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Abstract

We present an application of Hidden Markov Models to supervised document classification and ranking. We consider
a family of models that take into account the fact that relevant documents may contain irrelevant passages; the
originality of the model is that it does not explicitly segment documents but rather considers all possible segmentations
in its final score. This model generalizes the multinomial Naive Bayes and it is derived from a more general model
for different access tasks.

The model is evaluated on the REUTERS test collection and compared to the multinomial Naive Bayes model. It
is shown to be more robust with respect to the training set size and to improve the performance both for ranking and
classification, specially for classes with few training examples.

1 Introduction

Statistical sequence models have been used in a variety of settings in the field of natural language processing such as
part of speech tagging, language , translation, etc. More recently, it has been proposed to use such models for han-
dling different information access (IA) tasks ranging from document classification to summarization and information
extraction (IE). These models can be used to capture word dependencies and to perform inference on sequences, be
they whole documents or short passages. They allow to extend the classical paradigms of information retrieval (IR) by
considering sequences of text elements instead of the classical bag-of-words representation. This opens the way for
new models and applications which go beyond traditional IR.

The need for extended IR relevance paradigms and models arises partly due to the evolution of document collec-
tions and user needs. An increasing amount of textual resources comes from the Internet, a source which lacks the
homogeneity (in length, content, formats, style, etc.) of corpora for which traditional IR models were developed. This
is for example the case for Web pages, web directories, FAQs, HOWTOs, e-mails, newsgroup discussions, etc. These
document sources are very heterogeneous, and documents are loosely structured, differently formatted, ungrammat-
ical, etc. Documents may contain many different sections relevant to different topics, or irrelevant information such
as headings, signatures, etc. Users, on the other hand, wish to complete more complex tasks with this information;
new tasks such as filtering, detection of associations, document summarization and information extraction need to be
addressed simultaneously to document retrieval.

In an earlier work, we introduced a general probabilistic model for IA based on sequence models and we showed
its potential for handling a variety of tasks [25] [1] ranging from document retrieval to information extraction. The
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proposed model was defined using two levels of relevance within a document: term labels, associated to words, and
document classes, associated to entire documents. A term label reflects the relevance of that term with regard to a
specific topic, whereas a document class defines the category to which the document belongs. This distinction permits
to build quite complex document classes. Suppose that terms may be labeled with respect to semantic classes, as for
example in the case of information extraction tasks. For example, an e-mail containing a conference announcement
may be judged relevant because: i) it presents a conference on a topic we are interested in, ii) it gives the date and
the location of the conference, iii) it includes the program. While it may be impossible to learn the combination of
all these classes separately, one may consider these sub-topics as term labels and use this information to construct a
document class.

In this paper we are investigating the benefits of using such sequence models for performing classical document
classification and ranking with respect to a category. For these tasks all the available knowledge is a set of documents
labeled relevant or irrelevant for a particular information need. These documents are labeled as a whole, even though
not all parts of relevant documents are necessarily relevant. We therefore consider only two possible term labels:
relevant and irrelevant for a category, and we will consider that within a document there may be relevant and irrelevant
segments.

The question is then to i) estimate the probability of relevance of terms for any category and ii) to define the
probability of relevance of documents with respect to the relevance of its terms. The implicit assumption is that the
relevance of a document depends solely on the relevance of its smaller units and the type of information need; the
relevance of the smaller units may depend on a wide range of factors such as their distribution, their context, etc.
Problem (i) is similar to the estimation of weights in probabilistic approaches. Problem (ii) is open and its solution
should allow for different a priori knowledge about the nature of the documents and the task. Going from term labels
to document classes we perform a form of soft on-line segmentation. Soft because many alternative segmentations are
considered in parallel and weighted in a probabilistic manner. On-line because the segmentation process is bound to
the computation of the retrieval function and is done a posteriori of preprocessing, indexing and model training.

2 Related work

Key concepts for our work are the development of sequence models for text processing, text segmentation and retrieval
with regard to passages, probabilistic IR models. We will review below related work for these different aspects.

