SureMail: Notification Overlay for Email Reliability

Sharad Agarwal
Microsoft Research

Abstract— We consider the problem of silent email loss in the
Internet. Some recent studies have reported loss rates of 0.5-1%,
which indicates that the problem is significant, especially since
email loss can impose a high cost. We present SureMail, a system
designed to address the silent email loss problem. SureMail aug-
ments the existing SMTP-based email system with a notification
overlay to make intended recipients aware of email they might
be missing. Our design addresses several challenges including
avoiding dependence on support from the email infrastructure,
placing minimal demands on users, preventing spammers from
subverting the system, and maintaining the privacy of users.

I. INTRODUCTION

The Internet SMTP-based email system does not guarantee
the timely or even eventual delivery of messages. Email can
sometimes be delayed by hours or days, or even fail to be de-
livered at all to the recipient(s) [4, 10]. The email sender isn't
always notified when such failures occur. Such silent failures,
even if rare, impose a high cost on users in terms of missed
opportunities, lost productivity, or needless misunderstanding
(notwithstanding the purported social “benefit” of plausible
deniability offered by email loss). The SureMail system we
present seeks to address this problem.

Email could be delayed or lost because of overload, failure
(e.g., disk crash), or upgrade of a server along the end-to-end,
store-and-forward path from the sender to the recipient. Over-
load or failure is sometimes triggered by a spurt in the volume
of email because of spam or the spread of avirus. Furthermore,
the widespread use of spam filters also contributes to email
loss by sometimes causing legitimate emails to be discarded
as spam. For example, from conversations with the IT staff at
a major corporation, we have learned that an estimated 90%
of incoming email is dropped even before these hit the user
mailboxes or junk mail folders, typically to reduce storage and
processing costs for the mail server. Given such an extensive
discarding of email, it is hardly surprising that some legitimate
email might be caught up in it.

While SMTP does allow servers that cannot deliver emails
to auto-generate non-delivery messages to the sender, four
issues have reduced the effectiveness of such messages: first,
emails dropped by spam filters typically do not cause such
messages to be generated; second, spam sent using spoofed
source email addresses can generate bogus non-delivery mes-
sages to the spoofed source, which can lead to general ap-
athy toward such messages, or worse, classification of such
messages as spam; third, some corporations do not alow
such messages to be generated to protect the privacy of
the corporation (e.g., it prevents an entity from verifying if

*The author was an intern at MSR Redmond during the summer of 2005.

Venkata N. Padmanabhan
Microsoft Research

Dilip A. Joseph”
UC Berkeley

an email address is invalid); fourth, such responses do not
consider emails that are lost between the destination email
server and the intended recipient’s email client. Thus email
loss is often silent, such that neither the sender nor the
recipient is notified of the delivery failure.

A few recent studies have quantified the extent of silent
email loss. Afergan and Beverly [4] report that some mail
servers exhibit a silent loss rate of over 5% while Lang and
Moors [8,10] report an overal silent loss rate of 0.69%.
Besides these measurement studies, anecdotal evidence sug-
gests that email loss is a nhon-negligible problem. For instance,
consumer |SPs take the trouble to instruct users on what to
do when email goes missing (e.g., AOL [1]) and there are
companies that offer email monitoring services for businesses
concerned about email loss (e.g., Pivotal Veracity [3]). Finally,
the authors have themselves experienced and/or are aware
of multiple instances of silent email loss recently, including
that of a job recommendation letter email sent to Microsoft,
a conference program committee invitation email sent from
Microsoft, a decision notification email for the IMC 2005
conference sent from a server in Australia, and apparent email
loss during a recent server upgrade at UC Berkeley.

Proposals to address the email loss problem have included
the message disposition notification mechanism [6](more com-
monly known as “read receipts’) and alternative P2P architec-
tures for email delivery [2,9]. However, as we elaborate in
Section |1, these approaches raise privacy concerns and/or are
potentialy disruptive.

