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Abstract

We investigate balls-and-bins processes where m weighted balls are placed into n bins using the
“power of two choices” paradigm, whereby a ball is inserted into the less loaded of two randomly chosen
bins. The case where each of the m balls has unit weight had been studied extensively. In a seminal paper
Azar et al. [2] showed that when m = n the most loaded bin has Θ(log log n) balls with high probability.
Surprisingly, the gap in load between the heaviest bin and the average bin does not increase with m and
was shown by Berenbrink et al. [4] to be Θ(log log n) with high probability for arbitrarily large m.
We generalize this result to the weighted case where balls have weights drawn from an arbitrary weight
distribution. We show that as long as the weight distribution has finite second moment and satisfies a
mild technical condition, the gap between the weight of the heaviest bin and the weight of the average
bin is independent of the number balls thrown. This is especially striking when considering heavy tailed
distributions such as Power-Law and Log-Normal distributions. In these cases, as more balls are thrown,
heavier and heavier weights are encountered. Nevertheless with high probability, the imbalance in the
load distribution does not increase. Furthermore, if the fourth moment of the weight distribution is finite,
the expected value of the gap is shown to be independent of the number of balls.
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1 Introduction

Suppose m balls are to be put one by one into n bins such that the final allocation is as balanced as possible.
The well-known ‘power of two choices’ algorithm, a.k.a GREEDY[2], inserts each ball into the less loaded
among two randomly chosen bins. The case where all balls are of uniform weight had been extensively
studied. In a seminal paper Azar et al. [2] showed that when m = n the heaviest bin has ln lnn/ ln 2+O(1)
balls, compared with (1+o(1)) lnn/ ln lnn when the 1-choice algorithm is used. Berenbrink et al. [4] have
shown that when m >> n, with probability 1 − o(1) the heaviest bin has at most m/n + O(ln lnn) balls,
compared with m/n + Ω(

√
m log n/n) for the one choice algorithm. Note that the additive gap between

the maximum load and the average load does not depend on the number of balls thrown! The two choice
paradigm had been investigated in a variety of models and scenarios, see [12] for a survey.

Our goal in this paper is to prove similar bounds for the case where balls are weighted. In our model
there is a weight distribution W . In each round i a weight wi is sampled from W . A ball of weight wi is
then inserted into the less loaded of two uniformly sampled bins. The main contribution of this paper is to
show that under reasonable assumption on the weight distribution, the additive gap between the loads of the
maximum and average bins is not a function of m, but depends only on n and the weight distribution.

The idea of allowing two (or more) choices to improve load balancing is known to be useful in many
contexts and spawned a large body of literature (c.f. [12] and the references therein). The two most common
applications are probably hashing and online load balancing. While the assumption of uniform weights is
justified when hashing is considered, it is often the case in load balancing scenarios that the elements to be
balanced are many and vary in weight. Consider for instance a distributed storage system in which there are
n servers and whenever a data item is to be inserted into the system it is assigned to the less loaded among
two random servers1 (c.f. [7] [8]). It is known that many types of data items such as files in a PC file system
and multimedia files have sizes distributed by a heavy tailed distribution [10]. While splitting the files into
fixed-sized chunks is a natural way to reduce the problem to the uniform-weights case, it introduces failure
dependencies and increases the lookup cost. If data items are not split, the online load balancing algorithm
must accommodate variable weights. The same line of argument holds for other types of resources such as
computational load, bandwidth etc.

The m = n Case

Assume for simplicity the weight distribution is identical in all rounds. Denote by M := max{x : Pr[w ≥
x] ≥ 1

n}. M is a natural lower bound on the weight of the heaviest bin, since when throwing n balls, with
constant probability a ball of weight at least M is encountered. It turns out that for most interesting distribu-
tions this lower bound is tight up to constants. Consider for instance the case where weights come from the
Geometric distribution. The largest ball is of weight Ω(log n) with high probability, while the expected load
on each bin is O(1) . Thus any allocation algorithm, including GREEDY[2] will have a gap of Ω(log n). Yet,
the sum of log n/ log log n independent Geometric variables is O(log n) with high probability. Thus, even if
the weight-oblivious one-choice paradigm is used, the maximum bin would still have a weight of O(log n).
We conclude that in this case GREEDY[2] does not perform significantly better than GREEDY[1]. Clearly,
the same argument holds for distributions which are more heavy tailed. It may well be that constants and
low order terms are improved when the two choice algorithm is used. Nevertheless, the domain where the
two choice algorithm is fundamentally different is where the number of balls is much larger than the number
of bins.

1In practice the two servers are often chosen by hashing the data item’s identifier.
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The Heavily Loaded Case - A Toy Example

Consider the case where m >> n and the weight distribution assigns a weight of 1 with probability 1
2 and

a weight of 2 with probability 1
2 . This seems like a simple case which should somehow be reduced to the

unweighted case. Yet in order for the allocation to be balanced, an allocation algorithm must take the weights
of balls into consideration. Indeed, in a weight-oblivious allocation scheme, even if each bin receives m/n
balls, the weight distribution may cause the allocation to be unbalanced. The weight distribution alone
allows the weight of m/n random balls to be 3m

2n ±
√

m
n . Thus, if GREEDY[2] considers the number of balls

in each bin and not their weights then the obtained allocation is not much better than the one obtained by the
one-choice algorithm! The behavior of a weight-oblivious algorithm deteriorates as the weight distribution
becomes more heavy tailed. It is therefore essential to analyze the weighted case separately.

1.1 Related Work

As mentioned previously, the unweighted case had been the object of extensive study in many contexts (c.f.
[14],[1], [11] [12]) and to a large extent is well understood. Vöcking [13] proved the surprising result that
a similar process with an asymmetric tie breaking rule called GOLEFT obtains a better bound in the m = n
case, and is majorized by GREEDY[2] in the heavily loaded case ([4]). In the weighted case it may be
extremely unlikely that a tie is ever encountered2, thus we do not investigate the GOLEFT algorithm.

Little is known about the weighted case. Berenbrink et al. show in [5] that if the weights are arbitrary
then several natural conjectures turn out to be false. In particular they show that replacing two balls of dif-
ferent weights by two balls with weight equal to their average does not necessarily improve the balance of
the allocation. They also show that the majorization order is not preserved under weighted balls. Majoriza-
tion is a partial order which captures the degree to which an allocation is well balanced. It is commonly
used for showing stochastic dominance of one balls-and-bins process over another, see [5] for more details.
The break of the majorization order implies that the known techniques are unable to reduce the weighted
case to an unweighted instance even for simple weight distributions. Indeed, we do not even know how to
show directly that GREEDY[2] is more balanced than GREEDY[1], a statement which is trivially true in the
unweighted case. The weighted case had been investigated in a somewhat different model, where the balls
arrive in parallel and are allowed to communicate with one another prior to making the allocation decision
[1],[3]. In this model, the weights are arbitrary, but the additive gap may be large.