Sequence models, mainly HMMs have been recently proposed for handling different tasks in IR or IE. [15] have
been the first to propose a generative model based on HMMs for document retrieval and highlighting. Generative
methods estimate the conditional distribution P (xjt) using a model P (xjt; �) where � represents the model parameters
to be estimated. Recently [12] applied a similar approach - each document is modeled by a HMM - for the ad-hoc task
on the large document collections of TREC6 and TREC7. In the field of IE, HMMs have been used for named entity
extraction by [3], their experiments show that simple ergodic models where each state is associated with a topic reach
surprisingly good performances. [11] uses HMMs for extracting information in the form of simple binary relations
between two entities on a limited domain in biology. This model has been carefully hand-crafted for this task. [6]
consider the extraction of document entities such as document title, abstract, citations etc,. They build a discrete
HMM to extract this information where each state represents a particular label. This tool has been used for document
indexing in search engines. [22] use recurrent neural networks - which are another formalism for sequence modeling
- for routing.

The use of passages or other document parts for retrieving whole documents has been advocated by several authors.
Among the early work on this subject, [20] have shown that using sentences helps to determine the relevance of
documents and [23] proposes to combine the score of document sections for computing the document score and
performs tests on the second TREC collection (TREC 2). [4] introduces different types of passages and discusses their
role for long documents retrieval, he performed tests on the Tipster collection [7]. The recent paper by [10] provides
a thorough discussion and evaluation of passage retrieval, they performed tests on the TREC 5 collection . Note that
all these works focus on ad-hoc retrieval and rely on the adaptation of classical IR document ranking techniques for
taking into account text passages instead of whole documents. Text segmentation has also been considered from an
IE perspective. [21] uses decision trees for the extraction of keywords or key-phrases (two or more words) from text,
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framing the extraction problem as a classification problem on pre-segmented text. A large amount of work has also
been dedicated to text segmentation into coherent passages, e.g. [8][17][2].

The models introduced in this paper can be considered as extensions of multinomial Naive Bayes classifiers which
have often been used by the machine learning community for text classification [13]. Closed query tasks like e.g.
document ranking and routing have been extensively studied by the IR community. A classical benchmark for that
is the Reuters collection [19]. Recently, different machine learning techniques have been tested on these problems.
Some papers like [9], [5], [24] compare different techniques on the Reuters collection.

3 Terminology and Notation

Let us define a document d as a sequence of words. Let D be the set of documents considered. We assume that there
is some unknown process generating documents d 2 D. Consider now that there are some sets of documentsR r � D
in which we are interested (r indexes these sets). We will say that a document is relevant to R l if it belongs to the set
Rl. Because we deal here with each set in an independent manner, we can drop the index r and consider only one set
at a time. We will refer to this as the relevant set (R) and to its complement as the irrelevant set (I).

A mapping function must be used to map a document into some simplified representation. Let us denote d the
document representation of d. Different documents belonging to different relevance sets can be mapped to the same
representation; therefore, one cannot determine the relevance of a document in a deterministic manner. We will denote
P (Rjd) the probability that d represents a document which belongs to the set R.

In this paper we will consider that documents are preprocessed and translated into a sequence of terms (by terms
we mean some normalized form of words). Let L be the set of all terms (the lexicon). We will represent a document
d as the sequence d = (w1; w2; : : : ; wjdj) where wi 2 L is the term corresponding to the ith word in the document d.
We will not consider a bag-of-words representation of documents here as our models will make use of the ordering of
the words in a document.

4 Proposed Model

The model proposed here relies on the observation that many documents have a sequential structure which could be
exploited for IR. Some documents have a generic structure, this is the case for example of journal or conference papers
which are composed of a title, abstract, introduction, etc. In documents composed from distinct parts, the distribution
of relevant terms may be different for each part, or one might like to weight parts differently according to their position.
Many documents also carry small parts of relevant information in the middle of irrelevant information.

A priori information of this type could be easily taken into account with sequence models and encoded via deter-
ministic or stochastic grammars.

In (Fig.1 top), the successive parts of a document are modeled with different successive states, i.e. the different
parts are supposed to be generated successively through these different states. During training, term statistics for the
different states are evaluated on the different parts of the documents. This is possible if we know the structure of the
documents. Since the relevance will be computed as a summation over authorized paths, the sequence model structure
encodes the a priori knowledge on the sequential structure of the document.

