
Rendering is one of the most important
tasks in computer graphics and anima-

tion, and texture maps add essential visual content to
the rendered image. Unfortunately, extracting textures
from a single photograph poses severe difficulties and
is sometimes impossible, while artificial texture syn-
thesis does not address the full range of desired textures.

We present a method for computing high-quality,
multiresolution textures from an image sequence. Our
technique has the following features:

1. It can be used with images in which the textures are
present in different resolutions and different per-
spective distortions.

2. It can extract textures from objects with any known
3D geometric structure; specifically, we are not
restricted to planar textures.

3. It removes directional illumination artifacts such as
highlights and reflections.

4. It stores the resulting texture efficiently in a multi-
resolution data structure.

5. It imposes no restrictions on the computed texture,
which can be a constant color or richly colored.

One particularly attractive appli-
cation of our method, illustrated in
the conclusion, produces animation
sequences of existing objects
endowed with synthetic behavior.
This emphasizes the advantage of
the multiresolution representation,
since each frame uses the level of
detail it needs for any location in the
texture.

Creating textures for
realistic images

In addition to the geometry of the
rendered object, high-quality ren-
dering requires the object’s material
properties, texture maps associated

with the object’s surfaces, and algorithms to produce
images given these data. The simulation of light is well
understood.1 Artificial texture generation, on the other
hand, still involves some unsolved difficulties. Although
specific textures have been simulated successfully, arti-
ficially generated textures usually look too “clean,” even
when noise is added using statistical methods. In prac-
tice, you must use textures from real images (such as
photographs or video stills) or textures created using 2D
paint systems to create satisfactory visual results.

Certain applications inherently require textures from
real images. For example, to endow a real object with a
personality and orchestrate its motion with animation
software, we would naturally want its real textures to
be available to the rendering system. But computing tex-
ture maps from a real image poses several difficulties:

■ The lighting conditions under which the image was
taken might not match the desired illumination on
the texture-mapped object. Specifically, the image
usually contains specular light effects such as high-
lights and reflections that are not supposed to be seen
when the texture is mapped onto an object.

■ The texture’s geometry as captured in the image
might not match that needed by the renderer’s tex-
ture mapping algorithm. Textures are usually cap-
tured distorted due to perspective, while they are
needed in the unit square.

■ The image quality might not be sufficient, lacking spa-
tial or color resolution or containing a high level of
noise. This may be especially true for video stills.

To counter these difficulties, we might try to control
the photographic conditions—often a difficult task.
Moreover, for many common types of textures, con-
trolled photography is impossible. Examples include
inconveniently located textures (such as outdoors), illu-
mination artifacts inherent in the object’s material (such
as an engraving on a mirror), or textures requiring mul-
tiple images to capture (such as a long wall in a narrow
corridor or a building hidden by trees).
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Using multiple images is attractive because it lets us
use existing film footage that was not taken expressly to
produce textures. However, this presents us with a new
set of problems:

■ The geometry of the texture might differ in each
image.

■ The resolution of the texture might differ in each
image.

■ Light components based on viewing direction, such
as highlights and reflections, might differ in each
image.

We present here a method to compute high-quality
multiresolution 2D textures from multiple images that
overcomes these problems.

Related work
Burt and Kolczynski2 presented an algorithm to fuse

several images into a single image. The algorithm is lim-
ited to images taken by a stationary camera and most-
ly suits fusion of images obtained from sensors of
different natures. Irani and Peleg3 showed how to cre-
ate a super-resolution image from an image sequence
when the relative translations between the images are
known to subpixel accuracy. Their algorithm assumes
only 2D translations, requires a priori determination of
the final resolution, and is computationally intensive.
Combining different resolutions in the same setting is
usually done through a multiresolution representation,
such as a pyramid or a quadtree.

Berman et al4 described a system that uses a wavelet
quadtree to economically store multiresolution infor-
mation. The application is essentially a paint system in
which new paint covers (or is blended with) former
information. This does not suit combining several
images that depict the same object, since the final image
obtained depends on the order of fusion of the images
and a wavelet pyramid cannot represent the intermedi-
ate data structures essential for such fusion.