1.2 Our Contributions

Our main result shows that under mild assumptions on the weight distribution, the differences from average
in the allocation after m steps are essentially distributed the same as the differences in the allocation after
poly(n) steps. Thus the difference in load between the heaviest and the lightest bin is independent of the
number of balls thrown.

Define Gap(t) to be the excess weight the heaviest bin has over the lightest at time t using GREEDY[2]
Assume the expectation and variance of the weight distribution are finite. We also assume the distribution
W is ‘smooth’3. The following two theorems are the main contribution of this paper.

Theorem 1.1. For any t, the probability that Gap(t) > k is at most Pr[gap(nc) > k] + 1
nc where c is some

constant depending on W alone.
2Our result holds also when the weight distribution is continuous, in which case the probability of a tie may be 0.
3The exact definition of ‘smooth’ is deferred to Section 3.1. At this point it suffices to say that the definition covers most natural

distributions. Section 6.1 discusses some distributions excluded by this definition.
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Theorem 1.2. If the fourth moment of the weight distribution W is finite, then for any t, E[Gap(t)] ≤ nc

where c is some constant depending on W alone.

Theorem 1.1 reduces the case where m is arbitrary large to the case where m ≤ nc. Theorem 1.2 shows
that the expected value of the gap does not increase with m. It is conceivable that the case where m ≤ nc can
be analyzed, possibly for specific weight distributions, using known techniques such as layered induction.
In [4], it is shown that in the unweighted case the gap in the polynomial case is Θ(log log n). It will be
interesting to find tight bounds on the gap for other weight distributions.

We stress that the weight distribution is not required to be over the integers and may take its values over
the reals.

1.3 The Outline of the Proof

The general outline of the proof draws from the work of Berenbrink et al. [4]. There are many obstacles
when applying the technique to the weighted case, which requires many new ideas, some of which may be
of interest in their own right. It is shown in [4] that two theorems are needed in order to prove Theorem 1.1.

The first is a weak gap theorem which proves that w.h.p Gap(t) ≤ t2/3. In the unweighted case the
weak gap theorem is trivial and follows immediately from the fact that GREEDY[2] is majorized by the
one choice algorithm. As mentioned previously, in the weighted case it is not the case that GREEDY[2]
is dominated by the one choice algorithm. We therefore prove the weak gap Theorem in Section 2 via a
potential function argument.

The second theorem needed is a short memory theorem. In this theorem we show that given some
initial configuration with gap ∆, after adding ∆poly(n) more balls the initial configuration is ‘forgotten’.
In the unweighted case the short memory theorem is proven via coupling. Our proof uses similar coupling
arguments but is considerably more involved technically. In particular, we need to define a somewhat dif-
ferent distance function and use a sophisticated argument to show that the coupling converges. The short
memory theorem is proved in Section 3

Theorem 4.2 in [4] proves that a weak gap theorem and a short memory theorem implies a stronger
theorem such as Theorem 1.1. For the sake of completeness, we present a somewhat simplified version of
the proof in Section 4. The proof in Section 3 assumes that the weight distribution is over the integers. In
Section 5 we show a reduction from the real-weighted case to the integer-weighted case. The reduction turns
out to be non-trivial and requires the introduction of dependencies between the weights of balls.

1.4 Basic Notations and Definitions

We model the state of the system by load vectors. A load vector x = (x1, x2, . . . , xn) specifies the load
in each bin where xi specifies the total weight of all balls assigned to bin i. We assume that vectors are
normalized, i.e. that x1 ≥ x2 ≥ · · · ≥ xn. Note that after an insertion of a ball the order may change and we
may need to rename the bins. Denote by βi the probability bin i is chosen, so that βi = i2−(i−1)2

n2 = 2i−1
n2 .

In each step of the process a weight W is sampled from the distribution W and a ball of weight W is put in
bin i with probability βi.

Denote by x(t) the allocation after throwing t balls. The random process
(
x(t)

)
t∈N is therefore a Markov

chain with transition probabilities defined by the allocation rule and the weight distribution. For two random
variables x(t), y(t) we abuse notation and write

∣∣∣∣x(t) − y(t)
∣∣∣∣ for the variation distance between their

respective distributions.
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2 The Weak Gap Theorem

In this section we prove that the gap after throwing t balls is at most t2/3 w.h.p. Such a weak gap is then
iteratively sharpened using the short memory theorem of Section 3 to obtain the main result. Recall that
Gap(t) denotes the excess weight the heaviest bin has over the lightest one at time t. Denote by M2 the
second moment of the weight distribution W .

Theorem 2.1. For all t and every k > 0, it holds that Pr[Gap(t) ≤ 2
√

ktM2] ≥ 1 − 1
k . In particular,

Pr[Gap(t) ≤ 2t
2
3
√

M2] ≥ 1− 1

t
1
3

A routine use of Chebyshev’s inequality would prove Theorem 2.1 for the case where each ball is thrown
independently to a random location. It is tempting to claim that GREEDY[2] must do better and indeed that
would be correct in the unweighted case. However, when weights are introduced it is no longer true that
GREEDY[2] dominates the one-choice algorithm, hence a different argument should be used:

Proof. Let x(t) be the normalized vector at time t and x̄(t) = 1
n

∑
i x(t)i be the average load at time t.

Define V (t) to be the variance of the allocation at time t, i.e., V (t) :=
∑

i(x(t)i − x̄(t))2.

Lemma 2.2. E [V (t + 1)− V (t) | V (t)] ≤ M2 where the expectation is taken over the random choices of
the algorithm and the weight distribution.

Proof. First we calculate the expectation given that the weight of the ball at time t is w. Recall that βi

denotes the probability the ball is put in the i’th bin. Denote by δi,j the function which is 1 iff i = j and 0
otherwise.

