Time-varying Management of Data Storage

Ranijita Bhagwan, Fred Douglis, Kirsten Hildrum, Jeffreyk@phart, William E. Walsh
IBM T. J. Watson Research Center

Abstract we move data? Currently, administrators set these relevant
parameters manually, though such a policy can lead to un-
The efficiency of large-scale applications is strongly de- desired system behavior. For example, if a data item that an
pendent on good data management techniques. In this paapplication considers important gets moved to archivat sto
per, we claim that the ability to specify data requirementsi age, it may adversely affect the application’s performance
atime-varyingmanner facilitates data managementand im- Second, applications have different requirements for the
proves application efficiency. This is because requirement different kinds of data, and these requirements atsgnge
such as availability, bandwidth and latency can vary sig- with time For example, newly generated web server logs
nificantly with time. Consequently, the storage system canmay be critical to an application such as a real-time intru-
dynamically change the allocation of resources to data ob- sjon detection system, hence these data will have significan
jects. We describe how an application may specify theseayailability and performance requirements. It may thewefo
dynamic requirements using utility functions, and outline be useful to generate multiple replicas of these logs on stor
a strategy towards achieving an optimal allocation of re- age devices with low latency and high throughput. But with

sources to data objects. time, their utility to the application, hence their availab
ity and performance requirements, diminish. Hence older
1 Introduction web logs would be suitable candidates to delete or move to

archival store as storage systems reach capacity.

Applications depend heavily on good data management _Thlrd,_ there are a_mult|tude of storage devices with
to function properly. However, managing data efficiently Widely different operational parameters. Systems can sup-
has become a very complex problem. Many factors con- port low latency an_d high ban<_jW|dth, byt at a high cost com-
tribute to this, including voluminous data storage, varied Pared to other options. Archival media offer low costs but
application requirements that can change over time, and dis Much poorer performance in the worst case. Replication can
parate storage characteristics. be used to proylde both high availability and improved per-

First, the amount of data stored by applications is grow- formance, again at a cost.
ing at a phenomenal rate. It is estimated that many enter- We are working on a large-scale distributed stream
prises are witnessing growth in storage needs at the rate oprocessing system in which these questions of data man-
70to 120% per year [9]. This explosion is not limited just to agement are critical. One assumption in the design of this
the corporate world. New scientific experimentation tech- system is that its capacity is chronically insufficient, and
niques generate extremely large datasets whose sizes afefior work has focused primarily on automatically select-
estimated to go up to exabytes within the next decade [5].ing data to retain based on predetermined specifications of
Emerging data mining applications [8] are estimated to gen-hOW the relative value of the data varies over time [8]. This
erate large amounts of data that will keep any contemporaryis particularly appropriate for data mining applications i
storage system in a state of constant overflow. which the product of the available data and the set of poten-

As a consequence, the common assumption that Storaggal mining a|goritth dwarf any conceivable set of Storage
is abundant is applicable only to some domains. Although resources. Here we take initial steps to extend the earlier
disk sizes are rapidly increasing, storage devices in some'etention framework [8] to consider other time-varying cri
environments will eventually reach capacity. The current teria. We make the following observations:
approach to this problem is to adopt some combination of Applications should be allowed to specify their require-
the following three strategies: add more storage, move dataments to the storage system in a time-varying manRar-
from a primary device to a secondary or archival device, or ticularly, information that an application may provide & r
delete data. But which of these actions should we pursueiated to desired retrieval performance (latency limits and
Which data do we move or delete? Where and when dobandwidth required to retrieve stored data), availabiity

quirements, and estimated access patterns to the data olwbject with a “retention” value that decays over time. Our
jects. The system should take these requirements and mapffort further extends the notion of retention by addregsin
them into storage-level parameters such as which storageroperties that applications would be directly interested
devices to place the data on and how many replicas to makesuch as availability and performance.
In addition, applications should inform the storage system
of how these parameters change with time, so that the sysg Example scenario
tem can make informed decisions on moving or replicating
the data if required in the future.