Since the current SMTP-based email system works most
of the time, our goal in SureMail is to augment the existing
system rather than replace it with a new system of uncertain
reliability. SureMail provides a notification mechanism, over-
laid on the unmodified SMTP email delivery system, to enable
intended recipients to tell when they are missing email. By
placing the onus of detecting missing emails on the intended
recipient, SureMail preserves the asynchronous operation of
email, together with the privacy it provides. SureMail is able
to operate with the existing email infrastructure and without
requiring a public key infrastructure (PKI) for email users,
attributes which we believe aid real-world deployment. The
additional reliability of the combination of SMTP-based email
with SureMail arises from the orthogonality of the notification
overlay (and hence its failure independence) with respect to
the email delivery system. Our design includes features that
do not make the notification system vulnerable to spam and
virus-laden messages as the email system is.

Il. RELATED WORK

Afergan and Beverly [4] report on the state of email health
in the Internet, using email bounce-backs as their measurement
tool. Based on a study of 1468 mail servers across 571
domains, they found significant instances of silent email loss.
For instance, 60 out of the 1468 servers exhibited a silent
email loss rate of over 5%, with several others exhibiting a
more modest but still non-negligible loss rate of 0.1-5%. They
also found instances of emails delayed by more than a day,
which might not be much better than email loss from a user’'s
viewpoint. One caveat with this study, however, is that email
bounce-backs might not reflect the true health of the email
system for normal emails.

Lang and Moors [8,10] use a more direct methodology
to measure email delays and loss. They obtained 40 email
accounts across 16 domains and made direct measurements
by repeatedly sending emails to these accounts (over 6000
emails to each account over a 3-month period). They report an
overal silent email loss rate of 0.69%, with the loss rate being
over 4% in some cases. While this study avoids dependence
on bounce-backs, there are other biases it may suffer from,
including the use of a single sender for all email. !

There have been various proposals to address the email
unreliability problem, ranging from simple augmentation of
the current email system to radical redesign. In the former
category is the message disposition notification mechanism [6]
(i.e. “read receipts’), which allows a sender to request the re-
cipient (or his’her user agent) to generate an acknowledgment
when an email has been read. While many email clients (e.g.,
Microsoft Outlook) support read receipts, we believe from
anecdotal evidence that most users do not enable this feature
because it exposes too much private information, viz., how
often a user reads email, and whether and when the user read
a particular email. Users may find that this exposure conflicts
with the inherent “asynchronous’ use of email. More impor-
tantly, such read receipts — whether sent explicitly through
the email system or implicitly through accesses to embedded
web content — tell spammers whether an email account is
active, thereby making their spamming more “effective’.

There have also been proposalsto re-architect emails servers
or the email delivery architecture itself to improve its reli-
ability [2,9]. In particular, the POST system [2,9] proposes
a server-less architecture based on a distributed overlay net-
work consisting of the participants’ desktop computers. While
improving the reliability and availability of email systems
is certainly desirable, that alone will not solve the email
loss problem because of spam and the resulting filtering of
email. To address the spam problem as well as to maintain
the privacy of email content, POST assumes a public key
infrastructure (PKI) for users, which could be an impediment
for deployment. Finally, since POST replaces the current email
delivery infrastructure with anew P2P overlay system, it raises
uncertainties and risks with regard to its performance if all

1We are in the process of conducting a measurement study of our own to
avoid some of these issues.

email were to switch over to the new system.

In contrast, by keeping the notification layer separate from
the email system, SureMail ensuresthat even in the worst case,
email performance is no worse than with the current system.
We are able to leverage existing work on scalable notification
systems (e.g., [5]), so we focus our discussion on the novel
aspects of the email problem and our design.

I11l. DESIGN REQUIREMENTS

We list here requirements of a solution to email unreliability
that we believe will lead to the most rapid adoption.

