state.

The set of all CTMCs with initial state is denoted by V , and we denote e.g. X in V

by XV. We refer to the literature [89] for further details on CTMCs and their associated

simulation methods.

6.5.2 The Concrete CTMC Semantics of LBS

Definition 10. The concrete semantics for LBS in terms of CTMCs is given by the tuple

(V , |V ,0V ,GV , IV ) where

• V1 |V V2
∆' V where

– XV
∆' {M +N |M ∈ XV1 ∧N ∈ XV2}

– QV(M,M′)
∆'



QV1(M,M′) if (M,M′) ∈ dom(QV1)\dom(QV2)

QV2(M,M′) if (M,M′) ∈ dom(QV2)\dom(QV1)

QV1(M,M′)+

QV2(M,M′) if (M,M′) ∈ dom(QV1)∩dom(QV2)

0 otherwise

– IV
∆' IV1 + IV2

• 0V
∆' ( /0, /0, /0)
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• GV (n · vgns ⇒{r} n′ · v′gns, t)
∆' V where

– XV
∆' MS({MS(vgns.i)}∪{MS(v′gns. j)})

– QV(M′,N′)
∆'


r
(M′

M

)
if (M,N)� (M′,N′)∧M 6= N

−r
(M′

M

)
if M′ = N′∧M 6= N∧M′ ≥M

0 otherwise
where

∗ M(s)
∆' ∑MS(vgns.i)=s n.i

∗ N(s)
∆' ∑MS(v′gns. j)=s n′. j

∗
(M′

M

) ∆' ∏s∈dom(M′)
(M′(s)

M(s)

)
∗ (M,N)� (M′,N′) iff ∃L. M′ = M +L∧N′ = N +L

– IV(s) = 0

• IV (vgns,n)
∆' V where

– XV
∆' MS({MS(vgns)})

– QV(M,N)
∆' 0

– IV({MS(vgns)}) = n

In the definition of the transition rate matrix in the case of parallel composition, we

assume two multisets with different domains to be equal whenever they are equal on

their common domain and 0 elsewhere. In the case of reactions,
(x

y

)
is the binomial

coefficient and state transition rates are constructed from rate constants in the stan-

dard way [89]. Note that the reaction assignment is only defined when constant rate

expressions are used.

6.6 A κ Semantics

In Section 3.2.3 we discussed how an appropriate modification site type, binding, can be

used to model complexes at the level of bindings rather than at the level of multisets. In

this section we formally define expressions of type binding and the associated functions

required by the general semantics. We then give a concrete semantics of LBS in terms

of κ, and a similar semantics can be given in terms of BioNetGen. We start by defining

an abstract syntax of κ based on the supplementary material of [37], and also refer the
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Table 6.6.1: The abstract syntax for κ rules.

x ::= a→r a′ κ RULE

a ::= (ns,s) AGENT

s ::= (nm, i, l) SITE

i ::= INTERNAL STATE

| v INTERNAL STATE VALUE

| ? WILD CARD

l ::= LINK

| ? FREE OR BOUND

| BOUND TO SOMETHING

| ◦ FREE

| n LINK LABEL

reader to [37] for a formal presentation of the semantics of κ which, like CTMCs, is

discrete and stochastic.

6.6.1 κ

κ rules The abstract syntax for κ rules is given in Table 6.6.1 where, as before, ns

ranges over the set of atomic species names, nm ranges over the set of modification site

names, r ∈R and n ∈N. Furthermore, v ranges over a given set of internal state values

as in κ together with the set of compartment name lists; the latter is needed in order

to encode LBS compartments in κ. In the context of κ, we refer to atomic species as

agents.

A κ rule consists of a list of reactant agents and a list of product agents, and the

arrow is labelled with a rate constant. An agent is a pair consisting of an agent name

and a list of sites, and a site is given by a name, an internal state and a link. An

internal state can be a value, such as “phosphorylated” or “unphosphorylated”, or it

can be a wild card indicating “any” value. A link can be two kinds of wild cards, the
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most permissive being “either free or bound” and the more restricted being “bound to

something”; a link can also be free, i.e. unbound, or it can be bound by some specific

label. The internal state may be omitted in which case the wild card, ?, is assumed,

and the link may be omitted in which case the free link, ◦, is assumed.

We furthermore need the notion of a ground agent, ag, which is an agent without

wild cards in its internal states and links.

κ programs We now give the formal definition of our κ programs with initial condi-

tions. These are our semantical objects.

Definition 11. An LBS-κ program K with initial conditions is a pair (X, I) where

1. X ::= {xi} is a set of κ rules.

2. I ::= ag is the initial condition.

We denote e.g. X in K by XK, and the set of κ programs is denoted by K .

Well-typedness An agent is well-typed if each of its site names occurs exactly once;

a list of agents is well-typed if all the agents are well-typed and each link label occurs

exactly twice; a rule is well-typed if its two lists of agents are well-typed; and finally,

a κ program is well-typed if all its rules and its initial condition are well-typed.

Our presentation differs slightly from that in [37]. There an interface function is

assumed which assigns sites to all agent names. An additional well-typedness condi-

tion then requires that an agent only uses sites which are mentioned in its interface.

Although an LBS program does contain the information needed to construct interfaces

in the translation to κ, doing so is not strictly necessary since, given a set of κ rules,

a minimal interface can always be chosen such that the well-typedness condition is

satisfied. We hence omit interfaces in our presentation for the sake of simplicity.

A note on semantics Although we omit a formal presentation of the semantics of κ,

there is one important point to make, namely that the ordering of agents within rules

matters. For example, the rule:�
1 A(m! 1 ) , B(m! 1 , n ˜ u ) −> A(m! 1 ) , B(m! 1 , n ˜ p ) �

is not semantically equivalent to the rule:�
1 A(m! 1 ) , B(m! 1 , n ˜ u ) −> B(m! 1 , n ˜ p ) , A(m! 1 ) �
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When applying the first rule, the site n in a matching instance of B is phosphorylated

while preserving any internal state and links not specified in the rule. But in the second

rule, the matching instances of the agents A and B are first deleted together with any

internal state and links they may have, and two new agents with internal state and links

as specified by the RHS are then added.

The reason is that a rule may have multiple copies of the same agent on both its

LHS and RHS, and the copies on the two sides must be matched up when applying

the rule. The matching is done through a longest common prefix policy: instances of

agents in the common prefix are simply updated as defined by the RHS, but instances

of agents after the common prefix on the LHS are first deleted and then the agents after

the common prefix on the RHS are created. The prefix policy takes both agent and site

names into account, so also the rule:�
1 A(m! 1 ) , B(m! 1 , n ˜ u ) −> A(m! 1 ) , B(m! 1 , n ˜ p ) �

is semantically different from the rule:�
1 A(m! 1 ) , B(m! 1 , n ˜ u ) −> A(m! 1 ) , B( n ˜ p , m! 1 ) �

This may seem counter-intuitive and indeed unnecessary since site names are never du-

plicated within agents. In LBS, modification sites are not ordered. The translation to κ

rules therefore assumes a fixed, global ordering on site names to avoid situations of the

kind described above. On the other hand, reactants, products and complex species are

represented by lists in LBS, which allows the ordering between agents to be preserved

in the translation to κ.

6.6.2 The Concrete κ Semantics of LBS

Modification site expressions of type binding Recall that the abstract syntax for

LBS is parameterised on a set of modification site types and expressions. In order

for a κ semantics to be of interest, we here assume that the set of modification site

types contains exactly the binding type. Correspondingly, the set of modification site

expressions is assumed to consist of the set of binding expressions ebd generated by the

grammar in Table 6.6.2, where b ∈ {0,1}∗ is a namespace used to confine link names

in a similar manner to variables in the case of boolean expressions. Put informally,

only LBS programs which are written in a κ style have meaningful translations to κ.

A binding expression is a pair consisting of an LBS internal state and an LBS link.

These are defined as for κ, except that link labels have a namespace consisting of a list
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Table 6.6.2: The abstract syntax for modification site expressions ebd of type binding.

ebd ::= (i+, l+) LBS BINDING EXPRESSION

i+ ::= LBS INTERNAL STATE

| v INTERNAL STATE VALUE

| ? WILD CARD

| ε IDENTITY

l+ ::= LBS LINK

| ? FREE OR BOUND

| BOUND TO SOMETHING

| ◦ FREE

| (n,b) RESTRICTED LINK LABEL

| ε IDENTITY
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of binary strings, and both internal states and links include the identity. Identities are

used in species updates where one may need to update either the internal state or link,

but not both, as demonstrated in Subsection 3.2.3.

Recall that the general semantics is parameterised on a number of functions on

modification site expressions. For binding expressions, these are defined as follows:

• ebd : binding for all ebd

• default(binding)
∆' (?,?)

• FV(ebd)
∆' /0

• JebdKmΓx
∆' ebd

• (i+, l+)〈(i+′, l+′)〉 ∆' (i+〈i+′〉, l+〈l+′〉) where

– i+〈i+′〉 ∆'

i+ if i+
′
= ε

i+
′

otherwise

– l+〈l+′〉 ∆'

l+ if l+
′
= ε

l+
′

otherwise

• seal((i+, l+),b)
∆'

(i+,(n,bb′)) if l+ = (n,b′)

(i+, l+) otherwise

The typing relation is trivial since we assume just one modification site type. The

free variable and valuation functions are also trivial since κ expressions do not contain

variables. One could of course choose to have more complex internal states which

include variables, thus obtaining a kind of “coloured” κ as in coloured Petri nets, but

they are omitted here for the sake of simplicity. The default expression for unspecified

modification site types has a wild card internal state and link, which reflects the use of

unspecified sites in κ. The update function overwrites any internal state or links in all

cases except when the identity is used for updating. Finally, the seal function simply

updates the namespace of any link labels by appending the given binary string to the

list of binary strings already present.

We have some simple derived forms for use in updates. Omitting the list of binary

strings in a restricted link label is understood as the empty list. As outlined in Subsec-

tion 3.2.3, omitting the internal state or link is understood as respectively the identity
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internal state and the free link:

(l+)
∆' (ε, l+) and (i+)

∆' (i+,◦) and ()
∆' (ε,◦)

The concrete semantics Modifications in LBS are represented by finite functions

rather than lists as in κ. The translation to κ must therefore “linearise” these functions,

for which we assume a linear ordering, ≤, on modification site names. It must also

convert restricted link labels to natural-number link labels, for which we assume an

injective function of the form enc(n,b) = n′; a definition could e.g. be based on a

Gödel numbering. Finally, the translation must disregard modification site types.

Given an LBS modification βσ = {nm j 7→ (σ,(i+, l+)) j} we then define kapm(βσ)

to be the list with the element (nm j, i
+
j ,enc(l+j )) at index |S| where

S
∆' {nm ∈ dom(βσ) | nm ≤ nm j}

We here assume enc extended to LBS links in an evident manner.

The translation of an atomic species to a κ agent simply translates the modification

sites and adds an additional site with an internal state representing the enclosing com-

partments. For the latter we assume a distinguished compartment name, comp, and

that the set of internal state values contains the set of compartment name lists. We then

define a kappa translation function of the form kap(vgns) = a for translating ground

normal form species values to lists of κ agents as follows:

kap(nc[ns,βσ])
∆' (ns,kapm(βσ)(comp,nc,◦))

where kapm(βσ)(comp,nc,◦) following our notational conventions is the postfixing of

the triple (comp,nc,◦) to the list kapm(βσ).

LBS reactions are translated into κ rules by applying the above function to each

ground normal form species value and flattening the lists representing reactants and

products. We define a flattening function of the form flatten(x) = x′ as follows:

flatten(x)
∆' (x.1) . . .(x.|x|)

and we also define a duplication function of the form n× x = x′ for duplicating lists

according to the stoichiometry given in reactions:

n× x
∆' x . . .x︸ ︷︷ ︸

n times

The concrete κ semantics of LBS can now be defined.
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Definition 12. The concrete semantics for LBS in terms of κ is given by the tuple

(K , |K ,0K ,GK , IK ) where

• K1 |K K2
∆' K where

– XK
∆' XK1 ∪XK2

– IK
∆'t IK1 IK2

• 0K
∆' ( /0,ε)

• GK (n · vgns ⇒{r} n′ · v′gns,b)
∆' K where

– XK
∆'t {a→r a′} where

a
∆' flatten(n× kap(vgns))

a′
∆' flatten(n′× kap(v′gns))

– IK
∆' ε

• IK (vgns,n)
∆' K where

– XK
∆' /0

– IK
∆'t n× kap(vgns)

In the case of parallel composition, the resulting initial condition is only defined

if the sets of link labels in the initial conditions of the two components are disjoint,

for otherwise the initial condition would not be well-typed. The case of reactions

is likewise only defined if the resulting κ rule is well-typed, and the case of initial

conditions is only defined if the resulting agent list is well-typed.

Note that well-typedness of species expressions with binding sites is only deter-

mined by the semantics when the species expressions are used in reactions. A dedi-

cated typing system would be needed to determine well-typedness earlier, e.g. at time

of species definition.





Chapter 7

Concrete Petri Net Flow Semantics of

LBS

We have demonstrated how modularity in LBS facilitates a structured approach to

modelling, and we have given a formal presentation of the language including a con-

crete semantics in terms of Petri nets. We now turn to the question of how modularity

can be exploited in analysis, specifically in the case of Petri net flows.

Intuitively, a transition flow (or T-flow) is a vector representing occurrences of re-

actions which together have no net effect on species populations. T-flows hence corre-

spond to a notion of cyclic pathways. A place flow (or P-flow) is a vector representing

species weights for which the weighted sum of species populations is always constant.

P-flows hence correspond to chemical conservation relations.

More precisely, T and P-flows are natural-number solutions to the equations Wx = 0

and xW = 0, respectively, where W is the flow matrix of a Petri net. W can be derived

from Petri net flow functions and also corresponds to the stoichiometry matrix of a

biological reaction network. These equations generally have infinitely many solutions,

but one can always find finite sets of minimal flows which can be combined to generate

all other flows. Algorithms for obtaining minimal flows are described in e.g. [52] and

are computationally expensive.

We start by introducing the relevant background in Section 1, including a matrix-

based view of Petri nets, formal definitions of flows and existing results from the liter-

ature. In Section 2 we recast the definition of Petri net composition, introduced in the

previous chapter, in terms of matrices, and also show a duality result relating T-flows

and P-flows in a modular setting. We then show how the flows of a composite Petri

net can be derived from its components, with T and P-flows treated in Section 3 and 4,

121
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respectively. These results are used to define concrete Petri net flow semantics of LBS

in Section 5. Previous efforts have been made towards modular definitions of P-flows

in particular, and related work is discussed in Section 6. Detailed proofs of all results

can be found in Appendix C.

7.1 Preliminaries

7.1.1 Flow Matrices

Recall from the previous chapter that a Petri net consists of a set of places, a set of

transitions, flow in and flow out functions, and an initial marking. In this chapter we

are not concerned with initial markings since flows are independent of these. We do

however need an alternative, matrix-based representation of flow functions in order to

take advantage of standard notation and results from linear algebra.

An ordered Petri net, OPN, is a triple (PN,≺S,≺T) consisting of a Petri net PN

together with linear orderings≺S⊆ SPN×SPN on places and≺T⊆ TPN×TPN on transi-

tions. Using these orderings we can write SPN = (s1, . . . ,sm) and TPN = (t1, . . . , tn) and

view the flow functions of PN as m×n flow-in and flow-out matrices thus:

(W in
OPN)i, j

∆' F in
PN(t j,si) (W out

OPN)i, j
∆' Fout

PN (t j,si)

The ith row of W in
OPN represents the number of tokens consumed from the place si

by each of the transitions, and the ith row of W out
OPN represents the number of tokens

produced in the place si by each of the transitions. We furthermore assume a net flow

matrix (or flow matrix) WOPN
∆' W out

OPN−W in
OPN associated with any given ordered Petri

net OPN. The ith row of WOPN then represents the net effect of each of the transitions

on the place si. The net flow matrix is also referred to as the incidence matrix in the

Petri net literature.

We often assume an arbitrary but fixed choice of linear orderings and write PN

instead of OPN. Furthermore, when the Petri net PN is given by the context or when

it is not significant, we often omit subscripts and write e.g. W instead of WPN, and

similarly for other components.

For the sake of illustration, we give an alternative, matrix-based definition of Petri

net behaviour that is equivalent to Definition 2 on page 103. A state, or marking,

of a Petri net is now given by a vector with natural-number entries representing the
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number of tokens in the corresponding places. Hence the set of all markings of a Petri

net is defined as follows; here and throughout, we use (·)T to denote vector/matrix

transposition:

M (PN)
∆' (N|S|)T

The formal definition of behaviour is then given below.

Definition 13 (Behaviour). Let PN = (S,T,F in,Fout,M0) be a Petri net. Then the

transition relation→⊆M (PN)× (N|T |)T×M (PN) is defined as follows: M x→M′ iff

1. M ≥W inx

2. M′ = M +W outx−W inx = M +Wx

7.1.2 Petri Net Flows

The formal definition of T and P-flows follows below.

Definition 14 (T and P-flows). Let PN = (S,T,F in,Fout,M0) be a Petri net. Define

TF(PN) = TF(W )
∆' {x ∈ (N|T |)T |Wx = 0∧ x 6= 0}

PF(PN) = PF(W )
∆' {y ∈ N|S| | yW = 0∧ y 6= 0}

The elements of TF(PN) and PF(PN) are called transition flows (or T-flows) and place

flow (or P-flows), respectively.

Observe that T and P-flows are dual in the following sense:

x ∈ TF(PN)⇔Wx = 0⇔ xTW T = 0⇔ xT ∈ PF(PND)

where the Petri net duality operator (·)D swaps around the places and transitions in a

Petri net and reverses arcs [65].

A Petri net generally has infinitely many flows. But it is possible to obtain a finite

set of minimal flows which can be combined to form all other flows. In the following

we consider the structure of flows irrespectively of whether they are T or P flows. We

hence use F(PN) and MF(PN) to denote the set of either type of flows and minimal

flows of PN, respectively.

Definition 15 (Support). The support of a vector x ∈ N∗, denoted by sup(x), is the set

of indices of non-zero entries in x: sup(x)
∆' {i | xi 6= 0}.
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Definition 16 (Minimal flows). A flow x ∈ F(PN) is minimal if

1. x is canonical, i.e. the greatest common divisor of non-zero entries of x, written

gcd(x), is 1 and

2. x has minimal support, i.e. there is no other flow x′ ∈F(PN) with sup(x′) ( sup(x).

We denote by MTF(PN) (or MTF(W )) and MPF(PN) (or MPF(W )) the sets of minimal

T and P-flows of PN, respectively.

There is a less common definition of minimality, weak minimality, which dispenses

with the notion of support. We state it because the results in this paper are proved

valid for both definitions of minimality, and the proofs are generally simpler for weak

minimality.

Definition 17 (Weakly minimal flows). A flow z∈F(PN) is weakly minimal if there are

no other flows x,y ∈ F(PN) s.t. z = x + y. We denote by MwT F(PN) and MwPF(PN)

the set of weakly minimal T and P-flows of PN, respectively.

Given a set of flows we sometimes need to filter out the non-minimal ones as in the

following definitions.

Definition 18 (Minimisation). Let X be a set of flows. Define minimisation thus:

min(X)
∆' { x

gcd(x)
| x ∈ X ∧∀x′ ∈ X .sup(x′) 6( sup(x)}

Definition 19 (Weak minimisation). Let X be a set of flows. Define weak minimisation

thus:

minw(X)
∆' {x ∈ X | ∀x1, . . . ,xk ∈ X . ∀a1, . . . ,ak ∈ N. x 6= a1x1 + · · ·+akxk}

7.1.3 A Running Example: Photosynthesis and Respiration

As a running example we consider a simple model of the foundations of life itself,

namely photosynthesis and respiration. An LBS program with two modules represent-

ing these processes is shown in Listing 7.1.1.

Photosynthesis is the process by which plants produce sugar and oxygen from wa-

ter, carbon dioxide and sunlight (photons). This is modelled by three reactions. The

first reaction introduces photons into the system. The second reaction converts pho-

tons and water into chemical energy (CE) and oxygen, and the third reaction converts

chemical energy and carbon dioxide into sugar.



7.1. Preliminaries 125

Listing 7.1.1: An LBS model of photosynthesis and respiration.�
1 spec Pho tons = new{} , CE = new {} ;

2 spec H2O = new{} , O2 = new{} , CO2 = new{} , Sugar = new {} ;

3 spec ChE = new{} , Heat = new {} ;

4

5 module p h o t o s y n t h e s i s ( ) {
6 −> Pho tons |
7 Pho tons + H2O −> CE + O2 |
8 CE + CO2 −> Sugar

9 } ;

10

11 module r e s p i r a t i o n ( ) {
12 Sugar −> ChE + CO2 |
13 ChE + O2 −> Heat + H2O |
14 Heat −>
15 } ;

16

17 p h o t o s y n t h e s i s ( ) | |
18 r e s p i r a t i o n ( ) | |
19 ( p h o t o s y n t h e s i s ( ) | r e s p i r a t i o n ( ) ) �

Respiration is the converse process by which e.g. humans use oxygen to break

down sugar while producing carbon dioxide and water. This is also modelled by three

reactions. The first reaction breaks down sugar into carbon dioxide and chemical en-

ergy ChE, distinct from the chemical energy used in photosynthesis. The second reac-

tion utilises this chemical energy and oxygen to make e.g. muscles move, and in the

process producing water and heat; the heat is finally removed from the system in the

third reaction. We note that both models are strongly simplified and not chemically

correct.

The last three lines of the LBS program consist of a variation composition of the

module invocations in isolation and in parallel, hence giving rise to a set of three se-

mantical objects. In the case of Petri nets, these are shown in Figures 7.1.1a, 7.1.1b

and 7.1.1c, respectively.

We give the minimal flows of the photosynthesis and respiration Petri nets in-

formally by listing only the places and transitions which have non-zero entries in

the flows rather than writing out the full vectors. There are three minimal P-flows

in the photosynthesis Petri net determined by the places (H2O,O2), (CO2,Sugar) and
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Photons

t1

CE

SugarH2O O2 CO2

t2 t3

(a) Photosynthesis.

Heat
t1

ChE

SugarH2O O2 CO2

t6 t5 t4

(b) Respiration.

Photons

t1

CE

SugarH2O O2 CO2

t2 t3

ChEHeat
t4t5t6

(c) Photosynthesis and respiration.

Figure 7.1.1: Petri net models of photosynthesis and respiration in isolation and in

parallel; a distinct shading is used for shared places.

(CE,H2O,Sugar). Symmetrically, there are three minimal P-flows in the respiration Petri

net determined by the places (H2O,O2), (CO2,Sugar) and (H2O,Sugar,ChE). However,

neither the photosynthesis nor the respiration Petri net has any T-flows.

In Sections 3 and 4 we investigate the flows of the composite Petri net and their

relation to the above mentioned flows of the components.

7.1.4 Existing Results

The following two theorems are adapted from [52]. They state that MTF(PN) and

MPF(PN) are well-defined, and that any flow can be generated from minimal flows by

natural-number linear combinations followed by a division.

Theorem 1. MTF(PN) and MPF(PN) are finite and unique.

Theorem 2. For any flow x ∈ F(PN) there are a,a1, . . . ,ak ∈ N and minimal flows

x1, . . . ,xk ∈MF(PN) s.t. x = 1
a(a1x1 + · · ·+akxk).
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We also need the following theorem, adapted from [62], which states that any two

flows with the same minimal support are multiples of each other.

Theorem 3. Let x,y ∈ F(PN). If x and y both have the same minimal support, i.e.

there is no other flow z ∈ F(PN) with sup(z) ( sup(x) = sup(y), then there is n ∈N s.t.

either x = ny or y = nx.

Analogously to Theorems 1 and 2 we have the following for weak minimality,

again adapted from [52].

Theorem 4. MwT F(PN) and MwPF(PN) are finite and unique.

Theorem 5. For any flow x∈ F(PN) there are a1, . . . ,ak ∈N and weakly minimal flows

x1, . . . ,xk ∈MwF(PN) s.t. x = a1x1 + · · ·+akxk.

In contrast to standard minimality, weakly minimal flows can generate any flows

without division and by natural-number linear combination alone. This simplicity

comes at a price because weak minimality is harder to compute than standard mini-

mality [52]. In general, standard minimality implies weak minimality, and the set of

standard minimal flows may be strictly contained in the set of weakly minimal flows.

7.2 Flow Matrix Composition and Modular Duality

The concrete Petri net semantics of LBS given in the previous chapter includes a com-

position operator which merges the places of component Petri nets using set operations,

and we have seen an example of how this works in Figure 7.1.1. We now recast the

definition of this composition operator in terms of flow matrices. We also see that P

and T-flows are not dual in a modular sense when considering place sharing alone, but

that the duality arises when also considering transition sharing. This allows our results

for place sharing to be adapted to transition sharing which may be of general interest

outside of the biological domain.

7.2.1 Matrix-Based Composition With Place Sharing

In this section and throughout the chapter, we let |s denote the place-based composition

operator |P N defined in the previous chapter. We start by considering the structure of

the full flow matrix W arising from the composition PN1 |s PN2 of PN1 and PN2 with

flow matrices W1 and W2. We say that two ordered Petri nets (or more generally,
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two linearly ordered sets of places) are composable if the shared places are ordered

after the non-shared places in PN1 and before the non-shared places in PN2, and if

the orderings agree on shared places. More precisely, for ∆S = SPN1 ∩ SPN2 and all

s1 ∈ SPN1 \∆S, s,s′ ∈ ∆S and s2 ∈ SPN2 \∆S it must hold that s1 ≺SPN1
s, s≺SPN2

s2 and

s≺SPN1
s′⇔ s≺SPN2

s′. In the running example the composability condition can for ex-

ample be satisfied by ordering the respective places as (Photons,CE,H2O,O2,CO2,Sugar)

and (H2O,O2,CO2,Sugar,ChE,Heat). One can of course always chose appropriate order-

ings that make two Petri nets composable, and we do so in Section 5 in the context of

concrete flow semantics of LBS; until then, we assume that any two Petri nets under

consideration are composable.

Under this assumption, the matrices W1, W2 and W can be partitioned as follows

where, for i ∈ {1,2}, W s
i consists of the rows from Wi which represent shared places,

and W−i are the remaining rows for non-shared places.

W1 =

[
W−1
W s

1

]
, W2 =

[
W s

2

W−2

]
, W =


W−1 0

W s
1 W s

2

0 W−2


When considering parallel compositions in the following sections, we write W−1 , W s

1 ,

W−2 , W s
2 and W with the above meaning in mind. We furthermore let W+

1 and W+
2

denote respectively the left and right partition of W , i.e. the extensions of W1 and W2

with 0-entries for non-shared places from the parallel counterpart. W s denotes the rows

W s
1W s

2 for shared places, and W− denotes W without these rows.

7.2.2 Modular Duality: Composition With Transition Sharing

As mentioned in Section 1, T-flows and P-flows are duals. A natural question arises of

whether this duality holds in the modular sense that:

PF(PN1 |s PN2) = TF(PND
1 |s PND

2 )

The answer is no. To see why, let us assume that TPN1 ∩TPN2 = /0 and write out the

flow matrices W T of (PN1 |s PN2)D and W ′ of (PND
1 |s PND

2 ):

W T =

[
W−

T

1 W sT
1 0

0 W sT
2 W−

T

2

]
W ′ =

[
W−

T

1 W sT
1 0 0

0 0 W sT
2 W−

T

2

]
The two matrices do not generally have the same dimensions because the dual nets

PND
1 and PND

2 share transitions rather than places. Hence the modular duality sug-

gested above clearly does not hold in general.
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However, there is a transition-based composition operator, |t, where transitions,

rather than places, of parallel components are merged. It is defined exactly as for the

place-based composition |s, except that the sets of places of the two components are

required to be disjoint rather than the sets of transitions.

Then the P-flows of a composite Petri net under transition sharing are the same as

the T-flows of the composite dual Petri nets under place sharing, and symmetrically

for T-flows under transition sharing:

Theorem 6. Let PN1 and PN2 be Petri nets. Then

1. TF(PN1 |t PN2) = PF(PND
1 |s PND

2 ).

2. PF(PN1 |t PN2) = TF(PND
1 |s PND

2 ).

The proof relies on a partitioning of flow matrices similar to the partitioning in

the previous subsection, but for shared transitions rather than places. It follows from

this theorem that the results for modular flows under place sharing, to be given in the

following sections, can be adapted to (dual) modular flows under transition sharing.

7.3 Modular Minimal T-Flows

7.3.1 The Intuition

We start with an example of how T-flows arise from a parallel composition. As we

observed earlier, neither of the photosynthesis and respiration Petri nets in Figure 7.1.1

on page 126 has any T-flows. However, the composite Petri net does have a single

minimal T-flow determined by the transitions (t1, t2, t3, t4, t5, t6). To see how this flow

arises from the parallel composition, we must look at potential T-flows of the two

nets rather than the actual T-flows of which there are none. The potential T-flows are

the ones arising from restricting individual components to private places only, i.e. by

disregarding the shared places. If we do so, the photosynthesis Petri net has a single

minimal T-flow determined by (t1, t2, t3), and the respiration Petri net has a single

minimal T-flow determined by (t4, t5, t6). The minimal T-flow in the composite Petri

net can be composed from these two because the transitions from the two Petri nets

operating on shared places cancel each other out.