When a storage device is full, the system should take
into account these requirements to determine data move
ment strategies to free space and redistribute loddbv-

In this section, we provide two examples to elucidate
why application-specific, time-varying specification otala
requirements is useful. The first example emphasizes data
availability while the second concentrates on required per

ing objects that have minimal requirements improves over- formance. We then give an example of a storage layer that
all system efficiency. Thus, the system can strive towards aould manage data given these requirements
data placement strategy that gets as close to application re '

guirements as possible. At the same time, the system will
still need to consider the outright deletion of low-valu¢ada
when their value declines over time.
The rest of the paper is structured as follows. Section 2
discusses related work. Section 3 explains a scenario tha}l)_ C)
. . : hese might include:
we will use in the rest of the paper to elucidate our pro- :
. : Stock quotes.An abrupt change in value would suggest the
posed approach to managing storage load. In Section 4 we

: L : opportunity to exploit any advance knowledge.
describe what an application may specify as part of data : .
: ; ; . . .~ “News items. News about a company frequently results in
requirements using time-variant functions of the require-

ments andutilities associated with them. Section 5 gives changes to its stock price. Significant changes that result

. L from news that some people had advance knowledge of are
an overview of a proposed optimization strategy for storage . . N ;
: e of great interest in detecting insider trading, but unfeees
management using these specifications.

able news is not. News may take the form of video, audio,

web pages, etc.

2 Related work Transactions. To identify insider trading, one must record
the buy and sell transactions.

Several efforts such as Hippodrome [1], WiND [2], SLE- Each of these types of data has different storage require-
DRunner [6] and Chameleon [16] have concentrated onments. Stock quotes are transient: when one sees a sequence
adaptive techniques in storage management to meet perforof quotes for a stock at approximately the same amount,
mance requirements. PASIS [18] addresses the problem obnly the most recent one need be retained. Other data are
providing security and availability in distributed stoesgys- less predictable. For instance, if a “foreseeable” newsateve
tems. These systems assess, to a certain extent, how objetgsults in a sudden change in stock value, not only are the
these requirements change by explicitly monitoring sterag news and the changing stock quotes important, so are all
systems. While this approach is effective in some cases,transactions in that stock over the period when the news
in others, the application’s knowledge of how data require- was known to insiders. The older transactions are, the less
ments are going to change should be used. Consequenthikely they will be tied to insider trading, so their impor-
providing the storage system with the time-varying require tance declines over time, as does any requirement to store
ments improves and simplifies data management. More-those transactions in a redundant fashion. In this case, the
over, our work concentrates on the fact that in some scenaremphasis of our approach for that application is on retentio
ios, storage systems reaching capacity is a common occurand availability.
rence. Hence data management has to explicitly deal with
this problem. Other research efforts [11] have evaluatedth 3.2 Scenario 2: Sporting event web server
use of tertiary storage for enhancing performance of sgecifi
applications such as video-on-demand. We believe that the Consider a sporting event web service that provides in-
incorporation of time with these strategies can signifigant formation such as news, results, player profiles, and video
improve data management. streams. Such a web service creates several data items in-

Information Lifecycle Management (ILM) [14] and cluding HTML documents, media streams and web logs.
Policy-based Lifecycle Management[17] are effortsto iden Again, we are faced with varying storage requirements,
tify that data items typically have lifetimes that decaytwit some of which pertain to retention. For example, system
time. Recent work [8] extends this idea to annotate every administrators will most likely use web logs within a few

3.1 Scenario 1: Insider trading detection

Consider a system that attempts to correlate multiple in-
ut sources to identify possible cases of insider trading.

Sports event web service
1 0.99999
Video files HTML Webpages Web logs >
Red® $0.999
20.
E
‘ Storage allocator ‘ < 0.9
Storage system ’
High-performance RAIDS Archival
T Time
Figure 1. Sporting event web server Figure 2. A time-varying availability specifica-

hours after they are created or not at all. Hence, the impor- tion
tance of preserving these web logs diminishes with time.

On the other hand, while video streams and HTML doc- data management. The following are four axes along which
uments both require more persistent storage than logs, theypplication requirements vary with time.
differ in terms of performance requirements. Multimedia Availability: As in the examples above, required data avail-
streams need to be delivered at a certain rate to ensure reaability is mainly a function of how an application wants to
sonable quality, whereas users can tolerate higher l&enci use the data. Consequently, an application can specifl avai
for HTML documents. During an event, the number of ac- ability per data type as a function of time. When a data
cesses to documents related to the event will increase acebject is created and is inserted into the storage system, it
cordingly. Hence some documents such as live multimediais accompanied by an availability requirement as shown in