A simpler case is illustrated in (Fig.1, bottom). Here the document is supposed to contain blocks of relevant
information separated by passages of non relevant information. From a generative viewpoint, the user who writes such
a document might have in mind different items, and among them the one we are interested in, he then writes about
them in different passages, he might come back to a previous item and so on. Each time he writes about a particular
item, his mind switches to a specific vocabulary or term distribution. Since we are interested here into computing the
relevance with regard to a particular item, the distribution of terms relevant for this item will be modeled as a particular
state -denoted sR- in the figure, while the distribution for all other items will be modeled by a common -garbage- state
denoted sI . Note that for each of these examples, more sophisticated models could be easily developed along the same
line when it is needed and when the a priori information is available.

In the following, we will build on the idea of computing the relevance of a document by focusing on relevant
passages, and show different ways to do that. Given our task, we will consider only two types of passages: relevant
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PART   1 PART    2 PART   n-1 PART     n

Irrelevant Relevant Irrelevant

Figure 1: Two sequence models for information retrieval.

and irrelevant. We will consider the binary classification case, where documents themselves are either Relevant or
Irrelevant.

Generative Model

We first consider that documents belonging to the each of the classes relevant (R) and irrelevant (I) are generated by
two different generative models �R and �I respectively. Given a new document, its probability of belonging to the
relevance set R can be written as:

P (Rjd) = P (djR)
P (R)

P (d)
(1)

Now, modeling P (djR) and P (djI) by P (dj�R) and P (dj�I ) respectively, we may write:

P (Rjd) =
P (dj�R)P (R)

P (dj�R)P (R) + P (dj�I)P (I)
=

�
1 +

P (dj�I )

P (dj�R)

P (I)

P (R)

��1
(2)

Alternatively, the usual log-odds score can be written as:

log
P (Rjd)

P (I jd)
= log

�
P (dj�R)

P (dj�I )

P (R)

P (I)

�
(3)

In what follows we will concentrate on the estimation of P (dj�R)
P (dj�I)

using a generative model for the sequence of terms in

the document. P (R)
P (I) can be estimated accurately by maximum likelihood, dividing the number of relevant documents

by the number of irrelevant ones.

Hidden Markov Models

We will develop a particular family of generative sequence models, first order Hidden Markov Models (HMMs) [18].
HMMs have a set of states S = fs1; : : : ; sSg which emit symbols with different probabilities. In our case each state
is supposed to emit a set of words, and the whole model generates the sequence of words that constitutes a document.
Recall that a document is represented by the sequence of its terms d = (w1; w2; : : : ; wjdj) where wi is the term
associated to the ith word in document d. We will note s i the state generating wi and s=(s1; s2; : : : ; sjdj); si 2 S
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a sequence of states corresponding to document d. A HMM is governed by the probabilities of emission of all the
words in the lexicon for each of the given states, P (w ijsj); j 2 [1::S]; wi 2 L , and the probabilities of state transition
P (st+1jst), as well as the initial state probabilities P (sj js0) and exit probabilities P (sE jsjdj). s0 and sE are non-
emitting states which do not generate words. Such an HMM can generate documents with different lengths. The
probability of a particular observed sequence d being produced by a HMM (call it �) can be computed as follows:

P (dj�) =
X
s

P (dj�; s)P (sj�) (4)

=
X
s

0
@P (sE jsjdj; �)

jdjY
t=1

P (stjst�1; �)P (wtjst; �)

1
A (5)

where the sum is over all possible state sequences s which produce d with nonzero probability under the model �. To
simplify equations, we will omit the conditioning on the model.

In the simplest case, only one state is used to generate documents (this model can be seen as a multinomial model
as will be seen later in this paper). We will use such a model for the irrelevant documents since there is usually no a
priori structure on a these documents. Let us denote �; the probability P (s;js;). Because this model can only stay in
the state (and generate a word) or exit, we denote (1� �;) the exit probability. Then we have:

P (dj�I) = (1� �;)�
(jdj�1)
;

Y
t=1;:::;jdj

P (wtjs;) (6)

For any given HMM model for relevant documents, we have from (4) and (6) :

P (dj�R)

P (dj�I)
/
�
�
�jdj
;

�X
s

0
@P (sE jsjdj)

jdjY
t=1

P (wtjst)

P (wtjs;)
P (stjss�1)

1
A (7)

where the proportionality symbol / indicates equality up to a constant term independent of the document d. The
complexity of this computation, i.e the cost of classifying a document, is of the order jdjS 2 where S is the number of
states in the relevant model. Let us now look into some special cases of this model.