The general case is slightly more complicated because there may be many poten-

tial minimal T-flows of each restricted parallel component. These T-flows can then be
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combined by natural-number linear combinations in such a way that the resulting flow

has no net effect on shared places. The weights of this natural-number linear combi-

nation must be minimal in some sense in order for there to be any hope of minimality

of the composite flow in the composite Petri net.

7.3.2 The Definition

A formal definition is given below, where we use the conventions on flow matrix parti-

tioning introduced in Section 7.2.1. We write [MTF(W−i )] for the matrix consisting of

the column vectors in MTF(W−i ) in some arbitrary order.

Definition 20. Let PN1 and PN2 be Petri nets and let X1 =
[
MTF(W−1 )

]
,

X2 =
[
MTF(W−2 )

]
and W s be given. Define the following:

1. X
∆'

[
X1 0

0 X2

]

2. C
∆' W sX

3. Z
∆' {Xα | α ∈MTF(C)}

We then define MTFPar(X1,X2,W s)
∆' min(Z).

To elaborate on this definition, let m1 = |TPN1|, m2 = |TPN2|, n1 = |MTF(W−1 )| and

n2 = |MTF(W−2 )|. Then X1 and X2 are m1×n1 and m2×n2 matrices with the minimal

T-flows of respectively PN1 and PN2 without their shared places, i.e. of W−1 and W−2 .

Also,

1. X is an (m1 +m2)×(n1 +n2) matrix with columns representing minimal T-flows

of W−.

2. C is an (|SPN1 ∩ SPN2|)× n1 + n2 matrix with each column ci representing the

effect of the corresponding minimal T-flow xi on the shared places.

3. Z is a set of linear combinations of the minimal T-flow-columns in X . These

linear combinations are chosen in such a way that they have no net effect on the

shared species. Note that the set Z is well-defined because MTF(C) is finite and

unique by Theorem 1.

Remarks on the use of minimisation follow towards the end of the section.
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7.3.3 Results

The following results state that Definition 20 is sound and complete. Soundness is split

into two lemmas, the first of which is needed to prove completeness.

Lemma 1 (Soundness part 1). Let PN1, PN2 and Z be as given in Definition 20. Then

1. Z ( TF(PN1 |s PN2)

2. min(Z) ( TF(PN1 |s PN2)

The proof uses the definition of C to show that any Xα∈ Z is a T-flow of W s. Since

X consists of minimal T-flows of W−, Xα is also a T-flow of W−. Together these give

that Xα is a T-flow of W and hence of PN1 |s PN2.

Lemma 2 (Completeness). Let PN1, PN2, X1, X2 and W s be as given in Definition 20.

Then MTF(PN1 |s PN2)⊆MTFPar(X1,X2,W s).

The proof starts by showing that any x∈MTF(PN1 |s PN2) can be written x = 1
aXα

where α ∈ TF(C) and a ∈ N (uses Theorem 2 and the definition of C). Using Euclid’s

lemma and that x is canonical, we show that a canonical α can be chosen. We then

use Theorem 3 and minimality of x to show that any of the minimal-support α which

generate x as above is in fact also minimal in C. We arrive at x ∈ Z. To conclude that

also x ∈min(Z), we use that any x′ ∈ Z with a support contained in that of x would also

be in TF(PN1 |s PN2) (Lemma 1), hence contradicting minimality of x in PN1 |s PN2.

Lemma 3 (Soundness part 2). Let PN1, PN2, X1, X2 and W s be as given in Defini-

tion 20. Then MTFPar(X1,X2,W s)⊆MTF(PN1 |s PN2).

The proof carries on from Lemma 1. To show that the elements of min(Z) are in

fact minimal in PN1 |s PN2, we use that all minimal-support (although not necessarily

canonical) flows are represented in Z by completeness (Lemma 2).

Together the two previous lemmas prove our main T-flow theorem:

Theorem 7 (Soundness and completeness). Let PN1, PN2, X1, X2 and W s be as given

in Definition 20. Then MTFPar(X1,X2,W s) = MTF(PN1 |s PN2).

The size of the matrix X , and hence of C, may be reduced by removing columns

for transitions which have no effect on any of the shared places; these columns are also

flows in the composite Petri net and can be included directly.
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The flows in Z may not be minimal, which is why the minimisation function must

be applied as a last step. This is illustrated by the two Petri nets in Figure 7.4.1:

the left, PN1, has two places of which one is shared with the right, PN2, consisting

of just a single place. The restriction of PN1 to the place p1 (corresponding to W−)

has four minimal T-flows represented by x1 = (t1, t2), x2 = (t2, t3), x3 = (t3, t4) and

x4 = (t1, t4). The “minimal” combinations of these which cancel out the effect on the

shared place p2 (corresponding to the minimal flows of C) are x1 + x2 = (t1,2 · t2, t3),

x1 + x3 = (t1, t2, t3, t4) and x2 + x4 = (t1, t2, t3, t4). But the latter two flows are not

minimal because their supports strictly contain the support of the first.

Minimisation is however not necessary in cases where the minimal flows in X are

linearly independent. Then we get unique decomposition in the sense that any flow can

be written uniquely as combinations of minimal flows (linear independence fails in the

above example, for x1 + x3 = x2 + x4). This can be used in the proof of the following

theorem:

Theorem 8. Let X and Z be as given in Definition 20. If the columns of X are linearly

independent, then

1. For standard minimality: The elements of Z have minimal support (but still may

not be canonical).

2. For weak minimality: minw(Z) = Z.

7.4 Modular Minimal P-Flows

7.4.1 The Intuition

As for T-flows, we start with an example of how the P-flows of a composite Petri

net arise from the P-flows of its components. In Section 1 we listed the three min-

imal P-flows of each of the two Petri nets in Figure 7.1.1 on page 126, including

x = (CE,H2O,Sugar) from the first Petri net and y = (H2O,Sugar,ChE) from the second

Petri net. Neither is a P-flow in the composite Petri net because of interference from the

additional transitions. For example, t4 consumes tokens from Sugar and produces to-

kens in ChE, and this violates the first P-flow. However, because x and y are “consistent”

in the sense that they have identical weights for their shared places (namely 1 · H2O

and 1 · Sugar), we can “join” them to obtain a new minimal P-flow (CE,H2O,Sugar,ChE)

for the composite Petri net.
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p1
t2t4 p2

t1

t3

p2

Figure 7.4.1: Two Petri nets illustrating how Definition 20 can give rise to non-minimal

flows in Z.

In the general case, not all pairs of minimal P-flows from the two components are

consistent and it is not sufficient to only join those that are. Instead we must obtain

two linear combinations of minimal P-flows from the respective Petri nets in such a

way that they become consistent, and then join them to form a P-flow of the composite

Petri net. As for modular T-flows, the weights used in this linear combination must be

minimal in some sense in order for there to be any hope of minimality of the resulting

join.

7.4.2 The Definition

Here is the formal definition of P-flow joins where again we assume the partitioning of

flow matrices given in Section 7.2.1.

Definition 21 (Flow joins). Let PN1 and PN2 be Petri nets and let x ∈ PF(PN1),

y ∈ PF(PN2) and n = |SPN1 ∩SPN2| be given. Write x = (x−xs) and y = (ysy−) where

xs consists of the last n components of x and ys consists of the first n components of y,

hence representing the places shared between PN1 and PN2. If xs = ys we say that x

and y are consistent and define their join x n
_ y

∆' (x−xsy−).

When the size n of the set of shared places of the component Petri nets is under-

stood from the context, we write x _ y instead of x n
_ y.

The general modular definition of P-flows is given below. Similarly to the defini-

tion for T-flows, [MPF(PN)] is a matrix with rows from MPF(PN) in any order.

Definition 22. Let PN1 and PN2 be Petri nets and let X = [MPF(PN1)],

Y = [MPF(PN2)] and n = |SPN1 ∩ SPN2| be given. Let X s and Y s be the sub-matrices

of X and Y containing only columns for shared places as determined by n. Define the

following:
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1. C
∆'

[
X s

−Y s

]

2. Z
∆' {αX n

_ βY | (αβ) ∈MPF(C)}

We then define MPFPar(X ,Y,n)
∆' min(Z).

To elaborate on this definition, let m1 = |MPF(PN1)| and m2 = |MPF(PN2)|. Then

1. C is an (m1 +m2)×n matrix with the first m1 rows representing minimal P-flows

of PN1 and the last m2 rows representing negated minimal P-flows from PN2, but

restricted to the n shared places only.

2. Z contains the joins of consistent linear combinations of flows from the two

Petri nets. The weights for this linear combination are chosen exactly so that the

resulting flows have the same weights for shared places. Note that the set Z is

well-defined because MTF(C) is finite and unique by Theorem 1.

7.4.3 Results

The join of consistent P-flows from two Petri nets is also a P-flow in the composite

Petri net:

Lemma 4. Let PN1 and PN2 be Petri nets and let x ∈ PF(PN1) and y ∈ PF(PN2). If x

and y are consistent then x _ y ∈ PF(PN1 |s PN2).

Conversely, any P-flow z of a composite Petri net PN1 |s PN2 is the join of a P-flow

from PN1 (or 0) and a P-flow from PN2 (or 0):

Lemma 5. Let PN1 and PN2 be Petri nets and let z ∈ PF(PN1 |s PN2). Then there are

x ∈ PF(PN1)∪{0} and y ∈ PF(PN2)∪{0} s.t. z = x _ y.

As for T-flows we have soundness and completeness results, and soundness is split

into two separate lemmas.

Lemma 6 (Soundness part 1). Let Z be as given in Definition 22. Then

1. Z ( PF(PN1 |s PN2)

2. min(Z) ( PF(PN1 |s PN2)

The proof uses Lemma 4 and the definition of C.
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Lemma 7 (Completeness). Let PN1,PN2,X, Y and n be as given in Definition 22. Then

MPF(PN1 |s PN2)⊆MPFPar(X ,Y,n).

The proof first uses Lemma 5 to write any z ∈MPF(PN1 |s PN2) as z = x _ y for

some x ∈ PF(PN1) and y ∈ PF(PN2). Then the main challenge is to show that there

is some d and (αβ) ∈MPF(C) s.t. dx = αX and dy = βY (for then we can conclude

that dz ∈ Z). First the existence of such (αβ) ∈ PF(C) is shown using Theorem 2, the

definition of C and the fact that dx and dy are consistent. Minimality of (αβ) uses an

idea similar to the proof of Lemma 2 (completeness for T-flows).

Lemma 8 (Soundness part 2). Let PN1, PN2, X, Y and n be as given in Definition 22.

Then MPFPar(X ,Y,n)⊆MPF(PN1 |s PN2).

The proof is similar to that of Lemma 3 (soundness for T-flows). Together the last

two lemmas prove our main theorem on modular P-flows:

Theorem 9 (Soundness and completeness). Let PN1, PN2, X, Y , and n be as given in

Definition 22. Then MPFPar(X ,Y,n) = MPF(PN1 |s PN2)

The matrix C in Definition 22 can be reduced in size by removing rows with all 0

entries. Because the corresponding minimal P-flows do not involve shared places, they

are also minimal P-flows of the composite Petri net and can be included directly.

As for the modular definition of T-flows, minimisation is not necessary in cases

where the minimal P-flows in the rows of C are linearly independent:

Theorem 10. Let C and Z be as given in Definition 22. If the rows of C are linearly

independent, then

1. For standard minimality: The elements of Z have minimal support (but still may

not be canonical).

2. For weak minimality: minw(Z) = Z.

7.5 Concrete Semantics of LBS

The definitions of minimal flows given in the previous two sections are not modular

in the strongest sense of the word for two reasons. First, the minimal flows of parallel

components are given explicitly and not defined inductively; this is because there is no

inductive structure on Petri nets and flows per se. Second, in the case of T-flows, the
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MTFPar function requires more than just the minimal T-flows of parallel components

to be given: it requires the minimal T-flows of the components without shared places

(which are super-sets of the minimal T-flows of the components) and the flow matrix

for shared places.

The first issue is addressed by defining concrete minimal T-flow and P-flow se-

mantics for LBS, thus leveraging the general, modular semantics of LBS. The second

issue is addressed by defining semantical minimal T-flow objects which do not just

encapsulate minimal T-flows, but rather the flow matrix of the net together with a func-

tion mapping shared places to minimal T-flows of the restricted Petri net without these

places.

The ordering of Petri net places must now be taken into account in order to ensure

that two components satisfy the condition for composition. For this we need the notion

of an n-ary permutation θn, where n ∈ N, which is a bijective function of the form

θn(q) = q′ where q,q′ ∈ {1 . . .n}. We extend n-ary permutations to n-ary vectors in

an evident manner. We also extend m-ary permutations to m× n matrices, here with

matrix rows being subject to permutation.

We can obtain an |S|-ary permutation from a finite set S and two linear orderings,

≺ and ≺′, on S as follows; we write lst(S,≺) for the list representation of a linearly

ordered set (S,≺):

perm(S,≺,≺′) = {q 7→ q′ | lst(S,≺).q = lst(S,≺′).q′}

7.5.1 The Concrete Minimal T-Flow Semantics of LBS

We start with a definition of the concrete semantical objects encapsulating minimal

T-flows. In addition to a flow matrix and a function mapping sets of places to actual

minimal T-flows, our semantical objects also contain linearly ordered sets of places

and transitions used to match entries in flows and flow matrices to the corresponding

species and transitions.

Definition 23. An LBS-T-flow structure LTF is a tuple (S,≺S,T,≺T,W,h) where

• S (fin {MS(vgns) | vgns ∈ Vgns} is the set of places and ≺S is a linear ordering

on S.

• T (fin {0,1}∗ is the set of transitions and ≺T is a linear ordering on T.

• W is a net flow matrix on (S,≺S) and (T,≺T) (as described in Subsection 7.1.1).
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• h is a function of the form h(∆S) = MTF where ∆S⊆ S and MTF (fin N|T|T is a

set of T-flows.

We use the notation SLTF to refer to the places S of a T-flow structure LTF, and

similarly for the other components. The set of all T-flow structures is denoted by

LTF .

In the following definition of the T-flow concrete semantics of LBS, we let PN\∆S

be the Petri net PN without the places ∆S.

Definition 24. The concrete semantics for LBS in terms of T-flow structures is given

by the tuple (LTF , |LTF ,0LTF ,GLTF , ILTF ) where

• LTF1 |LTF LTF2
∆' LTF where

– ≺1 and ≺2 are arbitrary linear orderings on respectively SLTF1 and SLTF2

for which (SLTF1,≺1) and (SLTF2,≺2) are composable.

– θ1
∆' perm(SLTF1,≺1,≺SLTF1

)

– θ2
∆' perm(SLTF2,≺2,≺SLTF2

)

– SLTF
∆' SLTF1 ∪SLTF2

– ≺SLTF

∆' ≺1 ∪ ≺2 ∪{(s1,s2) | s1 ∈ SLTF1 \SLTF2 ∧ s2 ∈ SLTF2 \SLTF1}

– TLTF
∆' TLTF1 ∪TLTF2

– ≺TLTF

∆' ≺TLTF1
∪ ≺TLTF2

∪{(t1, t2) | t1 ∈ TLTF1 ∧ t2 ∈ TLTF2}

– WLTF is composed from θ1(WLTF1) and θ2(WLTF2) as defined in Subsection

7.2.1.

– hLTF(∆S) = MTFPar([MTF1], [MTF2],W ss)

where

∗ ∆S′′
∆' SLTF1 ∩SLTF2

∗ ∆S′
∆' ∆S∪∆S′′

∗ MTF1
∆' hLTF1(∆S′)

∗ MTF2
∆' hLTF2(∆S′)

∗ W ss is the sub-matrix of W s containing rows for shared places ∆ S′′\ ∆ S.

if TPN1 ∩TPN2 = /0

• 0LTF
∆' ( /0, /0, /0, /0, [],hLTF) where
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– hLTF( /0) = {()}

• GLTF (n · vgns ⇒vgr n′ · v′gns, t)
∆' LTF where

– PN
∆' GP N (n · vgns ⇒vgr n′ · v′gns, t)

– SLTF
∆' SPN

– ≺SLTF is an arbitrary linear ordering on SLTF.

– TLTF
∆' TPN

– ≺TLTF is an arbitrary linear ordering on TLTF.

– WLTF is the flow matrix of (PN,≺SLTF ,≺TLTF).

– hLTF(∆S)
∆' MTF(PN\∆S)

• ILTF (vgns,n)
∆' ({s},{(s,s)}, /0, /0, [],hLTF) where

– s
∆' {MS(vgns)}

– hLTF(∆S) = {()}

In the case of parallel composition, linear orderings on the places of the compo-

nents which satisfy the composability condition, as defined Subsection 7.2.1, are arbi-

trarily chosen. They are then combined to linear orderings on the places of the compos-

ite T-flow structure. The chosen linear orderings are also used to obtain permutations

of the flow matrices for the two components before they are composed. Observe that

the flow matrix of the entire Petri net, and the flows arising from any restriction of

places, are indeed necessary in order to define parallel composition. Hence modularity

of T-flows comes at a high price.

In the case of reactions, the corresponding Petri net is obtained using the concrete

Petri net semantics given in the previous chapter. This Petri net, together with an

arbitrary choice of orderings, is then used to construct a flow matrix. The Petri net

is also used for obtaining the actual minimal T-flows after removing the given set of

places. A more direct construction would also have been possible because there is only

one candidate minimal T-flow to test.

7.5.2 The Concrete Minimal P-Flow Semantics of LBS

The concrete semantical objects encapsulating P-flows are somewhat simpler than for

T-flows.
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Definition 25. An LBS-P-flow structure LPF is a tuple (S,≺S,MPF) where

• S (fin {MS(vgns) | vgns ∈ Vgns} is the set of places and ≺S is a linear ordering

on S.

• MPF (fin N|S| is a set of P-flows.

We use the notation SLPF to refer to the places S of a P-flow structure LPF, and

similarly for the other components. The set of all P-flow structures is denoted by

LP F .

Definition 26. The concrete semantics for LBS in terms of P-flow structures is given

by the tuple (LP F , |LP F ,0LP F ,GLP F , ILP F ) where

• LPF1 |LP F LPF2
∆' LPF where

– ≺1 and ≺2 are arbitrary linear orderings on respectively SLPF1 and SLPF2

for which (SLPF1,≺1) and (SLPF2,≺2) are composable.

– θ1
∆' perm(SLPF1,≺1,≺SLPF1

)

– θ2
∆' perm(SLPF2,≺2,≺SLPF2

)

– SLPF
∆' SLPF1 ∪SLPF2

– ≺SLPF

∆' ≺1 ∪ ≺2 ∪{(s1,s2) | s1 ∈ SLPF1 \SLPF2 ∧ s2 ∈ SLPF2 \SLPF1}

– MPFLPF
∆' MPFPar([MPF1], [MPF2],n) where

∗ MPF1
∆' θ1(MPFLPF1)

∗ MPF2
∆' θ2(MPFLPF2)

∗ n
∆' |SLPF1 ∩SLPF2|

• 0LP F
∆' ( /0, /0,{()})

• GLP F (n · vgns ⇒vgr n′ · v′gns, t)
∆' LPF where

– PN
∆' GP N (n · vgns ⇒vgr n′ · v′gns, t)

– SLPF
∆' SPN

– ≺SLPF is an arbitrary linear ordering on SLPF.

– MPFLPF
∆' MPF(PN)

• ILP F (vgns,n)
∆' ({s},{(s,s)},{(1)}) where
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– s
∆' {MS(vgns)}

In the case of parallel composition, linear orderings on the places of the com-

ponents which satisfy the composability conditions, as defined Subsection 7.2.1, are

arbitrarily chosen and combined to linear orderings for the composite P-flow structure.

The chosen linear orderings are then used to obtain two permutations which are applied

to the flows of the respective components before composition. Note how the definition

for parallel composition is somewhat simpler than in the case of T-flows. This illus-

trates how modular T and P-flows are intricately different and non-dual because more

information is needed in the modular definition of T-flows.

The case of reactions obtains the Petri net assigned to the reaction by the concrete

Petri net semantics given in the previous chapter and uses this to obtain the correspond-

ing minimal P-flows. In contrast to the corresponding case for T-flows, there may be

more than one minimal P-flow associated with a reaction.

7.5.3 Results

The following theorem states that the concrete flow semantics given above work as

expected. We let J·KP N , J·KLTF and J·KLP F be the general denotation function instan-

tiated with respectively the concrete Petri net semantics, the concrete T-flow semantics

and the concrete P-flow semantics.

Theorem 11. Let P be an LBS program, let PN
∆' JPKP N ,

LTF
∆' JPKLTF , LPF

∆' JPKLP F , ∆S⊆ SPN and let≺T be an arbitrary linear ordering

on TPN. Then

1. hLTF(∆S) = MTF(OPN) where OPN
∆' (PN\∆S,≺SLTF ,≺TLTF)

2. MPFLPF = MPF(OPN) where OPN
∆' (PN,≺SLPF,≺T )

It follows as a special case of 1) that hLTF( /0) gives the minimal T-flows of the full

Petri net. The proof is by induction on the structure of LBS programs, using Theorems

7 and 9.

7.6 Related Work

The idea that consistent P-flows from two components can be joined to form a P-flow in

the composite Petri net (Lemma 4) is not new. Neither is the converse that any P-flow
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in a composite Petri net is a join of P-flows from the parallel components (Lemma 5).

These results have been stated previously in some form in [49, 11, 58, 23, 91].

In [58] an algorithm is given for directly computing the minimal P-flows of a well-

formed net resulting from a place fusion operation (i.e. the merging of two places

within a single Petri net) based on the minimal P-flows of the Petri net before fusion.

But no proof of correctness is given. In [11] a method similar to Definition 22 is

proposed for generative sets of P-flows rather than minimal P-flows. Such a method is

also presented for functional subnets in [91], which in addition considers how to obtain

appropriate components given a flat Petri net. However, in neither case is it clear to

us how completeness follows from the proofs given, i.e. that the method does in fact

result in generative families of P-flows. In contrast, we give a full proof of minimality

of the resulting P-flows (which is stronger than generativity).

Modular definitions of T-flows have received somewhat less attention than P-flows

in the literature. To our knowledge, the only existing explicit work on modular T-flows

is [58] (for well-formed nets), but this only shows an example of how new T-flows can

arise after a place fusion. No general definition is given. In [23], a characterisation of

P-flows arising from a composition of modules is given based on both place sharing

and transition sharing. The duality elucidated in Theorem 6 suggests that a dual char-

acterisation can be given for T-flows under place and transition sharing. Nevertheless,

the characterisation does not result in methods for finding minimal or generative sets

of flows and hence is of little practical use. It also considers flows in Z rather than in

N as is more common.





Chapter 8

GEC by Example

We now turn to synthetic biology and the language for Genetic Engineering of Cells

(GEC). A GEC program can be translated to a set of devices, each representing a possi-

ble in-vivo implementation which satisfies the constraints of the GEC program. More

precisely, a device consists of a set of sequences of genetic parts such as promoters,

ribosome binding sites, protein coding regions and terminators as introduced in Sec-

tion 2.4. Multiple sequences are necessary in e.g. the case of multi-cellular systems,

or more generally when different genes are located on different plasmids (i.e., circular

sequences of DNA which typically host genes in bacteria).

A GEC program can also be translated to a set of reactions for each device, repre-

sented by simplified forms of LBS programs, allowing the dynamics of gene expres-

sion to be simulated. We thereby envision an iterative process of translation, simulation

and refinement where each cycle refines a GEC program by e.g. introducing additional

constraints that rule out devices with undesired simulation behaviour. Following com-

pletion of the necessary iterations, a specific device can be chosen and implemented

experimentally in living cells. This process is represented schematically by the flow

chart in Figure 8.0.1.

The translation to devices and reactions relies on a database of genetic parts with

their relevant properties, and on a database of known reactions. Prototype databases,

which form the basis of our discussion, are presented in Section 1. In Section 2 we

introduce the basic language constructs of GEC through a number of small exam-

ples. Sections 3 and 4 then present two case studies drawn from the existing literature,

namely of the repressilator and the predator-prey system.

143
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GEC 

program

Set of devices and 

associated reactions

Single device and 

associated reactions

Device in 

living cell

Translate

Choose one

Implement

Reactions

Results 

OK?

Separate

Simulate
Keep device

Reject device

Modify GEC program

Yes

No

No

Figure 8.0.1: Flow chart illustrating the process of translation, simulation and refinement

of GEC programs, ending with an implementation of a device in a living cell.

Table 8.0.1: A prototype reaction database consisting of basic reactions, enzymatic

reactions with enzymes preceding the ˜ symbol, and transport reactions with compart-

ments represented by square brackets. Reaction rate constants are enclosed in curly

brackets.

luxR + m3OC6HSL −>{0.5} luxR−m3OC6HSL

luxR−m3OC6HSL −>{1.0} luxR + m3OC6HSL

lasR + m3OC12HSL −>{0.5} lasR−m3OC12HSL

lasR−m3OC12HSL −>{1.0} lasR + m3OC12HSL

luxI ˜ −>{1.0} m3OC6HSL

lasI ˜ −>{1.0} m3OC12HSL

ccdA ˜ ccdB −>{1.0}

ccdA2 ˜ ccdB −>{0.00001}

m3OC6HSL −>{0.5} [m3OC6HSL]

m3OC12HSL −>{0.5} [m3OC12HSL]

[m3OC6HSL] −>{0.5} m3OC6HSL

[m3OC12HSL] −>{0.5} m3OC12HSL
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8.1 The Databases

We have chosen prototype reaction and parts databases with the minimal structure and

content necessary to convey the main ideas behind GEC. Technically the databases

are implemented in Prolog, but their informal, tabular representations are shown in

Tables 8.0.1 and 8.1.1. We stress that the listed rate constants are hypothetical, and

that specific rates have been chosen for the sake of example.

8.1.1 The Reaction Database

The reaction table represents reactions in the general form:

enzymes ˜ reactants −>{r} products

where r is a rate constant. Parts of a reaction may optionally be omitted as in e.g. the

dimerisation reaction luxR + m3OC6HSL −>{0.5} luxR−m3OC6HSL in which there is no

enzyme, or as in e.g. luxI ˜ −>{1.0} m3OC6HSL in which m3OC6HSL is synthesised by

luxI without any reactants specified. The last four lines of the reaction database repre-

sent transport reactions, where e.g. m3OC6HSL −>{0.5} [m3OC6HSL] is the transport of

m3OC6HSL into some compartment.

8.1.2 The Parts Database

The parts table contains three columns: the first represents part types, the second repre-

sents unique IDs (taken from the MIT Registry when possible), and the third represents

sets of properties. For the purpose of our examples, the available types are restricted to

promoters prom, ribosome binding sites rbs, protein coding regions pcr and terminators

ter. Table 8.1.2 shows our graphical representations of the four part types, where id

ranges over part identifiers in the parts database.

Promoters can have the properties pos(p, rb , rub , rtb ) and neg(p,rb , rub , rtb ), where p is

a transcription factor (a protein or protein complex) resulting in positive or negative

regulation, respectively. The remaining entries give a quantitative characterisation of

promoter regulation: rb and rub are the binding and unbinding rates of the transcription

factor to the promoter, and rtb is the rate of transcription in the bound state. Promoters

can also have the property con( rt ) where rt is the constitutive rate of transcription in

the absence of transcription factors. Protein coding regions have the single property

codes(p, rd) indicating the protein p they code for, together with a rate rd of protein
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Table 8.1.1: Table representation of a prototype parts database. The three columns

describe the type, identifier and properties associated with each part.

Type ID Properties

pcr c0051 codes(clR, 0.001)

pcr c0040 codes(tetR , 0.001)

pcr c0080 codes(araC, 0.001)

pcr c0012 codes( lacI , 0.001)

pcr c0061 codes( luxI , 0.001)

pcr c0062 codes(luxR, 0.001)

pcr c0079 codes(lasR, 0.001)

pcr c0078 codes( lasI , 0.001)

pcr cunknown3 codes(ccdB, 0.005)

pcr cunknown4 codes(ccdA, 0.1)

pcr cunknown5 codes(ccdA2, 10.0)

prom r0051 neg(clR, 1.0, 0.5, 0.00005)

con(0.12)

prom r0040 neg(tetR , 1.0, 0.5, 0.00005)

con(0.09)

prom i0500 neg(araC, 1.0, 0.000001, 0.0001)

con(0.1)

prom r0011 neg( lacI , 1.0, 0.5, 0.00005)

con(0.1)

prom runknown2 pos(lasR−m3OC12HSL, 1.0, 0.8, 0.1)

pos(luxR−m3OC6HSL, 1.0, 0.8, 0.1)

con(0.000001)

rbs b0034 rate (0.1)

ter b0015
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Table 8.1.2: Part types in GEC with their corresponding graphical representation.

Part Representation

id :prom
id

id :rbs id

id :pcr
id

id : ter id

degradation. Ribosome binding sites may have the single property rate( r ), representing

a rate of translation of mRNA.

A part may generally have any number of properties, e.g. indicating regulation of a

promoter by different transcription factors. However, we stress that the GEC language

is to a large extent independent of any particular choice of part types and properties; the

exception is the translation to reactions, which relies on the part types and properties

described above.

Sometimes we may wish to ignore quantitative information, in which case we as-

sume derived, non-quantitative versions of the properties: for all properties

pos(p, rb , rub , rt ) and neg(p,rb , rub , rt ) there are derived properties pos(p) and neg(p), and

for every property codes(p, rd) there is a derived property codes(p).