For highlight recognition and removal from a single
image, polarization5 and color space techniques have
been proposed.6 Polarization gives promising results
but requires photography using a special filter. Color
space methods use the ideas behind Shafer’s dielectric 
material model.7 Pixels corresponding to a dielectric
material’s color are concentrated near a line segment in
color space, while pixels corresponding to the highlights
deviate from this segment. This serves to isolate the
material color’s segment. These methods do not work
well when the surface is not smooth or is highly tex-
tured, or when there is more than a single light source.

Lee and Bajcsy detected nonoverlapping highlight
regions in pairs of images by matching pixels with sim-
ilar colors.8 Their method cannot distinguish between
highlight and occlusion and does not accurately speci-
fy the highlight regions. None of the color space meth-
ods works for richly colored textures.

The proposed method
We can compute high-quality multiresolution textures

from an image sequence. The input consists of a set of

images and a mask on each image denoting the portion
of the image from which texture should be extracted.

Obtaining such a mask completely automatically is,
of course, a very difficult problem whose solution is a
primary goal of the large field of computer vision.
Generally, we want to save the user as much work as pos-
sible while allowing for human intervention to correct
the system mistakes.

One possible scenario lets the user mark a set of points
whose 3D structure is known; the system then tracks
these points along the image sequence to produce the
necessary masks. Alternatively, the system could auto-
matically compute the points’ 3D structure according to
well-known epipolar geometry equations. Asking users
to mark an initial object makes sense because they are
usually not interested in extracting textures from all
objects in the images.

Generally, tracking five points of a known 3D struc-
ture along an image sequence is enough to reconstruct
the geometric display transforma-
tions of the 3D model (four points
are enough for a plane). Of the
many available automatic tracking
methods and approaches, none is
absolutely reliable, especially in an
environment containing highlights
and reflections. A tracking method
that can transform each pixel of one
frame to a corresponding pixel in
the next frame (for example, opti-
cal flow) will eliminate the need for
a known 3D model, but this is more
susceptible to illumination effects
than other methods. Another
method9 uses a trifocal tensor for
the tracking and is relatively stable
under the basic assumptions of this
article (described below).

We produced our examples by manually tracking 15
points of a known 3D model on sequences not longer
than 16 images. Using 15 points gives us a more reliable
result than using five points. A 3D model that is not
absolutely accurate (for instance, ignoring round cor-
ners of a polygonal object) will generally not affect the
tracking but could produce inaccurate local registration
in problematic areas.

The method can work either in a batch mode, in
which all the images are initially given, or in an incre-
mental mode with images given one by one. Each image
is warped onto the desired texture space and inserted
into a hierarchical data structure according to its reso-
lution. The color information of each image is fused and
distributed at all levels of the hierarchy according to esti-
mated quality. A robust statistical method removes
directional illumination effects. This requires a static
scene in which only the observer may move.

A note on terminology: Whenever we say “texture,”
we mean the output of our algorithm, which is actually
an image because the input is comprised of images. We
call it a texture because its purpose is to be mapped on
an object in the course of rendering. The word “image”
always refers to the input to our algorithm.
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Texture from image sequences
There are two straightforward ways to fuse the tex-

ture from all the given images. One way is to average all
the values mapped to a certain location in the texture
space. Thus each texture pixel’s color would be the aver-
age of its color as captured in the images. But this can
corrupt the quality of the higher resolution images:
Consider, for example, what would happen with sever-
al distant images of a wall plus a single near image of a
picture hanging on that wall. The second way is to
choose for each texture pixel the highest resolution
image mapped into it. This leads to conservation of noise
and other color changes resulting from camera or pic-
ture development artifacts.

Our method combines the advantages of the above
methods. We use all the available images to determine
a value in any texture point using a weighted average
that gives priority to the finer details but does not ignore
the information contained in lower resolutions. The
result is more noise invariant than the second method
above and without damage to the fine details produced
in the first method.

We describe our method in two stages: first, the sim-
ple case, in which the input images are related only by
2D affine transformations, and, second, the general case
in which they are related by 3D projective transforma-
tions (perspective). We discuss the simpler case first
because it is useful in its own right and serves as an intro-
duction to the general case. The mathematical justifi-
cation for the algorithm appears in the sidebar “Texture
Extraction” at the end of this article. We describe the
treatment of illumination effects later in the article.

