
Time-varying Management of Data Storage

Ranjita Bhagwan, Fred Douglis, Kirsten Hildrum, Jeffrey O.Kephart, William E. Walsh
IBM T. J. Watson Research Center

Abstract

The efficiency of large-scale applications is strongly de-
pendent on good data management techniques. In this pa-
per, we claim that the ability to specify data requirements in
a time-varyingmanner facilitates data management and im-
proves application efficiency. This is because requirements
such as availability, bandwidth and latency can vary sig-
nificantly with time. Consequently, the storage system can
dynamically change the allocation of resources to data ob-
jects. We describe how an application may specify these
dynamic requirements using utility functions, and outline
a strategy towards achieving an optimal allocation of re-
sources to data objects.

1 Introduction

Applications depend heavily on good data management
to function properly. However, managing data efficiently
has become a very complex problem. Many factors con-
tribute to this, including voluminous data storage, varied
application requirements that can change over time, and dis-
parate storage characteristics.

First, the amount of data stored by applications is grow-
ing at a phenomenal rate. It is estimated that many enter-
prises are witnessing growth in storage needs at the rate of
70 to 120% per year [9]. This explosion is not limited just to
the corporate world. New scientific experimentation tech-
niques generate extremely large datasets whose sizes are
estimated to go up to exabytes within the next decade [5].
Emerging data mining applications [8] are estimated to gen-
erate large amounts of data that will keep any contemporary
storage system in a state of constant overflow.

As a consequence, the common assumption that storage
is abundant is applicable only to some domains. Although
disk sizes are rapidly increasing, storage devices in some
environments will eventually reach capacity. The current
approach to this problem is to adopt some combination of
the following three strategies: add more storage, move data
from a primary device to a secondary or archival device, or
delete data. But which of these actions should we pursue?
Which data do we move or delete? Where and when do

we move data? Currently, administrators set these relevant
parameters manually, though such a policy can lead to un-
desired system behavior. For example, if a data item that an
application considers important gets moved to archival stor-
age, it may adversely affect the application’s performance.

Second, applications have different requirements for the
different kinds of data, and these requirements maychange
with time. For example, newly generated web server logs
may be critical to an application such as a real-time intru-
sion detection system, hence these data will have significant
availability and performance requirements. It may therefore
be useful to generate multiple replicas of these logs on stor-
age devices with low latency and high throughput. But with
time, their utility to the application, hence their availabil-
ity and performance requirements, diminish. Hence older
web logs would be suitable candidates to delete or move to
archival store as storage systems reach capacity.

Third, there are a multitude of storage devices with
widely different operational parameters. Systems can sup-
port low latency and high bandwidth, but at a high cost com-
pared to other options. Archival media offer low costs but
much poorer performance in the worst case. Replication can
be used to provide both high availability and improved per-
formance, again at a cost.

We are working on a large-scale distributed stream
processing system in which these questions of data man-
agement are critical. One assumption in the design of this
system is that its capacity is chronically insufficient, and
prior work has focused primarily on automatically select-
ing data to retain based on predetermined specifications of
how the relative value of the data varies over time [8]. This
is particularly appropriate for data mining applications in
which the product of the available data and the set of poten-
tial mining algorithms dwarf any conceivable set of storage
resources. Here we take initial steps to extend the earlier
retention framework [8] to consider other time-varying cri-
teria. We make the following observations:

Applications should be allowed to specify their require-
ments to the storage system in a time-varying manner. Par-
ticularly, information that an application may provide is re-
lated to desired retrieval performance (latency limits and
bandwidth required to retrieve stored data), availabilityre-



quirements, and estimated access patterns to the data ob-
jects. The system should take these requirements and map
them into storage-level parameters such as which storage
devices to place the data on and how many replicas to make.
In addition, applications should inform the storage system
of how these parameters change with time, so that the sys-
tem can make informed decisions on moving or replicating
the data if required in the future.

When a storage device is full, the system should take
into account these requirements to determine data move-
ment strategies to free space and redistribute load.Mov-
ing objects that have minimal requirements improves over-
all system efficiency. Thus, the system can strive towards a
data placement strategy that gets as close to application re-
quirements as possible. At the same time, the system will
still need to consider the outright deletion of low-value data
when their value declines over time.