8.1.3 Reactions Associated with Parts

While the reaction database explicitly represents a set of known reactions, the rate

information associated with part properties allows further reactions at the level of gene

expression to be deduced. Table 8.1.3 shows our graphical representations of part

properties together with their resulting reactions. A dotted arrow is used to represent

protein production, and arrows for positive and negative regulation are inspired by

standard notations.

The pos and neg properties of promoters each give rise to three reactions: binding

and unbinding of the transcription factor and production of mRNA in the bound state.

The con property of a promoter yields a reaction producing mRNA in the unbound

state, while the rate property of a ribosome binding site yields a reaction producing
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Table 8.1.3: Part properties and their reactions in GEC, with their corresponding graph-

ical representation. The species g represents a gene, p represents a protein and m

represents an mRNA. The specific choice of species used in the reactions associated

with a part sometimes depends on neighbouring parts.

Part property and reactions Representation

id :prom<pos(p,rb,rub,rtb)>

g + p −>{rb} g−p

g−p −>{rub} g + p

g−p −>{rtb} g−p + m

id

p

rb

rub

rtb

id :prom<neg(p,rb,rub,rtb)>

g + p −>{rb} g−p

g−p −>{rub} g + p

g−p −>{rtb} g−p + m

id

p

rb

rub

rtb

id :prom<con(rt)>

g −>{rt} g + m

m −>{rdm}

id

rt

id :rbs<rate(r)>

m −>{r} m + p

id

r

id :pcr<codes(p,rd)>

p −>{rd}
id

p

rd
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protein from mRNA. Finally, the codes property of a protein coding region gives rise

to a protein degradation reaction. We observe that mRNA degradation rates do not

associate naturally with any of the part types since mRNA may be polycistronic (i.e.,

code for multiple proteins). Therefore, the rate rdm used for mRNA degradation is

assumed to be defined globally, but may be adjusted manually for individual cases

where appropriate. Note also that quantities such as protein degradation rates could

in principle be stored in the reaction database as degradation reactions. We choose

however to keep as much quantitative information as possible about a given part within

the parts database.

8.2 The Basics of GEC

8.2.1 Sequences of Typed Parts

On the most basic level, a program can simply be a sequence of part identifiers together

with their types, essentially corresponding to a program in the GenoCad language in-

troduced in Section 2.4. The following program is an example of a transcription unit

which expresses the protein tetR in a negative feedback loop; a corresponding graphical

representation is shown above the program code:

c0040 b0015b0034

r0040

�
1 r0040 : prom ; b0034 : rbs ; c0040 : pcr ; b0015 : t e r �

The symbol : is used to write the type of a part, and the symbol ; is the sequen-

tial composition operator used to put parts together in sequence. Writing this simple

program requires the programmer to know that the protein coding region part c0040

codes for the protein tetR, and that the promoter part r0040 is negatively regulated by

this protein. We can confirm these two facts by inspecting Table 8.1.1. The translation

simply results in a single list consisting of the given sequence of part identifiers, while

ignoring the types:

[r0040; b0034; b0040; b0015]

8.2.2 Part Variables and Properties

We can increase the level of abstraction of the program by using variables and prop-

erties for expressing that any parts will do, as long as the protein coding region codes
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for the protein tetR and the promoter is negatively regulated by tetR:

X3

tetR

X4X2

X1

�
1 X1 : prom<neg ( t e t R ) >; X2 : rbs ; X3 : pcr<codes ( t e t R ) >; X4 : t e r �

The angled brackets <> delimit one or more properties, and upper-case identifiers

such as X1 are variables which represent undetermined part identifiers or species. The

translation of this program gives exactly the same result as before, but without the

programmer having to find the specific parts required; these are deduced from the

parts database.

The translation may in general produce several results. For example, we can re-

place the fixed species name tetR with a new variable, thus resulting in a program

expressing any transcription unit behaving as a negative feedback device:

X3

Y

X4X2

X1

�
1 X1 : prom<neg (Y) >; X2 : rbs ; X3 : pcr<codes (Y) >; X4 : t e r �

This time the translation produces 4 devices, one of them being the tetR device from

above. When variables are only used once, as is the case for X1, X2, X3 and X4 above,

their names are of no significance and we will use the wild card, , instead. When

there is no risk of ambiguity, we may omit the wild card altogether and write the above

program more concisely as follows:

Y

�
1 prom<neg (Y) >; rbs ; pcr<codes (Y) >; t e r �

8.2.3 Parameterised Modules

Parameterised modules allow further abstraction away from the level of individual

parts. Modules which act as positive or negative gates, or which constitutively ex-

press a protein, can be written as shown in Listing 8.2.1, where i denotes input and o

denotes output.
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Listing 8.2.1: Gate module definitions.�
1 module t l ( o ) { rbs ; pcr<codes ( o ) >; t e r } ;

2 module g a t e P o s ( i , o ) { prom<pos ( i ) >; t l ( o ) } ;

3 module gateNeg ( i , o ) { prom<neg ( i ) >; t l ( o ) } ;

4 module gateCon ( o ) { r0051 : prom ; t l ( o ) } ;

5

6 module t l 2 ( o1 , o2 ) { rbs ; pcr<codes ( o1 ) >; rbs ; pcr<codes ( o2 ) >; t e r } ;

7 module gateCon2 ( o1 , o2 ) { r0051 : prom ; t l 2 ( o1 , o2 ) } ; �
Table 8.2.1: Reactions in GEC together with their corresponding graphical representa-

tion.

Reaction Representation

c[s] −>{ro} s

c

s sro

s −>{ri} c[s]

c

ss ri

e ˜ s1 + ... + sn −>{r} t1 + ... + tm

r

s1 sn

t1 tm

e

...

...

The module keyword is followed by the name of the module, a list of formal pa-

rameters and the body of the module enclosed in curly brackets. For the constitutive

expression module, we arbitrarily fix a promoter. Modules can be invoked simply by

naming them together with a list of actual parameters, as in the case of the “tail” mod-

ule, tl . The last module, gateCon2, is a dual-output version of the constitutive expression

module gateCon; similar dual-output versions of the positive and negative gates can be

defined, but they are not needed for our examples. Note that the dual-output module

gives rise to devices which express polycistronic mRNA.

8.2.4 Compartments and Reactions

GEC has compartments which, as in LBS, enable a distinction between different in-

stances of the same parts or proteins in different cells; however, compartments also
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A B C

Figure 8.3.1: A diagrammatic representation of the repressilator circuit.

play an important role when resolving constraints as we demonstrate below. GEC fur-

thermore has reactions, including cross-compartment transport, which can be used to

impose additional constraints on parts, also demonstrated below. Table 8.2.1 shows the

general form of reactions together with their graphical representation.

8.3 Case Study: The Repressilator

8.3.1 The GEC Model

Our first case study considers the repressilator circuit [33] which consists of three

genes negatively regulating each other as shown in Figure 8.3.1. The first gene in the

circuit expresses some protein A which represses the second gene; the second gene

expresses some protein B which represses the third gene; and the third gene expresses

some protein C which represses the first gene, thus closing the feedback loop. Using

our standard gate modules, the repressilator can be written in GEC as follows:�
1 gateNeg (C , A ) ; ga teNeg (A, B ) ; ga teNeg (B , C) �

8.3.2 Translation and Simulation

The translation of the repressilator program results in 24 possible devices. One of these

is the following:

[r0051, b0034, c0040, b0015, r0040, b0034,

c0080, b0015, i0500, b0034, c0051, b0015]

To see why 24 devices have been generated, an inspection of the databases reveals

that there are four promoter/repressor pairs that can be used in the translation of the

program: r0011/c0012, r0040/c0040, r0051/c0051 and i0500/c0080. It follows that there are

4 choices for the first promoter in the target device, 3 choices for the second promoter,

and 2 remaining choices for the third promoter. There is only one ribosome binding
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site and one terminator registered in the parts database, and hence there are indeed

4 ·3 ·2 = 24 possible target devices.

Our above reasoning reflects an important assumption about the semantics of the

language: distinct variables must take distinct values. If we allowed e.g. A and B to

represent the same protein, we would get self-inhibiting gates in some devices which

would certainly prevent the desired behaviour. This assumption seems to be justified

in most cases, although it is easy to change the semantics of GEC on a per-application

basis in order to allow variables to take identical values. We also note that variables

range over atomic species rather than complexes, so any promoters which are regulated

by dimers, for example, would not be chosen by the translation.

In the face of multiple possible devices, the question of which device to choose

naturally arises. This is where simulation and model refinement become relevant. Fig-

ure 8.3.2a shows the result of simulating the reactions associated with the device listed

above. We observe that the expected oscillations are not obtained. By further inspec-

tion, we discover the failure to be caused by a very low rate of transcription factor

unbinding for the promoter i0500: once a transcription factor (araC) is bound, the pro-

moter is likely to remain repressed.

8.3.3 The Revised GEC Model

Appropriate ranges for quantitative parameters in which oscillations do occur can be

found through further simulations or parameter scans as in [9]. We can then refine the

repressilator program by imposing these ranges as quantitative constraints. This can

be done by redefining the negative gate module as shown in Listing 8.3.1, leaving the

body of the repressilator program unmodified. This ability to make localised changes

to a program is one important benefit of modularity.

The first two lines use the new operator to ensure that variables are globally fresh.

This means that variables of the same name, but under different scopes of the new

operator, are considered semantically distinct. This is important in the repressilator

example because the gateNeg module is instantiated three times, and we do not require

that e.g. the binding rate RB is the same for all three instances. A sequence of part

types with properties then follows, this time with rates given by variables. Finally,

constraints on these rate variables are composed using the constraint composition op-

erator, |. With this module replacing the non-quantitative gate module defined previ-

ously, the translation of the repressilator program now results in the 6 devices without
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(a) A defective repressilator device.

(b) A working repressilator device.

Figure 8.3.2: Stochastic simulation plots of two repressilator devices. The device using

clR, tetR and araC (a) is defective due to the low rate of unbinding between araC and

its promoter, while the device using clR, tetR and lacI (b) behaves as expected.



8.4. Case Study: The Predator-Prey System 155

Listing 8.3.1: A revised repressilator program with quantitative constraints�
1 module gateNeg ( i , o ) {
2 new RB . new RUB. new RTB .

3 new RT . new R . new RD.

4

5 prom<con (RT ) , neg ( i , RB, RUB, RTB) >;

6 rbs<r a t e (R) >;

7 pcr<codes ( o ,RD) >; t e r |
8

9 0 . 9 < RB | RB < 1 . 1 |
10 0 . 4 < RUB | RUB < 0 . 6 |
11 0 . 0 5 < RT | RT < 0 . 1 5 |
12 RTB < 0 . 0 1 |
13 0 . 0 5 < R | R < 0 . 1 5

14 } ; �
the promoter regulated by araC, rather than the 24 devices from before. One of these is

the repressilator device contained in the MIT Registry under the identifier I5610:

[r0040, b0034, c0051, b0015, r0051, b0034,

c0012, b0015, r0011, b0034, c0040, b0015]

Simulation of the associated reactions now yields the expected oscillations as shown

in Figure 8.3.2b.

8.4 Case Study: The Predator-Prey System

8.4.1 The GEC Model

Our second case study, an Escherichia coli predator-prey system [5] shown in Figure

8.4.1, represents one of the largest synthetic systems implemented to date. It is based

on two quorum sensing systems, one enabling predator cells to induce expression of

a death gene in the prey cells, and another enabling prey cells to inhibit expression

of a death gene in the predator. In the predator, Q1a is constitutively expressed and

synthesises H1, which diffuses to the prey where it dimerises with the constitutively

expressed Q1b. This dimer in turn induces expression of the death protein ccdB. Sym-

metrically, the prey constitutively expresses Q2a for synthesising H2, which diffuses to
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Figure 8.4.1: A diagrammatic representation of the predator-prey system.

the predator where it dimerises with the constitutively expressed Q2b. Instead of induc-

ing cell death, this dimer induces expression of an antidote A, which interferes with

the constitutively expressed death protein.

A GEC program implementing the logic of Figure 8.4.1 is shown in Listing 8.4.1.

Note how the details of the quorum sensing system and antidote have been left un-

specified by using variables (upper-case identifiers) for the species involved. Only the

death protein is specified explicitly (using a lower-case identifier).

The predator and prey are programmed in two separate modules which reflect our

informal description of the system, and a third module links the predator and prey by

defining transport reactions. Several additional language constructs are demonstrated

in this program. Reactions are composed with each other and with the standard gate

modules through the constraint composition operator which is also used for quanti-

tative constraints. Reactions have no effect on the “layout” of the resulting devices

since they do not add any parts to the system, but they restrict the possible choices of

proteins and hence of parts.

The last two lines of the predator and prey modules specify reactions which are
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Listing 8.4.1: A GEC model of the predator-prey system.�
1 module p r e d a t o r ( ) {
2 gateCon2 ( Q2b , Q1a ) |
3 Q1a ˜ −> H1 ;

4

5 Q2b + H2 <−> Q2b−H2 |
6 g a t e P o s ( Q2b−H2 , A ) ;

7 gateCon ( ccdB ) |
8 A ˜ ccdB −> |
9

10 ccdB ˜ Q1a ∗−>{10.0} |
11 H1 ∗−>{10.0} | H2 ∗−>{10.0}
12 } ;

13

14 module p rey ( ) {
15 g a t e P o s ( H1−Q1b , ccdB ) |
16 H1 + Q1b <−> H1−Q1b ;

17

18 Q2a ˜ −> H2 |
19 gateCon2 ( Q2a , Q1b ) |
20

21 ccdB ˜ Q2a ∗−>{10.0} |
22 H1 ∗−>{10.0} | H2 ∗−>{10.0}
23 } ;

24

25 module t r a n s p o r t ( ) {
26 c1 [ H1 ] −> H1 | H1 −> c2 [ H1 ] |
27 c2 [ H2 ] −> H2 | H2 −> c1 [ H2 ]

28 } ;

29

30 c1 [ p r e d a t o r ( ) ] | | c2 [ p rey ( ) ] | | t r a n s p o r t ( ) �
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used for simulation only and do not impose any constraints, indicated by the star pre-

ceding the reaction arrows. The second to last line of each module is a simple approach

to modelling cell death, and we return to this when discussing simulations shortly. The

last line consists of degradation reactions for H1 and H2; since these are not the re-

sult of gene expression (they are chemicals, not proteins), the associated degradation

reactions are not deduced automatically by the translation.

The transport module defines transport reactions in and out of two compartments,

c1 and c2, representing respectively the predator and prey cell boundaries. The choice

of compartment names is not important for the translation to devices, but it is im-

portant for the translation to reactions where a distinction must be made between the

populations of the same species in different compartments.

The main body of the program invokes the three modules while putting the predator

and prey inside their respective compartments using the compartment operator. The

modules are composed using the parallel composition operator. In contrast to the se-

quential composition operator which intuitively concatenates the part sequences of its

operands, the parallel composition intuitively results in the union of the part sequences

of its operands. This is useful when devices are implemented on different plasmids, or

even in different cells as in this example.

8.4.2 Translation and Simulation

The translation results in four devices, each consisting of two lists of parts that imple-

ment the predator and prey, respectively. One of the devices is shown below.

[r0051, b0034, c0062, b0034, c0078, b0015, runknown2, b0034,

cunknown5, b0015, r0051, b0034, cunknown3, b0015]

[runknown2, b0034, cunknown3, b0015, r0051, b0034, c0061,

b0034, c0079, b0015]

By inspection of the database we establish that the translation has selected

luxR/ lasI /m3OC12HSL and lasR/ luxI/m3OC6HSL for implementing the quorum sensing

components in the respective cells, and ccdA2 for the antidote. We also see that it

has found a unique promoter, runknown2, which is used both for regulating expression

of ccdA2 in the predator and for regulating expression of ccdB in the prey. The fact

that the two instances of this one promoter are located in different compartments now

plays a crucial role: without the compartment boundaries, undesired crosstalk would
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arise between lasR−m3OC12HSL and the promoter runknown2 in the predator, and be-

tween luxR−m3OC6HSL and the promoter runknown2 in the prey. Indeed, if we remove

the compartments from the program, this crosstalk will be detected during translation,

resulting in the empty set of devices.

This illustrates another important assumption about the semantics of GEC: a part

may be used only if its “implicit” properties do not contain species which are present

in the same compartment as the part. By “implicit” properties we mean the prop-

erties of a part which are not explicitly specified in the program. In our example,

the part runknown2 in the predator has the implicit property that it is positively regu-

lated by lasR−m3OC12HSL. Hence the part may not be used in a compartment where

lasR−m3OC12HSL is present. The use of compartments in our example ensures that this

condition of crosstalk avoidance is met.

Simulation results, in which the populations of the killer protein ccdB in the predator

and prey are plotted, are shown in Figure 8.4.2a. We observe that the killer protein

in the predator remains expressed, hence blocking the synthesis of H1 through the

simulation-only reaction, and preventing expression of the killer protein in the prey.

This constant level of killer protein in the predator is explained by the low rate at

which the antidote protein ccdA2 used in this particular device degrades ccdB, and by

the high degradation rate of ccdA2. The second of the four devices is identical to the

device above, except that the more effective antidote ccdA is expressed using cunknown4

instead of cunknown5:

[r0051, b0034, c0062, b0034, c0078, b0015, runknown2, b0034,

cunknown4, b0015, r0051, b0034, cunknown3, b0015]

[runknown2, b0034, cunknown3, b0015, r0051, b0034, c0061,

b0034, c0079, b0015]

The simulation results of the reactions associated with this device are shown in Figure

8.4.2b. The two remaining devices are symmetric to the ones shown above in the sense

that the same two quorum sensing systems are used, but they are swapped around such

that the predator produces m3OC6HSL rather than m3OC12HSL, and vice-versa for the

prey.

We stress that the simulation results obtained for the predator-prey system do not

reproduce the published results. One reason is that we are plotting the levels of killer

proteins in a single predator and a single prey cell rather than cell populations, in order
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(a) A defective predator-prey device.

(b) A working predator-prey device.

Figure 8.4.2: Stochastic simulation plots of two predator-prey devices. The device using

ccdA2 (a) is defective due to the low rate of ccdA2-catalysed ccdB degradation, while

the device using ccdA (b) behaves as expected.
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to simplify the simulations. Another reason is that the published results are based on

a reduced ODE model, and the parameters for the full model are not readily available.

Our simplified model is nevertheless sufficient to illustrate the approach, and can be

further refined to include additional details of the experimental setup.

We note a number of additional simplifying omissions in our model: expression of

the quorum-sensing proteins in the prey, and of the killer protein in the predator, are

IPTG-induced in the original model; activated luxR (i.e. in complex with m3OC6HSL)

dimerises before acting as a transcription factor; and the antidote mechanism is more

complicated than mere degradation [1].





Chapter 9

The Abstract Syntax and Semantics of

GEC

In the previous chapter we discussed informally how GEC programs can be translated

to devices and to the associated reactions which enable simulations to be carried out.

Technically, the translation is achieved through three separate denotation functions.

The first is concerned with resolving the constraints of GEC programs, and its tar-

get semantical objects are sets of context-sensitive substitutions which, in addition to

other necessary structures as detailed below, contain mappings from variables to part

identifiers, species identifiers and real numbers. The second denotation function is

concerned with the “layout” of devices, and its target semantical objects are device

templates, which are just devices that may contain variables. The third denotation

function pertains to reactions, and its target semantical objects are reaction program

templates; these are simplified CBS or LBS programs which may contain variables.

Each of the substitutions resulting from the first denotation function can be applied

to the device template and the reaction program template arising from the two other

denotation functions in order to obtain each of the possible devices and their associated

reactions.

We start in Section 1 with the abstract syntax of GEC and then consider each of

the three denotation functions in Sections 2-4. The denotation functions for context-

sensitive substitutions and for device templates are independent of any particular choice

of part types and properties, but the denotation function for reaction program templates

does assume the specific part types and properties introduced in the previous chapter.

163
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9.1 The Abstract Syntax of GEC

We assume a given set IDs of species identifiers, a given set IDp of part identifiers,

ranged over by idp, and a given set X of variables, ranged over by x; we assume

for technical reasons that the set X includes the set {0,1}∗ of binary strings. We let

S ∆' MS(IDs ∪ X) be the set of complex species with variables, ranged over by S.

We furthermore let A
∆' R ∪X ∪ S be the set of actual parameters, ranged over

by a, and we let U
∆' IDs ∪ IDp ∪ X be the set of formal parameters, ranged over

by u. A type system is needed to ensure the proper use of formal parameters and their

bindings to actual parameters, but we omit that aspect from the presentation for the

sake of simplicity.

A given set T of part types, ranged over by t, is also assumed, together with a set Qt

of possible part properties for each type t ∈ T . We define Q
∆'

⋃
t∈T Qt and let Qt (fin

Qt . In the case studies given in the previous chapter, and in the semantics in terms of

reaction template programs given in Section 4, properties are appropriate terms over

R∪X ∪ S , but otherwise the specific structure of properties is not important; we just

assume given functions FV : Q → X and FS : Q→ S for obtaining the variables and

species of properties, respectively, and we assume these functions extended to other

structures as appropriate.

We let idc range over a given set of compartment identifiers, we let idm range over

a given set of module identifiers and we let ⊗ range over a given set of arithmetic

operators which could e.g. be the usual operators as for algebraic rate expressions in

LBS. Finally, we let n ∈ N, r ∈ R and vb ∈ {tt, ff} as before; the boolean value vb is

used to indicate whether reactions and transport reactions should be used for simulation

only. The abstract syntax of GEC is then given by the grammar in Table 9.1.1.

Derived forms Some of the language constructs used in the previous chapter are not

represented explicitly in the grammar of Table 9.1.1 but can be defined in terms of

those which are. Reversible reactions are defined as the constraint composition of two

reactions, each representing one of the directions, as in LBS. The underscore wildcard,

, can be defined using variables and the new operator; for example:

: t(Qt)
∆' new x. x : t(Qt))

In the specific case of basic part programs the wild card can be omitted, i.e.

t(Qt)
∆' : t(Qt). We also allow constraints to be composed to the left of pro-

grams and define C | P
∆' P | C.
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Table 9.1.1: The abstract syntax of GEC.

P ::= GEC PROGRAM

| u : t(Qt) TYPED PART WITH PROPERTIES

| 0 NIL PROGRAM

| idm(u) = P1 ; P2 MODULE DEFINITION

| idm(a) MODULE INVOCATION

| P |C CONSTRAINT COMPOSITION

| P1 ‖ P2 PARALLEL COMPOSITION

| P1 ; P2 SEQUENTIAL COMPOSITION

| idc[P] LOCATED PROGRAM

| new x. P NEW VARIABLE

C ::= CONSTRAINT

| Rvb REACTION

| T vb TRANSPORT REACTION

| K NUMERICAL CONSTRAINT

R ::= S∼∑ni ·Si→r
∑n′j ·S′j REACTION

T ::= TRANSPORT

| S→r idc[S] TRANSPORT INTO COMPARTMENT

| idc[S]→r S TRANSPORT OUT OF COMPARTMENT

K ::= E1 > E2 NUMERICAL CONSTRAINT

E ::= ARITHMETIC EXPRESSION

| r REAL NUMBER

| x VARIABLE

| E1⊗E2 ARITHMETIC OPERATOR
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Abstract vs. Concrete Syntax The example GEC programs given in the previous

chapter are written using a concrete syntax that can be understood by the implemented

parser. The main difference, compared to the above abstract syntax, is that variables are

represented by upper case identifiers whereas species and part names are represented

by lower case identifiers. Complex species are composed using the hyphen, −, in

the concrete syntax, and the fact that complex species are multisets in the abstract

syntax reflects that complex formation is commutative. Similar considerations apply

to the sum operator in reactions. We also assume some standard precedence rules, in

particular that sequential composition (;) binds tighter than parallel composition (‖),
and we allow the use of parentheses to override these standard rules if necessary.

9.2 The Substitution Semantics of GEC

We first illustrate the substitution semantics of GEC informally through a small exam-

ple which exhibits characteristics from the predator-prey case study, and then turn to

the formal presentation.

9.2.1 The Intuition

The substitution semantics is given in terms of context-sensitive substitutions (θ,ρ,σ,τ)

which represent solutions to the constraints of a program; informally, θ is a mapping

from variables to species identifiers, part identifiers or real numbers; ρ is a set of vari-

ables for which θ must be injective; σ and τ are, respectively, the species that have been

used in the current context and the species that are excluded for use. Context-sensitive

substitutions capture the information needed to ensure both piece-wise injectivity over

compartment boundaries and cross-talk avoidance, as mentioned in the case studies.

Consider the following example:�
1 ( X1 : prom<pos ( H1−Q1b)> ; X2 : rbs ) | | ( Y1 : prom<pos ( Q2b−H2)> ; Y2 : rbs ) �

The translation first processes the two sequential compositions in isolation, and then

the parallel composition.

1. The first sequential composition. Observe that the database only lists a single

ribosome binding site part and a single promoter part that is positively regu-

lated by a dimer, namely runknown2. The first sequential composition gives rise
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to two context-sensitive substitutions, one for each possible choice of transcrip-

tion factors listed in the database for this promoter part. The context-sensitive

substitutions are (θ1,ρ1,σ1,τ1) and (θ′1,ρ
′
1,σ
′
1,τ
′
1) where

• θ1
∆' {(X1 7→ runknown2),(X2 7→ b0034),(H1 7→ m30C12HSL),(Q1b 7→ lasR)}

• ρ1
∆' {H1,Q1b}

• σ1
∆' {m30C12HSL−lasR}

• τ1
∆' {m30C6HSL−luxR}

• θ′1
∆' {(X1 7→ runknown2),(X2 7→ b0034),(H1 7→ m30C6HSL),(Q1b 7→ luxR)}

• ρ′1
∆' {H1,Q1b}

• σ′1
∆' {m30C6HSL−luxR}

• τ′1
∆' {m30C12HSL−lasR}

Note that τ1
∆' {m30C6HSL−luxR}, since the complex m30C6HSL−luxR is in the

properties of runknown2 but has not been mentioned explicitly in the program

under the corresponding substitution θ1. Therefore, this complex should not

be used anywhere in the same compartment as runknown2, in order to prevent

unwanted interference between parts. Similar ideas apply to τ′1.

2. The second sequential composition. The second sequential composition pro-

duces similar results, namely two context-sensitive substitutions, one for each

possible choice of transcription factors in the database for the promoter part.

The context-sensitive substitutions are (θ2,ρ2,σ2,τ2) and (θ′2,ρ
′
2,σ
′
2,τ
′
2) where

• θ2
∆' {(Y1 7→ runknown2),(Y2 7→ b0034),(H2 7→ m30C12HSL),(Q2b 7→ lasR)}

• ρ2
∆' {H2,Q2b}

• σ2
∆' {m30C12HSL−lasR}

• τ2
∆' {m30C6HSL−luxR}

• θ′2
∆' {(Y1 7→ runknown2),(Y2 7→ b0034),(H2 7→ m30C6HSL),(Q2b 7→ luxR)}

• ρ′2
∆' {H2,Q2b}

• σ′2
∆' {m30C6HSL−luxR}

• τ′2
∆' {m30C12HSL−lasR}
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3. The parallel composition. For the parallel composition we observe that none

of the context-sensitive substitutions are “compatible”. We cannot combine θ1

and θ2, nor θ′1 and θ′2, because neither pair-wise union is injective on the corre-

sponding domains determined by ρ1∪ρ2 and ρ′1∪ρ′2, respectively. And we can-

not combine θ1 and θ′2, nor θ′1 and θ2, because the corresponding used species

and excluded species overlap. Hence we are left with the empty set of context-

sensitive substitutions.

This example demonstrates how solutions which give rise to cross-talk are filtered

out. Suppose that we place the parallel components in separate compartments as in the

predator-prey case study, e.g.:�
1 c [ X1 : prom<pos ( H1−Q1b)> ; X2 : rbs ] | | d [ Y1 : prom<pos ( Q2b−H2)> ; Y2 : rbs ] �

The evaluation of this program then proceeds as follows:

1. The first located sequential composition. The first sequential composition

gives rise to the same two context-sensitive substitutions as before, but after ap-

plying the compartment, the context-sensitive information is discarded. Hence

we get the substitutions (θ1,ρ1,σ1,τ1) and (θ′1,ρ
′
1,σ
′
1,τ
′
1) where

• θ1
∆' {(X1 7→ runknown2),(X2 7→ b0034),(H1 7→ m30C12HSL),(Q1b 7→ lasR)}

• θ′1
∆' {(X1 7→ runknown2),(X2 7→ b0034),(H1 7→ m30C6HSL),(Q1b 7→ luxR)}

and the remaining sets are empty.

2. The second located sequential composition. Similarly, the second compo-

nent of the parallel composition results in the two context-sensitive substitutions

(θ2,ρ2,σ2,τ2) and (θ′2,ρ
′
2,σ
′
2,τ
′
2) where

• θ2
∆' {(Y1 7→ runknown2),(Y2 7→ b0034),(H2 7→ m30C12HSL),(Q2b 7→ lasR)}

• θ′2
∆' {(Y1 7→ runknown2),(Y2 7→ b0034),(H2 7→ m30C6HSL),(Q2b 7→ luxR)}

and the remaining sets are empty.