1) Cause minimal disruption: The current email system
works for the majority of email. So rather than replace it
with a new system of uncertain reliability, we would like
to augment the system to improve its reiability. We want to
inter-operate seamlessly with the existing email infrastructure
(i.e., unmodified servers, mail relays, etc.), with additions
restricted to software running on end-hosts. This also eases
the deployment of such a system.

2) Place minimal demands on the user: The proposed
system should minimize demands placed on the user’s time.
Idedlly, user interaction should be limited only to actual
instances of email loss, otherwise, the user should not be
involved any more than he/she is in the current email system.

3) Preserve asynchronous operation: The email system
provides a loose coupling between senders and recipients.
The sender does not know whether or when an email was
downloaded or read by the recipient. Potential recipients do
not know whether a sender is “onling”, i.e., actively sending
emails to others. The proposed system should preserve such
asynchronous operation, which is in contrast to other forms of
communication such as telephony, instant messaging and the
use of “read receipts’ for email.

4) Preserve privacy: The proposed system should not
reveal any more about a user’s email communication behavior
than the current system does. For instance, it should not
be possible for someone to determine the number of emails
sent/received by another user, the recipients/senders of those
emails, how often the user checks email, and so on.

5) Maintain defenses against spam and viruses: The
proposed system should not make it any easier for spam and
email viruses to circumvent the defenses that are in place.
All email should continue to be routed through spam filters,
so that it does not unnecessarily impose on the user’s time.
It should not be any easier than at present for spammers to
determine whether an email address is valid or to circumvent
spam defenses by forging the sender address.

6) Minimize overhead: The proposed system should mini-
mize the amount of overhead imposed, in terms of additional
traffic and messaging. In particular, we would like to avoid
duplicating the work done by the current email system on the
data path, i.e., in conveying the message bits from the sender
to the recipient.

1V. SUREMAIL DESIGN

We now describe the design of SureMail to satisfy the
requirements listed above. We continue to use the current

4. R contacts S to retrieve missing information

Fig. 1. Overview of SureMail

email system for message delivery. However, we augment it
with a separate overlay system for notification. The notification
system allows the intended recipient of an email to determine
if he/she is missing any emails sent to him/her. Depending
on the recipient’s policy and the identity of the sender, the
recipient can choose to regquest the sender (via email or out-
of-band) to resend the lost information/email. Thus SureMail
tries to assure senders that either email is delivered or the
intended recipients will discover that it is missing.

The basic ideais as follows. When a sender sends an email
to a recipient, it aso stores a hash of the email contentsin a
DHT (Distributed Hash Table), indexed by a key derived from
the recipient’s email address. The recipient looks up the DHT
periodically to see if there are any messages that were sent to
it. If so, the recipient compares the message hashes obtained
from the DHT with hashes computed locally on messages it
has received. Any hashes present in the former but not in the
latter may indicate missing email.

The DHT system for notifications could be run on dedicated
servers and/or on the client computers of the participating
users (e.g., office computers that are mostly onling). While
we are agnostic to the choice of the DHT system, we as-
sume that the DHT nodes support SureMail-specific opera-
tions, in addition to the standard put()/get() operations for
storing/retrieving (key, value) pairs. It may be possible to
leverage a system like OpenDHT [12] for this purpose.

We do not assume that the DHT nodes are trusted. In partic-
ular,aDHT node could try to spy on auser’s email traffic (e.g.,
learn which senders email a recipient) or generate spurious
notifications. SureMail therefore tries to protect against such
attacks. Note that spurious notifications are a more serious
problem than dropped notifications (which a malicious DHT
node can always cause), since the former imposes a cognitive
load on users while the latter leaves users no worse off than
with the current email system.

While their scalability and availability [7,12] makes DHTs
attractive for SureMail, an aternative would be to have each
organization set up dedicated servers to receive notifications
for its users and advertise these servers through DNS (akin to
MX records for mail servers).