The quadtree representation
A multiresolution texture T is a disjoint cover of the

texture space (the unit square) by axis-parallel constant
color squares of different dimensions (pixels). In most
cases, the dimensions of the pixels are reciprocals of
powers of two.

A natural representation for a multiresolution texture
is a hierarchical data structure in which a level’s resolu-
tion is half the resolution of that below it. In a pyramid,
each level constitutes a full tiling of the texture space,
while a quadtree is a sparse representation in which the
levels are not always full. Other variants are possible.

We use a quadtree Q to represent the produced tex-
ture. The highest level (root) of Q contains a single node
that corresponds to the entire texture space. The next
level contains the root’s four children, which correspond
to the four quadrants of the texture space, and so on.
The lowest level nodes correspond to the smallest
squares in the multiresolution texture. The quadtree is
sparse since its height is less at lower resolution portions
of the texture that it represents.

Our representation is not based on differences, for
example wavelets or Laplacians (although we generate
a Laplacian as an intermediary step). The reason is that
the most common query a texture should support is tex-
ture mapping, a query best optimized by final color val-
ues. Figure 1 shows the information contained within
each node of the quadtree Q. The value field is the
color of the node. The certainty field represents the
amount of information gathered in the node for weight-
ed average with a new value sampled for that node. The
structure HighlightInfo is a temporary structure used
only to remove directional illumination. It is null after
eliminating the directional light effects. We describe the
structure and its use later in the article.

Pointers to the node’s children are stored in
N.child [i]. The tree is as sparse as possible: A new
level is opened only where higher resolution texture is
required. Texture regions for which only coarse infor-
mation exists correspond to a shallow subtree.

2D affine transformations
Assume that the textured object lies on a plane and

that the image sequence depicting it was generated by
an orthographic projection. This situation arises, for
example, when the object is relatively distant from the
observer or when you are fusing several scanned parts
of an image, each in a different resolution, into a single
multiresolution image.

Denote the given set of images by Pi, i = 1, …, n. Each
image is arbitrarily located with respect to the texture:
It can be contained within it, contain it, or partially over-
lap it (see Figure 2).

Assume that the texture space is defined in some stan-
dard coordinate system (such as the unit square) and
that the 2D affine transformations ti from the texture
space to the image Pi are known for i = 1, …, n (for
example, from tracking). We can then compute the tex-
ture T in two stages:

1. Construct the tree Q and accumulate the texture
information from the images. Determine the reso-
lution for each point in T according to the transfor-
mations ti. Expand the tree Q representing the
texture T according to the resolution in every tex-
ture point. Add the texture from each image to Q at
nodes that correspond to the observed texture res-
olution in the image.
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struct QNode {
pointer to QNode child [i]   i ∈ [1, 4]
RGB value
real certainty
pointer to HighlightInfo t

}

1 Structure of a
quadtree node.

P1 P2T

P3

2 The geomet-
ric relations
between the
images and the
texture space.
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2. Propagate the information up and down the tree to
generate the final multiresolution hierarchical tex-
ture. This is necessary to obtain a tree in which each
node’s value is influenced by all the information
stored in the tree.

As described here, the method is a batch process in
which all the images are given initially. To express it as
an incremental process, with the images given one by
one, perform the information propagation step after
each image.

Constructing the quadtree
Q. We desire a texture that contains
all the information present in the
images. Hence the final resolution
of any point of the texture T is the
maximal resolution at which the
point appears in the images Pi where
i = 1, …, n.

The algorithm starts with a tree Q
containing only the root. Using the
transformation ti : T → Pi, the cur-
rent resolution of T (the current level in the tree Q) is
compared to Pi’s resolution. If the texture’s resolution is
coarser, the tree is further developed until its resolution
meets the image’s resolution. The texture information
from Pi is then added to the proper level in Q using the
transformation ti.

The texture’s resolution must not be coarser than the
resolution of images mapped to it and should not be
much finer (to save storage space). The following steps
achieve this goal:

■ Project a texture “pixel” (a leaf in tree Q) into the
image space Pi using the transformation ti.