3. The parallel composition. All four combinations of context-sensitive substitu-

tions from the two components are now compatible, and the parallel composi-

tion results in the set of unions of each combination. Hence we obtain the four

context-sensitive substitutions (θ1∪θ2, /0, /0, /0), (θ1∪θ′2, /0, /0, /0), (θ′1∪θ2, /0, /0, /0)

and (θ′1∪θ′2, /0, /0, /0).
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9.2.2 The Definition

Transport reactions and databases Transport reactions contain explicit compart-

ment identifiers which are important for simulation, but only the logical property that

transport is possible is captured in the reaction database. We therefore define the op-

erator (·)↓ on transport reactions to disregard compartment identifiers, i.e.:

(S→ idc[S])↓
∆' S→ [S] and (idc[S] → S)↓

∆' [S] → S

The meaning of a program is then given relative to global databases Kb and Kr of parts

and reactions, respectively. We assume these to be given by two finite sets of ground

terms:

Kb ( {idp : t(Qt) | FV(Qt) = /0} and

Kr ( {R | FV(R) = /0}∪{T ↓ | FV(T ) = /0}

Context-sensitive substitutions We define CS to be the set of context-sensitive sub-

stitutions (θ,ρ,σ,τ) where

1. θ : X ↪→fin IDs∪ IDp∪R is a substitution.

2. ρ (fin X is a set of variables over which θ is injective, i.e.

∀x1,x2 ∈ ρ.(x1 6= x2)⇒ (θ(x1) 6= θ(x2)).

3. σ,τ (fin S are, respectively, the species identifiers that have been used in the

current context and the species identifiers that are excluded for use, and σ∩τ = /0.

The target semantical objects of the denotation function are sets Θ ( CS of context-

sensitive substitutions which represent solutions to constraints. They also capture the

information necessary to ensure piece-wise injectivity over compartment boundaries,

together with cross-talk avoidance, as mentioned in the case studies and in the above

example.

We define the composition Θ1 6 Θ2 of two sets Θ1 and Θ2 of context-sensitive

substitutions as follows:

{(θi,ρi,σi,τi)}I 6{(θ′j,ρ′j,σ′j,τ′j)}J
∆' {(θi∪θ

′
j,ρi∪ρ

′
j,σi∪σ

′
j,τi∪ τ

′
j)}I×J ∩CS

Informally, the composition consists of all possible pairwise unions of the operands

which satisfy the conditions of context-sensitive substitutions. This means in particular
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that the resulting substitutions are indeed functions, that they are injective over the

relevant domain, and that the resulting sets of used and excluded species are disjoint.

The latter implies that any combinations in which the used species in one component

are not disjoint from the excluded species in another are filtered out by the composition.

If two sets of context-sensitive substitutions represent the solutions to the con-

straints of two programs, their composition represents the solutions to the constraints

of the composite program (e.g. the parallel or sequential compositions). From now

on we omit the indices I and J from indexed sets when they are understood from the

context.

Module definitions Module definitions give rise to partial functions f of the form

f (a,b) = Θ mapping actual parameters a and a binary string b to the target semantical

object Θ of the module; b is used for generating fresh names as in the semantics of

LBS. Module definitions are recorded in environments which are partial finite func-

tions Γ of the form Γ(idm) = f .

The substitution of actual parameters a for formal parameters u in a program P

is written P{u.i 7→ a.i} and is defined inductively on programs along standard lines,

with formal parameters and new variables as binders, except that a multiset inter-

pretation is assumed in which nested multisets are flattened. For example, the sub-

stitution {s2 7→ s2a + s2b} applied to the complex species s1 + s2 + s2 results in

s1 + 2 · s2a + 2 · s2b. In the corresponding concrete syntax, the substitution

{s2 7→ s2a−s2b} applied to the complex species s1−s2−s2 is written s1−s2a−s2b−s2a−s2b.

The denotation function We write doms(θ) for the subset of the domain of θ map-

ping to species identifiers, i.e.:

doms(θ)
∆' {x ∈ dom(θ) | θ(x) ∈ IDs}

A denotation function of the form JKKgsθ = vb assigning a boolean value vb ∈ {tt, ff}
to a numerical constraint K, given a function θ : X ↪→fin R, can be defined along stan-

dard lines and we refrain from doing so here. The context-sensitive substitution deno-

tational semantics of GEC is then given by a partial function of the form:

JPKgsΓ,b = Θ

which, given an environment Γ and a binary string b ∈ {0,1}∗, assigns a set Θ of

context-sensitive substitutions to a GEC program; the binary string is used for assign-
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ing fresh names to new variables following the same idea as for LBS. The definition is

given below.

• Ju : t(Qt)KgsΓ,b
∆' Θ where

– Θ
∆' {(θi,ρi,σi,FS(Qi)\σi) | uθi : t(Qi) ∈Kb∧Qtθi ⊆ Qi∧

dom(θi) = FV(u : t(Qt))∧
ρi = doms(θi)∧σi = FS(Qtθi)}

• J0KgsΓ,b
∆' {( /0, /0, /0, /0)}

• Jidm(u)
∆' P1; P2KgsΓ,b

∆' JP2KgsΓ〈idm 7→ f 〉,b where

– f (a,b′)
∆' JP1{u.i 7→ a.i}KgsΓ,b′

• Jidm(a)KgsΓ,b
∆' f (a,b) where

– f
∆' Γ(idm)

• JP |CKgsΓ,b
∆' Θ1 6Θ2 where

– Θ1
∆' JPKgsΓ,b

– Θ2
∆' JCKgs

• JP1 ‖ P2KgsΓ,b
∆' Θ1 6Θ2 where

– Θ1
∆' JP1KgsΓ,0b

– Θ2
∆' JP2KgsΓ,1b

• JP1 ; P2KgsΓ,b
∆' Θ1 6Θ2 where

– Θ1
∆' JP1KgsΓ,0b

– Θ2
∆' JP2KgsΓ,1b

• Jidc[P]KgsΓ,b
∆' {(θ, /0, /0, /0) | (θ,ρ,σ,τ) ∈Θ} where

– Θ
∆' JPKgsΓ,b

• Jnew x. PKgsΓ,b
∆' JP{x 7→ b′0b}KgsΓ,1b where

– b′ is the shortest string in {b′ ∈ {0}∗ | b′0b 6∈ FV(P)}

• JRttKgs
∆' {( /0, /0, /0, /0)}
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• JRffKgs
∆' {(θi,doms(θi),FS(Rθi), /0) | Rθi ∈Kr∧dom(θi) = FV(R)}

• JT Kgs
∆' {(θi,doms(θi),FS(T θi), /0) | T ↓θi ∈Kr∧dom(θi) = FV(T )}

• JKKgs
∆' {(θi, /0, /0, /0) | JKKgsθi = tt∧dom(θi) = FV(K)}

We furthermore define JPKgs
∆' JPKgs /0,ε.

Explanation of the denotation function In the first case, the denotation function

gives rise to substitutions satisfying the constraint that the part with the given proper-

ties, after the substitution has been applied, is in the parts database. The substitutions

are furthermore required to be defined exactly on the variables mentioned in the pro-

gram. The excluded species are those which are associated with the part in the database

but not stated explicitly in the program.

The cases of module definition and invocation reflect the intuition given earlier.

The cases of constraint composition, parallel composition and sequential composition

all compose the substitutions arising from the components.

The case of compartments simply “forgets” about the injective domain, used species

and excluded species. Hence subsequent compositions of the compartment program

with other programs will not be restricted in the use of species, reflecting the intuition

that cross-talk is not a concern across compartment boundaries, as illustrated in the

predator-prey case study and in the above example.

In the case of the new variable operator, the specified variable is simply replaced

by an appropriate fresh variable in the following program P. The fresh variable is

constructed from the binary string parameter b of the denotation function by prefixing

another string b′, chosen to ensure that the result is indeed fresh in P; this is necessary

because there may be free variables in P that are not generated through the semantics.

Note that the construction must be based on b in order to ensure that the same new

variable in different instances of a module get replaced by different fresh variables.

The cases of reactions and of transport follow a similar idea as the case of parts,

except that the reaction database is used instead of the parts database. Finally, the case

of numerical constraints gives rise to the set of all substitutions which satisfy the given

constraints.
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9.2.3 Results

Recall the two requirements for the translation mentioned informally in the case studies

in the previous chapter. The first requirement is piece-wise injectivity of substitutions:

distinct species variables within the same compartment must take distinct values. The

second requirement is non-interference: a part may be used only if its “implicit” prop-

erties do not contain species which are present in the same compartment as the part.

These requirements are formalised in the following two propositions. We use contexts

C (·) to denote any program with zero or more holes, and C (P) to denote the context

with the (capture-free) substitution of P for the holes. The free module identifiers of

P, defined in a standard manner with module definitions as binding constructs, are de-

noted by FM(P). Finally, we say that a program P is compartment-free if it does not

contain located programs, and we say that it is well-formed if all its module identifiers

are defined exactly once and used at least once.

Proposition 9.2.1 (Piece-wise injectivity). Let C (·) be any context with at least one

hole and let P be any compartment-free, well-formed program with FM(P) = /0. Let

{(θi,ρi,σi,τi)}
∆' JC (P)Kgs. Then θi is injective on the domain FV(P)∩doms(θi).

Proposition 9.2.2 (Non-interference). Let P = u : t(Qt) be any basic program and let

C (·) be any compartment-free, well-formed context with at least one hole.

Let {(θi,ρi,σi,τi)}
∆' JC (P)Kgs. Then uθi : t(Q) ∈ Kb for some Q and

σi ∩ (FS(Q)\FS(Qtθi)) = /0.

9.3 The Device Semantics of GEC

9.3.1 The Intuition

A device template is a set of lists over part identifiers and variables, and this captures

the relevant genetic structure of a program. A context-sensitive substitution can be

applied to a device template in order to obtain a final concrete device, i.e. a set of lists

over part identifiers. As an example, let us revisit the small program from the previous

section:�
1 c [ X1 : prom<pos ( H1−Q1b)> ; X2 : rbs ] | | d [ Y1 : prom<pos ( Q2b−H2)> ; Y2 : rbs ] �

The meaning of this program in terms of device templates is deduced informally as

follows:
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1. The first sequential composition. This gives rise to the device template {[X1,X2]}
obtained by concatenating the singleton lists in the two singleton sets {[X1]} and

{[X2]}; these in turn are obtained from the atomic programs in the sequential

composition by preserving the part identifier while forgetting about the part type

and properties.

2. The second sequential composition. This gives rise to the device template

{[Y1,Y2]} in a similar fashion.

3. The parallel composition. This results in the union {[X1,X2], [Y1,Y2]} of the

device templates from the two components.

Any of the four context-sensitive substitutions resulting from the substitution se-

mantics can be applied to the resulting device template. In this particular example, all

substitutions give rise to the same device, namely {[runknown2,b0034], [runknown2,b0034]}.

9.3.2 The Definition

We let ∆ range over the set 2U∗ of device templates, i.e. sets of lists over variables and

part identifiers, and we let δ range over the set U∗ of single lists of variables and part

identifiers. The denotational function assigns device templates to GEC programs and

is of the form:

JPKgdΓ,b = ∆

It is defined in the following.

• Ju : t(Qt)KgdΓ,b
∆' {[u]}

• J0KgdΓ,b
∆' {ε}

• Jidm(u)
∆' P1; P2KgdΓ,b

∆' JP2KgdΓ〈idm 7→ f 〉,b where

– f (a,b′)
∆' JP1{u.i 7→ a.i}KgdΓ,b′

• Jidm(a)KgdΓ,b
∆' f (a,b) where

– f
∆' Γ(idm)

• JP |CKgdΓ,b
∆' JPKgdΓ,b

• JP1 ‖ P2KgdΓ,b
∆' ∆1∪∆2 where
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– ∆1
∆' JP1KgdΓ,0b

– ∆2
∆' JP2KgdΓ,1b

• JP1 ; P2KgdΓ,b
∆' {δ1iδ2 j}I×J where

– {δ1i}I
∆' JP1KgdΓ,0b

– {δ2 j}J
∆' JP2KgdΓ,1b

• Jidc[P]KgdΓ,b
∆' JPKgdΓ,b

• Jnew x. PKgdΓ,b
∆' JP{x 7→ b′0b}KgdΓ,1b where

– b′ is the shortest string in {b′ ∈ {0}∗ | b′0b 6∈ FV(P)}

We furthermore define JPKgd
∆' JPKgd /0,ε.

Explanation of the denotation function The cases of module definition and invoca-

tion, and of new variables, are the same as the corresponding cases in the substitution

semantics. In the case of a basic part program, the denotation function assigns a single-

ton set with a sequence consisting of the relevant part identifier or variable. The case

of a nil program results in a singleton set with the empty list. The cases of constraint

composition and of located programs simply evaluate the nested programs inductively,

i.e. constraints and compartments have no effect on the structure of devices because

they do not give rise to any parts.

The cases of parallel and sequential composition reflect the intuition given in our

example. The parallel composition produces all the part sequences resulting from the

first component together with all the part sequences resulting from the second compo-

nent, i.e. the union of two sets, and the case of sequential composition gives rise to a

Cartesian product.

9.4 The Reaction Semantics of GEC

9.4.1 The Intuition

In the previous chapter we outlined informally how reactions can be deduced from

the properties of parts. While this process is simple in principle, it is complicated by

modularity. We demonstrate the formal process with the following small example:



176 Chapter 9. The Abstract Syntax and Semantics of GEC

Table 9.4.1: An example of the translation from a part sequence to the associated

reactions. A globally defined mRNA degradation rate, rdm, is assumed.

# Part Sequence Input Output Reactions

1 prom<con(rt)> m g −>{rt} g + m

m −>{rdm}

2 rbs<rate(r)> m’, p’ m’ −>{r} m’ + p’

3 prom<con(rt)>; p’ g −>{rt} g + m

rbs<rate(r)> m −>{rdm}

m −>{r} m + p’

4 pcr<codes(p, rd)> p p −>{rd}

5 prom<con(rt)>; g −>{rt} g + m

rbs<rate(r)>; m −>{rdm}

pcr<codes(p, rd)> m −>{r} m + p

p −>{rd}

�
1 prom<con ( r t ) >; rbs<r a t e ( r ) >; pcr<codes ( p , rd )> �

Here we have included the con and rate properties explicitly since in the following

examples and definitions, reactions are only generated from properties which are listed

explicitly in programs. In practice however, we assume that con and rate properties with

fresh variables are implicitly added to promoters and ribosome binding site programs

if not given explicitly.

Each of the parts is translated to a corresponding set of reactions, as shown in

Table 9.4.1. The actual species used in the reactions sometimes depend on the context

in which the parts are placed. Thus, the reactions can take some species as “inputs”

from neighbouring parts, and produce other species as “outputs” for other parts, as

demonstrated with the input and output columns of the table.

We explain the translation to reactions by considering the first two parts in isolation,

then the first sequential composition, the third part, and finally the third sequential

composition, following the ordering shown in Table 9.4.1.

1. The translation of the promoter outputs a transcription reaction of the form

g −>{rt} g + m and a degradation reaction of the form m −>{rdm} where g and m
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are fresh identifiers representing respectively a gene and an mRNA. The evalua-

tion also outputs the name m of the mRNA since this is necessary for subsequent

sequential compositions.

2. The translation of the ribosome binding site outputs a translation reaction of the

form m’ −>{r} m’ + p’ where m’ is the mRNA and p’ is the protein being produced.

But neither m’ nor p’ is known until the ribosome binding site is placed in a con-

text of other parts. Hence the translation of the ribosome binding site gives rise

to a function which is parameterised on m’ and p’: f (m’,p’)
∆' m’ −> {r} m’ + p’.

3. The left-most sequential composition can now be translated by applying the

function f obtained from the ribosome binding site to the mRNA m obtained

from the promoter. But since the second parameter of f is not yet known, this

results in a new function g(p’)
∆' f (m,p’) = m −>{r} m + p’ with just a single

parameter. The translation hence outputs g together with the reactions already

obtained from the promoter.

4. The translation of the protein coding region immediately gives rise to a degrada-

tion reaction, and also to the name of the protein coded for which is needed for

the subsequent composition. Hence the translation outputs both the degradation

reaction p −>{rd} and the identifier p.

5. The right-most sequential composition can now be translated by applying the

function g obtained previously to the protein p obtained from the protein coding

region, resulting in the reaction g(p) = m −>{r} m + p. The translation outputs

this new reaction together with the reactions already obtained.

The translation is complicated further in the presence of compartments and trans-

port. Compartments are handled by representing reactions as programs in a small

language resembling LBS and CBS; we call these reaction template programs since

they may generally contain variables. Transport reactions complicate matters because

protein degradation reactions may need to be placed in compartments in which the pro-

tein is not expressed. To address this, the translation function returns both a program

representing reactions and a separate set of protein degradation reactions. After the

translation, the protein degradation reactions can be placed in the relevant compart-

ments and then composed with the other reactions.
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9.4.2 The Definition

Here is the formal definition of our reaction template programs, where R and T are

GEC reactions and transport reactions, respectively, as generated by the grammar in

Table 9.1.1:

L ::= R | T | 0 | L1|L2 | idc[L]

A program L can easily be translated to a CBS or LBS program, allowing e.g. the LBS

tools to be used for simulation. Given a set {Li} of reaction template programs, we let

par{Li} denote their parallel composition; the ordering is insignificant since parallel

composition is commutative.

With our motivating example in mind, the denotation function takes the form:

JPKgrΓ,b = (L,D,M,Pr,F,G,H)

where

• L is a reaction template program.

• D is a finite set {Ri} of protein degradation reactions.

• M (fin U is a set of mRNA species.

• Pr (fin U is a set of protein species.

• F is a set of functions of the form f (m, p) = R mapping pairs (m, p) ∈U×U of

mRNA and protein species to a reaction.

• G is a set of functions of the form g(m) = R mapping an mRNA species m ∈U

to a reaction.

• H is a set of functions of the form h(p) = R mapping a protein species p ∈U to

a reaction.

The denotation function is defined in the following; again we assume a global

mRNA degradation rate rdm, and in order to clarify the presentation, we write reaction

template programs L in a notation that resembles the concrete syntax of LBS.

• Ju :prom(Q)KgrΓ,b
∆' (L, /0,{m}, /0, /0, /0, /0) where

– g
∆' 0b
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– m
∆' 1b

– reacs(con( rt ))
∆' g −>{rt} g + m

– reacs(pos(s , rb , rub , rtb ))
∆'

g + s −>{rb} g−s | g−s −>{rub} g + s | g−s −>{rtb} g−s + m

– reacs(neg(s , rb , rub , rtb ))
∆'

g + s −>{rb} g−s | g−s −>{rub} g + s | g−s −>{rtb} g−s + m

– L
∆' par{reacs(q) | q ∈ Q} | m −>{rdm}

• Ju :rbs({rate( r )})KgrΓ,b
∆' (0, /0, /0, /0,{ f}, /0, /0) where

– f (m,p)
∆' m −>{r} p

• Ju :pcr({codes(p, r )})KgrΓ,b
∆' (0,{ p −>{r} }, /0,{p}, /0, /0, /0)

• Ju :terKgrΓ,b
∆' (0, /0, /0, /0, /0, /0, /0)

• J0KgrΓ,b
∆' (0, /0, /0, /0, /0, /0, /0)

• Jidm(u)
∆' P1; P2KgrΓ,b

∆' JP2KgrΓ〈idm 7→ f 〉,b where

– f (a,b′)
∆' JP1{u.i 7→ a.i}KgrΓ,b′

• Jidm(a)KgrΓ,b
∆' f (a,b) where

– f
∆' Γ(idm)

• JP |CKgrΓ,b
∆' (L1 | L2,D,M,Pr,F,G,H) where

– (L1,D,M,Pr,F,G,H)
∆' JPKgrΓ,b

– L2
∆' JCKgr

• JP1 ‖P2KgrΓ,b
∆' (L1 | L2,D1∪D2,M1∪M2,Pr1∪Pr2,F1∪F2,G1∪G2,H1∪H2)

where

– (L1,D1,M1,Pr1,F1,G1,H1)
∆' JP1KgrΓ,0b

– (L2,D2,M2,Pr2,F2,G2,H2)
∆' JP2KgrΓ,1b

• JP1 ; P2KgrΓ,b
∆' (L1 | L2 | L,D1∪D2,M,Pr,F,G,H) where

– (L1,D1,M1,Pr1,F1,G1,H1)
∆' JP1KgrΓ,0b

– (L2,D2,M2,Pr2,F2,G2,H2)
∆' JP2KgrΓ,1b
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– M
∆'

M1 if M2 = /0

M2 otherwise

– Pr
∆'

Pr2 if Pr1 = /0

Pr1 otherwise

– (F ′1,H
′
1)

∆'

(F1,H1) if Pr2 = /0

( /0, /0) otherwise

– (F ′2,G
′
2)

∆'

(F2,G2) if M1 = /0

( /0, /0) otherwise

– F
∆' F ′1∪F ′2

– G
∆' {g | g(m)

∆' f (m, p)∧ f ∈ F1∧ p ∈ Pr2}∪G1∪G′2

– H
∆' {h | h(p)

∆' f (m, p)∧ f ∈ F2∧m ∈M1}∪H2∪H ′1

– L
∆' par{g(m) | g ∈ G2,m ∈M1}∪par{h(p) | h ∈ H1, p ∈ Pr2}

• Jidc[P]KgrΓ,b
∆' (idc[L],D,M,Pr,F,G,H) where

– (L,D,M,Pr,F,G,H)
∆' JP1KgrΓ,b

• Jnew x. PKgrΓ,b
∆' JP{x 7→ b′0b}KgrΓ,1b where

– b′ is the shortest string in {b′ ∈ {0}∗ | b′0b 6∈ FV(P)}

• JRvbKgr
∆' R

• JT vbKgr
∆' T

• JKKgr
∆' 0

We furthermore define JPKgr
∆' JPKgd /0,ε.

Explanation of the denotation function The cases of module definition and invoca-

tion, and of new variables, are the same as the corresponding cases in the substitution

and device template semantics. In the case of basic part programs, properties give rise

to reactions and functions as outlined in the examples; fresh gene and mRNA species

are constructed from the binary string parameter of the denotation function. Constraint

composition and parallel composition simply give rise to pairwise unions.
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In the case of sequential composition, the functions in the sets G2 and H1 are ap-

plied to respectively mRNA and proteins from M2 and Pr2, giving rise to concrete

reactions which are then composed in parallel. New sets G and H of functions pa-

rameterised on respectively mRNA and proteins are obtained in a similar fashion from

appropriate instantiations of the functions in F1 and F2.





Chapter 10

Conclusions

We evaluate our results with respect to the general aim of the thesis in Section 1. We

discuss limitations and future work in Section 2.

10.1 Evaluation

Recall from the introduction that the general aim of the thesis is the development of

formal languages for biology which:

1. allow one to write modular models of large cellular systems, and

2. allow one to write intuitively and concisely.

We have introduced two languages in pursuit of this aim, namely LBS for systems

biology and GEC for synthetic biology. Both have been defined formally in terms of

an abstract syntax and semantics, and compilers for the languages have been imple-

mented.

We have demonstrated LBS and GEC through examples and case studies. LBS

inherits some support for writing modular and intuitive models from CBS. We have

contrasted our example LBS models with corresponding CBS models, clearly demon-

strating how the LBS models achieve a higher degree of modularity through parameter-

isation and more concise models through species expressions and nondeterminism. We

have shown that LBS can be used for large-scale modelling through case studies of the

yeast pheromone and ErbB signalling pathways. We have also shown how modularity

can be exploited in analysis in the case of Petri net flows.

In the case of GEC, our examples have shown how models can be composed from

genetic parts in a concise manner. These examples should be contrasted with models

183
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using other languages such as LBS, in which reactions for representing the dynamics

of gene expression have to be written explicitly, and in which the geometric structure

of genetic circuits is not readily apparent. Logical properties support the writing of

intuitive models by allowing abstraction away from specific parts, and parameterised

modules allow further abstraction away from the level of parts to e.g. genetic gates.

We have shown through case studies how GEC can be used to model the repressilator

and predator-prey systems, the latter of which represents one of the largest synthetic

devices to date.

10.2 Future Work

10.2.1 LBS

Nondeterminism Nondeterminism, based on the or operator, provides a means

to handling moderately combinatorial systems in a compact manner. Combinations

within the same nondeterministic species can be restricted by using the restriction op-

erator, not, and combinations between multiple nondeterministic species in reactions

can be restricted by using conditionals. Conditionals can however only distinguish

species based on their internal state. Although the identity of species can be encoded

as internal states, doing so is cumbersome and artificial. One would therefore like

language-level support for a more refined mechanism.

A type system The LBS denotation functions impose certain constraints on their

arguments. The resulting notion of well-typedness is a dynamical one: the denota-

tion of a module is a function, and whether or not this function is defined for a given

set of actual parameters is determined by applying the function to these parameters.

This approach falls short in two respects. First, the function may not be defined for

any parameters at all. In this case it is the module definition that should be reported

as ill-typed, rather than the module invocation. Second, well-typedness of a module

invocation should be determined based on the actual parameters and an appropriate

interface of the module, rather than by attempting to translate the body of the module

under a given set of actual parameters. Hence one would like a dedicated type system

which addresses these problems.
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Concrete semantics We have given concrete semantics of LBS in terms of Petri

nets, coloured Petri nets, ODEs, CTMCs, κ and Petri net flows. Additional concrete

semantics, for example in terms of BioNetGen and BioPEPA, would be of interest. A

BioNetGen concrete semantics can easily be defined based on the κ concrete semantics

and would make LBS more accessible to modellers already using BioNetGen and its

supporting tools. A BioPEPA concrete semantics would enable the large range of

analysis tools supporting BioPEPA to be used in the context of LBS. Finally, having

demonstrated how modularity can be exploited in the concrete Petri net flow semantics,

it would be interesting to investigate if modularity can also be exploited elsewhere, e.g.

in the κ analysis methods.

Visualisation Although LBS has been designed with ease of use in mind, it remains

a textual language that may not be easily accessible to some biologists. Graphical rep-

resentations of models can ameliorate this problem. Specifically, tools for visualising

LBS programs and, conversely, for generating LBS programs from visual diagrams,

would be useful. These tools might follow the Systems Biology Graphical Notation

(SBGN) [54]. One challenge, not currently addressed in SBGN, is to devise a suitable

graphical representation of parameterised modules.

Modelling We have demonstrated how LBS can be used in practical modelling appli-

cations by reproducing published models of the yeast pheromone and ErbB signalling

pathways. More can be done for the latter, in particular by resolving the use of the

COPY species which have been introduced in order to make the LBS model consis-

tent with the published model. The LBS model also sheds light onto some potential

inconsistencies which should be investigated further.

Going beyond the reproduction of existing models, one would like to apply LBS

to the development of novel models in collaboration with biologists. This is likely to

reveal practical problems to be addressed through further iterations of language design.

10.2.2 GEC

Genetic parts databases The translation of GEC models to devices relies on a

database of genetic parts and their relevant biological properties. We have used a

proof-of-concept database in this thesis, chosen with the aim of demonstrating the key

features of GEC. However, in order for GEC to be useful in practical applications, a

fully developed database of known parts is needed. One barrier to developing such a
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database is the lack of characterisation data available for parts, although the situation

is rapidly improving.

The translation of GEC programs also relies on a database of known reactions.

Building a comprehensive database of this type is likely to be difficult in practice.

There is also a question of representation to be addressed: instead of the multiset

representation currently used, species in reactions can be represented at the lower level

of binding domains as in κ. Choosing this level of representation could make profitable

use of additional part types, such as protein domains, which are already present to some

extent in the MIT Registry. This in turn would allow for more flexible models which

are not limited by a fixed set of known proteins, and it could reduce the number of

reactions recorded in the database.

We stress however that the reaction database is not essential for our approach;

reactions can be “starred”, indicating that they are only used for simulation and not as

constraints to be satisfied.

Constraint satisfaction engine The implementation of the GEC compiler includes

a constraint satisfaction engine for selecting appropriate parts from the given database

following the substitution denotational semantics of GEC. Currently this engine is im-

plemented in Prolog. It uses the standard resolution algorithm of Prolog, and does not

scale well. Its performance depends heavily on the ordering of constraints within the

GEC model, and even for our proof-of-concept case studies, compilation can take in

the order of minutes. This time will increase rapidly with the size of the model and

the size of the database, which significantly limits the practical applicability of GEC.

One would therefore like a more efficient implementation which takes advantage of

dedicated constraint logic programming techniques.

A type system GEC does not have a notion of well-typedness, so it is possible to e.g.

use a species identifier in places where a part identifier is expected without any error

being flagged. A dedicated type system would hence be useful to prevent such situa-

tions. A type system could furthermore incorporate the idea of GenoCad of ensuring

that part sequences are biologically meaningful.

Language development We have presented an idealised view that any device result-

ing from a GEC model can be readily implemented in a living cell. In reality, there

are of course many factors which could prevent such an implementation from work-
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ing. One must for example consider the impact of devices on the host cell physiology

where the metabolic burden caused by circuit activation may overload the cell [66].

One would like such effects to be automatically deduced from GEC models, e.g. in

terms of reactions modelling the relevant interactions between a device and a host cell.

Extensions of the databases, and of the GEC language itself, may in turn be needed to

facilitate such deductions.