4.1 Irrelevant-Relevant-Irrelevant (IRI) models

Let us constrain the relevant model �R to two states: S = fsI ; sRg, which we call relevant and irrelevant states.
Furthermore, let us constrain the possible state sequences to be of the form < s I+; sR+; sI+ >, where + indicates
one or more repetitions of the preceding symbol. That is, we consider that relevant documents contain a single relevant
segment of arbitrary length, similarly to [15]. Note that the first and last word of every document is always labeled
irrelevant by this model. This may seem strange but has a negligeable effect in practice and simplifies the equations
presented in this paper. The model can be easily modified to allow irrelevant passages of size 0 by allowing transitions
between the initial and final states and the relevant state. We will denote sIRI such a sequence of states.

Let T s
R be the number of states sR in the sequence s. Denote: �R = P (sRjsR), and

�RI = P (sI js0)P (sRjsI)P (sI jsR)P (sE jsI). We can now rewrite equation (4) as:

P (dj�R) = �RI
X
sIRI

0
@�(T s

R
�1)

R �
(jdj�T s

R
�2)

I

2
4 Y
tjst=sR

P (wtjsR)

3
5
2
4 Y
tjst=sI

P (wtjsI)

3
5
1
A (8)

Now, we further make the assumption that terms in irrelevant sections of relevant documents follow the same
distribution as terms in irrelevant documents, that is P (wjsI) = P (wjs;), which is a reasonable approximation and
greatly simplifies computations. Finally, we can rewrite (7) as:

P (dj�R)

P (dj�I)
/ �

(�jdj)
;

X
sIRI

2
4�(T s

R
�1)

R �
(jdj�T s

R
�2)

I

Y
tjst=sR

P (wtjsR)

P (wtjsI)

3
5 (9)
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Note that this new expression depends only on the ratio of the conditional probabilities of terms within the relevant
sections, as well as the length of the sequence and on the length of the relevant passage.

This score takes into account the probability of all possible document segmentations, many of which have a
probability close to 0. Indeed, if the segmentation considers an irrelevant passage as relevant, the probability of
each word wt from this passage P (wtjsR) will be lower than P (wtjsI), so the quotient P (wtjsR)

P (wtjsI)
will be less than 1

and the product
Q

tjst=sR

P (wtjsR)
P (wtjsI)

will be very close to 0. The score of such a segmentation does not contribute much
to the final score. On the other hand, segmentations where relevant labels fall on truly relevant regions of the document
will account for the main part of the final score.

4.1.1 Fixed sized window

If we further constrain the model to have relevant sections of a fixed size T s
R = K for all documents, the previous

equation simplifies to:

P (dj�R)

P (dj�I)
/ �

(�jdj)
; �

jdj�K�2
I

(jdj�K+1)X
i=1

2
4(i+K�1)Y

t=i

�
P (wtjsR)

P (wtjsI)

�35 (10)

In this case the dependence on constants T s
R, and �R disappears, and all that one needs to estimate are the emission

probabilities of the model. Furthermore, note the computational complexity of this model is now reduced to 2Kjdj.

4.1.2 Transition probabilities

The values of �;, �R and �I are related to the average length of the relevant and irrelevant sections and documents.
For the remaining of this paper we will consider these three terms equal. This is in general not true (in general
�; > �R > �I ) and should lead to a decrease in performance if the generative model chosen was accurate. In fact,
the generative model chosen implicitly assumes an exponential model for document length, because terms such as � jdj

;

and �
jdj
I , and this is not an appropriate model for document length. By setting � ; = �R = �I we will see that the

previous models become independent of these constants.
For the general IRI model in �; = �R = �I we obtain:

P (dj�R)

P (dj�I)
/
X
sIRI

Y
tjst=sR

P (wtjsR)

P (wtjsI)

and for the fixed sized window model :

P (dj�R)

P (dj�I)
/

(jdj�K+1)X
i=1

2
4(i+K�1)Y

t=i

�
P (wtjsR)

P (wtjsI)

�35

Not that these two quantities depend now only on sums of ratios between relevant and irrelevant word probabilities,
which can be easily computed from a training corpus.