E [V (t + 1)− V (t) | V (t), w]

=
∑

i

βi

∑

j

(xj + δi,jw − x̄(t + 1))2 −
∑

j

(xj − x̄(t))2

=
∑

i

βi


∑

j

(xj + δi,jw − w

n
− x̄(t))2 −

∑

j

(xj − x̄(t))2




=
∑

i

βi


∑

j

(δi,jw − w

n
)(δi,jw − w

n
+ 2xj − 2x̄(t))




=
∑

i

βi

[∑

j

(δi,jw)2 − 2δi,jw
2

n
+ (

w

n
)2 + 2δi,jwxj − 2δi,jwx̄(t)− 2xjw

n
+

2wx̄(t)
n

]

=
w2

n
+ 2wx̄(t) +

∑

i

βi

[∑

j

(δi,jw)2 − 2δi,jw
2

n
+ 2δi,jwxj − 2δi,jwx̄(t)− 2xjw

n

]

=
w2

n
+ 2wx̄(t)−

∑

i

βi

∑

j

2xjw

n
+

∑

i

βi

(
w2 + 2wxi − 2w2

n
− 2wx̄(t)

)

Now,
∑

i βi
∑

j
2xjw

n = 2wx̄(t) therefore we have
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=
w2

n
+

∑

i

βi(w2 + 2wxi − 2w2

n
− 2wx̄(t))

= w2 − w2

n
− 2wx̄(t) +

∑

i

βi2wxi

Since
∑

βixi is a weighted average of the xi’s which is biased towards the smaller elements we have
that

∑
βixi ≤ x̄(t). We conclude that:

E [V (t + 1)− V (t) | V (t), w] ≤ w2 − w2

n

We have that for every ball weight w it holds that

E [V (t + 1)− V (t) | V (t), w] ≤ w2

The Lemma is proven by taking the expectation over w on both sides.

It holds that E[V (t)] ≤ tM2 so by Markov’s inequality Pr[V (t) ≥ ktM2] ≤ 1
k . It also holds that

Gap(t) ≤ maxix(t)i −minix(t)i

≤ 2maxi|x(t)i − x̄(t)|
≤ 2

√
V (t)

therefore we have that with probability 1− 1
k , Gap(t) ≤ 2

√
ktM2. The second part follows by substituting

k = t
1
3 .

Define Ms to be the s’th moment ofW; i.e. Ms :=
∑

w w ·ps
w where pw is the probability w is sampled.

Note that since the weight distribution is non-negative Ms is well defined for any s > 0. Now, if M4 is
finite, Markov’s inequality can be applied on a higher moment deriving a stronger bound. A stronger bound
would be needed to prove Theorem 1.2.

Lemma 2.3. Suppose that M4 is finite. Then there is a constant c = c(M2, M4) such that for every t it
holds that Pr[Gap(t) ≤ ct

4
5 ] ≥ 1− 1

t
6
5

.

Proof. We shall first upper bound E[(V (t))2]. Towards this end, we bound the increments E[V (t + 1)2 −
V (t)2]. First observe that

∑
i(x(t + 1)i − z)2 is minimized when z = x̄(t + 1), therefore V (t + 1) =∑

i(x(t + 1)i − x̄(t + 1))2 ≤ ∑
i(x(t + 1)i − x̄(t))2. Denote this latter expression by V̂ (t + 1). Then we

have:

E
[
V 2(t + 1)− V 2(t) | V (t), w

]

≤ E
[
V̂ 2(t + 1)− V 2(t) | V (t), w

]

= E
[
(V̂ (t + 1)− V (t))2| V (t), w

]
+ 2E

[
V (t)(V̂ (t + 1)− V (t)) | V (t), w

]
(1)
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We now proceed to bound the two terms of Equation (1) separately. First observe that

E
[
(V̂ (t + 1)− V (t)) | V (t), w

]

=
∑

i

βi


∑

j

(xj + δi,jw − x̄(t))2 −
∑

j

(xj − x̄(t))2




=
∑

i

βi

(
(xi + w − x̄(t))2 − (xi − x̄(t))2

)

=
∑

i

βiw
2 +

∑

i

βi2w(xi − x̄(t))

≤ w2

The first term is bound as follows,

E
[
(V̂ (t + 1)− V (t))2 | V (t), w

]

=
∑

i

βi


∑

j

(xj + δi,jw − x̄(t))2 −
∑

j

(xj − x̄(t))2




2

=
∑

i

βi

(
(xi + w − x̄(t))2 − (xi − x̄(t))2

)2

=
∑

i

βi

(
w2 + 2w(xi − x̄(t))

)2

=
∑

i

βiw
4 +

∑

i

βi4w2(xi − x̄(t))2 +
∑

i

βi4w3(xi − x̄(t))

≤ w4 + 4w2V (t)

since βi < 1 and
∑

i βi(xi − x̄(t)) ≤ 0.
Plugging these bounds into Equation (1) we have that

E
[
V 2(t + 1)− V 2(t) | V (t), w

] ≤ w4 + 6w2V (t)

Taking expectation over w we conclude that

E
[
V 2(t + 1)− V 2(t) | V (t)

] ≤ M4 + 6M2V (t)

and thus combined with Lemma 2.2

E
[
V 2(t + 1)− V 2(t)

] ≤ M4 + 6t(M2)2.

Thus E
[
V 2(t)

] ≤ tM4 + 3t(t + 1)(M2)2.
Finally

Pr[Gap(t) > 2k] ≤ Pr[(V 2(t) ≥ k4] ≤ E[V 2(t)]
k4

≤ ct2

k4

where c depends only on M2 and M4. Plugging in k = c
1
4 t

4
5 completes the proof of Lemma 2.3.
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3 The Short Memory Theorem

In this section we generalize Lemma 1.2 in [4] to the case of weighted balls. In Section 3.1 we assume
the weight distribution W is over the integers. Restricting W to be over the integers allows us to use the
Neighbor Coupling approach of [4] which simplifies the proof. In Section 5 we prove the more general case
where W is over the reals.

Definition 3.1. Let pi denote the probability i is sampled byW . For every ` > 0 define δ` to be maxi s.t. pi ≥
1
` . For α > 0 let W(α) denote the sum of α independent samples from W and W(0) is concentrated at 0.
A distribution W is said to be (α, β)-smooth if for every ` and for every i < δ` there exists α0, α1 ≥ 0 such

that α0 + α1 ≤ α and Pr[W(α0)−W(α1) = i] ≥
(

1
δ`

)β
.

Lemma 3.2. If there exists k such that pi is non-increasing in [k,∞] then W is smooth.

Proof. Let S denote all i for which pi > 0. If |S| is finite then w.l.o.g the greatest common divider of all
elements in S is 1, otherwise normalize by the gcd. There is therefore a choice of w1 . . . wα ∈ S such that∑

ajwj = 1 and repeating this sequence i times and noticing that δ` is no bigger than the largest element
in S implies smoothness.