We describe our proposal in more detail below. A key
challenge is preventing subversion of the system by bogus
notifications generated by spammers or malicious DHT nodes.
To address this issue, we first assume the availability of
a public-key infrastructure (PKI) for email users. Since a
PKI may not be readily available or adopted widely, we

then discuss an aternative way of establishing shared secrets
between senders and recipients, in the absence of a PKI.

A. Design assuming a PKI

We assume a public-key infrastructure for email senders
and recipients. The public-private key pair for a sender
S is (Spp,Spy) and that for a recipient R is (Rpp,Rpv)-
We indicate key operations as Sign(key,value) and
Encrypt(key,value). We assume a well-known one-way
hash function H. All DHT operations are represented using
the syntax func(keylD,---), where keyl D isthe lookup key.

Upon system initiaization, each participating email re-
cipient, R, registers with the system by placing a request
in the DHT: RegisterRecipient(H (R), (R, Sign(Rpy, R))).
The DHT node responsible for H(R) ? verifies the signature
using the PKI and then records the fact that R is a registered
SureMail recipient. From that point on, any node can post
notifications of emails sent to R. However, only R isin a
position to present the credentials needed to read the notifica-
tion information. Any natifications posted to an unregistered
recipient email address will be discarded, thereby avoiding
wasting storage resources on notifications intended for users
who are not using SureMail.

When S sends an email F to R, it constructs a notification
N = (H(E),T, Encrypt(Ry,), Sign(Spe, H(E), T))))
(where T' is the time-to-live (TTL) of the notification) and
places a request in the DHT: PostNotification(H(R), N).
The DHT node H(R) appends N to the list of notifications
for R. It may delete V from the list after the TTL has expired.
Since the DHT only provides best-effort service, a sender who
is particularly anxious about registering the notification for an
(important) email could re-post the notification at a later time.
The DHT node, H(R), will either record the notification (if
it was missed the first time) or will ignore the repeat posting
(since H(FE) would identify it as a duplicate).

Periodically, the email client at R queries the DHT:
CheckNotification(H(R)). The DHT node H(R) performs
a standard handshake to authenticate R 2 and then returns to it
the list of notifications. The recipient’s email client validates
the notifications by checking their signatures and then checks
the hashes contained in the notifications against hashes of
received emails (which can be pre-computed), to determine
the ones that may correspond to missing emails. The recipient
user is then notified of such notifications, each of which is
annotated with the sender’'s email address. At this point, the
user can take corrective action, which could include requesting
the sender to resend the missing message identified by H(F).
Such a request could be made via email or out-of-band, and
with or without human involvement.

2In the remainder of the paper, we will use the term “node k” synonymously
with “the node responsible for key k”.

SAlthough the notifications are encrypted, authentication is desirable to
prevent an attacker from gleaning information about the volume of emails
to R from the volume of notification information returned. An aternative
strategy would be for R to “pad” its notification list with bogus notifications
intended to confuse an attacker.

1) Are the design requirements satisfied?: Since the
notification system is separate from the email delivery system,
the operation of the latter is unaffected by the former. So email
performance with SureMail is no worse than with the current
email system. Also, the work of carrying the message bits
is not duplicated, thus limiting the overhead. Nevertheless,
there is the overhead of the DHT operations to post and check
notifications, an issue we discuss in Section IV-C.

The asynchronous operation of email is preserved since
the posting of notifications by senders is decoupled from the
checking of notifications by recipients. Senders do not know
whether or when recipients are checking for notifications.

The availability of a PKI facilitates preserving the privacy
of notifications and filtering out bogus notifications. Thus the
recipient user is notified only when there is missing email and
incurs no additional work otherwise. However, the DHT node
H(R) isin a position to monitor the volume of notifications
posted for recipient R even if the content of the notification
and the sender identity are obscured. We discuss possible
mitigations in Section V-A.

Finally, since the actual email content is transferred via
SMTPR, it is subject to checks by the spam and virus defenses
already in place.