■ Examine the resulting quadrangle in the image space
to decide whether a local refinement for Q is needed.
This decision can be based on any combination of the
following criteria: (1) the area of the quadrangle (if
it is more than 1, declare that Pi’s resolution is finer),
(2) the diameter of the projected quadrant (its longest
diagonal), and (3) reaching a maximal resolution
determined a priori.

■ If the above reveals that the image resolution is finer
than the local texture resolution, refine the tree (the
local texture resolution) by splitting the current leaf.

After developing the tree up to the appropriate reso-
lution according to ti, we update each node N of that res-
olution by the value of Pi at ti(N). The new value of the
node is the weighted average of its previous value and the
new value from Pi according to the two certainties. The
certainty measures the support of a value: The certainty
of the new value is 1 while the certainty of N.value is k
where k ≤ i is the number of values accumulated so far.

Implementation is done by calling the TreeConstruct
procedure in Figure 3, with Q’s root as an argument. The
root’s certainty is initialized to be 1. The procedure
develops Q wherever necessary and accumulates the
texture information from the images. The procedure is
called for all the input images.

The Boolean function ResolutionReached returns
True if the current node N is in Pi’s resolution using the
above criteria, and False otherwise. The Expand pro-
cedure creates four children for a given leaf with cer-
tainties equal to one. The procedure ColorsAccumulate,
shown in Figure 4, updates N’s value and certainty,
where Pi[p] is the RGB value of the image Pi at location
p. The function Bilinear computes a bilinear interpo-
lation of the pixels in the image near which the texture
node’s center C(N) falls. Note that by construction the
size of the texture node in the image is smaller than a
pixel, hence its four corners always fall in neighboring
image pixels.

Propagating the information. After the proce-
dure TreeConstruct has been called for all of the images
Pi, all the color information is stored in the tree, but the
levels have not been combined yet (Figure 5). For exam-
ple, Q’s root might contain no value since no image con-
tributed values to its level. We seek to obtain a tree in
which each node’s value is determined according to all
the information stored in the tree. We do this by first
propagating the information up from the leaves to the
root and then back down to the leaves. The justification
appears in the “Texture Extraction” sidebar at the end
of this article.
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TreeConstruct(QNode N, Transformation ti, Image Pi) {
if ti(N) is out of Pi’s area

return
if ResolutionReached(ti(N))

ColorsAccumulate(N, ti, Pi)
return

if N is a leaf node
Expand(N)

for j ← 1 to 4
TreeConstruct(N.child[j], ti)

}

3 Construction
of the 
quadtree Q.

ColorsAccumulate(QNode N, Transformation ti, Image Pi) {

}

N.certainty  N.certainty +  1←

N.value  
N.value  N.certainty +  Bilinear(t (C(N)),P )

N.certainty +  1
 i i←

∗ 4 Accumulation
of color values
in the 
quadtree Q.

P1 P2

Q
5 Two images
of different
resolutions
inserted into Q
at different
levels.

.



The TreeUpdateUp procedure
illustrated in Figure 6 propagates
the information from the leaves up
to the root. Q’s root is its argument.
The procedure updates each node’s
value as the average of its previous
value and the values of its children
weighted according to their certain-
ties. The next step calls TreeUpdate-
Down to propagate the information
from the root back to the leaves. It is
called with Q’s root and zero as
arguments. The procedure adds to
each node’s value that of its parent.
Actually, TreeUpdateUp generates a
sparse Laplacian pyramid represen-
tation of the texture, while
TreeUpdateDown transforms the
sparse Laplacian pyramid into a
sparse Gaussian pyramid.

Perspective transformations
Now we can extend the algo-

rithms described so far to the gen-
eral case: transformation under
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TreeUpdateUp(QNode N) {
RGB ChildrenAverage

if N is not a leaf node
for i ← 1 to 4

TreeUpdateUp(N.child[i])

N.certainty ← N.certainty + N.child[i].certainty

for i ← 1 to 4
N.child[i].value ← N.child[i].value − ChildrenAverage

}

TreeUpdateDown(QNode N, RGB ParentValue) {
N.value ← N.value + ParentValue
if N is not a leaf node

for i ← 1 to 4
TreeUpdateDown(N.child[i], N.value)

}

Σ

Σ
j

j

N.child[j].value  N.child[j].certainty 

N.child[i].certainty

=

=

∗0
4

0
4ChildrenAverage ←

N.value  
N.value N.certainty +  N.child[i].value N.child[i].certainty 

N.certainty +  N.child[i].certainty
←

∗ ∗

6 Propagation
of values up and
down the
quadtree.

7 (a) A texture
and (b) its
corresponding
quadtree.