streams will need more resources at certain times. Figure 2. In this figure, availability is measured as the prob
ability that a request for the object is satisfied. With the
3.3 Data management passage of time, required availability of stock quotes, for

example, can diminish, and the system can accordingly free

In Figure 1, we show how Scenario 2 interacts with an up resources. Allowing applications to specify availdpili

example storage system. The storage resources include affauirements in this way allows the system to treat objects
NFS-style file system with RAID, a high-performance clus- d|ffer_ently over time. Without such a speC|f|qat|qp, the-sys
ter file system, and a larger tape archive. The storage allotem is forced to keep at least 0.99999 availability forever

cator uses the application specifications to map data abject Pecause this was needed early in the objects lifetime.
to storage units. Performance: Performance requirements of data can vary

Consider the case that the high-performance clusterPased on data type. In the example of Section 3.2, multi-

reaches capacity and the application generates new data thedia streams will require higher performance than textual
be inserted into this high-performance storage unit. Thedata' However, performance will also depend on the nature

storage system therefore decides to free up some space i’ the application. In the first example, if an added func-

the cluster file system by moving objects that have becometionality of the application were to detect illicit trades i

less important (older transactions in the first scenario angreal-time so that they could be stopped proactively, it woul

older web logs in the second) to the archive. Since it is ?mpose certain performance requirements on data access. It

wasteful to move data that is soon to be accessed to thdS More probable that the analysis of newly created data will
archive (reading objects off the archive involves largerove lead to such discoveries. Hence, performance requirements

heads [11]), the data management strategy should evaluat8' dat"f‘ can also be expres_sed as a fun_ctlon of time, with

these trade-offs while choosing an allocation policy. the Un'FS of performance being rgtrlev_al t!me or Iaten_cy and
Our goal s to generalize this model by identifying differ- bandvyldth. In the case of_multlmedla fllgs,_ bandwidth is

ent ways an application can specify its requirements and bymore important, while the important metric in the case of

laying out storage system mechanisms that can ensure highea-time anomaly detection is the latency. _
performance and availability. Access patternsAccesses to data can be correlated with

time. While in the first example, it is reasonable to believe

L that newer data is accessed more often, in the second exam-

4 Specification ple, the actual time or date of an event affects the popuylarit

of an object. When creating data for an event that occurs

In this section, we elaborate on the different requirementson say the 10th of July, the application can specify a higher

that an application can specify to the storage system. Thepopularity for the event on the 10th of July.

goal of the storage system is to adhere as closely as possibl&pplication importance Multiple applications may use the

to the application’s requirements while performing effitie = same storage system and certain applications may be more

“important” than others. Using techniques such as service-sible. Section 5.1 gives a simple example of how these

level objectives [3], the system may assign priorities tthea different utility functions can be used to capture the time-

application. It must respect this priority and the avaliisihi dependency of data requirements.

performance and access specifications when placing data. Even with this simplification, eliciting utility functions
from the administrator and assigning them to classes re-

4.1 Utility of meeting requirements mains a key problem. Quite generally, preference elic-
itation is a challenging and open area of research [10].

While the framework outlined thus far supports auto- e envision it as an iterative process, whereby a user in-
mated data retention decisions by allowing applications to terf:_ace presents a series of questions to the administrator
specify simple time-varying storage requirements for data asklng her to express preference trade-offs. An example
it is useful to augment the framework further to allow ap- duestion could be “Do you prefef0Kbps 400Kbps or
plications to characterize the relative desirability oftaa [350Kbps 100Kbps”, where [bw:, bws] is a possible allo-
storage attributes. Accordingly, we allow applications to cation of bandwidth between class 1 and and class 2. We
express how important it is to them that the storage sys-Can use recent techniques [13] to obtain an accurate esti-
tem meet their (possibly multi-dimensional) requirements Maté of the utility function _vv!th m|n|mal ell|c?|tat|on. Siec
by specifying autility functionfor each storage object. Fig- We cannot query th_e Qdmmlstrator mdeﬁmtely, _the result-
ure 3 illustrates simple time-varying utility as a functon N9 utility function will likely not_reflect the_ administrat’s
allotted bandwidth for two object€); andO-. In April, O; pr_eferences perfectly. Small dlscrepanC|§§ betwg_en the ad
needs at least 350 Kbps in order to achieve significant util- Ministrator's true preferences and the elicited utilityd
ity, while O, is relatively satisfied with bandwidth above tion should in most cases lead to allocations whasaeis
100 Kbps. In MayO:’s utility U; shifts to a lower asymp- ~ close to that of the allocation that the administrator would
totic value and a lower required bandwidth. We elucidate Nave chosen, although thtiocationitself may be signifi-