While this design appearsto satisfy all of our design require-
ments, the dependence on a PKI for email users presents an
impediment to adoption. We now discuss a modified design to
avoid dependence on a PKI. We also consider ways to reduce
the volume of DHT operations and to support mailing lists.

B. Avoiding dependence on a PKI

1) Non-infrastructure based key exchange: Without a
public key infrastructure, we can employ a scheme such as
PGP (pretty good privacy) or GhuPG. The SureMail enabled
client for R generates R, and R,,, and S generates .S, and
Spy. To distribute S5, S’s client needs to attach .S, to thefirst
outgoing email to R, and R does likewise. S and R will have
to trust the public keys contained in their first email exchange.

On system initialization, R places a request in the DHT:
Register Recipient(H(R), (R, Ry,)). To prevent someone
else from masguerading as R and registering on its behalf,
DHT node H(R) initiates a simple handshake via email,
whereby it confirms that the node purporting to be R can in
fact receive emalil sent to R and decrypt nonces encrypted with
Ryp. This handshake aso helps defend against replay attacks.
Once the handshake has compl eted successfully, the DHT node
H(R) stores arecord H(R)—R,. S posts notifications and
R checks for them in the same manner as before.

A problem case for this non-infrastructure based key ex-
change is when a user S migrates from one SureMail enabled
client to another, for example, when S switches to a new
computer or a disk crash requires S to setup a new email
client. Since there is no PKI that stores S, and .S,,, S needs
to somehow obtain these for the new SureMail client.

There are two possible but unsatisfactory solutions. First,
the user could be required to backup S, and Sy, and restore
them on new SureMail clients. This is unsatisfactory because

it requires user involvement. Second, we could introduce a
scheme for migrating keys. Here, if a any time S changes
its keys, it attaches the new Sy, to its next email to R (or
on al emails). R will see the new S,, and migrate to using
it instead. A new handshake can aso be performed with the
DHT node. Unfortunately, this scheme has two drawbacks.
First, it requires modification of emails to include the public
key. Second, it is vulnerable to an attack where a malicious
node T forges email to R as though it were from S, with a
bad key, T, attached. In this way, 7' can pollute R's stete,
invalidating subsequent notifications by S.

2) Reply-based shared secret: To avoid these problems,
we need a technique for generating shared secrets between S
and R that is both automatable (i.e., does not reguire direct
human involvement) and supports migration. We retain the
email-based handshake procedure for registration, as before.

We make the observation that email often involves one
user “replying to” a prior email from the other user. The
resulting message often has remnants of the original message
(in the subject line, quoted text, in-reply-to header 4, etc.). We
conjecture that it would often be possible to determine with a
low false positive rate whether an email E; from Rto S isa
reply to an earlier email £, from S to R. When S receives
E5 and determines that it is a response to the earlier message
Eq, S can conclude that Fy (or H(E,), for compactness) is
a shared secret between itself and the recipient R. Since this
state is not known to any other node, S can use H(E;) to
identify itself to R. > Similarly, if S replies to Fy with Es,
then R can subsequently use H(E;) to identify itself to S.

In this scheme, the notification format
that S will use for a new emal FE,. Iis
(encrypt(H'(E1), W, H(Epew))), H(E1),T), where H

and H' are two different one-way hash functions and W is
a string that any recipient can rely on to confirm that the
decrypted message is well-formed. Possession of H(F;) does
not permit the malicious DHT node to determine H'(FE;) (the
encryption key) and hence post a fake notification. While a
malicious DHT node could replay old natifications, these are
easy to filter out. When R retrieves a notification that has not
expired, it looks up H(E1), identifies the sender S, and uses
H'(F4) to decrypt the notification. It then checks H(FE ,c.)
against the hashes of previously received emails from S to
determine if it corresponds to a missing email.