8 Projection of a uniform net from
two different angles. The images
are of similar overall resolution and
thus appear in the same layer of the
texture tree, but the higher resolu-
tion appears on (a) the left side of
the image and (b) the right side,
respectively.

(a) (b)

(a) (b)

(a) (b)

9 (a) The texture resulting from Figure 8a and 
(b) its certainty map.

10 (a) The texture resulting from both images in
Figure 8 and (b) its certainty map.

(a) (b)

.



perspective projection of any given
3D model. Once again, the input is a
set of n images Pi where i = 1, …, n of
different resolutions, each covering
an arbitrary portion of texture T.
The transformations ti : T → Pi from
the texture space to the ith image
space Pi are now mappings under
perspective projection. The trans-
formations ti are easily deduced
from the projection of the known
3D model. The problem, again, is to
find the resulting texture T.

To do so, we determine the reso-
lution as before, except that an
image might have a changing reso-
lution. As an example, Figure 7
demonstrates how to develop a
multilevel tree for a single image.

As we accumulate the color data
from the images, we must consider
the perspective. Two images might
have a different certainty even if
mapped into the same layer (images
will be mapped to different layers
only when one resolution at least
doubles the other). Figure 8 demon-
strates such a case. Both images are
mapped to the same layers in the tex-
ture tree, but the left side of 8a is of
higher quality than the left side of
8b, and the right side of 8b is of high-
er quality than the right side of 8a.
We define quality in terms of the
area in the image covered by the
tree’s node (though other definitions
are possible, such as that of Burt and Kolzynski2).

Consider a projection of a uniform net from the tex-
ture space into the images (Figure 8). The image’s area
covered by a single square of the net decreases along
with the quality. Figure 9 displays the texture recon-
structed using only the image in Figure 8a and its cer-
tainty map. In the map, higher certainty values appear
brighter.

The texture-accumulating algorithm given earlier can
adjust to these new conditions. This happens when we
replace the initial certainty that an image sample will
be the area covered by projecting a tree node on Pi

instead of 1 (see the “Texture Extraction” sidebar for fur-
ther details). Figure 10 displays the result for the images
of Figure 8. Figures 11, 12, and 13 show the same results
for the fusion of two real photographs.

Nonplanar surfaces result in variable resolution in a
single image and are treated in the same way (see Figure
14, next page). The only difference is the computation
of the transformations ti.

Removing directional illumination
We can remove directional light from images of a sur-

face without any assumptions about the nature of the
surface texture. Our technique handles both very rich
textures and uniformly colored surfaces.

The algorithm relies on two assumptions: that the
scene is static and that each pixel in the texture is free of
directional illumination effects in most of the frames.
Extracting texture from static objects is at least as impor-
tant in practice as extracting from moving or deformable
objects, so this first assumption does not harm the
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11 (a) First
original image,
(b) its mapping
into a rectangu-
lar texture
space, and 
(c) the certainty
map.

(b)

(a) (c)

12 (a) Second
original image,
(b) its mapping
into a rectangu-
lar texture
space, and 
(c) the certainty
map.

(b)

(a) (c)

13 (a) Result-
ing fusion of the
two originals
from Figures 11
and 12 and 
(b) its certainty
map.

(a)

(b)

.



usability of our results. The second assumption is essen-
tial: If a pixel is covered with highlight in most of the
frames, it is impossible (even for a human observer) to
determine its “real” color value.

Light reflection
Light reflection from a surface is described by the

light’s color and intensity and the surface’s bidirection-
al reflectance distribution function (BRDF). The BRDF
decomposes into three major components (Figure 15):

■ Light penetrating a dielectric material and reemerg-
ing after subsurface scattering and refraction accord-
ing to Shafer’s model.7 This is usually called “ideal
diffuse” in computer graphics literature and “body
reflection” in computer vision literature. Until recent-
ly, most considered this component Lambertian, that
is, dependent only on the cosine of the angle between
the light direction and the surface normal. Oren and
Nayar10 and Wolff11 showed that the rougher the sur-
face, the stronger its dependence on view direction—
it is Lambertian only for smooth surfaces. The amount
of light penetrating the surface depends on the angle
of incidence and on the material’s properties accord-
ing to its Fresnel coefficient.