Appendix A

The Yeast Pheromone Pathway in LBS

�
1 / / Ra te c o n s t a n t d e f i n i t i o n s :

2 r a t e k1 = 0 . 0 3 ;

3 r a t e k2 = 0 . 0 0 1 2 ;

4 r a t e k3 = 0 . 6 ;

5 r a t e k4 = 0 . 2 4 ;

6 r a t e k5 = 0 . 0 2 4 ;

7 r a t e k6 = 0 . 0 0 3 6 ;

8 r a t e k7 = 0 . 2 4 ;

9 r a t e k8 = 0 . 3 3 ;

10 r a t e k9 = 2000 ;

11 r a t e k10 = 0 . 1 ;

12 r a t e k11 = 5 ;

13 r a t e k12 = 1 ;

14 r a t e k13 = 3 ;

15 r a t e k14 = 1 ;

16 r a t e k15 = 3 ;

17 r a t e k16 = 3 ;

18 r a t e k17 = 100 ;

19 r a t e k18 = 5 ;

20 r a t e k19 = 1 ;

21 r a t e k20 = 1 0 ;

22 r a t e k21 = 5 ;

23 r a t e k22 = 4 7 ;

24 r a t e k23 = 5 ;

25 r a t e k24 = 345 ;

26 r a t e k25 = 5 ;

27 r a t e k26 = 5 0 ;

28 r a t e k27 = 5 ;

29 r a t e k28 = 140 ;

189
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30 r a t e k29 = 1 0 ;

31 r a t e k30 = 1 ;

32 r a t e k31 = 250 ;

33 r a t e k32 = 5 ;

34 r a t e k33 = 5 0 ;

35 r a t e k34 = 1 8 ;

36 r a t e k35 = 1 0 ;

37 r a t e k36 = 0 . 1 ;

38 r a t e k37 = 0 . 1 ;

39 r a t e k38 = 0 . 0 1 ;

40 r a t e k39 = 1 8 ;

41 r a t e k40 = 1 ;

42 r a t e k41 = 0 . 0 0 2 ;

43 r a t e k42 = 0 . 1 ;

44 r a t e k43 = 0 . 0 1 ;

45 r a t e k44 = 0 . 0 1 ;

46 r a t e k45 = 0 . 1 ;

47 r a t e k46 = 200 ;

48 r a t e k47 = 1 ;

49

50 / / Fus3 i s sh ar ed be tween most modules and i s t h e r e f o r e g l o b a l :

51 spec Fus3 = new{p : bool } ;

52

53 module R e c e p t o r A c t ( comp c y t o ; spec d e g r a d o r ; specout a r ) {
54 spec Alpha = new {} ;

55 i n i t Alpha 1000 .0 |
56

57 spec Ste2 = new{p : bool } ;

58 i n i t c y t o [ S t e2 ] 1666 .67 |
59

60 / / pheromone and r e c e p t o r d e g r a d a t i o n

61 c y t o [ d e g r a d o r ] ˜ Alpha −>{k1} |
62 c y t o [ S t e2 ] −>{k5} |
63

64 / / r e c e p t o r a c t i v a t i o n :

65 Alpha + c y t o [ S t e2 ] −>{k2} Alpha + c y t o [ S t e2 {p} as a r ] ;

66 c y t o [ a r ] −>{k3} c y t o [ S t e2 ] ;

67 / / r e c e p t o r−l i g a n d d e g r a d a t i o n :

68 c y t o [ a r ] −>{k4}
69 } ;

70

71 module GPro tCyc le ( spec a c t ; specout Gbg ) {
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72 spec Ga = new{} , Gbg = new {} ;

73 spec S s t 2 = new{p : bool } , GDP = new{} , GTP = new {} ;

74 spec Gbga = Gbg−Ga−GDP;

75 i n i t Gbga 1666 .67 |
76

77 / / d i s a s s o c i a t i o n o f G−p r o t e i n complex :

78 a c t ˜ Gbga −>{k6} Gbg + Ga−GTP |
79 / / . . . and c y c l e :

80 Ga−GTP −>{k7} Ga−GDP |
81 S s t 2 {p} ˜ Ga−GTP −>{k8} Ga−GDP |
82 / / n e x t r e a c t i o n does n o t f o l l o w mass−a c t i o n k i n e t i c s :

83 r a t e v46 =

84 k46 ∗ ( Fus3{p } ˆ2 / ( 4 ˆ 2 + Fus3{p } ˆ 2 ) ) ;

85 Fus3{p} ˜ S s t 2 <−>[v46 ]{ k47} S s t 2 {p} |
86 Ga−GDP + Gbg −>{k9} Gbga

87 } ;

88

89 / / S p e c i e s common t o t h e r e m a i n i n g modules :

90 spec Ste11 = new{p : bool } ;

91 spec Ste7 = new{p : bool } ;

92 spec Ste5 = new{p : bool } ;

93

94 module S c a f f o l d F o r m ( spec gbg ; specout e : Fus3−Ste5−Ste7−Ste11 ) {
95 spec Ste20 = new {} ; i n i t Ste20 1000 .0 |
96

97 / / a sub−module f o r s c a f f o l d f o r m a t i o n ; h i d e s gbg and S t e 2 0 :

98 module f o r m a t i o n ( specout e : Ste5−Ste7−Ste11−Fus3 ) {
99 Ste11 + S te5 <−>{k12}{k13} Ste11−Ste5 as a ; i n i t a 105 .94 |

100 Ste7 + Fus3 <−>{k14}{k15} Ste7−Fus3 as b ; i n i t b 77 .87 |
101 a + b −>{k16} a−b as c ; i n i t c 235 .72 |
102 c + gbg <−>{k10}{k11} c−gbg as d ;

103 d + Ste20 <−>{k18}{k19} d−Ste20 as e ;

104 c −>{k17} Ste11 + S te5 + S te7 + Fus3

105 } ;

106

107 / / . . . and a submodule f o r d e g r a d a t i o n :

108 module d e g r a d a t i o n ( spec complex ; r a t e r ) {
109 complex −>{r } Ste5 + S te7 + Ste11 + Ste20 + Fus3 + gbg

110 } ;

111

112 / / i n v o k e t h e f o r m a t i o n module :

113 f o r m a t i o n ( spec e ) ;
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114

115 / / i n v o k e d e g r a d a t i o n f o r each complex m o d i f i c a t i o n :

116 d e g r a d a t i o n ( e , k21 ) ;

117 spec f = e<Ste11 {p}>;

118 d e g r a d a t i o n ( f , k23 ) ;

119 spec g = f<Ste7 {p}>;

120 d e g r a d a t i o n ( g , k25 ) ;

121 spec h = g<Fus3{p}>;

122 d e g r a d a t i o n ( h , k27 ) ;

123 spec l = ( h\Fus3)< Ste5 {p}>;

124

125 / / ca nn o t use module t o degrade l , as t h i s does n o t have Fus3 :

126 l −>[k32 ∗ l ] S t e5 + S te7 + Ste11 + Ste20 + gbg

127 } ;

128

129 module MAPKCascade ( spec e : mk1{p}−mk2{p}−mk3{p } ; specout h : e ) {
130 e −>{k20} e<mk3{p}> as f ;

131 f −>{k22} f<mk2{p}> as g ;

132 g −>{k24} g<mk1{p}> as h

133 } ;

134

135 module Repea tedFus3Phos ( spec h : Fus3{p}−Ste5 {p } ) {
136 h −>{k26} h<Ste5 {p}> as i ;

137 i −>{k28} i \Fus3 as l + i . Fus3 ;

138 l + Fus3 <−>{k29}{k30} l−Fus3 as k ;

139 k −>{k31} i |
140 Fus3{p} −>{k33} Fus3

141 } ;

142

143 module PrepMat ing ( comp n u c l e u s ; spec gbg )

144 {
145 spec Far1 = new{p : bool , u : bool } ;

146 i n i t n u c l e u s [ Far1 ] 500 .0 |
147

148 spec Cdc28 = new {} ;

149 i n i t n u c l e u s [ Cdc28 ] 300 .0 |
150

151 / / n e x t r e a c t i o n does n o t use mass−a c t i o n k i n e t i c s :

152 r a t e v39 = k39 ∗ n u c l e u s [ Far1 ] ∗
153 Fus3{p } ˆ2 / ( 1 0 0 ˆ 2 + Fus3{p } ˆ 2 ) ;

154 Fus3{p} ˜ n u c l e u s [ Far1 ] <−>[v39 ]{ k40} n u c l e u s [ Far1 {p } ] ;

155
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156 n u c l e u s [

157 Cdc28 ˜ Far1 −>{k41} Far1 {u} |
158 Far1 {p} + Cdc28 <−>{k45}{k44} Far1 {p}−Cdc28

159 ] |
160 n u c l e u s [ Far1 {p } ] + gbg <−>{k42}{k43} n u c l e u s [ Far1 {p}−gbg ]

161 } ;

162

163 module GeneExpAlt ( spec Bar1 :{ a c t : bool } ; comp c y t o s o l , n u c l e u s ) {
164 spec Ste12 = new{ a c t : bool } ;

165 i n i t c y t o s o l [ n u c l e u s [ S te12 ] ] 200 .0 |
166

167 c y t o s o l [

168 spec a c t = Fus3{p}−Ste12 { a c t } ;

169 Fus3{p} + n u c l e u s [ S te12 ] <−>{k34}{k35} n u c l e u s [ a c t ] ;

170 n u c l e u s [ a c t ˜ Bar1 <−>{k36}{k37} Bar1{ a c t } ]

171 ] |
172

173 Bar1{ a c t } −>{k38}
174 } ;

175

176 / / main body o f t h e module . f i r s t d e c l a r e our compar tmen t s : ∗ )

177 comp c y t o s o l = new comp ;

178 comp n u c l e u s = new comp i n s i d e c y t o s o l ;

179

180 spec Bar1 = new{ a c t : bool } ;

181 i n i t c y t o s o l [ n u c l e u s [ Bar1 ] ] 200 .0 |
182

183 R e c e p t o r A c t ( c y t o s o l , n u c l e u s [ Bar1{ a c t } ] , spec a r ) ;

184

185 c y t o s o l [

186 i n i t Fus3 686 .40 |
187 i n i t Ste11 158 .33 |
188 i n i t Ste7 36 .40 |
189 i n i t Ste5 158 .33 |
190

191 GPro tCyc le ( ar , spec gbg ) ;

192 S c a f f o l d F o r m ( gbg , spec e ) ;

193 MAPKCascade ( e : Fus3{p}−Ste7 {p}−Ste11 {p } , spec h ) ;

194 Repea tedFus3Phos ( h : Fus3{p}−Ste5 {p } ) ;

195 PrepMat ing ( n u c l e u s , gbg )

196 ] |
197
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198 GeneExpAlt ( Bar1 :{ a c t } , c y t o s o l , n u c l e u s ) �



Appendix B

The ErbB Pathway in LBS

�
1 / / compar tment d e f i n i t i o n s :

2 comp p l a s = new comp ; / / p lasma membrane

3 comp endo = new comp ; / / endosomal membrane

4 comp c y t o = new comp ; / / c y t o s o l

5 comp medium = new comp ; / / e x t r a−c e l l u l a r space

6 comp world = new comp ; / / top− l e v e l compar tment

7 comp endosomes = new comp ; / / endosomes

8 comp l y sosomes = new comp ; / / l y s o s o m e s

9

10 / / r a t e c o n s t a n t d e f i n i t i o n s :

11 r a t e kd1 = 0 . 0 0 3 3 ;

12 r a t e k1c = 800 ;

13 r a t e kd1c = 1 ;

14 r a t e kd1d = 0 . 1 ;

15 r a t e k1d = 518 ;

16 r a t e k2 = 7 .44622E−06;

17 r a t e kd2 = 0 . 1 6 ;

18 r a t e k2b = 3 .73632E−08;

19 r a t e kd2b = 0 . 0 1 6 ;

20 r a t e k3 = 1 ;

21 r a t e kd3 = 0 . 0 0 1 ;

22 r a t e k4 = 6 . 7 3 E−06;

23 r a t e kd4 = 0 . 0 0 0 1 6 6 ;

24 r a t e k4b = 0 ;

25 r a t e kd4b = 0 . 0 0 0 1 6 6 ;

26 r a t e k5 = 0 ;

27 r a t e kd5 = 0 . 8 0 8 3 3 ;

28 r a t e k5b = 0 ;

29 r a t e kd5b = 0 . 0 0 8 0 8 3 3 ;

195
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30 r a t e kd5c = 0 . 1 6 2 ;

31 r a t e k6 = 0 . 0 1 3 ;

32 r a t e kd6 = 5E−05;

33 r a t e k8 = 5 .91474E−07;

34 r a t e kd8 = 0 . 2 ;

35 r a t e kd8b = 0 . 0 2 ;

36 r a t e k8b = 9 .34641E−06;

37 r a t e k10 = 140000;

38 r a t e k10b = 0 . 0 5 4 2 6 ;

39 r a t e kd10 = 0 . 0 1 1 ;

40 r a t e k13 = 0 ;

41 r a t e kd13 = 0 ;

42 r a t e k14 = 0 ;

43 r a t e kd14 = 0 ;

44 r a t e k15 = 1 .667E−08;

45 r a t e kd15 = 0 ;

46 r a t e k16 = 1 . 6 7 E−05;

47 r a t e k16b = 1 .667E−07;

48 r a t e k17 = 1 . 6 7 E−05;

49 r a t e kd17 = 0 . 0 6 ;

50 r a t e k18 = 2 . 5 E−05;

51 r a t e kd18 = 1 . 3 ;

52 r a t e k19 = 1 .667E−07;

53 r a t e kd19 = 0 . 5 ;

54 r a t e k20 = 1 .1068E−05;

55 r a t e kd20 = 0 . 4 ;

56 r a t e k21 = 3 . 6 7 E−07;

57 r a t e kd21 = 0 . 2 3 ;

58 r a t e k22 = 1 .39338E−07;

59 r a t e kd22 = 0 . 1 ;

60 r a t e k23 = 6 ;

61 r a t e kd23 = 0 . 0 6 ;

62 r a t e kd24 = 0 . 5 5 ;

63 r a t e k25 = 1 . 6 7 E−05;

64 r a t e kd25 = 0 . 0 2 1 4 ;

65 r a t e k28 = 5E−06;

66 r a t e kd28 = 0 . 0 0 5 3 ;

67 r a t e k28b = 5E−06;

68 r a t e kd28b = 0 . 0 0 5 3 ;

69 r a t e k29 = 1 . 1 7 E−06;

70 r a t e kd29 = 3 . 1 ;

71 r a t e kd32 = 0 . 1 ;
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72 r a t e k32 = 4E−07;

73 r a t e kd33 = 0 . 2 ;

74 r a t e k33 = 3 . 5 E−05;

75 r a t e kd34 = 0 . 0 3 ;

76 r a t e k34 = 7 . 5 E−06;

77 r a t e kd35 = 0 . 0 0 1 5 ;

78 r a t e k35 = 7 . 5 E−06;

79 r a t e k36 = 0 . 0 0 5 ;

80 r a t e kd36 = 0 ;

81 r a t e kd37 = 0 . 3 ;

82 r a t e k37 = 1 . 5 E−06;

83 r a t e k40 = 5E−05;

84 r a t e kd40 = 0 . 0 6 4 ;

85 r a t e k41 = 5E−05;

86 r a t e kd41 = 0 . 0 4 2 9 ;

87 r a t e k42 = 6E−05;

88 r a t e kd42 = 0 . 0 1 4 1 5 8 9 ;

89 r a t e kd43 = 3 1 . 6 2 2 8 ;

90 r a t e k43 = 0 ;

91 r a t e kd44 = 0 . 0 1 8 3 3 ;

92 r a t e kd45 = 1 . 9 ;

93 r a t e k45 = 0 ;

94 r a t e kd47 = 0 . 8 ;

95 r a t e k47 = 0 ;

96 r a t e k48 = 2 . 3 7 E−05;

97 r a t e kd48 = 0 . 7 9 ;

98 r a t e kd49 = 0 . 1 1 2 3 8 7 ;

99 r a t e k49 = 0 ;

100 r a t e k50 = 4 .74801E−08;

101 r a t e kd50 = 0 . 2 5 2 9 8 2 ;

102 r a t e kd52 = 0 . 0 3 3 ;

103 r a t e kd53 = 0 . 2 8 ;

104 r a t e k53 = 0 ;

105 r a t e kd55 = 7 0 . 1 6 6 2 ;

106 r a t e k55 = 0 ;

107 r a t e kd56 = 5 ;

108 r a t e k56 = 0 . 0 0 0 3 9 7 3 9 2 ;

109 r a t e kd57 = 0 . 0 0 7 6 ;

110 r a t e k57 = 0 ;

111 r a t e k58 = 8 . 3 3 E−07;

112 r a t e kd58 = 5 6 . 7 8 6 2 ;

113 r a t e k52 = 8 .85125E−06;
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114 r a t e k44 = 1 . 0 7 E−05;

115 r a t e k60 = 0 . 0 0 2 6 6 7 4 2 ;

116 r a t e kd60 = 0 ;

117 r a t e k61 = 0 . 0 0 0 5 7 ;

118 r a t e kd61 = 0 ;

119 r a t e kd63 = 0 . 2 7 5 ;

120 r a t e k64 = 1 . 6 7 E−05;

121 r a t e kd64 = 0 . 3 ;

122 r a t e kd65 = 0 . 2 ;

123 r a t e k65 = 0 ;

124 r a t e k66 = 1 . 5 E−05;

125 r a t e kd66 = 0 . 2 ;

126 r a t e k67 = 5E−05;

127 r a t e kd67 = 0 . 0 2 ;

128 r a t e kd68 = 0 . 2 ;

129 r a t e k68 = 0 ;

130 r a t e kd68b = 2 0 . 5 ;

131 r a t e k69 = 3 . 3 3 E−05;

132 r a t e kd69 = 0 . 1 ;

133 r a t e k70 = 6 . 6 7 E−07;

134 r a t e kd70 = 0 . 1 ;

135 r a t e k71 = 0 ;

136 r a t e kd71 = 2 5 . 2 ;

137 r a t e k72 = 0 ;

138 r a t e kd72 = 5 . 0 1 1 8 7 ;

139 r a t e k73 = 0 . 0 0 3 7 4 8 4 5 ;

140 r a t e kd73 = 0 . 5 ;

141 r a t e k74 = 6 .36184E−07;

142 r a t e kd74 = 0 . 3 5 5 6 5 6 ;

143 r a t e kd75 = 0 . 0 0 6 3 3 9 5 7 ;

144 r a t e k75 = 0 ;

145 r a t e k76 = 0 ;

146 r a t e kd76 = 1 4 2 . 2 6 2 ;

147 r a t e kd60d = 0 ;

148 r a t e k22b = 3 . 5 E−05;

149 r a t e kd22b = 0 . 1 ;

150 r a t e kd34b = 0 . 1 ;

151 r a t e k34b = 7 . 5 E−05;

152 r a t e k94b = 5E−05;

153 r a t e k94 = 5E−05;

154 r a t e kd94 = 0 . 0 1 ;

155 r a t e k95 = 0 ;
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156 r a t e kd95 = 3 3 ;

157 r a t e k96 = 1 . 6 7 E−06;

158 r a t e kd96 = 0 . 1 ;

159 r a t e kd6b = 0 ;

160 r a t e k7 = 5E−05;

161 r a t e kd7 = 0 . 0 0 0 1 3 8 ;

162 r a t e k62b = 0 . 0 0 0 4 1 6 ;

163 r a t e kd60b = 0 ;

164 r a t e k60c = 0 . 0 0 0 5 2 ;

165 r a t e k60b = 0 . 0 4 7 1 2 4 8 ;

166 r a t e k97 = 1000000;

167 r a t e kd97 = 0 . 0 1 5 ;

168 r a t e k97c = 1000000;

169 r a t e kd97c = 0 . 0 0 1 ;

170 r a t e kd98 = 0 . 0 0 1 ;

171 r a t e k98 = 33300 ;

172 r a t e Kinh4 = 0 . 1 1 3 ;

173 r a t e kd99 = 0 . 5 ;

174 r a t e k99 = 4 . 4 2 ;

175 r a t e Kinh3 = 0 . 0 0 1 ;

176 r a t e kd100 = 0 . 0 0 1 ;

177 r a t e k100 = 1 ;

178 r a t e k101 = 8 . 3 3 E−07;

179 r a t e kd101 = 0 . 0 3 ;

180 r a t e k102 = 5E−07;

181 r a t e kd102 = 5 . 6 1 0 0 9 ;

182 r a t e k103 = 8 .36983E−09;

183 r a t e kd103 = 0 . 0 1 6 ;

184 r a t e k104 = 0 ;

185 r a t e kd104 = 0 . 2 ;

186 r a t e k105 = 6 . 6 7 E−05;

187 r a t e kd105 = 0 . 1 ;

188 r a t e k106 = 1 . 3 3 E−05;

189 r a t e kd106 = 0 . 1 ;

190 r a t e k106b = 2 .63418E−08;

191 r a t e kd106b = 0 . 1 ;

192 r a t e k107 = 3 . 3 3 E−05;

193 r a t e kd107 = 0 . 1 ;

194 r a t e k108 = 0 ;

195 r a t e kd108 = 5 ;

196 r a t e k109 = 5E−06;

197 r a t e kd109 = 0 . 1 ;
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198 r a t e k110 = 0 . 0 0 0 3 3 3 ;

199 r a t e kd110 = 0 . 1 ;

200 r a t e kd111 = 6 . 5 7 ;

201 r a t e k111 = 0 ;

202 r a t e k112 = 0 . 0 0 4 7 0 6 7 ;

203 r a t e kd112 = 0 . 1 ;

204 r a t e k113 = 0 ;

205 r a t e kd113 = 1 7 7 . 8 2 8 ;

206 r a t e k114 = 4 .98816E−06;

207 r a t e kd114 = 0 . 1 ;

208 r a t e k115 = 0 ;

209 r a t e kd115 = 1 ;

210 r a t e k116 = 0 . 0 1 5 0 3 5 6 ;

211 r a t e kd116 = 0 ;

212 r a t e k117 = 8 . 3 3 E−08;

213 r a t e kd117 = 0 . 1 ;

214 r a t e k118 = 0 ;

215 r a t e kd118 = 0 . 0 3 ;

216 r a t e kd119 = 0 . 0 1 0 3 1 1 5 ;

217 r a t e k119 = 10000000;

218 r a t e k120 = 1 .48131E−08;

219 r a t e kd120 = 0 . 1 ;

220 r a t e k120b = 5 .92538E−11;

221 r a t e kd120b = 0 . 1 ;

222 r a t e Ks = 0 . 0 0 1 ;

223 r a t e k121 = 0 . 0 0 1 ;

224 r a t e kd121 = 1 ;

225 r a t e kd122 = 1 ;

226 r a t e k123 = 0 ;

227 r a t e kd123 = 0 . 1 7 7 8 2 8 ;

228 r a t e k6b = 0 ;

229 r a t e k1 = 10000000;

230 r a t e k122 = 1 .8704E−08;

231 r a t e k123h = 0 ;

232 r a t e kd123h = 0 . 1 ;

233

234 / / a t om ic s p e c i e s d e f i n i t i o n s :

235 spec EGF = new {} ;

236 spec ErbB2 = new{} ;

237 spec ErbB3 = new{} ;

238 spec ErbB4 = new{} ;

239 spec ATP = new {} ;
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240 spec cPP = new {} ;

241 spec GAP = new {} ;

242 spec HRG = new {} ;

243 spec Grb2 = new {} ;

244 spec Shc = new{p1 : bool } ;

245 spec Sos = new {} ;

246 spec Raf = new {} ;

247 spec Raf = new{p1 : bool } ;

248 spec Pase1 = new{} ;

249 spec MEK = new {} ;

250 spec MEK = new{p1 : bool } ;

251 spec MEK = new{p1 : bool , p2 : bool } ;

252 spec Pase2 = new{} ;

253 spec ERK = new {} ;

254 spec ERK = new{p1 : bool } ;

255 spec ERK = new{p1 : bool , p2 : bool } ;

256 spec Pase3 = new{} ;

257 spec Sos = new{p1 : bool } ;

258 spec PI3K = new {} ;

259 spec PIP3 = new {} ;

260 spec AKT = new {} ;

261 spec AKT = new{p1 : bool } ;

262 spec PDK1 = new {} ;

263 spec AKT = new{p1 : bool , p2 : bool } ;

264 spec Pase4 = new{} ;

265 spec ErbB2 = new{p1 : bool } ;

266 spec ErbB1 = new{} ;

267 spec Inh = new{ e1 : bool , e2 : bool , e3 : bool , e4 : bool } ;

268 spec ErbB3 = new{p1 : bool } ;

269 spec ErbB4 = new{p1 : bool } ;

270 spec Shp = new {} ;

271 spec PIP2 = new {} ;

272 spec PTEN = new {} ;

273 spec Gab1 = new {} ;

274 spec Shp2 = new {} ;

275 spec P a s e 9 t = new {} ;

276 spec Ras = new {} ;

277 spec GDP = new {} ;

278 spec GTP = new {} ;

279 spec i = new {} ;

280 spec h = new {} ;

281 spec Pase = new {} ;
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282 spec Pase4 = new{} ;

283 spec RTK = new {} ;

284 spec R = new {} ;

285 spec d e g r a d e d = new{} ;

286 spec a c t i v a t e d = new {} ;

287 spec ErbB1 = new{p1 : bool } ;

288 spec Gab1 = new{p1 : bool , p2 : bool } ;

289 spec PIP22 = new{} ;

290 spec PIP23 = new{} ;

291 spec PIP24 = new{} ;

292 spec PIP25 = new{} ;

293 spec PIP26 = new{} ;

294 spec AKT = new{p1 : bool , p2 : bool } ;

295 spec ErbB34 = new{p1 : bool } ;

296 spec ErbB22 = new{p1 : bool } ;

297 spec MKP = new {} ;

298 spec F u l l A c t i v e = new {} ;

299 spec H a l f A c t i v e = new {} ;

300 spec Ser = new {} ;

301 spec deg = new {} ;

302 spec COPY = new {} ;

303

304 / / some n o n d e t e r m i n i s t i c s p e c i e s used t h r o u g h o u t

305 spec ErbB234 = ( ErbB2 :{ p1} or ErbB3 :{ p1} or ErbB4 :{ p1 } ) : : ErbB234{p1 } ;

306 spec i S N i l = SNi l or i ;

307

308 / / i n i t i a l p o p u l a t i o n s :

309 i n i t world [ATP] 1200000000 |
310 i n i t medium [EGF] 5E−09 |
311 p l a s [

312 i n i t ErbB2 462000 |
313 i n i t ErbB3 6230 |
314 i n i t ErbB4 794 |
315 i n i t cPP 4498 .73 |
316 i n i t ErbB1 1080000

317 ] |
318 c y t o [

319 i n i t GAP 534751 |
320 i n i t Grb2 1264 .91 |
321 i n i t GDP−Ras 58095 .2 |
322 i n i t Shc 1100000 |
323 i n i t Raf 71131 .2 |
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324 i n i t Grb2−Sos 88914000 |
325 i n i t Pase1 50000 |
326 i n i t MEK 3020000 |
327 i n i t Pase2 124480 |
328 i n i t ERK 695000 |
329 i n i t Pase3 16870 .2 |
330 i n i t PI3K 35565600 |
331 i n i t AKT 905000 |
332 i n i t PDK1 300416000 |
333 i n i t Pase4 450000 |
334 i n i t Pase−RTK 70000 |
335 i n i t Shp 2213 .59 |
336 i n i t PIP2 393639 |
337 i n i t PTEN 56100 .9 |
338 i n i t Gab1 94868 .3 |
339 i n i t Shp2 1000000

340 ] |
341

342 / / module d e f i n i t i o n s

343 module r e c e p t o r L i g a n d B i n d i n g ( ) {
344 spec r e c e p t 1 = ErbB1−(ATP−( SNi l or h ) or Inh { e1}−( SNi l or h ) ) ;

345 medium [EGF] + p l a s [ r e c e p t 1 ]

346 <−>{k1 , kd1} medium [EGF] + p l a s [ r e c e p t 1−EGF] |
347

348 medium [EGF] + p l a s [ ErbB2−ErbB3 ]

349 <=>{k1c , kd1c} medium [EGF] + p l a s [ ErbB2{p1}−ErbB3{p1 } ] |
350 medium [EGF] + p l a s [ ErbB2−ErbB4 ]

351 <=>{k1d , kd1d} medium [EGF] + p l a s [ ErbB2{p1}−ErbB4{p1 } ] |
352

353 spec r e c e p t 2 = ErbB3 or ErbB4 ;

354 medium [HRG] + p l a s [ r e c e p t 2 ]

355 <−>{k119 , kd119} medium [HRG] + p l a s [ r e c e p t 2−HRG] |
356

357 endosomes [EGF] + endosomes [ATP−ErbB1−h ]

358 <=>{k10b , kd10} endo [ATP−EGF−ErbB1 ] |
359 endosomes [EGF] + endo [ATP−ErbB1 ]

360 <=>{k10b , kd10} endo [ATP−EGF−ErbB1 ] |
361 endosomes [HRG] + endo [ ErbB3 ]

362 <=>{k10b , kd10} endo [ ErbB3−HRG]

363 } ;

364

365 module r e c e p t o r I n h i b i t i o n ( ) {
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366 p l a s [ ErbB1 ] + medium [ Inh ]

367 <=>{k97 , kd97} medium [ Inh ] + p l a s [ ErbB1−Inh { e1 } ] |
368 p l a s [ ErbB2 ] + medium [ Inh ]

369 <=>{k98 , kd98} medium [ Inh ] + p l a s [ ErbB2−Inh { e2 } ] |
370 p l a s [ ErbB4 ] + medium [ Inh ]

371 <=>{k99 , kd99} medium [ Inh ] + p l a s [ ErbB4−Inh { e4 } ] |
372 p l a s [ ErbB3 ] + medium [ Inh ]

373 <=>{k100 , kd100} medium [ Inh ] + p l a s [ ErbB3−Inh { e3 } ] |
374 p l a s [ ErbB1−h ] + medium [ Inh ]

375 <=>{k97c , kd97c} medium [ Inh ] + p l a s [ ErbB1−Inh { e1}−h ]

376 } ;

377

378 module r e c e p t o r D i m e r i s a t i o n ( ) {
379 p l a s [ ErbB2{p1} + ErbB2{p1} <=>{k96 , kd96} 2 . ErbB2{p1 } ] |
380

381 p l a s [

382 spec complex =

383 ATP−EGF−ErbB1−( SNi l or h ) or EGF−ErbB1−Inh { e1}−( SNi l or h ) ;

384 ATP−EGF−ErbB1 as c + complex <−>{k2 , kd2} c−complex |
385

386 / / t h e f o l l o w i n g does n o t g e n e r a l i s e because o f t h e COPY s p e c i e s .