For a first-time sender who has not established a shared
secret with R, there are two choices — either post an un-
encrypted notification to the DHT, thereby revealing his/her
identity to the DHT, or not post a notification at all in the hope
that email loss does not occur. When R receives this notifica
tion, it will place this notification in the “Junk notifications’
category, according it lower priority than notifications from
“trusted” senders (i.e., senders from whom R has received
emails and to whom it has sent emails in the past). In fact,
it is fundamentally hard to distinguish between a first-time

4However, message-ID of the original email may be inserted by the email
server and hence not be readily available to the sending client.
5To be safe, S should only pick email, E1, whose only recipient was R.

+ ReceiverR

i 4 SS(S—R)=X?
i sS(R-8)=Y,?

Sender § H
SS(8—R) = X,7+ E;
SS(R-S)=Y,? 1

L —
1 SS(S-R)=Ei X
1 SS(R-S)=Y,?

:
SS(S—R) = £, X*TF
SS(RS) =Y 75

m

SS(S—R) = EqX
SS(R-S) = E,,Y

SS(S—R) = E; X
SS(R—S) = E,Y

E
Eg
1 YDt H (4
w,), Check
HED) HiEr) 7= a——yotficaton 1
———Noltifications—=t .
DHT Node
H(R)

Shared secret (SS) evolution between S & R in reply-based scheme

i
.
H

Fig. 2.

legitimate sender and a spammer. Note, however, that this
would be a problem only in the event that the first email from
a sender to R is lost. ©

In terms of state, R needs to remember two hashes for each
email address it corresponds with, one for sending and one
for receiving. For better security, and to handle the case of
migrating a user to a new installation of the email program,
the values of F; and E5 can aways be refreshed to the last
pair of emails exchanged between R and .S, as follows (and as
shown in Figure 2). S remembers the hashes of all messages
sent by it since the most recent one replied to by R. Likewise,
R remembers the hashes of all emails from S (which it had
replied to) since the most recent email that S has used as
shared secret in a notification.’

Thus a user who migrates to a new client can automatically
establish a new shared secret with a peer based on fresh email
exchanges. This shared secret is then used to authenticate fresh
notifications. The only window of vulnerability is the time
between when the user migrates and when a new shared secret
is established. The user may not bein a position to authenticate
notifications posted during this window or post any authentic
notifications itself.

Since establishing a shared secret between a sender and a
recipient requires an email from the former to be replied to
by the latter, an attacker is prevented from polluting this state,
unlike the case of a non-infrastructure-based key exchange. A
bogus “reply” generated by the attacker will be rejected since
the sender would have no record of having sent the origina
email that the attacker’s email purports to be the reply to.

The reply-based shared secret scheme has the advantage that
it leaves the emails themselves untouched. However, unlike
non-infrastructure-based key exchange, it is susceptible to
eavesdropping. An attacker who is able to listen in on email
communication to/from a user can learn the reply-based shared
secrets of the user, and so would be in a position to post bogus
notifications purporting to be from senders that the user trusts.
However, such an attacker would also compromise the user’s
privacy, which is arguably a greater threat.

3) Are the design requirements satisfied?: Compared to
the PKI case, the assurances provided with the reply-based
shared secret scheme are somewhat weaker but still quite
good. The design without a PKI hinges on (a) the inability
of an attacker to eavesdrop on or intercept the registration or
authenti cation messages exchanged with arecipient, to prevent

SWhile these events could be correlated, we assume this is rare.

"The temporal checks in this adaptive scheme could be relaxed a little to
account for clock skew across multiple clients that the sender and/or recipient
might be using.

the process from being hijacked, (b) the secrecy of emails
exchanged between two users, and (c) the ability to detect
email repliesto set up the shared secret. We believe that al of
these assumptions are reasonable in practice. If () or (b) were
not to hold, then the privacy of email would be compromised
anyway, regardless of whether there is a notification system.
Regarding (c), we have prototyped a reply detection algorithm
based on measures of text similarity and our initial results are
promising. Note that we only want to avoid false positives but
can tolerate false negatives so long as at least some replies are
detected to allow the shared secret to be updated.