The rest of the paper is structured as follows. Section 2
discusses related work. Section 3 explains a scenario that
we will use in the rest of the paper to elucidate our pro-
posed approach to managing storage load. In Section 4 we
describe what an application may specify as part of data
requirements using time-variant functions of the require-
ments andutilities associated with them. Section 5 gives
an overview of a proposed optimization strategy for storage
management using these specifications.

2 Related work

Several efforts such as Hippodrome [1], WiND [2], SLE-
DRunner [6] and Chameleon [16] have concentrated on
adaptive techniques in storage management to meet perfor-
mance requirements. PASIS [18] addresses the problem of
providing security and availability in distributed storage sys-
tems. These systems assess, to a certain extent, how object
these requirements change by explicitly monitoring storage
systems. While this approach is effective in some cases,
in others, the application’s knowledge of how data require-
ments are going to change should be used. Consequently,
providing the storage system with the time-varying require-
ments improves and simplifies data management. More-
over, our work concentrates on the fact that in some scenar-
ios, storage systems reaching capacity is a common occur-
rence. Hence data management has to explicitly deal with
this problem. Other research efforts [11] have evaluated the
use of tertiary storage for enhancing performance of specific
applications such as video-on-demand. We believe that the
incorporation of time with these strategies can significantly
improve data management.

Information Lifecycle Management (ILM) [14] and
Policy-based Lifecycle Management [17] are efforts to iden-
tify that data items typically have lifetimes that decay with
time. Recent work [8] extends this idea to annotate every

object with a “retention” value that decays over time. Our
effort further extends the notion of retention by addressing
properties that applications would be directly interestedin
such as availability and performance.

3 Example scenario

In this section, we provide two examples to elucidate
why application-specific, time-varying specification of data
requirements is useful. The first example emphasizes data
availability while the second concentrates on required per-
formance. We then give an example of a storage layer that
would manage data given these requirements.

3.1 Scenario 1: Insider trading detection

Consider a system that attempts to correlate multiple in-
put sources to identify possible cases of insider trading.
These might include:
Stock quotes.An abrupt change in value would suggest the
opportunity to exploit any advance knowledge.
News items. News about a company frequently results in
changes to its stock price. Significant changes that result
from news that some people had advance knowledge of are
of great interest in detecting insider trading, but unforesee-
able news is not. News may take the form of video, audio,
web pages, etc.
Transactions. To identify insider trading, one must record
the buy and sell transactions.

Each of these types of data has different storage require-
ments. Stock quotes are transient: when one sees a sequence
of quotes for a stock at approximately the same amount,
only the most recent one need be retained. Other data are
less predictable. For instance, if a “foreseeable” news event
results in a sudden change in stock value, not only are the
news and the changing stock quotes important, so are all
transactions in that stock over the period when the news
was known to insiders. The older transactions are, the less
likely they will be tied to insider trading, so their impor-
tance declines over time, as does any requirement to store
those transactions in a redundant fashion. In this case, the
emphasis of our approach for that application is on retention
and availability.

3.2 Scenario 2: Sporting event web server

Consider a sporting event web service that provides in-
formation such as news, results, player profiles, and video
streams. Such a web service creates several data items in-
cluding HTML documents, media streams and web logs.
Again, we are faced with varying storage requirements,
some of which pertain to retention. For example, system
administrators will most likely use web logs within a few



High-performance 
cluster storage RAID5 

(NFS)
Archival 
storage

Sports event web service

HTML Webpages Web logsVideo files

Storage system

Req(t) Req(t) Req(t)

Storage allocator

High-performance 
cluster storage RAID5 

(NFS)
Archival 
storage

Sports event web service

HTML Webpages Web logsVideo files

Storage system

Req(t) Req(t) Req(t)

Storage allocator

Figure 1. Sporting event web server

hours after they are created or not at all. Hence, the impor-
tance of preserving these web logs diminishes with time.

On the other hand, while video streams and HTML doc-
uments both require more persistent storage than logs, they
differ in terms of performance requirements. Multimedia
streams need to be delivered at a certain rate to ensure rea-
sonable quality, whereas users can tolerate higher latencies
for HTML documents. During an event, the number of ac-
cesses to documents related to the event will increase ac-
cordingly. Hence some documents such as live multimedia
streams will need more resources at certain times.

3.3 Data management

In Figure 1, we show how Scenario 2 interacts with an
example storage system. The storage resources include an
NFS-style file system with RAID, a high-performance clus-
ter file system, and a larger tape archive. The storage allo-
cator uses the application specifications to map data objects
to storage units.