how the storage allocator employs these utility functians t cantly different. If the system permits the administrator t
make data management decisions in Section 5.1. provide occasional feedback on allocation decisions, then

over time the system can incrementally learn utility func-

4.2 Specifying utility functions tions that better reflect the administrator’s preferences.

In principle, unique utility functions could be defined for © Optimization
each data object. However, we advocate grouping data ob-
jects into a finite set of classes, such that each object in a In this section, we describe how the storage system can
class shares the same utility function. This approach re-use optimization to place data objects and allocate ressurc
duces the cognitive burden on administrators because-it perin accordance with application requirements. The optimiza
mits them to specify a much smaller number of utility func- tion is complicated by the time-varying application reguir
tions. Furthermore, the grouping can reduce the computaiments and the continual flow of new data into the system.
tional burden on the allocation optimizer, as explained in The main component of the system is @terage allo-
Section 5.2. Possible class discriminators may include file cator, which performs the optimization that maps require-
format (mpeg files require higher performance than html ments associated with data objects, as represented by util-
files as described in Section 3.2), or data semantics (stockty functions, to storage units based upon their properties
guotes may be less important than news articles, as showrHigher availability requires storage on more available de-
in Section 3.1). Specifying the time-dependency of utility vices and more replicas. Higher performance requirements
functions introduces some added burden for administrators can translate to more replicas or placement on storage de-
but can be reasonably managed by predefining a small sevices that have high bandwidth and low latency.
of functions for each class. Effectively, each class isipart The allocator needs to know the state and properties of
tioned dynamically into a small set of sub-classes: objectsthe storage units in the system, such as available bandwidth
within a certain sub-class are approximately of the same agdatency and availability parameters such as MTBF. For a
and use the same utility function. This is similar to policy- new object, it determines what would be a suitable place-
based lifecycle management [17], however, we believe thatment of the object, i.e., how many replicas to make, and
utility-function specification should be at a higher levetla ~ which storage units will store these devices. Because some
not rigid, so that the storage allocator can take into accoun storage units may be nearly full, or there may be insuffi-
the condition that storage devices may be operating at ca<cient available bandwidth, the optimization must consider
pacity or near-capacity. The allocator may therefore make moving or deleting pre-existing objects.
decisions that will not give the application exactly what it In the next subsection we provide a simple example of
desires, but tries to get as close to the requirements as posising optimization to place data objects with time-varying

2000
O1 (April)

1500

1000

Utility

500

[/ 01 (May)
0
0 100

200 300 400
Bandwidth (Kb/sec)

500

Object 2 Bandwdith (kb/s)

Figure 3. Time-varying utility as a function of
bandwidth for objects O; and Os.

0 100 200 300 400 500
Object 1 Bandwidth (kb/s)

utility functions. Following that, we discuss some praatic

issues that arise in optimizing large-scale storage system Figure 4. Feasible utility regions. Lighter col-
ors indicate higher utility. Curved dark lines
5.1 Simple example indicate iso-utility curves. Gray, straight lines
indicate different bandwidth constraints of

To illustrate our approach, consider two objeGtsand storage devices in the system.

04, each of which can be placed on storage ufijisor Sy..

Storage unify, provides a low bandwidth of 80 Kbps, while))

Sy provides a higher bandwidth—either 350 Kbps or 500 N9 PothO: andO; on S.. The optimal bandwidth alloca-
Kbps. Suppose further that the bandwidth requirements oftion would be 0 Kbps foO; and 80 Kbps foO,, as indi-
objectsO; andO are characterized by time-varying utility cated by the point in Fig. 4. This would yield a total utility
functions as given in Figure 3. Specifically, in Apl; has U1 + Uz = 850. Note that, even thoug®, has a lower
much higher bandwidth needs thah (roughly 300-400 bandwidth requlrerr_\ent and a_lower utility, |t_ is favored be-
Kbps, as compared with roughly 60-100 Kbps), and its util- causte would derive essen_t|ally no l_)eneflt_ from the full
ity is twice that ofO,. However, a month latef);’s band- ~ Pandwidth of 80 Kbps. At this bandwidtd); is not fully
width needs are reduced below those(sf and its maxi- satlsfleql,_ but it receives a.reasona.ble fraction of its maxi-
mum utility is half that ofO,. O,’s needs do not change. mum utility. Second, consider placing bath andO, on