■ Light that does not penetrate the material, scattering
from the surface in the mirrored direction. This is
referred to as the “ideal specular” component, and it
increases in significance with the smoothness of the
surface.

■ The directional diffuse component. This is present
when the surface is not perfectly smooth and the
material’s properties enable surface reflection,
depending again on the Fresnel coefficient. It can be
visualized as a lobe around the mirrored direction,
but is not necessarily symmetric around it; it depends
on the material and the directionality of the surface’s
roughness.

We use the following simpler decomposition into two
components:

■ Directional light—light reflection that depends on the
viewing direction. This includes specular and direc-

tional diffuse reflection (surface reflection) and only
a negligible portion of the ideal diffuse component.

■ Indirectional light—light not dependent on the view-
ing direction. This does not always exist (in metals,
for example). It includes most of the body reflection.

Our algorithm can remove the directional illumina-
tion effects, including highlights and reflections. The
resulting extracted texture is not illumination indepen-
dent; it depends on the light source’s intensities and col-
ors and still contains light gradients and shadows, as in
scenes rendered using the radiosity method.

Highlights and reflections
Highlights are the reflections of a light source from

an object’s surface. Blake and Bülthoff12 analyzed the
behavior of a highlight resulting from a single light
source for a static scene with a moving observer. They
expressed the highlight disparity between two images
as a function of the changes in viewing direction, the
local curvature, and the distance of the light source and
the observer from the surface.

Motion of highlights in the images depends on the
observer and increases when

■ the angle between the viewing direction and the sur-
face normal at the point increases,

■ the distance to the observer decreases,
■ the distance to the light source increases, and
■ the local curvature increases.

For nearly planar surfaces, only the first three conditions
apply. All hold qualitatively for area light sources, but
in this case observers from different viewing directions
would see additional shape changes of the highlight.

We treat reflections of other objects on the surface
similarly to highlights, since these simply serve as indi-
rect light sources.

The directional light removal algorithm
The directional illumination removal algorithm relies

on the motion differences between the scene and the
directional light, assuming a static scene and a moving
observer. Given sufficient viewing directions in an image
sequence, the algorithm extracts the textures in the
scene as if rendered using only nondirectional light (for
example, using a radiosity algorithm).

The meaning of “sufficient viewing directions” is
scene dependent; it depends on all the parameters that
determine the size of the highlights in the image. These
include roughness, conductivity and other parameters
of the materials in the scene, and the projected areas of
the light sources on the surfaces. We assume that each
part of the object of interest has been seen without sig-
nificant directional light in most of the images in a given
sequence. We further assume that no single angle of
view dominates in the sequence. The algorithm uses sta-
tistics to find the color independent of viewing direction
for each pixel of the texture covering the object.

Typical scenes under ordinary lighting conditions thus
require only a few directions for highlight removal. The
algorithm operates on the mapped images in two steps:
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14 Four images
of a soft drink
can (top) and
the resulting
texture 
(bottom). Note
that this object
is not planar.
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1. It calculates an approximation of the view-
independent color for each texture pixel.

2. It calculates the average of ti(T(p)) for every texture
pixel p for which ti(T(p)) is near the above value to
decrease the error (recall that ti maps the texture
space into the image space).

Observe the color histogram that results from fol-
lowing one texture pixel along the image sequence.
From the above basic assumption it follows that the his-
togram will look similar to Figure 16 (shown for a single
color band, for simplicity). Most of the histogram con-
centrates around the value of the view-independent
color (the mode of the histogram), and the variations
arise from the different amounts of directional illumi-
nation that affect the pixel in each image. A small peak
appears in the bright area if the texture pixel was cov-
ered with highlight in some of the images, and in a few
images the texture pixel might get dark values due to
insufficient sensitivity of the sensor in the highlight
boundaries.

Computing the histogram is very time and space con-
suming, involving a pass on the image sequence for
every texture pixel. But estimating the complete his-
togram using a few randomly chosen values gives an
unstable result, since a value from a texture pixel cov-
ered by highlight might deviate the resulting estimate
far from the histogram.