Consider the case that the high-performance cluster
reaches capacity and the application generates new data to
be inserted into this high-performance storage unit. The
storage system therefore decides to free up some space in
the cluster file system by moving objects that have become
less important (older transactions in the first scenario and
older web logs in the second) to the archive. Since it is
wasteful to move data that is soon to be accessed to the
archive (reading objects off the archive involves large over-
heads [11]), the data management strategy should evaluate
these trade-offs while choosing an allocation policy.

Our goal is to generalize this model by identifying differ-
ent ways an application can specify its requirements and by
laying out storage system mechanisms that can ensure high
performance and availability.

4 Specification

In this section, we elaborate on the different requirements
that an application can specify to the storage system. The
goal of the storage system is to adhere as closely as possible
to the application’s requirements while performing efficient

0.99999

0.999

0.9

Time

2 months 1 year

A
va

ila
bi

lit
y

0.99999

0.999

0.9

Time

2 months 1 year

A
va

ila
bi

lit
y

Figure 2. A time-varying availability specifica-
tion

data management. The following are four axes along which
application requirements vary with time.
Availability: As in the examples above, required data avail-
ability is mainly a function of how an application wants to
use the data. Consequently, an application can specify avail-
ability per data type as a function of time. When a data
object is created and is inserted into the storage system, it
is accompanied by an availability requirement as shown in
Figure 2. In this figure, availability is measured as the prob-
ability that a request for the object is satisfied. With the
passage of time, required availability of stock quotes, for
example, can diminish, and the system can accordingly free
up resources. Allowing applications to specify availability
requirements in this way allows the system to treat objects
differently over time. Without such a specification, the sys-
tem is forced to keep at least 0.99999 availability forever
because this was needed early in the object’s lifetime.
Performance: Performance requirements of data can vary
based on data type. In the example of Section 3.2, multi-
media streams will require higher performance than textual
data. However, performance will also depend on the nature
of the application. In the first example, if an added func-
tionality of the application were to detect illicit trades in
real-time so that they could be stopped proactively, it would
impose certain performance requirements on data access. It
is more probable that the analysis of newly created data will
lead to such discoveries. Hence, performance requirements
of data can also be expressed as a function of time, with
the units of performance being retrieval time or latency and
bandwidth. In the case of multimedia files, bandwidth is
more important, while the important metric in the case of
real-time anomaly detection is the latency.
Access patternsAccesses to data can be correlated with
time. While in the first example, it is reasonable to believe
that newer data is accessed more often, in the second exam-
ple, the actual time or date of an event affects the popularity
of an object. When creating data for an event that occurs
on say the 10th of July, the application can specify a higher
popularity for the event on the 10th of July.
Application importance Multiple applications may use the
same storage system and certain applications may be more



“important” than others. Using techniques such as service-
level objectives [3], the system may assign priorities to each
application. It must respect this priority and the availability,
performance and access specifications when placing data.

4.1 Utility of meeting requirements

While the framework outlined thus far supports auto-
mated data retention decisions by allowing applications to
specify simple time-varying storage requirements for data
it is useful to augment the framework further to allow ap-
plications to characterize the relative desirability of certain
storage attributes. Accordingly, we allow applications to
express how important it is to them that the storage sys-
tem meet their (possibly multi-dimensional) requirements
by specifying autility functionfor each storage object. Fig-
ure 3 illustrates simple time-varying utility as a functionof
allotted bandwidth for two objects,O1 andO2. In April, O1

needs at least 350 Kbps in order to achieve significant util-
ity, while O2 is relatively satisfied with bandwidth above
100 Kbps. In May,O1’s utility U1 shifts to a lower asymp-
totic value and a lower required bandwidth. We elucidate
how the storage allocator employs these utility functions to
make data management decisions in Section 5.1.