387 EGF−ErbB1−Inh { e1} as c + c <=>{k2 , kd2} 2 . c |
388 EGF−ErbB1−Inh { e1}−h as c + c <=>{k2 , kd2} 2 . c |
389 (EGF−ErbB1−Inh { e1} as c)−h + c <=>{k2 , kd2} 2 . c−h |
390 (EGF−ErbB1 as c)− Inh { e1} + ATP−c−h

391 <=>{k2 , kd2} ATP− (2 . c)− Inh { e1}−h−COPY |
392 ATP−EGF−ErbB1−h as c + c

393 <=>{k2 , kd2} 2 . c−F u l l A c t i v e |
394 ATP−(EGF−ErbB1 as c)−h + c−Inh { e1}−h

395 <=>{k2 , kd2} ATP− (2 . c)− Inh { e1}−h−COPY−COPY

396 ] |
397

398 p l a s [EGF−ErbB1−Inh { e1} as c + ErbB234 <−>{k2b , kd2b} c−ErbB234 ] |
399 endo [ATP−EGF−ErbB1 as c + c <=>{k2 , kd2} 2 . c ] |
400

401 p l a s [

402 / / s h o u l d ErbB1 / 2 n o t be p h o s p h o r y l a t e d i n t h e p r o d u c t ?

403 ATP−EGF−ErbB1 + ErbB2−Inh { e2}
404 <=>{k2b , kd2b} EGF−ErbB1−ErbB2−Inh { e2} |
405 / / s h o u l d t h e p r o d u c t have ErbB4 i n s t e a d o f ErbB3?

406 ATP−EGF−ErbB1 + ErbB4−Inh { e4}
407 <=>{k2b , kd2b} EGF−ErbB1{p1}−ErbB3{p1}−Inh { e4} |
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408 ATP−EGF−ErbB1 + ErbB3−Inh { e3}
409 <=>{k2b , kd2b} EGF−ErbB1{p1}−ErbB3{p1}−Inh { e3}
410 ] |
411

412 endo [ 2 . ( EGF−ATP−ErbB1 ) as c ] + wor ld [ATP]

413 <=>{k122 , kd122} c y t o [ c ] |
414 p l a s [ 2 . ( EGF−ATP−ErbB1 ) as c ] + wor ld [ATP]

415 <=>{k122 , kd122} c y t o [ c−F u l l A c t i v e ] |
416 p l a s [EGF−ErbB1−ErbB234 as c ] + wor ld [ATP]

417 <−>{k122 , kd122} c y t o [ATP−c−COPY] |
418

419 p l a s [ ErbB2{p1 } ] + p l a s [ ErbB2 ]

420 <=>{k103 , kd103} endo [ ErbB2−ErbB2{p1 } ] |
421 p l a s [

422 spec complex = ErbB234{p1 } ;

423 EGF−ErbB1{p1} + complex <−>{k102 , kd102} ErbB1{p1}−complex |
424 EGF−ErbB1{p1} + EGF−ErbB1{p1} <=>{k102 , kd102} 2 . ( EGF−ErbB1{p1 } ) |
425

426 / / NOTE: example o f use o f v a r i a b l e s .

427 spec e34 = ErbB3{p1= $x} or ErbB4{p1= $x } ;

428 spec e2 = ErbB2{p1=$x } ;

429 e2 + e34 <−>{k103 , kd103} e2−e34 |
430

431 spec e34 = ErbB3 or ErbB4 ;

432 ErbB2−Inh { e2} + e34 <−>{k103 , kd103} ErbB2−Inh { e2}−e34 |
433 ErbB2{p1} + ErbB2−Inh { e2} <=>{k103 , kd103} ErbB2−ErbB2−Inh { e2} |
434 ErbB2 + ErbB4−Inh { e4} <=>{k103 , kd103} ErbB2−ErbB4−Inh { e4}
435 ] |
436

437 / / t h e f o l l o w i n g r e a c t i o n s t a k e p l a c e i n bo th p l a s and endo .

438 / / a s b t r a c t i n t o module and i n v o k e w i t h t h e s e :

439 module r e a c s ( comp d ) {
440 d [ATP−(EGF−ErbB1 as c ) + ErbB234 <−>{k2b , kd2b} c−ErbB234 ] |
441

442 spec complex = 2 . ( EGF−ErbB1{p1})−GAP−Grb2−( SNi l or Shc{p1 } ) ;

443 c y t o [ Sos{p1 } ] + d [ complex ] <−>{k101 , kd101} d [ complex−Sos{p1 } ] |
444

445 spec complex = ( ErbB3 or ErbB4)−HRG;

446 d [ complex + ErbB2 <−>{k120 , kd120} complex−ErbB2 ] |
447

448 spec complex = ( ErbB3 or ErbB4)−HRG;

449 d [ complex + ATP−ErbB1 <−>{k120b , kd120} complex−ErbB1 ]
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450 } ;

451 r e a c s ( p l a s ) | r e a c s ( endo )

452 } ;

453

454 module r e c e p t o r A c t i v a t i o n ( ) {
455 spec complex = ErbB2−ErbB2{p1} or EGF−ErbB1−ErbB234 ;

456 endo [ complex ] + wor ld [ATP] <−>{k122 , kd122} c y t o [ATP−complex ] |
457

458 spec r e c e p t o r s =

459 ( ErbB1{p1} or ErbB2{p1})−ErbB234{p1} or 2 . ( EGF−ErbB1{p1 } ) ;

460 spec complex =

461 r e c e p t o r s−Gab1−GAP−Grb2 or ErbB1−(ErbB3 or ErbB4)−HRG;

462 p l a s [ complex ] + wor ld [ATP] <−>{k122 , kd122} c y t o [ATP−complex ] |
463

464 / / d i f f i c u l t t o g e n e r a l i s e due t o t h e use o f t h e

465 / / t h e use o f t h e COPY s p e c i e s and d i f compar tmen t s .

466 p l a s [ ErbB2−ErbB4−HRG as c ] + wor ld [ATP]

467 <=>{k122 , kd122} c y t o [ATP−c ] |
468 p l a s [ ErbB2−ErbB3−HRG as c ] + wor ld [ATP]

469 <=>{k122 , kd122} p l a s [ATP−c ] |
470 endo [ ErbB2−ErbB3−HRG as c ] + wor ld [ATP]

471 <=>{k122 , kd122} p l a s [ATP−c−COPY] |
472 endo [ ErbB2−ErbB4−HRG as c ] + wor ld [ATP]

473 <=>{k122 , kd122} endo [ATP−c ] |
474

475 / / t h e f o l l o w i n g seems i n c o n s i s t e n t :

476 p l a s [ATP−EGF−EGF−ErbB1−ErbB1−Inh { e1} as c ] + wor ld [ATP]

477 <=>{k122 , kd122} p l a s [ c−H a l f A c t i v e ] |
478 p l a s [ ( ATP− ( 2 . (EGF−ErbB1 ))− Inh { e1}−h as c)−COPY] + wor ld [ATP]

479 <=>{k122 , kd122} p l a s [ c−H a l f A c t i v e ] |
480 p l a s [ ( ATP− ( 2 . (EGF−ErbB1 ))− Inh { e1}−h−COPY as c)−COPY] + wor ld [ATP]

481 <=>{k122 , kd122} p l a s [ c−H a l f A c t i v e ] |
482 p l a s [ ErbB1 ] + wor ld [ATP]

483 <=>{k122 , kd122} p l a s [ATP−ErbB1 ] |
484 p l a s [ ErbB1−h ] + wor ld [ATP]

485 <=>{k122 , kd122} p l a s [ATP−ErbB1−h ] |
486 p l a s [ 2 . ( ATP−EGF−ErbB1)−h as c ] + wor ld [ATP]

487 <=>{k122 , kd122} p l a s [ c−F u l l A c t i v e ] |
488 p l a s [ 2 . ( EGF−ATP−ErbB1−h)− F u l l A c t i v e as c ] + wor ld [ATP]

489 <=>{k122 , kd122} p l a s [ c−COPY] |
490 p l a s [ATP− ( 2 . (EGF−ErbB1 ))− Inh { e1}−h as c ] + wor ld [ATP]

491 <=>{k122 , kd122} c y t o [ c−H a l f A c t i v e ] |
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492

493 spec complex =

494 ( ErbB1{p1 } :{ p1})−( ErbB234{p1 } :{ p1 } ) : : ErbB1{p1}−ErbB234{p1 } ;

495 p l a s [ complex ] + wor ld [ATP] <−>{k123 , kd123}
496 c y t o [ATP−EGF−complex<ErbB1{p1= f f}><ErbB234{p1= f f}>−COPY] |
497 endo [ complex ] + wor ld [ATP] <−>{k123 , kd123}
498 c y t o [ATP−EGF−complex<ErbB1{p1= f f}><ErbB234{p1= f f }>] |
499

500 spec r e c e p t o r s =

501 ( ErbB1{p1} or ErbB2{p1})−ErbB234{p1} or 2 . ( EGF−ErbB1{p1 } ) ;

502 spec complex =

503 r e c e p t o r s−Gab1{p1}−GAP−Grb2 ;

504 p l a s [ complex ] + wor ld [ATP]

505 <−>{k123 , kd123} c y t o [ATP−complex<Gab1{p1= f f }>] |
506

507 / / s t r a n g e t h a t HRG m a g i c a l l y appears on RHS . does n o t e a s i l y

508 / / g e n e r a l i s e due t o COPY and t h e use o f d i f compar tmen t s .

509 p l a s [ ErbB1{p1}−ErbB3{p1 } ] + wor ld [ATP]

510 <=>{k123 , kd123} c y t o [ATP−ErbB1−ErbB3−HRG] |
511 p l a s [ ErbB1{p1}−ErbB4{p1 } ] + wor ld [ATP]

512 <=>{k123 , kd123} c y t o [ATP−ErbB1−ErbB4−HRG] |
513 p l a s [ ErbB2{p1}−ErbB4{p1 } ] + wor ld [ATP]

514 <=>{k123 , kd123} c y t o [ATP−ErbB2−ErbB4−HRG] |
515 endo [ ErbB2{p1}−ErbB4{p1 } ] + wor ld [ATP]

516 <=>{k123 , kd123} endo [ATP−ErbB2−ErbB4−HRG] |
517 p l a s [ ErbB2{p1}−ErbB3{p1 } ] + wor ld [ATP]

518 <=>{k123 , kd123} p l a s [ATP−ErbB2−ErbB3−HRG] |
519 endo [ ErbB2{p1}−ErbB3{p1 } ] + wor ld [ATP]

520 <=>{k123 , kd123} p l a s [ATP−ErbB2−ErbB3−HRG−COPY] |
521 endo [ 2 . ( EGF−ErbB1{p1 } ) ] + wor ld [ATP]

522 <=>{k123 , kd123} c y t o [ 2 . ( EGF−ErbB1−ATP ) ] |
523 / / s t r a n g e t h a t o n l y one ErbB2 g e t s p h o s p h o r y l a t e d :

524 p l a s [ 2 . ErbB2{p1 } ] + wor ld [ATP]

525 <=>{k123 , kd123} c y t o [ATP−ErbB2−ErbB2{p1 } ] |
526

527 / / t h e f o l l o w i n g appears i n c o n s i s t e n t and does n o t e a s i l y

528 / / g e n e r a l i s e because o f COPY, H a l f A c t i v e and F u l l A c t i v e :

529 spec r h s =

530 2 . ( EGF−ErbB1)−ATP−(ATP−F u l l A c t i v e−h or
531 ATP−F u l l A c t i v e−COPY−h−h or H a l f A c t i v e−Inh { e1 } ) ;

532 p l a s [ 2 . ( EGF−ErbB1{p1 } ) ] + wor ld [ATP] <−>{k123 , kd123} p l a s [ r h s ] |
533 spec r h s =
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534 2 . ( EGF−ErbB1)−ATP−(ATP−F u l l A c t i v e or h−H a l f A c t i v e−Inh { e1 } ) ;

535 p l a s [ 2 . ( EGF−ErbB1{p1 } ) ] + wor ld [ATP] <−>{k123 , kd123} c y t o [ r h s ] |
536 spec r h s =

537 2 . ( EGF−ErbB1)−ATP−h−H a l f A c t i v e−Inh { e1}−( SNi l or COPY ) ;

538 p l a s [ 2 . ( EGF−ErbB1{p1 } ) ] + wor ld [ATP] <−>{k123h , kd123h} p l a s [ r h s ]

539 } ;

540

541 module cPPTagging ( ) {
542 spec s c a f f o l d N o R e c e p t o r =

543 SNi l or Sos or Sos−(

544 Ras−(GDP or GTP)

545 ) or Shc{p1}−(

546 SNi l or Sos−( SNi l or Ras−(GDP or GTP ) )

547 ) ;

548 spec complex = 2 . ( EGF−ErbB1{p1})−GAP−Grb2−s c a f f o l d N o R e c e p t o r ;

549 p l a s [ complex + cPP <−>{k4 , kd4} cPP−complex ] |
550 endo [ complex ] + endo [ cPP ] <−>{k5 , kd5} p l a s [ cPP−complex ] |
551

552 / / n o t e : d i f r a t e from t h e above , so c ann o t combine .

553 spec complexAl l =

554 ( ErbB1{p1} or ErbB2{p1})−( ErbB234{p1})−
555 GAP−Grb2−s c a f f o l d N o R e c e p t o r ;

556 spec complexDi fRa te = ErbB1{p1}−ErbB234{p1}−GAP−Grb2−GTP−Ras−Sos ;

557 spec complex = complexAl l not complexDi fRa te ;

558 endo [ complexAl l ] + endo [ cPP ] <−>{k5b , kd5b} p l a s [ cPP−complexAl l ] |
559 p l a s [ complexDi fRa te + cPP <−>{k4 , kd4} cPP−complexDi fRa te ] |
560 p l a s [ complex + cPP <−>{k4b , kd4} cPP−complex ] |
561

562 endo [ cPP ] <=>{k15 , kd15} p l a s [ cPP ]

563 } ;

564

565 module e n d o c y t o s i s ( ) {
566 spec s c a f f o l d N o R e c e p t o r =

567 SNi l or GAP or GAP−
568 ( Shc or Shc{p1} or Grb2−
569 ( SNi l or Sos−( SNi l or GTP−Ras ) or
570 Shc{p1}−(

571 SNi l or Sos−(

572 SNi l or Ras−(GDP or GTP)

573 )

574 )

575 )
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576 ) ;

577 spec complex = 2 . ( EGF−ErbB1{p1})− s c a f f o l d N o R e c e p t o r ;

578 p l a s [ complex ] <−>{k6 , kd6} endo [ complex ] |
579

580 p l a s [ ErbB234 ] <−>{k6b , kd6b} endo [ ErbB234 ] |
581

582 spec complex =

583 ATP−ErbB1 or ErbB2{p1}−ErbB4{p1}−GAP−Shc or
584 2 . ( EGF−ErbB1{p1})−GAP−GDP−Grb2−Ras−Sos ;

585 p l a s [ complex ] <−>{k6 , kd6} endo [ complex ] |
586

587

588 spec complex =

589 ErbB2−Inh { e2} or ErbB4−Inh { e4} or
590 ErbB2{p1}−GAP−(

591 ErbB3{p1}−(Shc or Shc{p1 } ) or ErbB4{p1}−Shc{p1}
592 ) ;

593 p l a s [ complex ] <−>{k6b , kd6b} endo [ complex ] |
594

595 p l a s [ATP−ErbB1−h ] <=>{k6 , kd6} endosomes [ATP−ErbB1−h ] |
596

597 spec complex =

598 ( ErbB1{p1} or ErbB2{p1})−ErbB234{p1} or
599 2 . ErbB2{p1}−GAP−( SNi l or Shc or Shc{p1 } ) ;

600 p l a s [ complex ] <−>{k7 , kd7} endo [ complex ]

601 } ;

602

603 module s c a f f o l d F o r m a t i o n ( ) {
604 spec r e c e p t o r s =

605 ErbB2{p1}−ErbB234{p1} or ErbB1{p1}−ErbB2{p1} or
606 2 . ( EGF−ErbB1{p1 } ) ;

607 c y t o [GAP] + p l a s [ r e c e p t o r s ] <−>{k8 , kd8} p l a s [ r e c e p t o r s−GAP] |
608

609 spec r e c e p t o r s = ErbB1{p1}−(ErbB3{p1} or ErbB4{p1 } ) ;

610 c y t o [GAP] + p l a s [ r e c e p t o r s ] <−>{k8b , kd8b} p l a s [ r e c e p t o r s−GAP] |
611

612 spec complex = 2 . ( EGF−ErbB1{p1})−GAP;

613 c y t o [ Grb2 ] + p l a s [ complex ] <=>{k16 , kd63} p l a s [ complex−Grb2 ] |
614 c y t o [ Grb2 + Shc{p1} <=>{k16 , kd24} Grb2−Shc{p1 } ] |
615

616 spec r e c e p t o r = ( ErbB1{p1} or ErbB2{p1})−ErbB234{p1 } ;

617 spec d i fRa teComplex = ErbB2{p1}−ErbB3{p1}−GAP or 2 . ErbB2{p1}−GAP;
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618 spec complex = r e c e p t o r −(GAP−( SNi l or Shc{p1 } ) ) not d i fRa teComplex ;

619 c y t o [ Grb2 ] + p l a s [ complex ] <−>{k16 , kd24} p l a s [ complex−Grb2 ] |
620 c y t o [ Grb2 ] + p l a s [ d i fRa teComplex ]

621 <−>{k16 , kd63} p l a s [ d i fRateComplex−Grb2 ] |
622

623

624 spec complex = 2 . ( EGF−ErbB1{p1})−GAP−Shc{p1 } ;

625 c y t o [ Grb2 ] + p l a s [ complex ] <=>{k16 , kd24} p l a s [ complex−Grb2 ] |
626 c y t o [ Grb2 ] + endo [ complex ] <=>{k16 , kd24} endo [ complex−Grb2 ] |
627

628 c y t o [GTP−Ras−i S N i l as c + Raf <−>{k28 , kd28} c−Raf ] |
629 c y t o [ a c t i v a t e d −(GTP−Ras as c)− i S N i l + Raf{p1}− i S N i l

630 <−>{k29 , kd29} c−Raf−i S N i l ] |
631

632 / / t h e f o l l o w i n g r e a c t i o n s t a k e p l a c e bo th i n p l a s and endo , so

633 / / a b s t r a c t i n t o module and i n v o k e t w i c e :

634 module r e a c s ( comp d ; spec i ) {
635 spec r e c e p t o r s =

636 ( ErbB1{p1} or ErbB2{p1})−ErbB234{p1} or 2 . ( EGF−ErbB1{p1 } ) ;

637 spec complex = r e c e p t o r s−GAP;

638 / / t h e f o l l o w i n g seems s t r a n g e ( s p e c i e s appear s u d d e n l y on RHS ) :

639 d [ complex ] + c y t o [ Grb2−Shc{p1}−Sos ]

640 <−>{k32 , kd32} d [ complex−Grb2−Shc{p1}−Sos ] |
641 d [ complex ] + c y t o [ Grb2−Sos ] <−>{k34 , kd34} d [ complex−Grb2−Sos ] |
642

643 d [ complex ] + c y t o [ Shc ] <−>{k22 , kd22} d [ complex−Shc ] |
644 d [ complex−Shc <−>{k23 , kd23} complex−Shc{p1 } ] |
645

646 spec complex = r e c e p t o r s−GAP−Grb2−Shc{p1 } ;

647 c y t o [ Sos ] + d [ complex ] <−>{k25 , kd25} d [ complex−Sos ] |
648

649 spec complex = r e c e p t o r s−GAP−Grb2−(Sos−( SNi l or Shc{p1 } ) ) ;

650 c y t o [GDP−Ras ] + d [ complex ] <−>{k21 , kd21} d [ complex−GTP−Ras ] |
651 c y t o [GDP−Ras ] + d [ complex ] <−>{k18 , kd18} d [ complex−GDP−Ras ] |
652 c y t o [ a c t i v a t e d −GTP−Ras−i ] + d [ complex ]

653 <−>{k20 , kd20} d [ complex−GTP−Ras ] |
654 c y t o [GTP−Ras−i ] + d [ complex ] <−>{k19 , kd19} d [ complex−GDP−Ras ] |
655

656 spec complex = r e c e p t o r s−GAP−Grb2 ;

657 c y t o [ Sos ] + d [ complex ] <−>{k17 , kd17} d [ complex−Sos ] |
658

659 spec complex = r e c e p t o r s−GAP−Shc{p1 } ;
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660 c y t o [ Grb2−Sos ] + d [ complex ] <−>{k41 , kd41} d [ complex−Grb2−Sos ] |
661

662 spec complex = r e c e p t o r s−GAP;

663 spec complex2 = Shc{p1}−( SNi l or Grb2 ) ;

664 d [ complex ] + c y t o [ complex2 ] <−>{k37 , kd37} d [ complex−complex2 ]

665

666 } ;

667 r e a c s ( p l a s , SNi l ) | r e a c s ( endo , i ) |
668

669 c y t o [

670 Shc{p1} + Grb2−Sos <=>{k33 , kd33} Grb2−Shc{p1}−Sos |
671 Sos + Grb2 <=>{k35 , kd35} Grb2−Sos |
672 Shc{p1} <=>{k36 , kd36} Shc |
673 Sos + Grb2−Shc{p1} <=>{k40 , kd40} Grb2−Shc{p1}−Sos

674 ] |
675

676 spec r e c e p t o r =

677 ErbB1{p1}−(ErbB2{p1} or ErbB4{p1 } ) or
678 ErbB2{p1}−ErbB4{p1} or 2 . ( EGF−ErbB1{p1 } ) ;

679 spec complex = r e c e p t o r−Gab1{p1}−GAP−Grb2 ;

680 c y t o [ PI3K ] + p l a s [ complex ] <−>{k66 , kd66} p l a s [ complex−PI3K ] |
681

682 spec r e c e p t o r =

683 ErbB2{p1}−(ErbB2{p1} or ErbB3{p1 } ) or ErbB1{p1}−ErbB3{p1 } ;

684 spec complex = r e c e p t o r−Gab1{p1}−GAP−Grb2 ;

685 c y t o [ PI3K ] + p l a s [ complex ] <−>{k67 , kd67} p l a s [ complex−PI3K ] |
686

687 spec r e c e p t o r =

688 ( ErbB1{p1} or ErbB2{p1})−ErbB234{p1} or 2 . ( EGF−ErbB1{p1 } ) ;

689 spec complex = r e c e p t o r−GAP−Grb2 ;

690 c y t o [ Gab1 ] + p l a s [ complex ] <−>{k105 , kd105} p l a s [ complex−Gab1 ] |
691

692 spec complex = r e c e p t o r−Gab1{p1}−GAP−Grb2 ;

693 c y t o [ Shp2 ] + p l a s [ complex ] <−>{k107 , kd107} p l a s [ complex−Shp2 ] |
694 c y t o [ Shp2 ] + p l a s [ complex<Gab1{p1= f f }>]

695 <−>{k108 , kd108} p l a s [ complex<Gab1{p1}>−Shp2 ] |
696

697 / / ErbB4 i s l e f t o u t o f t h e f o l l o w i n g n o n d e t e r m i n i s t i c s p e c i e s

698 / / because one r e a c t i o n has t h e wor ld compartment i n i t s r e a c t a n t .

699 / / s h o u l d t h i s r e a l l y be t h e case ?

700 spec r e c e p t o r =

701 ( ErbB1{p1} or ErbB2{p1})−( ErbB2{p1} or
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702 ErbB3{p1 } ) or 2 . ( EGF−ErbB1{p1 } ) ;

703 spec s c a f f o l d = Gab1{p1}−GAP−Grb2−PI3K ;

704 spec complex = r e c e p t o r−s c a f f o l d ;

705 c y t o [GDP−Ras ] + p l a s [ complex ]

706 <−>{k112 , kd112} p l a s [ complex−GDP−Ras ] |
707 c y t o [GTP−Ras ] + p l a s [ complex ]

708 <−>{k113 , kd113} p l a s [ complex−GDP−Ras ] |
709 c y t o [GDP−Ras ] + p l a s [ ErbB1{p1}−ErbB4{p1}− s c a f f o l d as c ]

710 <=>{k112 , kd112} p l a s [ c−GDP−Ras ] |
711 c y t o [GDP−Ras ] + p l a s [ ErbB2{p1}−ErbB4{p1}− s c a f f o l d as c ]

712 <=>{k112 , kd112} world [ c−GDP−Ras ] |
713

714 / / i n c o n s i s t e n c y i n use o f Shp2 i n s t e a d o f PI3K , and i n t h e use

715 / / o f compar tmen t s :

716 spec s c a f f o l d = Gab1{p1}−GAP−Grb2 ;

717 c y t o [GTP−Ras ] + p l a s [ ErbB1{p1}−ErbB4{p1}− s c a f f o l d−PI3K as c ]

718 <=>{k113 , kd113} p l a s [ c−GDP−Ras ] |
719 c y t o [GTP−Ras ] + p l a s [ ( ErbB2{p1}−ErbB4{p1}− s c a f f o l d as c)−Shp2 ]

720 <=>{k113 , kd113} world [ c−PI3K−GDP−Ras ] |
721

722 spec r e c e p t o r s = ErbB1{p1}−ErbB234{p1 } ;

723 endo [ r e c e p t o r s ] + c y t o [GAP] <−>{k8b , kd8b} endo [ r e c e p t o r s−GAP] |
724

725 spec r e c e p t o r s D i f R a t e = ErbB2{p1}−(ErbB2{p1} or ErbB4{p1 } ) ;

726 spec r e c e p t o r s =

727 ( ErbB1{p1} or ErbB2{p1})−ErbB234{p1} not r e c e p t o r s D i f R a t e ;

728 endo [ r e c e p t o r s−GAP] + c y t o [ Grb2 ]

729 <−>{k16 , kd24} endo [ r e c e p t o r s−GAP−Grb2 ] |
730 endo [ r e c e p t o r s D i f R a t e−GAP] + c y t o [ Grb2 ]

731 <−>{k16 , kd63} endo [ r e c e p t o r s D i f R a t e−GAP−Grb2 ] |
732

733 endo [ 2 . ( EGF−ErbB1{p1})−GAP] + c y t o [ Grb2 ]

734 <=>{k16 , kd63} endo [ 2 . ( EGF−ErbB1{p1})−GAP−Grb2 ] |
735

736 spec r e c e p t o r s = ( ErbB1{p1} or ErbB2{p1})−ErbB234{p1 } ;

737 spec complex = r e c e p t o r s−GAP−Shc{p1 } ;

738 c y t o [ Grb2 ] + endo [ complex ] <−>{k16 , kd24} endo [ complex−Grb2 ] |
739

740 spec r e c e p t o r s = ErbB2{p1}−ErbB234{p1} or 2 . ( EGF−ErbB1{p1 } ) ;

741 c y t o [GAP] + endo [ r e c e p t o r s ] <−>{k8 , kd8} endo [ r e c e p t o r s−GAP]

742 } ;

743



213

744 module MAPKCascade ( ) {
745 / / g e n e r a l p h o s p h o r y l a t i o n module .

746 / / NOTE: ca nn o t use a common module f o r s i n g l e p h o s p h o r y l a t i o n

747 / / because o f t h e ” i ” ( which seems i n c o n s i s t e n t ) .

748 module ph (

749 spec k , s :{m1 , m2} , i ;

750 r a t e k1 , kd1 , k2 , kd2 , k3 , kd3 , k4 , kd4

751 ) {
752 k−i + s <=>{k1 , kd1} k−s−i | / / why i s t h e r e no ” i ” on s here ?

753 k−i + s {m1}− i <=>{k2 , kd2} k−s {m1}− i |
754 k−i + s {m1}− i <=>{k3 , kd3} k−s−i |
755 k−i + s {m1 , m2}− i <=>{k4 , kd4} k−s {m1}− i

756 } ;

757

758 / / g e n e r a l d e p h o s p h o r y l a t i o n module .

759 module dph (

760 spec pt , s :{m1 , m2} , i ;

761 r a t e k1 , kd1 , k2 , kd2 , k3 , kd3 , k4 , kd4

762 ) {
763 p t + s {m1}− i <=>{k1 , kd1} pt−s {m1}− i |
764 / / why i s t h e r e no ” i ” on s here , and why n o t

765 / / on p t as i n t h e ph module ?