Now assume that |S| = ∞. By assumption it holds that pk > 0 and pk+1 > 0, thus for i < k we use the
previous argument and the fact that gcd(k, k + 1) = 1. If k ≤ i < δ` then by assumption pi > 1

` .

The lemma implies that most natural distributions are smooth, including heavy tailed distributions such
as Power-Law and Log-Normal. For many distribution it holds that α and β are small. For instance, it is
easily observed that the Geometric distribution and Power-Law distributions are (1, 1)-smooth. In fact, it is
rather difficult to come up with a distribution that is not smooth. See Section 6.1 for details.

3.1 The Integer Case

For two vectors x, y define γx,y := maxi,j{|xi − xj |, |yi − yj |}. We write γ when the context is clear. The
following is the main Theorem of this section.

Theorem 3.3. Let W be an (α, β)-smooth distribution over the integers, with a finite second moment. Let
x, y be any two load vectors such that

∑
i xi =

∑
i yi. Let x(t), y(t) be the random variables describing

the load vector after allocating t more balls. Then, there exists t, with t = O(γ7/5 · 2αn6β+10 log2(nγ)),
such that

∣∣∣∣x(t)− y(t)
∣∣∣∣ ≤ (γx,y)−1/5.

The proof will show a coupling between
(
x(t)

)
t∈N and

(
y(t)

)
t∈N such that Pr[x(t) 6= y(t)] ≤ (γx,y)−1/5

for t as above. The coupling Lemma would then imply the theorem. As in [4] we use neighbor-coupling,
which is a variant of the well known path coupling technique [6]. In the following we define the graph we
work with, the distance function and the coupling itself.

3.1.1 The Graph

Recall that a vector x ∈ Rn is normalized if x1 ≥ x2 . . . ≥ xn. Clearly each configuration of loads in bins
corresponds to a normalized vector by setting xi to be the load in the i’th most loaded bin. Let Ω be the set
of all normalized vectors. The neighbor set Γ ⊂ Ω × Ω is defined as follows: (x, y) ∈ Γ iff there exists
i, j ∈ [n] such that x = y + ei − ej where ei is the vector with 1 at the i′th location and 0 everywhere else.
The graph we use is therefore identical to the one used in [4]. Note that (x, y) ∈ Γ implies that (y, x) ∈ Γ.
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We therefore think of the graph as undirected. Often when the path coupling technique is used, the neighbor
graph spans the entire state space. Denote by ΩW all the normalized integer vectors with total weight exactly
W . We show below that for every W , the sub-graph (ΩW , Γ) is connected, which suffices in our case.

3.1.2 The Distance Function

Let (x, y) ∈ Γ and assume that x = y + ei − ej with i < j (otherwise switch the roles of x and y). We
define the distance ∆(x, y) := xi − yj . We assign to each edge in (x, y) ∈ Γ the length ∆(x, y).

Remark In [4] the distance function used is γx,y := max{|xi − xj |, |yi − yj |}. Our distance function has
nicer properties (as would be seen below). In particular it is drawn from the following physical intuition:
Imagine that per-unit cost of moving an infinitesimal amount of mass from i to j is equal to the height
difference between i and j. Thus it costs xi − xj at the beginning and the cost decreases as more mass
moves from i to j. Our distance function ∆(x, y) = xi − yj then captures exactly the cost of moving one
unit of weight from i to j.

Lemma 3.4. If x, y ∈ ΩW , i.e. the total weight of both x and y is W then x and y are connected via a path
with at most n · γx,y edges where all nodes along the path belong to ΩW . Furthermore, if ∆ is the length of
the longest edge in the path then ∆ ≤ γx,y ≤ n∆.

Proof. A path from x to the completely balanced allocation can be found by repeatedly moving one unit of
weight from the smallest bin with above average load to the largest bin with below average load. The fully
balanced allocation is obtained after at most nγx,y

2 moves. The same holds for y so the path between x and
y has at most nγx,y edges, each of which of length at most γx,y.

3.1.3 The Coupling

Recall that βi denotes the probability a ball falls in the i’th largest bin. Let (x, y) ∈ Γ and denote by (x′, y′)
the configuration obtained after performing one step. The coupling we use is essentially similar to the one
used in [4]. First sample a weight w from the weight distribution. Both x and y would receive a ball of
weight w. Then sample a bin to put the ball in x, say the k’th largest bin. Add the ball to bin k both in x and
in y. Note that after the insertion of the ball it may be the case that x or y should be sorted in order for them
to maintain the invariant that bins are ordered by decreasing weight.

It is straightforward to verify that this is indeed a valid coupling; i.e. that each vector receives a ball
distributed accorded toW and that for every k a ball falls in bin k with probability βk. The following lemma
summarizes the properties of the coupling.

Lemma 3.5. Let (x, y) ∈ Γ such that x = y + ei − ej where w.l.o.g i < j and let x′, y′ be the two vectors
obtained after one step of the coupling. The coupling has the following two properties:

1. It holds that either x′ = y′ or (x′, y′) ∈ Γ. In other words, the coupling preserves the neighbor
relation.

2. If the ball falls in bin i then ∆(x′, y′) = ∆(x, y) + w.

3. If the ball falls in bin j then ∆(x′, y′) = |∆(x, y)− w|.
4. If the ball falls in bin k 6= i, j then ∆(x′, y′) = ∆(x, y).
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Proof. The proof is a straightforward case analysis on the bin k into which the ball is put.
case (1) 1 ≤ k < i. For every ball weight w the insertion of the ball would cause bins 1 . . . k to be

reordered in the same way both in x and in y. Thus it holds that x′ = y′ + ei − ej and ∆′ = ∆.
case (2) k = i. We set as a convention that x0 = y0 = ∞. Let ` be such that x`−1 ≥ xi + w > x`.