4.1.3 Parameter estimation

Word probability emissions are estimated as usual in the multinomial Naive Bayes model by the following smoothed
maximum likelihood estimator:

P (wljC) =
occ(wl; C) + 1PjLj

m=1 occ(wm; C) + jLj
(11)

where L is the lexicon and jLj its size. C is any set of documents, in our case Relevant and Irrelevant documents.
Note that this is actually an approximation in our model, since relevant documents are not assumed to be completely
relevant. In fact we should use the EM algorithm to appropriately estimate the emission probabilities P (w ljsR), but
this is computationally much more expensive, and P (w ljsR) proved to be a reasonable approximation.
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5 Relationship to the Multinomial Model

The multinomial model (also referred to as Naive-Bayes) has recently gained attention in machine learning due to its
successful application to a wide range of tasks. This model is theoretically very simple and sound and yields good
results in general. It has been extended and applied with success to new and difficult IR problems such as multi-class
document classification and learning with unlabelled data [16]. We will briefly present the model and show that the
model presented in this paper is indeed a generalization of this model.

Consider the same document representation used so far in the paper d = (w 1; w2; : : : ; wjdj) where wi 2 L is
the term corresponding to the ith word in document d. Consider furthermore that there is a one-to-one mapping from
documents to classes and consider that each class is generated from a single word probability distribution (a component
of the resulting generative model). Consider furthermore that document length is evenly distributed across classes so
that P (jdjjR) = P (jdj). Then, the probability of a relevant document can be written down as:

PNB(djR) =
P (jdj)

Z

jdjY
t=1

P (wtjR)

where Z is a constant independent of the class. The probability of relevance of a document is then :

PNB(Rjd) =

0
@1 +

jdjY
t=1

�
P (wtjI)

P (wtjR)

P (I)

P (R)

�1A
�1

We can see that this model is similar to the model presented in section (4), where both � I and �R are fixed to be
monogram models and transition probabilities �;, �R and �I are considered equal. In this sense, our model extends
the Naive Bayes model with more sophisticated generative models for the relevant class.

Note that this is quite different from the multi-class extension of the multinomial Naive Bayes model presented in
[14], in which it is considered that irrelevant documents are generated from a mixture of classes; this model continues
to operate in a bag-of-word representation of documents and as such cannot take into account the ordering of words
or the notion of relevance of passages.

6 Results

6.1 Experimental Setting

We used the Reuters-21578 text categorization test collection for evaluation purposes [19]. This corpus is very hetero-
geneous, and this is one of the reasons why it was chosen. Some classes are very large and some very small (ranging
from more than 2700 documents to zero). Some classes are quite ambiguous while others depend basically on the
presence or absence of one or two key words. Some sets of classes partly overlap (meaning the same documents
belong to several classes), others form partitions of larger classes, and some classes are disjoint from the rest. Finally,
certain classes deal with very specific topics containing documents that use very technical language while others cover
broader areas and make use of much more general terms and expressions.

We used the ModApte split of the Reuters-21578 test collection. We eliminated all the classes that had zero training
or test documents. This leads to a set of 90 classes and 12902 documents (this is the same set used in evaluations such
as [24][9][5]).

Choosing an adequate evaluation measure is difficult. Because documents can belong to several classes in Reuters,
we evaluate our models using break-even points which is independent of the classification decision. Break-even point
is defined as the point where precision equals recall in a precision-recall curve. This point is linearly interpolated from
the two closest points when necessary. Macro-average break-even points are obtained by averaging break-even points
for every class considered. Micro-average break-even points are obtained by weighting the average by the relative size
of each class. Because in the Reuters corpus most documents belong to a small set of classes, the difference between
micro and macro averages tells us how models’ performance degrades on small classes.
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Model MultiN R1 R3 R5 R10 R20

earn 94,6 89,4 93,1 93,6 93,7 86,5
acq 90,0 53,7 85,5 87,2 88,5 88,5

money-fx 63,9 37,2 61,0 64,7 69,0 70,0
grain 58,9 36,7 74,1 73,9 73,4 71,3
crude 67,0 55,7 79,5 78,4 77,2 76,6
trade 70,0 44,5 64,2 60,5 62,2 58,7

interest 58,7 29,7 62,1 65,3 68,7 67,7
ship 77,7 55,7 79,0 80,2 79 75

wheat 50,8 25,5 65,9 68,7 64,2 64,1
corn 36,5 28,8 65,7 61,3 53,8 46,1

micro-average 71,7 56,6 77 77,2 76,5 73,2
macro-average 28,9 27,2 48,9 46,1 40,9 38,1

Table 1: Micro and macro average break-even point and break-even points for the 10 largest classes. See text for
notations.