Our algorithm (see Figure 17) estimates the mode
(the most frequent value) of the histogram by assum-
ing that a randomly chosen texture pixel from the image
sequence is likely to be in the neighborhood of the his-
togram’s mode. It chooses m random values for each
texture pixel and calculates their median. The value m
is predefined. This median is most likely not far from the
color responsible for the mode of the histogram.

This estimate is calculated separately for each texture
pixel, so the result is not smooth. Smoothing the texture
corrupts its fine details and is diffi-
cult to compute in the hierarchical
structure. The solution is to calcu-
late, for each texture pixel, the aver-
age of its color values along the
image sequence, giving us color val-
ues that do not deviate much from
the median. We calculate the medi-
an and the averages separately for
R, G, and B. For color value devia-
tion, “much” is 10 percent of the R,
G, and B values in our application.
In our implementation, m is five.
This is large enough to provide a reli-
able approximation and small
enough to store all the required
information in memory. We men-
tioned earlier that the method can
work either in batch or incremental
mode. In the incremental mode, it
initially collects the first m values for
each quadtree node.

Figure 18 (on the next page)
shows a few frames before and after

directional light removal. The implementation shown
in Figure 17 is done by updating the procedure Colors-
Accumulate. This accumulates the images to their res-
olution level in the quadtree Q. We assume that the
images Pi are given in arbitrary order. Each node in Q is
initialized with a HighlightInfo temporal storage place,
in which m is a predefined value and counter is ini-
tialized to zero. The first m values from the images that
the procedure ColorsAccumulate stores in Q are stored
in the array t.a. When the array contains m values, their
median is calculated and stored in N.t.median of the
node. For clarity, we update ColorsAccumulate, which
ignores perspective.
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histogram of a
texture pixel
along the image
sequence.

struct HighlightInfo {
RGB a[i]      i ∈ [1, m]
RGB median
Integer counter

}
ColorsAccumulate(LQNode N, Transformation ti, Image Pi, Integer m) {

if N.t.counter < m
N.t.a[N.t.counter] = Pi [ti (C(N))]
N.t.counter ← N.t.counter + 1
return

if N.t.counter = m
N.t.median = MedianCalculate(N.t.a[])
for j ← 1 to m

if ||N.t.a[j] − N.median|| < threshold

N.certainty ← N.certainty + 1
return

if || Pi[ti(C(N))] − N.med || < threshold

N.certainty ← N.certainty + 1
}

N.val
N.val ←

N.certainty  P [t (C(N))] 
N.certainty  

i i∗ +
+ 1

N.value 
 N.value N.certainty  N.t.a[j] 

N.certainty  
←

∗ +
+ 1

17 The modi-
fied color 
accumulation
procedure
including high-
light removal.

.



Conclusion
Our method for computing high-quality multireso-

lution textures from an image sequence resolves the
typical difficulties of extracting textures from image
sequences. In particular, it can handle different reso-
lutions and perspective distortions and removal of
directional illumination artifacts such as highlights and
reflections. The method imposes no restrictions on the
computed texture; it can be a constant color texture or
a richly colored one. To our knowledge, all other high-

light removal techniques that don’t
use special equipment (such as
polarized filters) assume a constant
color or a very poor texture. Our
technique can extract textures from
objects with any known 3D geo-
metric structure, not just planar
objects. The resulting texture is
stored in an efficient multiresolu-
tion data structure.

The quality of the restored texture
depends on the accuracy of the
given 3D model. Any deviation from
the true 3D model will result in an
inaccurate mapping for that area
and hence an inaccurate texture. It
might happen that not all the direc-
tional light effects will be totally
removed. It happens by violating
our assumption (any texture point is
not affected by directional light in
most of the sequence) or if all the m
first samples of a given area were
under directional light effects (it is
a stochastic method). The first prob-
lem can be handled by adding more
images to the sequence taken from
new angles. The second problem is
solved simply by recomputing.

The extracted texture is used to
texture-map 3D objects in still and
animation image synthesis. Texture
mapping is done by an algorithm
very similar to Williams’ mipmap
algorithm.13 Its only difference from
that algorithm is that filtering
requires finding the neighbors of a
quadtree node, a well-known quad-
tree operation.