The storage allocator may use a simple optimization al- Sy. Then, as shown in Fig. 4, the optl_mal_ allocation WOU|d
gorithm to determine the objects’ optimal placement, as °€ 350 Kbps foO; and 0 Kbps fo,, yielding a total util-
well as the optimal apportionment of bandwidthif and 1ty ©f 1813. Third, consider placing, on Sy andO, on
0O are placed on the same storage unit. (Here we assumeZ- 1nhenO; would receive 350 Kbps and, would receive
that a QoS control mechanism as described in Chambliss eB0 KPps, resulting in a total utility of813 + 850 = 2663.
al. [6] is in effect, so that one can enforce bandwidth limita FOUrth, and finally, consider placir@, on S, andO, on
tions onO; andO, individually.) The algorithm considers - This would yield a total utility of 1000. Thus the opti-
all feasible placements and bandwidth allocations, anatide mal placement and aIIocatlon_are_attamed f(_)r the third:case
tifies one that maximizes the total utility; + Us. 01 0onSy andO; on Sy, resulting in total utility 2663.

Figure 4 is a topographic map of the functiin+ U, in If Sy’s capacity were increased from 350 Kbps to 500
the month of April. Higher utility is represented by lighter ~ Kbps, the optimizer would derive a different placement:
color regions, while the dark lines represent curves alongboth O; and O, would reside onSy, with 395 Kbps al-
which the utility has a constant value. The gray, straight located toO; and the remaining 105 Kbps allocated®s.
lines represent different bandwidth constraints; the dmec ~ The overall total utility would be& 962+ 986 = 2948, some-
est to the origin with intercepts at 80 Kbps on the horizon- What better than the999 + 850 = 2849 that would be at-
tal and vertical axes represents the bandwidth constraint f tained for the placement that is optimal in the previous case
S, while the two further from the origin represent band- Now suppose that a month passes, taking the scenario
width constraints fo6y (either 350 Kbps or 500 Kbps). For whereSy’s capacity is 350 Kbps. The shift itl; (Fig. 3)

a given bandwidth constraint, the intersection of the con- would result in a dramatic change in the topography of
straint line with the highest-valued iso-utility curve g&v Fig. 4. The optimization algorithm would determine that
the optimum solution; these are indicated by points. Oz should be moved fron%, to Sy, with 204 Kbps allo-

Now suppose that it is April, and thaty provides a cated toO; and 146 Kbps allocated O, for a total util-
bandwidth of 350 Kbps. There are four placement possi- ity of 495 4+ 999 = 1494. One could even contemplate
bilities for the optimizer to consider. First, considergla adding more storage objects like, to Sy. Considering

Sy only, the overall maximum utility of 3846 occurs when this approach will allow the storage system to make more
there are fouD,’s on Sy, each with bandwidth allocation informed decisions towards efficient data management.

of 83 Kbps, with the singl&, receiving the remaining 19

Kbps. Additional copies o), would result in overcrowd- Acknowledgments

ing and overall degradation in the total utility. Thus, irdad

tion to determining placement, optimization based ontutili We thank Paul Dantzig, Murthy Devarakonda, David

functions can be used to make automated decisions abougapiner Nagui Halim, Joe McCloskey, John Palmer, David
whether to retain objects in storage, or admit more of them. paase Ejizabeth S. Richards. David Tao. Bill Tetzlaff

o Sandeep Uttamchandani and Honesty Young for their help-
5.2 Practical issues ful feedback.