4.2 Specifying utility functions

In principle, unique utility functions could be defined for
each data object. However, we advocate grouping data ob-
jects into a finite set of classes, such that each object in a
class shares the same utility function. This approach re-
duces the cognitive burden on administrators because it per-
mits them to specify a much smaller number of utility func-
tions. Furthermore, the grouping can reduce the computa-
tional burden on the allocation optimizer, as explained in
Section 5.2. Possible class discriminators may include file
format (mpeg files require higher performance than html
files as described in Section 3.2), or data semantics (stock
quotes may be less important than news articles, as shown
in Section 3.1). Specifying the time-dependency of utility
functions introduces some added burden for administrators,
but can be reasonably managed by predefining a small set
of functions for each class. Effectively, each class is parti-
tioned dynamically into a small set of sub-classes: objects
within a certain sub-class are approximately of the same age
and use the same utility function. This is similar to policy-
based lifecycle management [17], however, we believe that
utility-function specification should be at a higher level and
not rigid, so that the storage allocator can take into account
the condition that storage devices may be operating at ca-
pacity or near-capacity. The allocator may therefore make
decisions that will not give the application exactly what it
desires, but tries to get as close to the requirements as pos-

sible. Section 5.1 gives a simple example of how these
different utility functions can be used to capture the time-
dependency of data requirements.

Even with this simplification, eliciting utility functions
from the administrator and assigning them to classes re-
mains a key problem. Quite generally, preference elic-
itation is a challenging and open area of research [10].
We envision it as an iterative process, whereby a user in-
terface presents a series of questions to the administrator,
asking her to express preference trade-offs. An example
question could be “Do you prefer[50Kbps, 400Kbps] or
[350Kbps, 100Kbps]”, where [bw1, bw2] is a possible allo-
cation of bandwidth between class 1 and and class 2. We
can use recent techniques [13] to obtain an accurate esti-
mate of the utility function with minimal elicitation. Since
we cannot query the administrator indefinitely, the result-
ing utility function will likely not reflect the administrator’s
preferences perfectly. Small discrepancies between the ad-
ministrator’s true preferences and the elicited utility func-
tion should in most cases lead to allocations whosevalueis
close to that of the allocation that the administrator would
have chosen, although theallocation itself may be signifi-
cantly different. If the system permits the administrator to
provide occasional feedback on allocation decisions, then
over time the system can incrementally learn utility func-
tions that better reflect the administrator’s preferences.

5 Optimization

In this section, we describe how the storage system can
use optimization to place data objects and allocate resources
in accordance with application requirements. The optimiza-
tion is complicated by the time-varying application require-
ments and the continual flow of new data into the system.

The main component of the system is thestorage allo-
cator, which performs the optimization that maps require-
ments associated with data objects, as represented by util-
ity functions, to storage units based upon their properties.
Higher availability requires storage on more available de-
vices and more replicas. Higher performance requirements
can translate to more replicas or placement on storage de-
vices that have high bandwidth and low latency.

The allocator needs to know the state and properties of
the storage units in the system, such as available bandwidth,
latency and availability parameters such as MTBF. For a
new object, it determines what would be a suitable place-
ment of the object, i.e., how many replicas to make, and
which storage units will store these devices. Because some
storage units may be nearly full, or there may be insuffi-
cient available bandwidth, the optimization must consider
moving or deleting pre-existing objects.

In the next subsection we provide a simple example of
using optimization to place data objects with time-varying



0 100 200 300 400 500
Bandwidth (Kb/sec)

0

500

1000

1500

2000

U
til

ity

O1 (April)

O2 (April,May)

O1 (May)

Figure 3. Time-varying utility as a function of
bandwidth for objects O1 and O2.

utility functions. Following that, we discuss some practical
issues that arise in optimizing large-scale storage systems.

5.1 Simple example

To illustrate our approach, consider two objectsO1 and
O2, each of which can be placed on storage unitsSH or SL.
Storage unitSL provides a low bandwidth of 80 Kbps, while
SH provides a higher bandwidth—either 350 Kbps or 500
Kbps. Suppose further that the bandwidth requirements of
objectsO1 andO2 are characterized by time-varying utility
functions as given in Figure 3. Specifically, in April,O1 has
much higher bandwidth needs thanO2 (roughly 300-400
Kbps, as compared with roughly 60-100 Kbps), and its util-
ity is twice that ofO2. However, a month later,O1’s band-
width needs are reduced below those ofO2, and its maxi-
mum utility is half that ofO2. O2’s needs do not change.

The storage allocator may use a simple optimization al-
gorithm to determine the objects’ optimal placement, as
well as the optimal apportionment of bandwidth ifO1 and
O2 are placed on the same storage unit. (Here we assume
that a QoS control mechanism as described in Chambliss et
al. [6] is in effect, so that one can enforce bandwidth limita-
tions onO1 andO2 individually.) The algorithm considers
all feasible placements and bandwidth allocations, and iden-
tifies one that maximizes the total utilityU1 + U2.