766 p t + s <=>{k2 , kd2} pt−s {m1}− i |
767 p t + s {m1}− i <=>{k3 , kd3} pt−s {m1 , m2}− i |
768 p t + s {m1 , m2}− i <=>{k4 , kd4} pt−s {m1 , m2}− i

769 } ;

770

771 / / g e n e r a l p h o s p h o r y l a t i o n / d e p h o s p h o r y l a t i o n c y c l e module .

772 module c y c l e ( spec k , pt , s :{m1 , m2} , i ;

773 r a t e k1 , kd1 , k2 , kd2 , k3 , kd3 , k4 , kd4 ,

774 k5 , kd5 , k6 , kd6 , k7 , kd7 , k8 , kd8 ) {
775

776 ph ( k , s :{m1 , m2} , i , k1 , kd1 , k2 , kd2 , k3 , kd3 , k4 , kd4 ) |
777 dph ( pt , s :{m1 , m2} , i , k5 , kd5 , k6 , kd6 , k7 , kd7 , k8 , kd8 )

778 } ;

779

780 / / MEK and ERK c y c l e s .

781 module c y c l e s ( ) {
782 / / c y c l e s w i t h and w i t h o u t ” i ” .

783 / / NOTE: t h i s i s an example o f f o r c i n g a t module i n v o c a t i o n t i m e .

784 spec i S N i l = f o r c e SNi l or i ;

785 c y c l e ( Raf{p1 } , Pase2 , MEK:{ p1 , p2 } , i S N i l ,
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786 k44 , kd52 , k44 , kd52 , k45 , kd45 , k47 , kd47 ,

787 k50 , kd50 , k49 , kd49 , k49 , kd49 , k48 , kd48 ) |
788

789 c y c l e (MEK{p1 , p2 } , Pase3 , ERK:{ p1 , p2 } , i S N i l ,

790 k52 , kd44 , k52 , kd44 , k53 , kd53 , k55 , kd55 ,

791 k58 , kd58 , k57 , kd57 , k57 , kd57 , k56 , kd56 )

792 } ;

793

794 module R a f D e p h o s p h o r y l a t i o n ( ) {
795 Pase1 + i S N i l−Raf{p1} <−>{k42 , kd42} i S N i l−Pase1−Raf{p1} |
796 Raf + Pase1 <−>{k43 , kd43} i S N i l−Pase1−Raf{p1}
797 } ;

798

799 c y t o [ R a f D e p h o s p h o r y l a t i o n ( ) | c y c l e s ( ) ]

800 } ;

801

802 module d e g r a d a t i o n ( ) {
803 spec r e c e p t o r = 2 . ( EGF−ErbB1{p1 } ) ;

804 spec s c a f f o l d W i t h o u t R e c e p t o r =

805 GAP−(

806 Shc or Shc{p1} or Grb2−(

807 SNi l or Sos−(

808 SNi l or Ras−(GDP or GTP)

809 ) or
810 Shc{p1}−(

811 SNi l or Sos−(

812 SNi l or Ras−(GDP or GTP)

813 )

814 )

815 )

816 ) ;

817 spec complex =

818 r e c e p t o r−s c a f f o l d W i t h o u t R e c e p t o r or
819 ATP−ErbB1 or 2 . ( EGF−ATP−ErbB1 ) or
820 2 . ( EGF−ErbB1{p1})−GAP;

821 endo [ complex ] <−>{k60 , kd60} l y sosomes [ degraded−R] |
822

823 endo [ ErbB234 ] <−>{k60b , kd60b} l y sosomes [ degraded−R] |
824

825 spec r e c e p t o r = ErbB1{p1}−ErbB234{p1 } ;

826 spec s c a f f o l d W i t h o u t R e c e p t o r =

827 GAP−Grb2−(
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828 SNi l or Shc{p1} or Sos−(

829 SNi l or Shc{p1} or Ras−(

830 GDP−( SNi l or Shc{p1 } ) or GTP−( SNi l or Shc{p1 } )

831 )

832 )

833 ) ;

834 spec complex = r e c e p t o r−s c a f f o l d W i t h o u t R e c e p t o r ;

835 endo [ complex ] <−>{k60b , kd60} l y sosomes [ degraded−R] |
836

837 spec r e c e p t o r = 2 . ( ErbB2{p1 } ) ;

838 spec s c a f f o l d W i t h o u t R e c e p t o r =

839 GAP or
840 GAP−(

841 Shc or
842 Shc{p1}−(

843 SNi l or
844 Grb2−( SNi l or
845 GDP−Ras−Sos or
846 GTP−Ras−Sos )

847 ) or
848 Grb2−(

849 SNi l or
850 Sos−( SNi l or GDP−Ras or GTP−Ras )

851 )

852 ) ;

853 spec complex = r e c e p t o r−s c a f f o l d W i t h o u t R e c e p t o r or 2 . ErbB2 ;

854 endo [ complex ] <−>{k60b , kd60} l y sosomes [ degraded−R] |
855

856 spec r e c e p t o r = ErbB2{p1}−(ErbB3{p1} or ErbB4{p1 } ) ;

857 spec s c a f f o l d W i t h o u t R e c e p t o r =

858 GAP−(

859 Shc or Shc{p1} or Grb2−(

860 SNi l or
861 Sos−( SNi l or Ras−GDP or Ras−GTP) or
862 Shc{p1}−(

863 SNi l or Sos−( SNi l or Ras−GDP or Ras−GTP)

864 )

865 )

866 ) ;

867 spec complex = r e c e p t o r−s c a f f o l d W i t h o u t R e c e p t o r ;

868 endo [ complex ] <−>{k60c , kd60} l y sosomes [ degraded−R] |
869
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870 endosomes [EGF] <=>{k61 , kd61} l y sosomes [ degraded−EGF] |
871

872 spec complex =

873 EGF−ErbB1−ErbB234 or HRG−(ErbB1 or ErbB2 )−( ErbB3 or ErbB4 ) or
874 ErbB2−(ErbB3 or ErbB4 ) ;

875 endo [ complex ] <−>{k62b , kd60b} l y sosomes [ degraded−R]

876 } ;

877

878 module E R K S c a f f o l d I n t e r a c t i o n ( ) {
879 spec complex = 2 . ( EGF−ErbB1{p1})−GAP−Grb2−Sos−( SNi l or Shc{p1 } ) ;

880 c y t o [ERK{p1 , p2 } ] + p l a s [ complex ]

881 <−>{k64 , kd64} p l a s [ complex−ERK{p1 , p2 } ] |
882 c y t o [ERK{p1 , p2}− i ] + endo [ complex ]

883 <−>{k64 , kd64} endo [ complex−ERK{p1 , p2 } ] |
884 c y t o [ERK{p1 , p2 } ] + p l a s [ complex<Sos{p1}>]

885 <−>{k65 , kd65} p l a s [ complex−ERK{p1 , p2 } ] |
886 c y t o [ERK{p1 , p2}− i ] + endo [ complex<Sos{p1}>]

887 <−>{k65 , kd65} endo [ complex−ERK{p1 , p2 } ] |
888

889 c y t o [ERK{p1 , p2}− i S N i l + Sos

890 <−>{k64 , kd64} ERK{p1 , p2}− i S N i l−Sos ] |
891 c y t o [ERK{p1 , p2}− i S N i l + Sos{p1}
892 <−>{k65 , kd65} ERK{p1 , p2}− i S N i l−Sos ] |
893

894 spec r e c e p t o r =

895 ErbB2{p1}−(

896 ( ErbB1{p1} or ErbB2{p1 } ) or ( ErbB3{p1} or ErbB4{p1 } )

897 ) or 2 . ( EGF−ErbB1{p1 } ) ;

898 spec complex = r e c e p t o r−Gab1{p1}−GAP−Grb2 ;

899 c y t o [ERK{p1 , p2}− i S N i l ] + p l a s [ complex ]

900 <−>{k110 , kd110} p l a s [ERK{p1 , p2}−complex−i S N i l ] |
901

902 / / NOTE: i n c o n s i s t e n t use o f s p e c i e s ErbB34 and ErbB22

903 / / b r e a k s symmetry . t h e r e a c t i o n s are s t r a n g e : some

904 / / s p e c i e s s u d d e n l y appear on t h e RHS .

905 spec magic = GAP−Grb2 ;

906 c y t o [ERK{p1 , p2}− i S N i l ] + p l a s [ ErbB2−ErbB34−Gab1{p1 } ]

907 <−>{k111 , kd111}
908 p l a s [ ErbB2{p1}−ErbB3{p1}−ERK{p1 , p2}−Gab1{p1}− i S N i l−magic ] |
909 c y t o [ERK{p1 , p2}− i S N i l ] + p l a s [ 2 . ErbB22−Gab1{p1 } ]

910 <−>{k111 , kd111}
911 p l a s [ 2 . ErbB2{p1}−ERK{p1 , p2}−Gab1{p1}− i S N i l−magic ] |
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912 c y t o [ERK{p1 , p2}− i S N i l ] + c y t o [ ErbB1−ErbB2−Gab1{p1 } ]

913 <−>{k111 , kd111}
914 p l a s [ ErbB1{p1}−ErbB2{p1}−ERK{p1 , p2}−Gab1{p1}− i S N i l−magic ] |
915 c y t o [ERK{p1 , p2}− i S N i l ] + p l a s [ 2 . ( EGF−ErbB1)−Gab1{p1 } ]

916 <−>{k111 , kd111}
917 p l a s [ 2 . ( EGF−ErbB1{p1})−ERK{p1 , p2}−Gab1{p1}− i S N i l−magic ] |
918

919 spec complex = Gab1{p1}−GAP−Grb2 ;

920 spec c = ErbB2{p1}−ErbB4{p1}−complex<Gab1{p2}>;

921 c y t o [ERK{p1 , p2}− i S N i l ] + p l a s [ c ]

922 <−>{k111 , kd111}
923 p l a s [ c<Gab1{p2= f f}>−ERK{p1 , p2}− i S N i l ] |
924 c y t o [ERK{p1 , p2}− i S N i l ] + wor ld [ ErbB1{p1}−ErbB4{p1}−complex as c ]

925 <−>{k111 , kd111}
926 endosomes [ c−ERK{p1 , p2}− i S N i l ] |
927 c y t o [ERK{p1 , p2 } ] + wor ld [ ErbB1{p1}−ErbB3{p1}−complex as c ]

928 <=>{k111 , kd111} p l a s [ c−ERK{p1 , p2 } ] |
929 c y t o [ERK{p1 , p2}− i ] + wor ld [ ErbB1{p1}−ErbB3{p1}−complex as c ]

930 <=>{k111 , kd111} endosomes [ c−ERK{p1 , p2}− i ] |
931 c y t o [ERK{p1 , p2 } ] + p l a s [ ErbB1{p1}−ErbB3{p1}−complex as c ]

932 <=>{k110 , kd110} p l a s [ c−ERK{p1 , p2 } ] |
933 c y t o [ERK{p1 , p2}− i ] + p l a s [ ErbB1{p1}−ErbB3{p1}−complex as c ]

934 <=>{k110 , kd110} endosomes [ c−ERK{p1 , p2}− i ] |
935 c y t o [ERK{p1 , p2}− i S N i l ] + p l a s [ ErbB1{p1}−ErbB4{p1}−complex as c ]

936 <−>{k110 , kd110} endosomes [ c−ERK{p1 , p2}− i S N i l ]

937 } ;

938

939 module PIP ( ) {
940 / / NOTE: s t r a n g e t h a t PIP2 i s a lways used on p r o d u c t s i d e ,

941 / / even when t h e a c t u a l parame te r PIP i s bound t o PIP3 .

942 module PIP2BuildUp ( spec PIP ; r a t e k1 , kd1 , k2 , kd2 , k3 , kd3 ) {
943 spec r e c e p t o r = ( ErbB1{p1}−ErbB234{p1 } ) or 2 . ( EGF−ErbB1{p1 } ) ;

944 spec complex = r e c e p t o r−Gab1{p1}−GAP−Grb2−PI3K ;

945 c y t o [ PIP ] + p l a s [ complex ] <−>{k1 , kd1} p l a s [ complex−PIP2 ] |
946

947 / / t h e f o l l o w i n g has a d i f f e r e n t r a t e from t h e above :

948 spec complex = 2 . ErbB2{p1}−Gab1{p1}−GAP−Grb2−PI3K ;

949 c y t o [ PIP ] + p l a s [ complex ] <=>{k2 , kd2} p l a s [ complex−PIP2 ] |
950

951 / / now t o t h e b u i l d−up :

952 spec complex = ErbB2{p1}−ErbB3{p1}−Gab1{p1}−GAP−Grb2−PI3K ;

953 c y t o [ PIP ] + p l a s [ complex ] <=>{k3 , kd3} p l a s [ complex−PIP2 ] |
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954 c y t o [ PIP ] + p l a s [ complex−PIP2 ] <=>{k3 , kd3} p l a s [ complex−PIP22 ] |
955 c y t o [ PIP ] + p l a s [ complex−PIP22 ] <=>{k3 , kd3} p l a s [ complex−PIP23 ] |
956 c y t o [ PIP ] + p l a s [ complex−PIP23 ] <=>{k3 , kd3} p l a s [ complex−PIP24 ] |
957 c y t o [ PIP ] + p l a s [ complex−PIP24 ] <=>{k3 , kd3} p l a s [ complex−PIP25 ] |
958 c y t o [ PIP ] + p l a s [ complex−PIP25 ] <=>{k3 , kd3} p l a s [ complex−PIP26 ]

959 } ;

960

961 PIP2BuildUp ( PIP3 , k68 , kd68 , k68 , kd68 , k68 , kd68b ) |
962 PIP2BuildUp ( PIP2 , k106b , kd106b , k106 , kd106 , k106 , kd106 ) |
963 / / NOTE: t h e n e x t r e a c t i o n does n o t seem t o f i t i n anywhere .

964 / / i t goes t o c y t o r a t h e r than p las , i s t h i s c o r r e c t ?

965 c y t o [ PIP2 ] + p l a s [ ErbB2{p1}−ErbB4{p1}−Gab1{p1}−GAP−Grb2−PI3K as c ]

966 <=>{k106 , kd106} c y t o [ c−PIP2 ]

967 } ;

968

969 module PIPAktCascade ( ) {
970 / / module f o r s i n g l e−s i t e p h o s p h o r y l a t i o n and PIP b i n d i n g :

971 module ph1 ( spec s :{m} ; r a t e k1 , kd1 , k2 , kd2 , k3 , kd3 ) {
972 PIP3 + s <=>{k1 , kd1} PIP3−s |
973 PDK1 + PIP3−s <=>{k2 , kd2} PDK1−PIP3−s |
974 PDK1−PIP3 + s {m} <=>{k3 , kd3} PDK1−PIP3−s

975 } ;

976

977 / / module f o r s i n g l e−s i t e d e p h o s p h o r y l a t i o n :

978 module dph1 ( spec s :{m} ; r a t e k1 , kd1 , k2 , kd2 ) {
979 Pase4 + s {m} <=>{k1 , kd1} Pase4−s {m} |
980 Pase4 + s <=>{k2 , kd2} Pase4−s {m}
981 } ;

982

983 / / module f o r a s i n g l e p h o s p h o r y l a t i o n / d e p h o s p h o r y l a t i o n c y c l e :

984 module c y c l e (

985 spec s :{m} ;

986 r a t e k1 , kd1 , k2 , kd2 , k3 , kd3 , k4 , kd4 , k5 , kd5

987 ) {
988 ph1 ( s :{m} , k1 , kd1 , k2 , kd2 , k3 , kd3 ) |
989 dph1 ( s :{m} , k4 , kd4 , k5 , kd5 )

990 } ;

991

992 / / module f o r i n v o k i n g c y c l e s :

993 module PIPCycle ( ) {
994 / / p h o s p h o r y l a t i o n :

995 Shp + PIP2 <=>{k104 , kd104} PIP3−Shp |
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996 PIP3 + Shp <=>{k109 , kd109} PIP3−Shp |
997

998 / / d e p h o s p h o r y l a t i o n :

999 PIP3 + PTEN <=>{k109 , kd109} PIP3−PTEN |
1000 PTEN + PIP2 <=>{k104 , kd104} PIP3−PTEN

1001 } ;

1002

1003 c y t o [

1004 PIPCycle ( ) |
1005 c y c l e (

1006 AKT:{ p1 } ,

1007 k69 , kd69 , k70 , kd70 , k71 , kd71 , k73 , kd73 , k75 , kd75

1008 ) |
1009 c y c l e (

1010 AKT{p1 } :{ p2 } ,

1011 k69 , kd69 , k70 , kd70 , k72 , kd72 , k74 , kd74 , k75 , kd75

1012 ) |
1013 PDK1 + PIP3 <=>{k76 , kd76} PDK1−PIP3

1014 ]

1015 } ;

1016

1017 module R a f A k t I n t e r a c t i o n ( ) {
1018 c y t o [AKT{p1 , p2} + i S N i l−Raf{p1}
1019 <−>{k114 , kd114} AKT{p1 , p2}− i S N i l−Raf{p1}−Ser ] |
1020 p l a s [ Raf{p1}−Ser ] + c y t o [AKT{p1 , p2 } ]

1021 <−>{k115 , kd115} c y t o [AKT{p1 , p2}−Raf{p1}−Ser−i S N i l ]

1022 } ;

1023

1024 module p h o s p h a t a s e B i n d i n g ( ) {
1025 spec complex =

1026 ( ErbB1{p1} or ErbB2{p1})−ErbB234{p1} or 2 . ( EGF−ErbB1{p1 } ) ;

1027 c y t o [ Pase−RTK] + endo [ complex ]

1028 <−>{k94b , kd94} endo [ complex−Pase−RTK] |
1029

1030 spec e1a = ErbB1 :{ p1} : : a{p1 } ;

1031 spec e2a = ErbB2 :{ p1} : : a{p1 } ;

1032 spec e234b = ErbB234 :{ p1} : : b{p1 } ;

1033 spec complex1 = e1a−e234b ;

1034 spec complex2 = e2a−e234b ;

1035 c y t o [ Pase−RTK] + endo [EGF−complex1 ]

1036 <−>{k95 , kd95} endo [ complex1<a{p1}><b{p1}>−Pase−RTK] |
1037 c y t o [ Pase−RTK] + endo [ complex2 ]
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1038 <−>{k95 , kd95} endo [ complex2<a{p1}><b{p1}>−Pase−RTK] |
1039 c y t o [ Pase−RTK] + endo [ 2 . ( EGF−ATP−ErbB1 ) ]

1040 <=>{k95 , kd95} endo [ 2 . ( EGF−ErbB1{p1})−Pase−RTK] |
1041

1042 c y t o [ Pase3 <=>{k116 , kd116} deg−MKP] |
1043

1044 spec complex =

1045 Gab1{p1 } − (2 . (EGF−ErbB1 ) or 2 . ErbB22 or ErbB2−ErbB34 ) ;

1046 c y t o [ P a s e 9 t ] + p l a s [ complex ] <−>{k117 , kd117} p l a s [ complex−P a s e 9 t ] |
1047

1048 / / NOTE: ca nn o t g e n a r a l i s e because o f d i f f e r e n c e s i n compar tmen t s .

1049 c y t o [ P a s e 9 t ] + wor ld [ ErbB1{p1}−ErbB3{p1}−Gab1{p1}−GAP−Grb2 as c ]

1050 <=>{k117 , kd117} endo [ c−P a s e 9 t ] |
1051 c y t o [ P a s e 9 t ] + wor ld [ ErbB1{p1}−ErbB4{p1}−Gab1{p1}−GAP−Grb2 as c ]

1052 <=>{k117 , kd117} p l a s [ c−P a s e 9 t ] |
1053 c y t o [ P a s e 9 t ] + c y t o [ ErbB1−ErbB2−Gab1{p1} as c ]

1054 <=>{k117 , kd117} p l a s [ c−P a s e 9 t ] |
1055 c y t o [ P a s e 9 t ] + p l a s [ ErbB2{p1}−ErbB4{p1}−Gab1{p1 , p2}−GAP−Grb2 as c ]

1056 <=>{k117 , kd117} world [ c−P a s e 9 t ] |
1057

1058 / / t h e f o l l o w i n g has i n c o n s i s t e n t use o f e . g . ErbB22 and ErbB34 ,

1059 / / and p r o d u c t s p e c i e s and compar tmen t s vary i n c o n s i s t e n t l y .

1060 c y t o [ P a s e 9 t ] + p l a s [ 2 . ErbB2{p1}−Gab1{p1}−GAP−Grb2 ]

1061 <=>{k118 , kd118} p l a s [ 2 . ErbB22−Gab1{p1}−P a s e 9 t ] |
1062 c y t o [ P a s e 9 t ] + p l a s [ 2 . ( EGF−ErbB1{p1})−Gab1{p1}−GAP−Grb2 ]

1063 <=>{k118 , kd118} p l a s [ 2 . ( EGF−ErbB1)−Gab1{p1}−P a s e 9 t ] |
1064 c y t o [ P a s e 9 t ] + p l a s [ ErbB2{p1}−ErbB3{p1}−Gab1{p1}−GAP−Grb2 ]

1065 <=>{k118 , kd118} p l a s [ ErbB2−ErbB34−Gab1{p1}−P a s e 9 t ] |
1066 c y t o [ P a s e 9 t ] + p l a s [ ErbB1{p1}−ErbB2{p1}−Gab1{p1}−GAP−Grb2 ]

1067 <=>{k118 , kd118} p l a s [ ErbB1−ErbB2−Gab1{p1}−P a s e 9 t ] |
1068 c y t o [ P a s e 9 t ] + p l a s [ ErbB1{p1}−ErbB3{p1}−Gab1{p1}−GAP−Grb2 as c ]

1069 <=>{k118 , kd118} endo [ c−P a s e 9 t ] |
1070 c y t o [ P a s e 9 t ] + p l a s [ ErbB2{p1}−ErbB4{p1}−Gab1{p1}−GAP−Grb2 as c ]

1071 <=>{k118 , kd118} world [ c<Gab1{p2}>−P a s e 9 t ] |
1072 c y t o [ P a s e 9 t ] + p l a s [ ErbB1{p1}−ErbB4{p1}−Gab1{p1}−GAP−Grb2 as c ]

1073 <=>{k118 , kd118} p l a s [ c−P a s e 9 t ]

1074 } ;

1075

1076 / / module i n v o c a t i o n s :

1077 r e c e p t o r A c t i v a t i o n ( ) |
1078 r e c e p t o r L i g a n d B i n d i n g ( ) |
1079 r e c e p t o r D i m e r i s a t i o n ( ) |
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1080 r e c e p t o r I n h i b i t i o n ( ) |
1081 s c a f f o l d F o r m a t i o n ( ) |
1082 p h o s p h a t a s e B i n d i n g ( ) |
1083 cPPTagging ( ) |
1084 e n d o c y t o s i s ( ) |
1085 MAPKCascade ( ) |
1086 E R K S c a f f o l d I n t e r a c t i o n ( ) |
1087 R a f A k t I n t e r a c t i o n ( ) |
1088 PIP ( ) |
1089 PIPAktCascade ( ) |
1090 d e g r a d a t i o n ( ) �





Appendix C

Proofs

C.1 Proofs for Compartment Value Lists

Proposition 5.1.1. By induction in |{vci}|. In the following we additionally use a and

b to range over compartment values.

• Basis ({vci}= /0). Holds vacuously.

• Step ({vci}∪{v
′
c}).

Acyclic: by the induction hypothesis, G{vci} is acyclic. Also G{v′c} is acyclic,

for otherwise v′c would take the form vc
′
1 avc

′
2 avc

′
3, and it follows from well-

typedness that the compartment value a must include itself as an ancestor; this is

impossible since compartment values are finite. Suppose towards a contradiction

that there is a cycle in G({vci}∪{v
′
c}). This can then only arise from a branch in

G{vci} of the form vc1 avc2 bvc3 and v′c of the form vc
′
1 bvc

′
2 avc

′
3, both of which

are well-typed. This means that the compartment value a must include b as an

ancestor, and b in turn must include a as an ancestor. Hence a must include itself

as an ancestor. But this is impossible since compartment values are finite.

Max one parent: by the induction hypothesis, each node in G{vci} has at most

one parent. Also each node in G{v′c} has at most one parent, for otherwise the

graph would contain a cycle. Suppose towards a contradiction that there is some

node a in G({vci}∪{v
′
c}) with two parents. This can only arise from a branch in

G{vci} of the form vc1 bavc2 and v′c of the form vc
′
1 cavc

′
2 with b 6= c. But this is

impossible since both lists are well-typed and a can contain only a single parent.

223
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C.2 Proofs for Petri Net Flows

C.2.1 Duality

Theorem 6. As for place sharing in Section 7.2, let us consider the structure of the flow

matrix W arising from the transition-based composition PN1 |t PN2 of nets with flow

matrices W1 and W2. We make similar assumptions about the ordering of transitions

as for places under place-based composition. Then W1, W2 and W can be partitioned

as follows where, for i ∈ {1,2}, W t
i consists of the columns from Wi which represent

shared transitions T1 ∩T2, and W−i are the remaining columns for non-shared transi-

tions:

W1 =
[
W−1 W t

1
]
, W2 =

[
W t

2 W−2
]
, W =

[
W−1 W t

1 0

0 W t
2 W−2

]
We then reason as follows:

PF(PN1 |t PN2) = PF

[
W−1 W t

1 0

0 W t
2 W−2

]

= T F

[
W−1 W t

1 0

0 W t
2 W−2

]T

= T F


W−

T

1 0

W tT
1 W tT

2

0 W−
T

2

 = TF(PND
1 |s PND

2 )

Symmetric reasoning can be used for T-flows under transition sharing.

C.2.2 Modular T-Flows

Lemma 1 (soundness part 1). Take any x ∈ Z. Per definition of Z, x = Xα for some

α ∈MTF(C). We now reason as follows, relying on the fact that matrix multiplication

is associative:

0 = Cα = (W sX)α = W s(Xα) = W sx

So x ∈ TF(W s). Also x ∈ TF(W−) because x is a linear combination of columns of X

which are minimal flows in W−; any such combination is itself a flow. Together these

give that Wx = 0, i.e. x ∈ TF(W ) = TF(PN1 |s PN2), which completes the the proof of

1). 2) follows immediately from 1) and the fact that division of a flow by gcd is also a

flow.
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Lemma 2 (completeness) for standard minimality. Take any x∈MTF(PN1 |s PN2). Then

Wx = 0, so also W sx = 0 and W−x = 0. Hence x ∈ TF(W s) and x ∈ TF(W−). Observe

that X consists exactly of the minimal T-flows of W−. Therefore, by Theorem 2 there

are α ∈ N|col(X)|T and a ∈ N s.t. x = 1
aXα, i.e. xa = Xα. There may generally be mul-

tiple such α, so pick one which is canonical and has minimal decomposition-support

in the sense that its support does not contain the support of any other choices. Such a

canonical choice is indeed possible because it is always the case that gcd(α) divides a.

To see this, let c = gcd(α); then there is a canonical α′ s.t. ax = Xcα′ = cXα′. Also
a
d x = c

d Xα′ where d = gcd(a,c). Since x has natural number entries, a
d divides all

entries in c
d Xα′. It follows from Euclid’s lemma and gcd( a

d , c
d ) = 1 that a

d divides all

entries in Xα′. Canonicity of x then forces c = d, and hence d = gcd(α) divides a as

claimed.

We now show that α is a T-flow of C, i.e. that Cα = 0. The following steps rely on

the fact that matrix multiplication is associative:

Cα = (W sX)α = W s(Xα) = W s(xa) = (W sx)a = 0a = 0

Next we show that α is a minimal T-flow of C. It is canonical per assumption. To get

that α has minimal support, we show that any T-flow α′ of C with sup(α′) ( sup(α)

also generates x, contrary to α being a choice with a minimal decomposition-support

for which this holds. Note here the subtle distinction between minimality of α wrt.

decomposition of x and wrt. flows of C; the former holds per assumption, and we will

now prove the latter.

So, we have sup(α′) ( sup(α) and Cα′ = 0. Then 0 = Cα′ = (W sX)α′ = W s(Xα′),

so x′ = Xα′ is a T-flow of W s. Any linear combination of T-flows is also a T-flow, so x′

is also a T-flow of W−. Together these give x′ ∈ TF(W ). Now since sup(α′) ( sup(α)

it must also hold that sup(x′) = sup(Xα′) ⊆ sup(Xα) = sup(x). Since x has minimal-

support, it must be the case that sup(x′) = sup(x). By Theorem 3, either x = nx′ or

x′ = nx for some n ∈ N. But x is canonical, so x′ = nx i.e. x = 1
nx′ = 1

nXα′. This

contradicts our original choice of α to be a minimal-support decomposition of x.

We conclude that α ∈MTF(C) and hence xa = Xα ∈ Z. Per assumption x is mini-

mal, so there is no other minimal flow x′′ ∈MTF(PN1 |s PN2)⊃ Z (the inclusion is By

Lemma 1) with sup(x′′) ( sup(x). Hence x = xa
a ∈ min(Z) = MTFPar(X1,X2,W s).

Lemma 2 (completeness) for weak minimality. Take any x∈MwT F(PN1 |s PN2). Then

Wx = 0, so also W sx = 0 and W−x = 0. Hence x ∈ TF(W s) and x ∈ TF(W−). Observe
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that X consists exactly of the minimal T-flows of W−. Therefore, by Theorem 5 there

is an α ∈ N|col(X)|T s.t. x = Xα.