Since xi = yi + 1, the weight w is an integer and x`−1 = y`−1, it holds that y`−1 > yi + w ≥ y`. The
resorting of the vector moves bin i to the ` location. It follows that x′ = y′ + e` − ej and ∆′ = x′` − y′j =
xi + w − yj = ∆ + w

case (3) i < k < j. Let ` be such that x`−1 > xk + w ≥ x`. Since xk = yk it holds that
y`−1 ≥ yk + w ≥ y`. The normalization of the vector moves bin k to the ` location. If ` ≥ i then
x′ = y′ + ei+1 − ej and if ` < i then x′ = y′ + ei − ej . In both cases ∆′ = ∆.

case (4) k = j. As in the previous cases let ` be such that x`−1 ≥ xk+w > x` and the normalization
of x is done by moving the j’th bin into location `. Now, if w ≤ ∆ then xj + w ≤ xj + ∆ = xi − 1 = yi.
Therefore, ` < i and yj+w ≤ y`. It follows that x′ = y′+ei−e` and ∆′ = x′i−y′` = xi−(yj+w) = ∆−w.
If w ≥ ∆ + 1 then xj + w ≥ xi so ` ≥ i. Further, yj + w > y`. It follows that y′ = x′ + e` − ei+1 and
∆′ = y′` − x′i+1 = yj + w − xi = w −∆.

case (5) k > j. Let ` be such that x`−1 ≥ xk + w > x`. If xk + w ≤ xj then ` > j and also
y`−1 > yw + w ≥ y`. It follows that x′ = y′ + ei − ej . If i < ` ≤ j then x′ = y′ + ei − ej+1 and if ` ≤ i
then x′ = y′ + ei+1 − ej+1. In all cases ∆′ = ∆.

Note that βj ≥ βi + 1
n2 so case (3) above is more likely than case (2). This bias is the reason the chain

mixes fast. While couplings often do not preserve the neighbor relation, our coupling does; this is an artifact
of the weight distribution being over the integers. This property would later allow us to use the neighbor
coupling lemma. We define an active step of the coupling to be a step of type (2) or (3) above.

Remark In the unweighted case it is possible to use a different coupling which altogether avoids case (2)
above and instead has x′ = x+ei and y′ = y+ej . In this coupling it holds that ∆′ = ∆−1 with probability
at least 1/n2 and remains ∆ otherwise, i.e. the distance never increases. Thus it is possible to prove the
unweighted case using a straightforward path coupling argument. This somewhat simplifies the proof in [4].

3.1.4 The Neighbor Coupling Approach

We are now ready to resume with the proof of Theorem 3.3. Recall that x, y are two initial configurations
and that ∆ denotes the longest edge in the path between x and y.

Lemma 3.6. If (x, y) ∈ Γ are two initial configurations and ∆0 := ∆(x, y), it holds after t active steps
Pr[x(t) 6= y(t)|x(0) = x, y(0) = y] ≤ 1

n11/5∆
6/5
0

for t ∈ O(2αn6β+8∆7/5
0 ).

Denote by D the number of edges in this path and recall that by Lemma 3.4 it holds that D ≤ nγ where
γ = max{|xi−xj |, |yi− yj |} and that ∆0 ≤ γ ≤ n∆0. It follows that 1

n11/5∆
6/5
0

≤ 1
Dγ1/5 , thus Lemma 3.6

directly implies Theorem 3.3 by union bounding the failure probability of Lemma 3.6 along the D edges on
the path from x to y in Γ and by noticing that there are t active steps within O(tn2 log(n∆0)) steps with
probability 1− 1

(∆0n)3
.

The remainder of the section is dedicated to the proof of Lemma 3.6. We need to show that after enough
steps the value of ∆(x(t), y(t)) decreases to 0. Denote by ∆ the current distance and by ∆′ the distance
after one active step of the coupling; note that steps that are not active do not change ∆. If it had been the
case that for all ∆ it holds that E[∆′] < ∆, then the standard path coupling lemma would have sufficed.

10



Indeed this is the case when balls have uniform weight. In the weighted case we have some bound ∆∗ such
that for ∆ ≥ ∆∗, E[∆′] < ∆. However, for ∆ < ∆∗, it may be the case that E[∆′] ≥ ∆. We overcome
this difficulty by showing that when ∆ is small we have a 1/poly(n) probability of hitting 0 in the next few
steps. In the case that the distance does not hit zero, it does not increase by much and we can repeat the
argument.

We start by identifying the threshold above which ∆ decreases on expectation. Let pj denote PrW [w =
j]. Define

∆∗ := max
j

s.t. pj ≥ 1
n6

(2)

Chebyshev’s inequality implies that ∆∗ ≤ cn3 for a constant c depending only on the distribution.
We prove that E[∆′] is smaller than ∆ for any ∆ ≥ ∆∗.

Lemma 3.7. Denote by ∆ the current distance and by ∆′ the distance after one active step of the coupling.
If ∆ ≥ ∆∗, then E[∆′] ≤ ∆− µ

8n .

Proof. We first show that
∑

i≥∆∗
ipi ≤ µ

4n
(3)

we will then show that (3) implies the lemma. For every integer A > ∆∗ we have

∑

i≥∆∗
ipi =

A−1∑

i=∆∗
ipi +

∑

i≥A

ipi

=
A−1∑

i=∆∗
ipi + (A− 1)

∑

i≥A

pi +
∑

i≥A

∑

j≥i

pj

≤ A(A−∆∗)
n6

+ (A− 1)
c

A2
+

∑

i≥A

c

i2

we take A = ∆∗ + n5/4

≤ c

n3/2
+

c

n5/4
+

c

n5/4
≤ µ

4n

The first inequality follows from Chebyshev’s inequality, and the last step assumes that n is large enough.
We now have:

E[∆′] =
βi

βi + βj
E[∆ + w] +

βj

βi + βj
E[|∆− w|]

= ∆ +
βi

βi + βj
µ− βj

βi + βj
(∆− E[|∆− w|]) (4)

11



Now

E[|∆− w|] =
∆∑

i=1

(∆− i)pi +
∞∑

i=∆+1

(i−∆)pi

≤ ∆ +
∞∑

i=∆+1

ipi −
∆∑

i=1

ipi

≤ ∆− (1− 1
2n

)µ

where the last inequality is due to (3).
Note that βi

βi+βj
≤ 1

2 − 1
4n . We plug both bounds in Equation (4) and have:

E[∆′] ≤ ∆ +
(

1
2
− 1

4n

)
µ−

(
1
2

+
1
4n

)(
1− 1

2n

)
µ < ∆− µ

8n

For notational simplicity, from this point on we count only active steps. Define t∗ to be the first time for
which ∆(x(t∗), y(t∗)) ≤ ∆∗.

Lemma 3.8. For every c > 0, with probability ≥ 1− 1

∆
13/10
0 nc

it holds that t∗ ≤ O(c∆7/5
0 nc+3).

Proof. Consider an edge (x(0), y(0)) ∈ Γ starting out at distance ∆0. Let (x(s), y(s)) be the state of the
pair after s active steps in our coupling. We argue that with high probability, there is some t ∈ O(∆7/5

0 nc+3)
such that within t active steps the distance is reduced to ∆∗.