Figure 4 is a topographic map of the functionU1 + U2 in
the month of April. Higher utility is represented by lighter-
color regions, while the dark lines represent curves along
which the utility has a constant value. The gray, straight
lines represent different bandwidth constraints; the one clos-
est to the origin with intercepts at 80 Kbps on the horizon-
tal and vertical axes represents the bandwidth constraint for
SL, while the two further from the origin represent band-
width constraints forSH (either 350 Kbps or 500 Kbps). For
a given bandwidth constraint, the intersection of the con-
straint line with the highest-valued iso-utility curve gives
the optimum solution; these are indicated by points.

Now suppose that it is April, and thatSH provides a
bandwidth of 350 Kbps. There are four placement possi-
bilities for the optimizer to consider. First, consider plac-

0 100 200 300 400 500
Object 1 Bandwidth (kb/s)

0

100

200

300

400

500

O
bj

ec
t 2

 B
an

dw
di

th
 (

kb
/s

)

Figure 4. Feasible utility regions. Lighter col-
ors indicate higher utility. Curved dark lines
indicate iso-utility curves. Gray, straight lines
indicate different bandwidth constraints of
storage devices in the system.

ing bothO1 andO2 on SL. The optimal bandwidth alloca-
tion would be 0 Kbps forO1 and 80 Kbps forO2, as indi-
cated by the point in Fig. 4. This would yield a total utility
U1 + U2 = 850. Note that, even thoughO2 has a lower
bandwidth requirement and a lower utility, it is favored be-
causeO1 would derive essentially no benefit from the full
bandwidth of 80 Kbps. At this bandwidth,O2 is not fully
satisfied, but it receives a reasonable fraction of its maxi-
mum utility. Second, consider placing bothO1 andO2 on
SH . Then, as shown in Fig. 4, the optimal allocation would
be 350 Kbps forO1 and 0 Kbps forO2, yielding a total util-
ity of 1813. Third, consider placingO1 on SH andO2 on
SL. ThenO1 would receive 350 Kbps andO2 would receive
80 Kbps, resulting in a total utility of1813 + 850 = 2663.
Fourth, and finally, consider placingO1 on SL andO2 on
SH . This would yield a total utility of 1000. Thus the opti-
mal placement and allocation are attained for the third case:
O1 onSH andO2 onSL, resulting in total utility 2663.

If SH ’s capacity were increased from 350 Kbps to 500
Kbps, the optimizer would derive a different placement:
both O1 andO2 would reside onSH , with 395 Kbps al-
located toO1 and the remaining 105 Kbps allocated toO2.
The overall total utility would be1962+986 = 2948, some-
what better than the1999 + 850 = 2849 that would be at-
tained for the placement that is optimal in the previous case.

Now suppose that a month passes, taking the scenario
whereSH ’s capacity is 350 Kbps. The shift inU1 (Fig. 3)
would result in a dramatic change in the topography of
Fig. 4. The optimization algorithm would determine that
O2 should be moved fromSL to SH , with 204 Kbps allo-
cated toO1 and 146 Kbps allocated toO2 for a total util-
ity of 495 + 999 = 1494. One could even contemplate
adding more storage objects likeO2 to SH . Considering



SH only, the overall maximum utility of 3846 occurs when
there are fourO2’s on SH , each with bandwidth allocation
of 83 Kbps, with the singleO1 receiving the remaining 19
Kbps. Additional copies ofO2 would result in overcrowd-
ing and overall degradation in the total utility. Thus, in addi-
tion to determining placement, optimization based on utility
functions can be used to make automated decisions about
whether to retain objects in storage, or admit more of them.

5.2 Practical issues

In a large system with many data objects, optimization
is a challenge. While finding the global optimal solution
may be infeasible, we believe that a good solution can be
found in a reasonable amount of time. As noted in Sec-
tion 4.2, objects will belong to a storage class, each with
its own utility function. The system can then, instead of
allocating space between objects, allocate space among the
storage classes, significantly reducing the size of the prob-
lem. Typically, utility functions will be nonlinear, but the
inter-class optimizations can be solved very efficiently ifthe
utility functions are convex [4]. Utility functions will often
not be convex, as in Figure 3, in which case it is necessary
to use methods that do not do not assume convexity, such as
the Nelder-Mead algorithm [12], trust-region algorithm [7]
or minimax-regret optimization [13]. The intra-class opti-
mizations can be solved independently, and we believe we
can exploit similarities of objects within a class to do this
efficiently, albeit approximately. To cope with the dynamic
nature of the system, continual reoptimization is necessary.
For the sake of efficiency, such reoptimization can be per-
formed incrementally, with occasional recomputation from
scratch.