Finally we report the probability of good classification averaged over the documents (micro-PGC) and averaged
over the classes (macro-PGC). This is the number of correctly classified relevant documents when the highest scoring
class is attributed to the document. When a document belongs to n classes the n highest scoring classes are attributed
to the document; since this would not be possible on real data, one must regard this PGC as an upper bound or an
optimistic approximation which can be reach with a perfect classification decision. This measure is interesting because
some models, such as the multinomial Naive Bayes model, are designed to classify documents with respect to a set of
classes, and are not good at ranking documents with respect to a single class. The micro and macro PGC measures
give us an insight on the performance of systems for the task of document classification. Again, large classes mostly
dominate the micro average result and small classes the macro average.

6.2 Evaluation

We will evaluate fixed-window IRI models of varying window size (1, 3, 5, 10 and 20 words) as well as the baseline
multinomial model. We refer to these models as Rn, where n is the particular size of the window used. For all models,
data is preprocessed in the following manner: words are stemmed with the Porter algorithm and a stop-list of 350
words is used to eliminate the most common empty words. Finally, words appearing less than 3 times in the (training)
corpus are eliminated. No other feature selection is carried out for any of the models.

Table 1 presents the break-even point micro and macro averages as well as break-even points for several classes
(for illustration purposes). First, let us note that the baseline multinomial model yields reasonably high micro-average
performances for this task (71%), but a very low macro-average (28.9%). Best result reported for this task as far as
we know is the linear kernel SVM models (micro: 86 %, macro not given) [9]. This implies that break-even points for
small classes are very poor.

Results for the HMM models vary depending on the window size, but are better than the baseline for all except the
R1 model. The R3 model is 5% greater in micro average and 20% higher in macro average than the baseline model.
The R5 model performs similarly. Performance decreases as the window size is increased, both in micro and macro
averages. We see that the greater gain in performance is clearly over macro-averages, indicating that the model is
outperforming the baseline model specially in small classes.

Several conclusions can be drawn from this. Firstly, the HMM are more robust than the multinomial model with
respect to the size of the training corpus. The basic problem with small classes is the difficulty of estimating term
relevance. This is usually resolved by applying feature selection techniques; however, these rely on heuristics and
are difficult to apply in a consistent manner. The good performance of the HMMs on small classes indicates that
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micro-PGC macro-PGC
Multinomial 78 27
R1 84 47
R3 83 45
R5 82 40

Table 2: Micro and macro PGC comparison

feature selection is less critical for these models. Secondly, small window sizes (e.g. 3,5) seem to perform better than
larger ones (e.g. 10, 20). This may seem counterintuitive but in fact denotes that even in very relevant documents
many words are in fact more probably irrelevant than relevant. Because a document score is made up of all possible
segmentations, small window sizes seem to be an advantage for this model. Nevertheless, trivially small window sizes
(e.g. 1) lead to performances lower than the baseline model (table 2).

Looking at micro and macro PGC results we find that again HMM models perform consistently better than the
baseline model. Even the R1 model outperforms the baseline model under this performance measure; in fact, it is the
model with highest micro and macro PGC, 6% and 20% higher than the baseline model respectively. This model is
obviously a good candidate for document classification but does not perform well for document ranking. This means
that this model produces higher precision values than the rest for certain recall values, but that precision-recall curves
it produces deteriorate very quickly before the break-even point. This also indicates that this model is a good candidate
for low-recall applications. Macro-PGC deteriorates fast as the window size is increased (45% for R3 and 40% for
R5) while micro average is quite stable (83% for R3 and 82% for R5). This supports our previous claim that small
classes require small window-sizes.

7 Conclusion

We have presented a new family of generative models for information retrieval based on probabilistic sequence models.
We motivated such models in the light of increasing complexity of textual data and tasks, showing how they could
extend the classical notion of document retrieval. We then developed a HMM implementation for the task of document
ranking and classification, and detailed several possible derivations stating explicitly their assumptions. We also
showed that the proposed models generalizes the classic multinomial Naive Bayes models, taking into account the
existence of non-relevant passages within relevant documents.

We evaluated these models on the Reuters data set and compared them to a baseline multinomial Naive Bayes
model. We could show a systematic improvement of performances over the baseline model. Furthermore, by the
use of several performance measures we could gain some insights on the weaknesses and strengths of the proposed
models.
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