For brevity, let us denote ∆(x(s), y(s)) by ∆s. Recall that if (x(s), y(s)) are such that x(s) = y(s) +
ei − ej , then

∆s+1 =

{
∆s + w with probability βi

βi+βj

|∆s − w| with probability βj

βi+βj

We would like to show that ∆s decreases fast enough, as long as it has not hit ∆∗. However, our quest
is complicated by the fact that the random variables ∆s+1 − ∆s depend on i, j, and as a result on all the
previous steps. To handle this dependence, we shall argue that even conditioned on the worst history (and
hence the worst i, j), the decrement is expected to be large enough as long as we have not hit [0,∆∗] already.

We first define a distribution Z ′ as follows: we first sample a w from the weight distribution. With
probability βn−1

βn−1+βn
, we set Z ′ = w. With probability βn

βn−1+βn
, we set Z ′ = |∆∗ − w| −∆∗.

Let Zs denote the random variable defined as follows

Zs =
{

∆s+1 −∆s if ∆k > ∆∗ for k = 0, 1, . . . , s
an independent sample from Z ′ otherwise

Thus until ∆s hits [0, ∆∗], Zs is the decrement in ∆s. After ∆s hits [0, ∆∗] for the first time, Zs is
distributed like an independent copy of Z ′.

In the first case, we have

Zs =

{
w with probability βi

βi+βj

|∆s − w| −∆s with probability βj

βi+βj

12



where i and j are the indices x(s) and y(s) differ in. Note that i and j are dependent on the Z0, . . . , Zs−1

and that i < j. Note also that if
∑t

i=1 Zs < −∆0, then there must be an s ≤ t such that ∆s ∈ [0, ∆∗]. Thus
it suffices to show that with high probability,

∑t
i=1 Zs < −∆0.

For any s, let Zs denote the vector Z1, . . . , Zs. Now consider the random variable Zs|(Zs−1 = zs−1)
for some vector zs−1 ∈ Rs.

Lemma 3.9. For any zs−1 ∈ Rs, the random variable Zs|(Zs−1 = zs−1) is stochastically dominated by
the random variable Z ′.

Proof. If ∆k ≤ ∆∗ for some k ≤ s, Zs is distributed as Z ′ and there is nothing to prove. So we assume
otherwise. Then the natural coupling works: we couple w with w and match up as much of the mass in case
1 for Zs (probability βi

βi+βj
) with the corresponding case in Z ′ (probability βn−1

βn−1+βn
). The main observation

is that the ratio βj

βi+βj
is minimized for (i, j) = (n− 1, n). It is easy to see that for any ∆ ≥ ∆∗ and for any

w, the number |∆−w| −∆ is no larger than |∆∗−w| −∆∗. Moreover, for any ∆ and any w, |∆−w| −∆
is no larger than w. The claim follows.

Note that stochastic dominance implies the following: for any real valued random variables A1, A2, if
A2|(A1 = a) is stochastically dominated by B for every a ∈ R, then

Pr[A1 + A2 > a′] =
∫

Pr[A2 > a′ − a|A1 = a]µA1(a)da

≤
∫

Pr[B > a′ − a]µA1(a)da = Pr[A + B > a′]

Thus
∑t

s=0 Zs|Zs−1 is stochastically dominated by
∑t

s=0 Z ′s, where each Z ′s is an independent copy
of Z ′. We conclude that the probability that we do not hit ∆∗ in t steps is at most the probability that the
sum of t independent copies of Z ′ is larger than −∆0.

Now note that from Lemma 3.7, E[Z ′] ≤ − µ
8n . Moreover, V ar[Z ′] ≤ E[Z ′2] ≤ M2(W). Let us take

t = 8∆
7/5
0 nc+3

µ so that E[
∑t

i=1 Z ′i] ≤ −nc+2∆7/5
0 .

Let A be the event that all t balls have weight below ∆27/20
0 n(2c+3)/2. By Chebyshev’s inequality we

have that for each sample Pr[w ≥ ∆27/20
0 n(2c+3)/2] ≤ 2M2

∆
27/10
0 n2c+3

. Union bounding over the t balls we

have Pr[A] ≤ 2M2

∆
27/10
0 n2c+3

· 8∆
7/5
0 nc+3

µ = 16M2

∆
13/10
0 ncµ

∈ O

(
1

∆
13/10
0 nc

)
.

We next condition on A and use Bernstein’s inequality (c.f. Theorem 2.7 in [9]).

Theorem 3.10 (Bernstein’s inequality). Let the random variables X1, . . . , Xn be independent with Xi −
E[Xi] ≤ b for each i ∈ [n]. Let X :=

∑
i Xi and let σ2 :=

∑
i σ

2
i be the variance of X . Then, for any

δ > 0,

Pr[X > E[X] + δ] ≤ exp
(
− δ2

2σ2(1 + bδ/3σ2)

)
.

In our case we have σ2 = tM2, b = ∆
27
20
0 n

2c+3
2 and δ = (nc+2 − 1)∆7/5

0 . Plugging in Theorem 3.10 we
have

Pr
[ t∑

i=1

Z ′i > E[
t∑

i=1

Z ′i] + (nc+2 − 1)∆7/5
0

]
≤ exp


− n2c+4∆14/5

0

2tM2 + ∆
11
4

0 n2c+ 5
2



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where t = 8∆7/5
0 nc+3/µ. Since µ and M2[W] are constants, this failure probability is exponentially small

in n
1
2 ∆

1
20
0 . The conditioning on A adds O

(
1

∆
13/10
0 nc

)
to the error probability. This completes the proof of

Lemma 3.8.

We can now complete the proof of Lemma 3.6. By the definition of smoothness, if ∆ < ∆∗ then
there is a sequence of at most α active steps that would bring the distance to 0. Thus, once ∆ < ∆∗, the
probability the distance would hit 0 within the next α steps is at least 1

2α
1

(∆∗)β ≥ 1
2αn3β . If the distance

didn’t hit 0 within α steps then the process reiterates and after a while the distance is below ∆∗ again. We
need m := 3 log(n∆0)2αn3β iterations to succeed with probability at least 1− 1

(n∆0)3
.

If the distance did not hit 0 in the i’th attempt, it reaches some distance ki which is dominated by a sum

of α independent samples from W . Let c′ be such that k
13
10
i nc′ = 3∆

13
10
0 n3β+32α and let ci = max{c′, 1}.