A particularly attractive applica-
tion of our method produces ani-
mation sequences of existing objects
endowed with synthetic behavior, as
demonstrated in Figures 19 to 21.
Figure 19 shows four of sixteen
images of a tape deck given as input
to our algorithm. Figure 20 shows
the resulting extracted textures.
Note the realism of the dust on the

top part of the tape deck and the removal of the strong
yellow highlights and the table’s reflections.

Figure 21 shows a frame from an animation sequence
in which two compact discs and the tape deck dance to
the sound of music. The texture on the table is artifi-
cially generated marble.

In the future, we plan to further investigate the initial
generation of 3D from input images. We expect to use a
combination of mathematical and interactive tech-
niques14 for this exploration. ■
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18 Several
frames before
(left) and after
(right) direc-
tional light
removal.

19 Images
given as input
to our algo-
rithm.

20 The tex-
tures extracted
from the images
in Figure 19.

.



Texture extraction involves finding, for each
texture pixel, the estimated color with the highest
probability with respect to its colors across all the
images. Here we prove that the algorithm for
constructing the quadtree Q finds that estimate.

Let T be the reconstructed texture. Let G be a
Gaussian pyramid that represents T. Then

Gi−1 = (Gi * g) ↓ 2

where * is the convolution operator, g is the
Gaussian filter, and ↓ is the subsampling operator.
We assume, for simplicity, that g is 1 for a node’s
children and 0 for any other node (so that a node is
the average of its four children).

We start with the simple case of 2D
transformations and no perspective. The input
consists of two images P1, P2 containing noise with
a distribution N(0, σ). The texture T appears in
different resolution in each image (but the texture
has a uniform resolution within each). Let us now
assume, without loss of generality, that P1’s
resolution suits level i in G and P2’s resolution suits
level i + 1.

We can limit the discussion to the five nodes 
t1, …, t4 of level i + 1 and their parent in the tree, 
tp of level i.

Optimal value for tp

We derive two equations from the two input
images:

1. From P1 we get tp = Vp where Vp is the pixel in
P1 that corresponds to tp. The measurement
uncertainty is σ2.

2. From P2 we get tp =  
1–4 (V1 + V2 + V3 + V4) where

V1, …, V2 are P2’s pixels corresponding to the
texture pixels t1, …, t4. The measurement
uncertainty is 

1–4 σ2

The measurement uncertainty is proportional to
the inverse of the number of pixels (sensors)
contributing to the measurement. The number of
pixels represents the area in Pi and corresponds to
the texture covered by tp.

We find tp by least-squares estimation, which in
this case is equivalent to maximum likelihood
estimation:

Differentiating with respect to tp gives us

so that finally we get

(continued on the next page)
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21 A frame
from the
“machine
dance” 
animation.

Texture Extraction
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with the uncertainty
1–5 σ2. Thus, each node’s value

is the average of its value and its children’s value
weighted proportional to their area’s ratio.

Optimal value for t1, t2, t3, and t4

In a similar way we obtain the following
equation from P1:

with uncertainty σ2 in measuring Vp, and from P2

we get ti = Vi where i = 1 … 4 with uncertainty σ2.
The goal is to find 

Taking the derivatives according to ti, we obtain
the four new equations

Note that the quadtree Q that was constructed in
the article is a sparse Gaussian pyramid; hence,
we update level i + 1 in Q according to level i
above it.

We used propagation of values to obtain the final
quadtree. We first propagated values from the
leaves to the root to obtain a Laplacian pyramid. In
a Laplacian pyramid, each level stores the difference
between the equivalent level and the one above in
the Gaussian pyramid, so for each node

This results from propagating the values from the
leaves to the root:

The final propagation from the root down to the
leaves obtains the final result:

ti = t L
i + tp

The general case of perspective projection
preserves this analysis because the certainty of
each sampled measurement from an image is
proportional to the projected area of the relevant
node on the image. The larger the area, the more
image pixels (sensors) involved in producing the
node’s value (see Figure A). The node’s value is the
average of these pixels, each with noise of
distribution of N(0, σ2). If the area of the
projection is A, then the certainty is a/σ2.
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