C. Reducing DHT Overhead

Since the SMTP-based email infrastructure works fine most
of the time, posting a natification in SureMail for every email
sent could add up to significant and unnecessary overhead.
To reduce overhead, a sender could hold off on posting a
notification for a while, in the hope that an “ACK” in the
form of areply or a “NACK” in the form of a bounce-back
(both detected automatically, without human involvement)
would obviate the need for the notification. Notifications for
multiple messages to a recipient could also be coalesced to
reduce overhead. Finally, a sender or higher email client
could chose to post notifications only for a small subset of
messages that are deemed important enough to be protected
using SureMail. For example, these might be emails sent to
particular recipients, ones with the “Importance: high” flag set,
etc. As a data point, from a a sample of 57,972 emails drawn
from half-dozen colleagues at Microsoft, we found that only
2.3% had the “Importance: high” flag set.

Another optimization is for the sender to include hashes
of previously sent emails in new emails. This procedure can
possibly help detect email loss quickly, obviating the need
for a notification to be posted to the DHT but at the cost of
modifying emails. Such loss detection would work only when
there is sporadic loss in an otherwise steady stream of emails.

D. Supporting Mailing Lists

Notifications are posted as usua for emails sent to mailing
lists. The only differenceis that the optimizations listed above
involving holding back on notifications would not apply. The
notification for an email sent to mailing list M would be
sent to H(M). It would be the responsibility of individual
recipients to look up the DHT periodically for notifications of
emails sent to mailing lists that they are members of.

V. DISCUSSION
A. Attacks on SureMail

Despite the steps taken by SureMail to protect the privacy
of both senders and recipients, an attacker could try indirect
means to glean information. For instance, a (trusted) sender
could post spurious notifications with carefully controlled
TTLs and then infer a recipient’s email checking (or at least
notification checking) habits based on which emails, if any,
the recipient asks for a retransmission of. However, a recipient
could watch out for and choose to ignore suspicious patterns

of notifications (e.g., frequent notifications from a sender
indicating apparent email loss).

A DHT node could use knowledge of the IP addresses
from which notifications are being posted for each recipient
to reverse-engineer some information about the senders. This
threat could be aleviated by passing the notification through a
forwarding chain (asin standard DHT routing or in anonymous
communication systems such as Crowds [11]) instead of
directly sending it to the H(R) node.

Since the DHT node H(R) authenticates the request for
notifications from R (whether using a PKI or an email-based
handshake), it is in a position to monitor the volume of
notifications intended for R, even if it cannot tell the identity
of the senders. To alleviate this problem, R could register with
adifferent DHT node as afunction of time (say node H (R, d),
where d is the current date/hour), thereby denying any single
DHT node the opportunity to monitor its notifications on
a continuous basis. Alternatively, registration/authentication
could be decoupled from the posting of notifications. While
notifications are posted to node H(R) as before, R registers
itself with node H(H (R)), which alows another node (say
H(R)) to authenticate R without learning its identity. We
assume that only a small fraction of the nodes in the DHT
is malicious and/or in collusion.

B. Should emails themselves be delivered via SureMail?

Delivering emails themselves through the SureMail overlay
is problematic for several reasons. First, emails are typically
much larger than notifications, so transporting them through
the overlay incurs a much larger overhead. Second, it is
gtill desirable for emails sent via the overlay to be routed
through spam filters, virus scanners, etc., which leaves open
the possibility of email loss. In contrast, notifications are fixed-
sized, fixed-format entities that do not pose the same threat
as malicious email content and hence need not be filtered the
same way. Finally, as noted in Section |1, using the overlay for
delivering the emails themselves is potentially disruptive and
runs the risk of under-performing the current email system.

C. Should SureMail beintegrated with email infrastructure?

We consider whether SureMail’s notification mechanism
should be integrated directly into the existing email infrastruc-
ture, for example, by having the receiving email server or spam
filter generate notifications locally for emails that are dropped.