By Lemma 3.8 it takes cik
7/5
i nc+3 log nki steps to reach ∆∗ with probability 1 − 1

k
13/10
i nci

. Thus, the

total number of active steps needed is

m∑

i=1

cik
7/5
i nci+3 log(nki) = n3

m∑

i=1

(k3/10
i nci)k1/10

i log(nki)

≤ 2α+2∆
13
10
0 n3β+7

m∑

i=1

k
1/10
i

Now all that remains is to show that

Pr

[
2α+2∆

13
10
0 n3β+7

m∑

i=1

k
1/10
i ≤ 2α+2∆7/5

0 n6β+8

]
= Pr

[
m∑

i=1

k
1/10
i ≤ ∆1/10

0 n3β+1

]

is at most 1

∆
6/5
0 n11/5

. Indeed recall that ki is dominated by a sum of α independent samples from W . We

have

Pr[
m∑

i=1

k
1/10
i ≤ ∆1/10

0 n3β+1] ≤ Pr[(
m∑

i=1

k
1/10
i )20 ≤ ∆2

0n
60β+20] ≤ α2µ2m20

∆2
0n

60β+20
≤ 1

∆6/5
0 n11/5

this completes the proof of Lemma 3.6.

4 Putting it together

In this section, we show how the weak gap Theorem 2.1 and the short memory theorem 3.3 together imply a
strong gap theorem. More precisely, we show that with probability (1− 1

poly(n)), the gap at the end of t steps
is independent of t. This part of the proof is similar to Berenbrink et al. [4]. We assume for simplicity that
the bound on the mixing time in the short memory theorem is at most γ

7
5 nc for concreteness, where c ≥ 5

is some constant.
The following is a restatement of Theorem 1.1.

Theorem 1.1. For any t, the probability that gap(t) > k is at most Pr[gap(n30c) > k] + 1
n10c
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Proof. We show a slightly stronger result by induction on t: we show that for any t ≥ n30c, and any k > 0,
we have that

Pr[gap(t) > k] ≤ Pr[gap(n30c) > k] +
6

n
29c
3

−
∞∑

j=0

2

t
1
3
( 30
29

)j+1

For any t such that n
29
30

30c < t ≤ n30c, this is trivially true. Suppose that for some integer s ≥ 0, it
is true for all t such that n( 30

29
)s−130c < t ≤ n( 30

29
)s30c. We now argue that the claim also holds for all t

such that n( 30
29

)s30c < t ≤ n( 30
29

)s+130c. Indeed, let t be in such a range. Consider the process at the end of
(t− t

14
15 nc) steps. By the weak gap theorem, at the end of these many steps, the gap in X is at most t

2
3 with

probability at least (1 − 2

t
1
3
); let us assume that the gap is indeed at most t

2
3 . Consider a process Y that at

time t− t
14
15 nc is balanced, and continues like X from this point on. By the coupling lemma, the difference

of t
2
3 between X and Y is forgotten in time t

14
15 nc; i.e. the probability that X and Y are different is bounded

by 1

t
2
3

6
5

. Thus gapX(t) and gapY (t) differ with probability at most 1

t
4
5

. However, gapY (t) is distributed

exactly as gap(t
14
15 nc), since at time t− t

14
15 nc, the process Y was fully balanced. Moreover, note that since

t ≥ n30c, t
14
15 nc ≤ t

29
30 . Thus by the induction hypothesis, Pr[gapY (t

14
15 nc) > k] is bounded by

Pr[gap(n30c) > k] +
6

n
29c
3

−
∞∑

j=0

3

t(
29
30

1
3
)( 30

29
)j+1

Thus, we have

Pr[gapX(t) > k]

≤ Pr[gapX(t− t
14
15 nc) > t

2
3 ]

+ Pr[gapY (t
14
15 nc) > k] + Pr[X(t

14
15 nc) 6= Y (t

14
15 nc)]

≤ 2

t
1
3

+ Pr[gap(n30c) > k] +
6

n
29c
3

−
∞∑

j=0

3

(t
29
30

1
3 )(

30
29

)j+1
+

1

t
4
5

= Pr[gap(n30c) > k] +
6

n
29c
3

−
∞∑

j=0

3

(t
1
3 )(

30
29

)j+1

Hence the induction holds.

We now sketch the proof of Theorem 1.2.

Theorem 1.2. If B has a finite fourth moment, then for any t, E[Gap(t)] ≤ nc where c is some number
depending on B alone.

We wish to argue that for some ε > 0, Pr[gap(t) ≥ y] ≤ poly(n)
y1+ε for all y; the bound on the expectation

would follow immediately. For y < nc for some constant c, there is nothing to prove, so we assume y ≥ nc

for a large enough c.
First note that under the finite fourth moment assumption, the bound in the weak gap theorem is im-

proved to 1

t
6
5

instead of 1

t
1
3

above.

Thus for y > t
4
5 , the required bound follows directly from the weak gap theorem. For smaller y, we use

the above induction approach, except that the base case is at some t0 ∈ [y
15
16 , y), where t0 = t(

15
16

)j
for some
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integer j. This would then imply that Pr[gap(t) ≥ y] ≤ Pr[gap(t0) ≥ y] + 4

t
6/5
0

. It is then easy to see that

the desired probability is at most 4

y
9
8

.

5 The Real Valued Case

We now consider the case when the weight distribution B is a distribution over non-negative reals. We make
the following assumptions on the distribution B:

• Finite variance: M2(B) is finite.

• For any C > 0, there is a εC such that fB(x) ≥ εC for all x ∈ [0, C].4 where fB(x) denotes the
probability density function of B.

Our proof basically works via a reduction to a dependent version of the integer case. More precisely, let
process Xs denote the evolution of the load vector. We define an auxiliary process X ′

s in which each ball
has an integer weight and the load of each bin in Xs is close to that in X ′

s. In the process, we lose the
independence of the weight samples. We then show how the argument in the integer case extends to this
setting.

5.1 The reduction

The most natural way to randomly round a real weight value W to an integer is to set W ′ to be dW e with
probability (W − bW c), and set it to bW c otherwise. This has the nice property that E[W ′] = W and that
|W ′ −W | < 1.

Doing this independently for each weight however will lead to a large discrepancy between the sum of
W ’s and the sum of W ′’s. Indeed, this difference is expected to be about

√
m if we have thrown m balls.

Thus the implied bounds on the gap will be not much stronger than those obtained in the weak gap theorem.
The situation changes dramatically however once we allow the rounding of various weight values to be

dependent! We shall round the size of the ball based on which bin it is placed, while ensuring that the total
(true) weight of the balls in it is within one of the total weight of the rounded values of the balls in it.