In a large system with many data objects, optimization References
is a challenge. While finding the global optimal solution
may b.e infeasible, we believe that a good solutlon_can be [1] E. Anderson et al. Hippodrome: Running circles arourmad-st
found in a reasonable amount of time. As noted in Sec- age administration. IRroc. of FAST2002.
tion 4.2, objects will belong to a storage class, each with [2] A’ Arpaci-Dusseau et al. Manageable storage via adaptat
its own utility function. The system can then, instead of in WiND. In Proc. of (CCGrid) 2001.
allocating space between objects, allocate space among thel3] L- L. Ashton etal. Two decades of policy-based storage-ma

storage classes, significantly reducing the size of the-prob ?gjm:{'tz(fgsthe IBM mainframe computeiBM Systems

lem. Typically, utility functions will be nonlinear, but ¢ [4] S. Boyd and L. Vandenbergh€onvect OptimizationCam-
inter-class optimizations can be solved very efficientihé bridge University Press, 1994.
utility functions are convex [4]. Utility functions will aén [5] J.J. Bunn and H. B. Newman. Data-intensive grids for high

not be convex, as in Figure 3, in which case it is necessary ;enetrgy thSiC;- 'ﬁri\?ﬁomﬁ’é’g;g: Making the Global In-
H rastructure a realityviley, .

to use methods that do_nOt do not assume_ Convex'Fy’ such aS[6] D. D. Chambliss et al. Performance virtualization forgie-

the l_Ie_Ider-Mead algo_rlthm [12], trust-reglc_)n algorithnj [7_ scale storage systems. Bioc. of SRDS2003. .

or minimax-regret optimization [13]. The intra-class epti [7] A. R. Conn, N. Gould, D. Orban, and P. L. Toint. A

mizations can be solved independently, and we believe we primal-dual trust-region algorithm for non-convex noeln

can exploit similarities of objects within a class to do this programming.Mathematical Programming7(2):215-249,
ici i i - - 2000.

eﬁ'C'eml}/' ﬁlbe't apprOX|m(_':1ter|. To cope W'.th the dynamic [8] F. Douglis et al. Position: Short Object Lifetimes Regui

hature of the Syste.m., continua reoptlrnl_zatl(_)n IS necgssar a Delete-Optimized Storage System. Rroceedings of the

For the _sake of efﬁmenc_y, such r_eoptlmlzatlon can be per- 11th ACM SIGOPS European Worksh@po4.

formed incrementally, with occasional recomputation from [9] Business data is growing by 70 to 120

scratch. percent a year Are you prepared?
There are at least two different ways of incorporating http://www.embarcadero.com/support/dateplosion. pdf.

. . . - . . [10] R. L. Keeney and H. RaiffaDecisions with Multiple Objec-
the time-varying nature of the utility functions into thetisp tives: Preferences and Value Tradeofambridge Univer-

mization problem. This is complicated by the fact that mov- sity Press, 1993.

ing objects from one storage device might maximize value, [11] M. Kienzle et al. Using tertiary storage in video-onazznd
but comes with a cost. One solution is to simply re-optimize servers. IrProc. of IEEE CompCarl995. _
at every given point in time, trying to achieve the solution [12 J- A. Nelder and R. Mead. A simplex method for function
with the highest value minus cost. An alternative approach ;3 gf%g'fafé%néfgmﬁg\tﬁ ;f)%lﬁcr,g?zﬁézot%ﬁ,lﬂsﬁqilz%?i‘rc’,'n aifityut
is to take a more long-term point of view and allocate taking elicitation in autonomic computing. Technical report, Uni
into account the future data movements, and attempting to versity of Toronto and IBM, 2005.

maximize total long-term value, perhaps with a Markov De- [14] M. Peterson. Information lifecycle management: A orsi
cision Process [15] approach. However, this requires know- for the future. http://www.snia.org/teddctivities/dmf/SRC-

. . Profile ILM _Vision_3-29-04.pdf.
ing (or assuming) more about the future data. [15] M. L. Puterman.Markov Decision Processes: Discrete Sto-

chastic Dynamic Programming/Niley-Interscience, 1994.
6 Summary [16] S. Uttamchandani et al. CHAMELEON: A self-evolving,

fully adaptive resource arbitrator for storage systems. In

. . . Proc. of USENIX2005.
We proposed a new direction for data management in[17] A. Verma et al. An architecture for lifecycle manageien

large storage systems in which applications can specify how very large file systems. IRroc. of IEEE/NASA MSSP005.
their requirements vary with time. We outline how applica- [18] gcﬁén\?g:‘lgr Ztsﬂ}viviﬁ:gcgtno%atgg SFillss?tZtmDa}lE:cr?rll?égrg:aopnort
tions may specify these requirements and describe an opti- -), =5 51150 Carmegie Mellon University, May 2001.
mization strategy for the data placement. We believe that