There are at least two different ways of incorporating
the time-varying nature of the utility functions into the opti-
mization problem. This is complicated by the fact that mov-
ing objects from one storage device might maximize value,
but comes with a cost. One solution is to simply re-optimize
at every given point in time, trying to achieve the solution
with the highest value minus cost. An alternative approach
is to take a more long-term point of view and allocate taking
into account the future data movements, and attempting to
maximize total long-term value, perhaps with a Markov De-
cision Process [15] approach. However, this requires know-
ing (or assuming) more about the future data.

6 Summary

We proposed a new direction for data management in
large storage systems in which applications can specify how
their requirements vary with time. We outline how applica-
tions may specify these requirements and describe an opti-
mization strategy for the data placement. We believe that

this approach will allow the storage system to make more
informed decisions towards efficient data management.

Acknowledgments

We thank Paul Dantzig, Murthy Devarakonda, David
Grabiner, Nagui Halim, Joe McCloskey, John Palmer, David
Pease, Elizabeth S. Richards, David Tao, Bill Tetzlaff,
Sandeep Uttamchandani and Honesty Young for their help-
ful feedback.

References

[1] E. Anderson et al. Hippodrome: Running circles around stor-
age administration. InProc. of FAST, 2002.

[2] A. Arpaci-Dusseau et al. Manageable storage via adaptation
in WiND. In Proc. of (CCGrid), 2001.

[3] L. L. Ashton et al. Two decades of policy-based storage man-
agement for the IBM mainframe computer.IBM Systems
Journal, 2003.

[4] S. Boyd and L. Vandenberghe.Convect Optimization. Cam-
bridge University Press, 1994.

[5] J. J. Bunn and H. B. Newman. Data-intensive grids for high-
energy physics. InGrid Computing: Making the Global In-
frastructure a Reality. Wiley, 2002.

[6] D. D. Chambliss et al. Performance virtualization for large-
scale storage systems. InProc. of SRDS, 2003.

[7] A. R. Conn, N. Gould, D. Orban, and P. L. Toint. A
primal-dual trust-region algorithm for non-convex nonlinear
programming.Mathematical Programming, 87(2):215–249,
2000.

[8] F. Douglis et al. Position: Short Object Lifetimes Require
a Delete-Optimized Storage System. InProceedings of the
11th ACM SIGOPS European Workshop, 2004.

[9] Business data is growing by 70 to 120
percent a year: Are you prepared?
http://www.embarcadero.com/support/dataexplosion.pdf.

[10] R. L. Keeney and H. Raiffa.Decisions with Multiple Objec-
tives: Preferences and Value Tradeoffs. Cambridge Univer-
sity Press, 1993.

[11] M. Kienzle et al. Using tertiary storage in video-on-demand
servers. InProc. of IEEE CompCon, 1995.

[12] J. A. Nelder and R. Mead. A simplex method for function
minimization.Computer Journal, 7:308–313, 1965.

[13] R. Patrascu et al. New approaches to optimization and utility
elicitation in autonomic computing. Technical report, Uni-
versity of Toronto and IBM, 2005.

[14] M. Peterson. Information lifecycle management: A vision
for the future. http://www.snia.org/techactivities/dmf/SRC-
Profile ILM Vision 3-29-04.pdf.

[15] M. L. Puterman.Markov Decision Processes: Discrete Sto-
chastic Dynamic Programming. Wiley-Interscience, 1994.

[16] S. Uttamchandani et al. CHAMELEON: A self-evolving,
fully adaptive resource arbitrator for storage systems. In
Proc. of USENIX, 2005.

[17] A. Verma et al. An architecture for lifecycle management in
very large file systems. InProc. of IEEE/NASA MSST, 2005.

[18] J. J. Wylie et al. Selecting the Right Data Distribution
Scheme for a Survivable Storage System. Technical Report
CMU-CS-01-120, Carnegie Mellon University, May 2001.