More precisely, let Ts−1(i) =
∑

t∈Bi
Wt be the total weight of the balls in bin i at time step (s− 1) and

suppose that the process Xs places a ball of weight Ws in bin i. Let Ts(i) = Ts−1(i) + Ws be the new total
weight in bin i. The process X ′ mimics the process X , except that when X places a ball of weight Ws in bin
i, the process X ′ places a ball of weight W ′

s = dKTs(i)e−dKTs−1(i)e in bin i, where K := 8n
µ is a scaling

factor. The weights are scaled up for a technical reason to be clarified later. We observe the following:

• W ′
s ∈ {bKWsc, dKWse}

• T ′s(i) =
∑

t∈Bi
W ′

s is (inductively) equal to dTs(i)e
• If Ts(i) ≥ Ts(j) then T ′s(i) ≥ T ′s(j)

Thus it suffices to show that Theorem 1.1 holds for process X ′. Note that in process X ′ the weights of
balls are not independent of one another. In particular, the decision whether KWs should be rounded up or
down depends upon the history of the process.

4This assumption can be significantly relaxed to a similar assumption on the distribution of
∑k

i=1 aiWi, for some k and some
ai’s in {−1, 1}.
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5.2 Strengthening the Integer case

We wish to argue that under the assumptions above, the induced weight distribution W ′ over integers has all
the right properties to prove the strong gap property. We only sketch the modifications needed in the proof
above, and omit the details from this extended abstract.

Lemma 5.1. Let X ′ be as above. Then for any integer w, the following holds:

Pr[W ′
s = w|(Ws−1 = ws−1,As = as)] ≥ min

x∈(w−1
K

, w+1
K

)
fB(x)/K

where Ws−1 and As denote the vectors of random variables corresponding to the weights of the balls
and their allocations respectively in the first (s − 1) (respectively s) steps and ws−1 and as are arbitrary
values for these variables.

Proof. Note that for any setting of i and any value of Ts−1(i), and for any integer w, the rounded weight
value W ′

s = w whenever dK(Ts−1(i) + W )e = w + dKTs−1(i)e. This happens whenever KW ∈ (w +
dKTs−1(i)e − STs−1(i) − 1, w + dKTs−1(i)e −KTs−1(i)]. Since the corresponding interval for W is a
subrange on (w−1

K , w+1
K ) and has length 1

K , the claim follows.

First note that EW ′2 ≤ K2EW 2. Since K is polynomial in n, this only affects the bounds by a poly(n)
factor. The weak gap theorem continues to hold, and the definition of the graph and the coupling remains
unchanged. Moreover, under the assumptions on the distribution, the induced distribution over integers has
the properties we need.

The dependency of the weight value on the past and the choice of the bin in this step creates some subtle
problems. In particular, when the sampled real weight value is W , the value Ts(i) may increase by dKW e
when the ball falls in bin i, but the increase in Ts(j) may be only bKW c in case it falls in bin j. Thus
the increase in ∆, even though it is less likely than a decrease, may be larger than the decrease that would
happen if the same ball were to fall in bin j. However, this can decrease E[∆′] in Lemma 3.7 by at most
one, whereas our choice of the scaling factor K = 8n/µ ensures that the decrease in expectation is at least
two if there were no rounding (and hence at least one). This is the only place where we need the scaling.

Moreover, the dependency on the past is easily conditioned out by the dominance in lemma 5.1. Lem-
mas 3.8 continues to hold, and thus the claim follows, albeit with worse constants.

6 Open Problems

6.1 Distributions that Fall through the Cracks

Recall that we assumed that if |Support(B)| is infinite, the distribution is (α, β)-smooth. In fact it is a rather
challenging exercise to find a distribution for which this property is not self-evident. One such distribution
is the following. Say X is distributed Geometrically with parameter 1

2 . Define Y := d2X/3e. Y has finite
expectation and variance. Now, given that ∆ =

∑
i≤3 log n d2ei/3 (which is O(n)), the probability the next

3 log n active steps bring ∆ to 0 is 1/nΩ(log n). Note however that the probability that we end up with a
gap of ∆ =

∑
i≤3 log n d2ei/3 is very small to begin with. In other words, in this case the “complexity”

of a configuration is not accurately captured by an upper bound on the magnitude of the gap, and thus not
captured by the distance function either. It may well be the case that a different distance function would take
care of these types of distributions. The fate of such distributions therefore remains open.
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6.2 Lower Bounds

We assume that the weight distribution has finite variance and finite expectation. If a distribution has infinite
expectation then it may be the case the gap between maximum and average would be increase with m even
if the insertion algorithm has perfect information and complete freedom:

Lemma 6.1. If the weight distribution is 2G( 1
2
) where G(1

2) is the geometric distribution with parameter 1
2 ,

then with probability ≥ 1
2 , after throwing m balls the gap between maximum and average is Ω(m) as long

as m ∈ O(2n).

Proof. The probability a ball is of weight ≥ m is the probability a Geometric variable is of size ≥ log m
which is at least 1/e. Next we show that with high probability it holds that the sum of the m balls is
O(m log m) w.h.p. This implies that the average bin is O(m log m

n ), thus the gap between maximum and
average is Ω(m) as long as m ∈ O(2n). Consider the set of m Geometric variables X1, . . . , Xm such
that Wi = 2Xi . Define Si to be the number of X variables that were sampled to be i. We have that Si

is distributed Binomially with parameters (m, 2−i), so µ(Si) = m
2i . Chernoff bound implies that Pr[Si ≥

2m
2i ] ≤ 1

10m as long as i ≤ log m− log log m. Chernoff bound also implies that Pr[
∑

i≥log m−log log m Si ≥
log m] ≤ 1

10m . We conclude that the contribution of each Si to the total sum of the weights is at most
Si2i ≤ 2m and therefore the total sum of weights is at most O(m log m).

Lemma 6.1 holds for any allocation algorithm and uses the fact that the expectation is infinite. It would
be interesting to demonstrate that a finite second moment is also necessary. Such a lower bound may require
the use of specific properties of the algorithm.

6.3 Better Bounds for Specific Distributions

We have reduced the case where m is arbitrarily large to the case where m ≤ poly(n). It is therefore inter-
esting to derive tight bounds for interesting distributions such as the Geometric, the Log-Normal distribution
and so on. In particular it may be possible to prove a general bound which is tighter than ours and that would
explicitly use the moments of the distribution, perhaps using the layered induction technique.
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