We first show that α is a T-flow of C, i.e. that Cα = 0. The following steps rely on

the fact that matrix multiplication is associative:

Cα = (W sX)α = W s(Xα) = W sx = 0

Next we show that α is a minimal T-flow of C, so suppose towards a contradiction

that there are α′,α′′ ∈ TF(C) s.t. α = α′+ α′′. Then Xα′ ∈ TF(W ), for W s(Xα′) =

(W sX)α′ = Cα′ = 0 and also W−(Xα′) = 0 (any linear combination of flows is again

a flow). Similar reasoning shows that Xα′′ ∈ TF(W ). But x = Xα = X(α′+ α′′) =

Xα′+Xα′′, contradicting minimality of x.

We conclude that α ∈ MwT F(C) and hence x = Xα ∈ Z. Per assumption x is

minimal, so there are no other flows x1, . . . ,xk ∈ TF(PN1 |s PN2)⊃ Z (the inclusion is

By Lemma 1) and γ1, . . . ,γk ∈ N s.t. x = γ1x1 + · · ·+ γkxk. Hence also x ∈ min(Z) =

MTFPar(X1,X2,W s).

Lemma 3 (soundness part 2) for standard minimality.

Take any x ∈MTFPar(X1,X2,W−) = min(Z). By Lemma 1, x ∈ TF(PN1 |s PN2). x is

canonical per definition of the minimisation function. Suppose towards a contradiction

that there is some x′ ∈ MTF(PN1 |s PN2) with sup(x′) ( sup(x). Then by Lemma

2 also x′ ∈ min(Z), so nx′ ∈ Z for some n ∈ N. But this contradicts the definition of

minimisation since sup(nx′) ( sup(x).

Lemma 3 (soundness part 2) for weak minimality.

Take any x ∈MTFPar(X1,X2,W−) = min(Z). By Lemma 1, x ∈ TF(PN1 |s PN2). Sup-

pose towards a contradiction that there are some x1, . . . ,xk ∈ MTF(PN1 |s PN2) and

a1, . . . ,ak ∈ N with x = a1x1 + · · · + akxk. Then by Lemma 2 also

x1, . . . ,xk ∈ minw(Z) ( Z, contradicting the definition of the minimisation func-

tion.

Theorem 8. The proofs for both cases relies on the fact that linear independence im-

plies unique decomposition.

1. For standard minimality: Suppose towards a contradiction that z ∈ Z does

not have minimal support. By Lemma 1, z ∈ T F(PN1 |s PN2). By Theorem 7,

MTF(PN1 |s PN2) = min(Z), so by Theorem 2, z = 1
a(a1z1 + · · ·+ akzk), k > 1

for some distinct zi ∈min(Z) and a,ai,∈N. Per definition of minimisation there
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are bi ∈N s.t. zibi ∈ Z. Per definition of Z there are βi ∈MTF(C) s.t. zibi = Xβi,

i.e. zi = 1
bi

Xβi. Hence

z =
1
a
(a1z1 + · · ·+akzk)

=
1
a
(
a1

b1
Xβ1 + · · ·+ ak

bk
Xβk)

= X
1
a
(
a1

bk
β1 + · · ·+ ak

bk
βk)

But since also z = Xα for some α∈MTF(C) it follows by unique decomposition

that

α =
1
a
(
a1

b1
β1 + · · ·+ ak

bk
βk)

Clearly sup(βi) ⊆ sup(α) for all βi. All βi have distinct supports, so

sup(βi) ( sup(α) for at least on of the βi. This contradicts the minimality

of α.

2. For weak minimality: Support towards a contradiction that there are x,x′,x′′ ∈ Z

s.t. x = x′+ x′′. Per definition of Z there are α,α′,α′′ ∈ MTF(C) s.t. x = Xα,

x′ = Xα′ and x′′ = Xα′′. Hence

Xα = Xα
′+Xα

′′ = X(α′+α
′′)

By unique decomposition, α = α′+α′′. But this contradicts that α is minimal in

C.

C.2.3 Modular P-Flows

Lemma 4. Per definition of P-flows, xW1 = 0 and yW2 = 0. Per definition of flow

join, also (x _ y)W+
1 = 0 and (x _ y)W+

2 = 0 which per definition of matrix left-

multiplication gives that (x _ y)W = 0. Hence (x _ y) ∈ PF(PN1 |s PN2).

Lemma 5. x and y are the restrictions of z to SPN1 and SPN2 respectively. Since zW = 0

also zW+
1 = 0 and zW+

2 = 0. It follows immediately that xW1 = 0 and yW2 = 0, i.e.

x ∈ PF(PN1) and y ∈ PF(PN2).
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Lemma 6 (soundness part 1). Take any z ∈ Z. Per definition of Z there is

(α β) ∈ MPF(C) s.t. z = αX _ βY , and this join is clearly defined. Any linear

combination of flows is a flow, so αX and βY are P-flows of PN1 and PN2, respec-

tively. By Lemma 4, z ∈ PF(PN1 |s PN2) which proves 1). Item 2) follows from 1)

and the fact that any flow divided by a common divisor is also a flow.

Lemma 7 (completeness) for standard minimality. Take any z∈MPF(PN1 |s PN2). By

Lemma 5 there are restrictions x ∈ PF(PN1)∪ {0} and y ∈ PF(PN2)∪ {0} of z s.t.

z = x _ y. Claim: there are (αβ) ∈MPF(C) and d ∈ N such that

dx = αX and dy = βY

Then dz = dx _ dy = αX _ βY ∈ Z. Per assumption z is minimal so there is no other

flow z′ ∈ PF(PN1 |s PN2) ⊃ Z (Lemma 6) s.t. sup(z′) ( sup(z) = sup(dz). Hence

z = dz
d ∈ min(Z) = MPF(X1,X2,W−), so we are done.

Proof of claim: By Theorem 2 there are a,b ∈N, α′′ ∈N|row(X)| and β′′ ∈N|row(Y )|

with a 6= 0, b 6= 0 and either α′′ or β′′ 6= 0 s.t.

ax = α
′′X and by = β

′′Y ⇔

abx = α
′′bX and aby = β

′′aY

There may generally be many such (α′′ β′′), so pick one which has minimal decompo-

sition-support in the sense that its support does not contain the support of any other

possible choices.

Now let c = gcd(a,b), d = ab
c , α = α′′ bc and β = β′′ ac . Continuing with the equations

from above we then get

dx = αX and dy = βY

We know that x and y are consistent, i.e. xs = ys where xs and ys are the restrictions of

x and y to the shared places SPN1 ∩SPN2 . Hence also dxs = dys. So

αX s = dxs = dys = βY s ⇔

αX s−βY s = 0 ⇔

(αβ)C = 0

It follows that (αβ) ∈ PF(C). We may assume that (αβ) is canonical, for if it is not,

it is always possible to divide through by gcd(αβ) since this always divides d. To see
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why this is the case, let c = gcd(αβ). Then there are α′ and β′ s.t. dx = cα′X and

dy = cβ′Y . Now let e = gcd(c,d) and write d
e x = c

eα′X and d
e y = c

eβ′Y . Since x and y

have entries in N, d
e divides all entries in both c

eα′X and c
eβ′Y . From e = gcd(c,d) and

Euclid’s lemma we get that d
e divides all entries in α′X and β′Y . From d

e x = c
eα′X and

d
e y = c

eβ′Y we furthermore get that c
e divides all entries in both x and y, and hence also

in x _ y = z. Canonicity of z then forces c = e, so c divides d as claimed.

To see that (αβ) has minimal support in C, suppose towards a contradiction that

there is (α′β′) ∈ PF(C) with sup(α′β′) ( sup(αβ) = sup(α′′β′′). From the definition

of C it follows that x′ = α′X and y′ = β′Y are consistent, i.e. x′s = α′X s = β′Y s = y′s.

They are also place flows of PN1 and PN2 respectively. Lemma 4 then gives that

z′ = x′ _ y′ ∈ PF(PN1 |s PN2). We know that sup(z′) ⊆ sup(z), but we cannot have

sup(z′) ( sup(z) since z is minimal. Hence sup(z′) = sup(z). By Theorem 3, there is

some n ∈ N s.t.

nz = z′ = x′_ y′ = α
′X _ β

′Y

But we also know that nz = n(x _ y) = nx _ ny. Hence

nx =α
′X and

ny =β
′Y

Per assumption either sup(α′) ( sup(α′′) or sup(β′) ( sup(β′′). This contradicts our

original choice of α′′ or β′′ to have minimal decomposition-support.

Lemma 7 (completeness) for weak minimality. Take any z ∈ MwPF(PN1 |s PN2). By

Lemma 5 there are restrictions x ∈ PF(PN1) and y ∈ PF(PN2) of z s.t. z = x _ y. By

Theorem 5 there are α ∈ N|row(X)| and β ∈ N|rowY | s.t. x = αX and y = βY .

We know that x and y are consistent, i.e. xs = ys where xs and ys are the restrictions

of x and y to the shared places SPN1 ∩SPN2 . So

αX s = xs =ys = βY s ⇔

αX s−βY s =0

(αβ)C =0

It follows that (αβ) ∈ PF(C). Claim: (αβ) is minimal in C. Then x _ y ∈ Z. Per

assumption z is minimal so there are no z1, . . . ,zk ∈ PF(PN1 |s PN2)⊃ Z (the inclusion

is By Lemma 6) and γ1, . . . ,γk ∈ N s.t. z = γ1z1 + · · ·+ γkzk. Hence z ∈ minw(Z) and
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we are done.

Proof of claim: Suppose towards a contradiction that (αβ) = (α′β′)+ (α′′β′′) for

some (α′β′),(α′′,β′′) ∈ PF(C). We then reason as follows:

z = x _ y

= αX _ βY

= (α′+α
′′)X _ (β′+β

′′)Y

= (α′X +α
′′X) _ (β′Y +β

′′Y )

= (α′X _ β
′Y )+(α′′X _ β

′′Y )

The last equality holds because α′X and β′Y are consistent per definition of C, and

so are α′′X and β′′Y . Now Lemma 4 gives us that z′ = α′X _ β′Y ∈ PF(PN1 |s PN2)

and z′′ = α′′X _ β′′Y ∈ PF(PN1 |s PN2). But z = z′+ z′′, contradicting minimality of

z.

Lemma 8 (soundness part 2) for standard minimality.

Take any x ∈ MPFPar(X1,X2) = min(Z). By Lemma 6, x ∈ PF(PN1 |s PN2). x is

canonical per definition of the minimisation function. Suppose towards a contradiction

that there is some x′ ∈ MPF(PN1 |s PN2) with sup(x′) ( sup(x). Then by Lemma

7 also x′ ∈ min(Z), so nx′ ∈ Z for some n ∈ N. But this contradicts the definition of

minimisation since sup(nx′) ( sup(x).

Lemma 8 (soundness part 2) for weak minimality.

Take any x ∈ MPFPar(X1,X2) = min(Z). By Lemma 6, x ∈ PF(PN1 |s PN2). Sup-

pose towards a contradiction that there are some x1, . . . ,xk ∈ MPF(PN1 |s PN2) and

a1, . . . ,ak ∈ N with x = a1x1 + · · · + akxk. Then by Lemma 7 also

x1, . . . ,xk ∈ minw(Z) ( Z, contradicting the definition of the minimisation function.

Theorem 10. The proofs for both cases relies on the fact that linear independence im-

plies unique decomposition.

1. For standard minimality: Suppose towards a contradiction that z ∈ Z does

not have minimal support. By Lemma 1, z ∈ PF(PN1 | PN2). By Theorem 7,

MPF(PN1 | PN2) = min(Z), so by Theorem 2, z = 1
a(a1z1 + · · ·+ akzk), k > 1

for some distinct zi ∈min(Z) and a,ai,∈N. Per definition of minimisation there
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are bi ∈ N s.t. zibi ∈ Z. Per definition of Z there are (αiβi) ∈ MPF(C) s.t.

zibi = αiX _ βiY , i.e. zi = 1
bi

(αiX _ βiY ). Hence

z =
1
a
(a1z1 + · · ·+akzk)

=
1
a
(
a1

b1
(α1X _ β1Y )+ · · ·+ ak

bk
(αkX _ βkY ))

=
1
a
(
a1

b1
α1X + · · ·+ ak

bk
αkX _

a1

b1
β1Y + . . .

ak

bk
βkY )

=
1
a
((

a1

b1
α1 + · · ·+ ak

bk
αk)X _ (

a1

b1
β1 + . . .

ak

bk
βk)Y )

But since also also z = αX _ βY for some (αβ) ∈MPF(C) it follows by unique

decomposition that

α =
1
a
(
a1

b1
α1 + · · ·+ ak

bk
αk)

β =
1
a
(
a1

b1
β1 + · · ·+ ak

bk
βk)

Clearly sup(αi)⊆ sup(α) and sup(βi)⊆ sup(β) for all αi, βi. All αi and βi must

have distinct supports, so sup(αi) ( sup(α) and sup(βi) ( sup(β) for all αi and

βi. This contradicts the minimality of (αβ).

2. For weak minimality: Support towards a contradiction that there are x,x′,x′′ ∈ Z

s.t. x = x′+ x′′. Per definition of Z there are (αβ),(α′β′),(α′′β′′) ∈MPF(C) s.t.

x = αX _ βY , x′ = α′X _ β′Y and x′′ = α′′X _ β′′Y . Hence

x =α
′X _ β

′Y +α
′′X _ β

′′Y

=α
′X +α

′′X _ β
′Y +β

′′Y

=(α′+α
′′)X _ (β′+β

′′)Y

But also x = αX _ βY , so αX = (α′+ α′′)X and βY = (β′+ β′′)Y . By unique

decomposition, α = α′+ α′′ and β = β′+ β′′. But this contradicts that (αβ) is

minimal in C.

C.2.4 Proofs for Concrete Flow Semantics

Theorem 11. The proof is by induction on P, but we strengthen the induction hypothe-

sis with the statement that WLTF is the flow matrix of (PN,≺TLTF ,≺SLTF). The relevant
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cases are the ones concerned with the concrete semantics as the rest go through triv-

ially. We show only the case of parallel composition for T-flows. The remaining cases,

including those for P-flows, are easier.

Case: parallel composition for T-flows. Let PN1
∆' JP1KP N , PN2

∆' JP2KP N ,

LTF1
∆' JP1KLTF , and LTF2

∆' JP2KLTF ; we here omit the parameters of the general

semantical function for the sake of notational simplicity. By the induction hypothesis,

WLTF1 and WLTF2 are the flow matrices of PN1 and PN2, respectively. Then the com-

position W is per definition the flow matrix of PN1 |s PN2 under the chosen orderings.

We then reason as follows:

hLTF(∆S) = MTFPar([MTF1], [MTF2],W ss)

= MTFPar([hLTF1(∆S′)], [hLTF2(∆S′)],W ss)

= MTFPar([MTF(PN1 \∆S′)], [MTF(PN2 \∆S′)],W ss)

(by the induction hypothesis)

= MTFPar([MTF(PN1 \∆S′′ \∆S)], [MTF(PN2 \∆S′′ \∆S)],W ss)

= MTF(PN1 \∆S |s PN2 \∆S)

(by Theorem 7)

= MTF((PN1 |s PN2)\∆S)

This completes the proof, since per definition JP1|P2KP N = PN1 |s PN2.

C.3 Proofs for GEC

C.3.1 Injectivity

We write f↓ X for the restriction of the function f to the domain X ⊆ dom( f ). We say

that Θ = {(θi,ρi,σi,τi)} is ρ-injective if doms(θi) = ρi; then θi↓ doms(θi) is injective

per definition of context-sensitive substitutions.

Lemma 9. If Θ1 and Θ2 are ρ-injective, then also Θ1 6Θ2 is ρ-injective.

Proof. let Θ1 = {(θi,ρi,σi,τi)} and Θ2 = {(θ′j,ρ′j,σ′j,τ′j)}. Take any θi ∪ θ′j in

Θ1 6 Θ2. Per assumption, doms(θi) = ρi and doms(θ′j) = ρ′j. Hence

doms(θi ∪ θ′j) = ρi ∪ ρ′j, so Θ1 6Θ2 is ρ-injective.



C.3. Proofs for GEC 233

Lemma 10. Let P be a compartment-free program, let Γ be a module environment and

let b be a binary string. If Γ(idm)(a,b′) is ρ-injective for all idm ∈ dom(Γ)∩FM(P),

all b′ and all matching a, then JPKgsΓ,b is also ρ-injective.

Proof. Suppose that the precondition holds, i.e. that Γ(idm)(a,b) is defined and ρ-

injective for all idm ∈ dom(Γ)∩ FM(P). We then proceed by induction on P with

selected cases given below; the remaining cases are similar or easier.

• P = u : t(Qt). Then ρi = doms(θi) per definition.

• P = 0. Then ρi = doms(θi) = /0 per definition.

• P = (idm(u) = P1 ; P2). Let f (a,b)
∆' JP1{u.i 7→ a.i}KgsΓ,b. By the induc-

tion hypothesis, f (a,b) is ρ-injective. Hence the precondition also holds for

Γ′
∆' Γ〈idm 7→ f 〉. By the induction hypothesis, also JP2KgsΓ

′,b′ is ρ-injective.

• P = idm(a). Follows immediately from the precondition.

• P = P1 |C. The induction hypothesis gives that JP1KgsΓ,b is ρ-injective. We also

get that JCKgs is ρ-injective for all three cases of C per definition of the denotation

function. It follows from Lemma 9 that also JP1KgsΓ,b6JCKgs is ρ-injective.

• P = newx.P1. By the induction hypothesis, JP1{x 7→ x′}KgsΓ,b is ρ-injective for

any x′.

Let P0 be a program and let Θ
∆' {(θi,ρi,σi,τi)}. We say that Θ is P0-injective if

θi↓ (doms(θi)∩FV(P0)) is injective. The following proposition states a strong property

of piece-wise injectivity which serves as a useful induction hypothesis in the proof;

Proposition 9.2.1 is an immediate corollary.

Proposition C.3.1 (Piece-wise injectivity). Let P0 be a compartment-free program

with FM(P0) = /0, let C (·) be a well-formed context, let Γ be an environment and let

b be a binary string. If C (·) has a hole, or if there is an idm ∈ dom(Γ)∩FM(C (·))
s.t Γ(idm)(a,b′) is P0-injective for all b′ and matching a, then also JC (P0)KgsΓ,b is

P0-injective.

Proof. Suppose that the precondition holds for C (·) and Γ. We then proceed by in-

duction on C (·) with selected cases given below; the remaining cases are similar or

easier.
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• C (·) = ·. Then JC (P0)KgsΓ,b = JP0KgsΓ,b is ρ-injective by Lemma 10, and ρ-

injectivity implies P0-injectivity.

• C (·) = C1(·) ‖ C2(·). If the precondition holds for C (·) then it must hold for at

least one side, say for C1(·) without loss of generality. Then JC1(P0)KgsΓ,b is P0-

injective by the induction hypothesis. The union of a function injective on some

interval with any other function, when defined, is also injective on this interval.

• C (·) = (idm(u) = C1(·) ; C2(·). There are two cases to consider:

1. The precondition holds for C1(·) and Γ. Then

f (a,b) = JC1(P0){u.i 7→ a.i}KgsΓ,b = JC1{u.i 7→ a.i}(P0)KgsΓ,b

per assumption that context instantiations are capture free, i.e. no free

variables of P0 become bound by formal parameters. By the induction

hypothesis, f (a,b) is P0-injective. Then the precondition holds for C2(·)
and Γ′ = Γ〈idm 7→ f 〉 since idm ∈ FM(C2(·)) by the assumption of well-

formedness. By the induction hypothesis, JC2(P0)KgsΓ
′,b is P0-injective.

2. The precondition holds for C2(·) and Γ. It then also holds for C2(·) and

Γ′ as defined above because idm 6∈ dom(Γ) by the assumption of well-

formedness. By the induction hypothesis, JC2(P0)KgsΓ
′,b is P0-injective.

• C (·) = idm(a). There is no hole in idm(a), so if the precondition holds, there is an

id′m ∈ dom(Γ)∩FM(C (·)) s.t Γ(id′m)(a,b) is P0-injective for all b and matching

a. Since FM(C (·)) = {idm}, we must have that id′m = idm.

• C (·) = idc[C ′(·)]. If the precondition holds for C (·) then it must also hold for

C ′(·). Per definition, Jidc[C ′(P0)]KgsΓ,b has the same substitutions as

JC ′(P0)KgsΓ,b, and the latter is P0-injective by the induction hypothesis.

• C (·) = newx.C ′(·). Again we rely on context instantiations being capture-free

so that x 6∈ FV(P0). Hence C ′(P0){x 7→ x′} = C ′{x 7→ x′}(P0) and the induction

hypothesis applies.

C.3.2 Non-interference

Let P0 = u : t(Qt) be a basic program. We say that Θ = {(θi,ρi,σi,τi)} is P0-sound if

uθi : t(Q) ∈Kb for some Q and FS(Q)\FS(Qtθi)⊆ τi.
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Lemma 11. Let P0 = u : t(Qt) be a basic program and let Θ, Θ′ be two substitutions

with Θ P0-sound. Then Θ6Θ′ is also P0-sound.

Proof. Let Θ = {(θi,ρi,σi,τi)}, Θ′ = {(θ′j,ρ′j,σ′j,τ′j)} and take any

(θi∪θ′j,ρi∪ρ′j,σi∪σ′j,τi∪τ′j) ∈Θ6Θ′. Per assumption that Θ is P0-sound, there is a

Q s.t. uθi : t(Q)∈Kb, Qtθi⊆Q and FS(Q)\FS(Qtθi)⊆ τi. Note that FV(Qt) ⊆ dom(θi)

and FV(u) ⊆ dom(θi) because Kb consists of ground terms, so Qtθi = Qt(θi ∪ θ′j)

and uθi = u(θi ∪ θ′j). Therefore also u(θi ∪ θ′j) : t(Q) ∈ Kb, Qt(θi ∪ θ′j) ⊆ Q and

FS(Q)\FS(Qt(θi∪θ′j))⊆ τi ⊆ (τi∪ τ′j).

The following proposition states a strong property of non-interference which serves

as a useful induction hypothesis in the proof. Proposition 9.2.2 follows as an immediate

corollary.

Proposition C.3.2 (Non-interference). Let P0 = u : t(Qt) be a basic program, let C (·)
be a compartment-free, well-formed context, let Γ be an environment and let b be

a binary string. If C (·) has a hole, or if there is an idm ∈ dom(Γ)∩ FM(C (·)) s.t

Γ(idm)(a,b′) is P0-sound for all b′ and matching a, then also JC (P0)KgsΓ,b is P0-sound.

Proof. Suppose that the precondition holds for C (·) and Γ. We then proceed by induc-

tion on C (·) with selected cases given below; the remaining cases are similar or easier,

and the cases for module definition, module invocation and new variables are shown

as in the proof of Proposition C.3.1.

• C (·) = ·. Then JC (P0)KgsΓ,b = Ju : t(Qt)KgsΓ,b and the result follows directly

from the definition of the denotation function.

• C (·) = C1(·) ‖ C2(·). If the precondition holds for C (·) then it must hold for one

of the sides, say for C1(·) without loss of generality. Then JC1(P0)KgsΓ,b is P0-

sound by the induction hypothesis. By Lemma 11 also

JC1(P0)KgsΓ,b6JC2(P0)KgsΓ,b is P0-sound.





Table of Notation

General

2X power set of X

b binary string

f 〈g〉 update of function f with g

MS(X) set of multisets of X

n natural number

∏i∈I Xi dependent set

r real number

x
∆' y definition (undefined if y undefined)

x
∆'t y definition (undefined if y ill-typed)

{xi 7→ yi} indexed set of pairs-representation of a partial finite function

|x| size/length of a set/list

x list

x
:

list with set interpretation

x.Q sublist of x with indices Q

LBS

adapt(vs) species value interface adaptation function, page 82

close(vs) species annotation closing function, page 82
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JeaKaΓc,Γs,Γa,vc denotation function for algebraic rate expressions, page 84

JebKbΓx denotation function for boolean expressions, page 67

JecKcΓc,b denotation function for compartment expressions, page 69

JDKdΓc,Γs,Γa,Γm,b denotation function for definitions, page 95

JPKdp denotation function for derived LBS programs, page 92

JemKmΓx denotation function for modification site expressions, page 66

JPKpΓc,Γs,Γa,Γm,b,vc denotation function for LBS programs, page 86

JesKsΓc,Γs denotation function for species expressions, page 76

Jes+Ks+Γc,Γs,b denotation function for extended species expressions, page 78

JρKt denotation function for modification site types, page 66

default(ρ) default value assignment function, page 66

δm
n binary string of length m with 1 in the nth position and 0

elsewhere, page 86

ea algebraic expression, page 59

eb boolean expression, page 56

ec compartment expression, page 55

em modification site expression, page 56

er rate expression, page 59

es species expression, page 56

es+ extended species expression, page 56

Γ generic environment, page 84

Γa algebraic rate function environment, page 84

Γc compartment environment, page 69

Γm module environment, page 86
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Γs species environment, page 76

Γso species output environment, page 86

Γx variable environment, page 66

es or e′s nondeterministic choice, page 56

FS(P) free species function, page 92

ida algebraic expression identifier, page 59

idc compartment identifier, page 54

idm module identifier, page 59

ids species identifier, page 56

nc compartment name, page 69

nm modification site name, page 56

ns species name, page 56

1c nil compartment, page 69

0p nil program, page 59

0s nil species, page 56

P program, page 59

P | P′ parallel composition, page 59

P || P′ variation composition, page 59

R normal form reaction, page 84

seal(em,b) modification site sealing function, page 66

> top-level (world) compartment, page 55

em : ρ typing relation on modification site expressions, page 66

em〈e′m〉 modification site update function, page 66
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va algebraic value, page 84

vc compartment value, page 69

vga ground normal form algebraic value, page 100

vgns ground normal form species value, page 81

vgr ground normal form rate value, page 100

vm modification site value, page 66

vns normal form species value, page 81

vr rate value, page 84

vs species value, page 72

vus unboxed species value, page 72

ασ typed modification site assignment, page 72

βσ ground typed modification site assignment, page 81

ιm modification site interface, page 72

ξ species annotation, page 56

ρ modification site type, page 53

ι species interface, page 72

x×◦ y Cartesian product of lists with given pairing, page 53

Concrete Semantics

F in(t,s) Petri net flow-in function, page 102

Fout(t,s) Petri net flow-out function, page 102

S set of Petri net places, page 102

T set of Petri net transitions, page 102

ebd binding expression, page 114
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O generic semantical object, page 65

GS(G,b) ground normal form reaction assignment, page 99

IS(vgns,r) initial population assignment, page 65

0S nil program assignment, page 65

O1|SO2 parallel composition assignment, page 65

RS(R,b) normal form reaction assignment, page 65

S set of generic semantical object, page 65

CPN coloured Petri net, page 105

CP N set of all Coloured Petri nets, page 105

D structure of LBS ODEs, page 108

D set of all structures of LBS ODEs, page 108

K LBS-κ program, page 113

K set of all LBS-κ programs, page 113

LPF LBS P-flow structure, page 136

LP F set of all LBS P-flow structures, page 136

LTF LBS T-flow structure, page 134

LTF set of all LBS T-flow structures, page 134

PN Petri net, page 102

P N set of all Petri nets, page 102

V LBS CTMC with initial conditions, page 110

V set of all LBS CTMCs with initial conditions, page 110

Petri Net Flows

gcd(x) greatest common divisor of entries in a vector x, page 122
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min(X) flow minimisation function, page 122

MPF(PN) minimal P-flow function, page 121

MwPF(PN) weakly minimal P-flow function, page 122

MTF(PN) minimal T-flow function, page 121

MwT F(PN) weakly minimal T-flow function, page 122

PF(PN) P-flow function, page 121

OPN ordered Petri net, page i

sup(x) support of a vector x, page 121

TF(PN) T-flow function, page 121

W in Petri net flow-in matrix, page 120

W out Petri net flow-out matrix, page 120

W Petri net (net) flow matrix, page 120

x _ y join of P-flows, page 131

(x)T vector/Matrix transposition, page 121

GEC

a actual parameter, page 162

C (·) GEC program context, page 171

C constraint, page 162

JPKgdΓ device denotation function, page 172

JPKgrΓ reaction denotation function, page 176

JPKgsΓ substitution denotation function, page 168

Γ module environment, page 168

FM(P) free module identifiers function, page 171
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FV(P) free variables function, page 162

FS(P) free species function, page 162

∆ set of device templates, page 172

δ device template, page 172

Θ1 6Θ2 context-sensitive substitution composition, page 167

L GEC reaction program, page 175

ρ injective domain (set of variables), page 167

σ set of used species, page 167

τ set of excluded species, page 167

Θ set of context-sensitive substitutions, page 167

θ substitution, page 167

T transport reaction, page 162

T ↓ transport reaction without compartment identifiers , page 167

idp part identifier, page 162

idm module identifier, page 162

0 nil program, page 162

K numerical constraint, page 162

P program, page 162

P ; P′ sequential composition, page 162

P |C constraint composition, page 162

P || P′ parallel composition, page 162

Q set of properties, page 162

R reaction, page 162
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S species, page 162

u formal parameter, page 162

vb boolean value, page 162

x variable, page 162
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Vincent Schächter. Modeling and querying biomolecular interaction networks.

Theor. Comput. Sci., 325(1):25–44, 2004.

[20] Nathalie Chabrier-Rivier, François Fages, and Sylvain Soliman. The biochemi-

cal abstract machine BIOCHAM. In V. Danos and V. Schächter, editors, Proc.
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