We believe that there are several reasons why such inte-
gration could be problematic and so having SureMail operate
separately would be advantageous. First, since the email
server by itself cannot distinguish dropped emails originated
by senders that the recipient trusts from other email (e.g.,
spam), the server is forced to generate notifications (including
computing a hash of the message content) for all dropped
emails. This can place a significant burden on the email server,
with potentially negative impact on norma email delivery.
Second, even if load were not an issue, a recipient’s email
server cannot by itself generate notifications that allow the
recipient to distinguish between dropped emails from trusted

senders from other dropped emails, resulting in burden on the
user to sort through them. Avoiding this problem would require
support at the sender end, as in SureMail. Third, often spam
is dropped without even looking at the email content, e.g., by
blacklisting certain I P addresses. According to the IT staff of a
major corporation, over 98% of dropped emails are estimated
to be due to such steps. It is impossible for the email server
to generate meaningful notifications in such cases. Finadly, to
the extent that email loss happens not because of a conscious
decision to drop email but due to failure, it would be hard for
the (failed) infrastructure to generate meaningful notifications.
Thuswe believe that keeping the SureMail notification layer
separate is advantageous since it avoids burdening the email
delivery infrastructure and is less prone to correlated failures
of both the email delivery and notification systems. We also
believe that placing the burden of ensuring reliable email
delivery on the senders and recipients themselves rather than
the email delivery infrastructureisin conformity with the end-
to-end principle [13] that underlies the Internet’s design.

V1. CONCLUSION

We have presented SureMail, a system to augment the
current email delivery infrastructure with a notification overlay
to notify recipients of email loss. We have shown how Sure-
Mail can operate without requiring support from the email
infrastructure and without requiring a PKI for email users.
We are in the process of conducting a measurement study
of email loss as well as prototyping SureMail. Our initial
implementations of automatic reply-detection and bounce-
back detection are promising.

ACKNOWLEDGEMENTS

We thank John Dunagan, Dave Maltz, and Dan Simon for
their feedback.

REFERENCES

[1] AOL Member Missing Email Self
http://postmaster.info.aol .com/sel thel p/mbrmissing.html.

[2] ePOST Serverless Email System. http://www.epostmail.org/.

[3] Pivotal Veracity: Tools & Intelligence for Optimizing Delivery.
http: /. pivotal veracity.conv.

[4] M. Afergan and R. Beverly. The State of the Email Address. ACM
CCR, Jan 2005.

[5] L. Cabrera, M. Jones, and M. Theimer. Herald: Achieving a Global
Event Notification Service. HotOS, May 2001.

[6] R. Fajman. An Extensible Message Format for Message Disposition
Notifications. RFC 2298, IETF, Mar 1998.

[7] M. Freedman, E. Freudenthal, and D. Mazieres. Democratizing Content
Publication with Coral. NSDI, Mar 2004.

[8] A. Lang. Email Dependability. Bachelor of Engineering The-
sis, The University of New South Wales, Australia, Nov 2004.
http://uluru.ee.unsw.edu.au~tim/dependabl e email/thesis.pdf.

[9] A. Mislove, A. Post, C. Reis, P. Willmann, P. Druschel, D. Wallach,
X. Bonnaire, P. Sens, and J. Busca POST: A Secure, Resilient,
Cooperative Messaging System. HotOS, May 2003.

[20] T. Moors. Email Dependability. Email Management World, Aug 2004.
http://uluru.ee.unsw.edu.auitim/dependabl e/email/ermw. moors.pdf.

[11] M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web transactions.
ACM Trans. on Information and System Security, 1(1):66-92, 1998.

[12] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu. OpenDHT: A Public DHT Service and Its Uses.
S GCOMM, Aug 2005.

[13] J. Saltzer, D. Reed, and D. Clark. End-To-End Arguments in System
Design. ACM Transactions on Computer Systems, 2(4), Nov 1984.

Help Page.

