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Abstract

Feature based similarity search is emerging as an important
search paradigm in database systems. The technique used is to
map the data items as points into a high dimensional feature
space which is indexed using a multidimensional data structure.
Similarity search then corresponds to a range search over the
data structure. Although several data structures have been pro-
posed for feature indexing, none of them is known to scale be-
yond 10-15 dimensional spaces. This paper introduces the hy-
brid tree – a multidimensional data structure for indexing high
dimensional feature spaces. Unlike other multidimensional data
structures, the hybrid tree cannot be classified as either a pure
data partitioning (DP) index structure (e.g., R-tree, SS-tree, SR-
tree) or a pure space partitioning (SP) one (e.g., KDB-tree, hB-
tree); rather, it “combines” positive aspects of the two types of
index structures a single data structure to achieve search perfor-
mance more scalable to high dimensionalities than either of the
above techniques (hence, the name “hybrid”). Furthermore, un-
like many data structures (e.g., distance based index structures
like SS-tree, SR-tree), the hybrid tree can support queries based
on arbitrary distance functions. Our experiments on “real”
high dimensional large size feature databases demonstrate that
the hybrid tree scales well to high dimensionality and large
database sizes. It significantly outperforms both purely DP-
based and SP-based index mechanisms as well as linear scan
at all dimensionalities for large sized databases.

1. Introduction

Feature based similarity search is emerging as an important
search paradigm in database systems. The technique used is to
map the data items as points into a high dimensional feature
space. The feature space is usually indexed using a multidimen-
sional data structure. Similarity search then corresponds to a
range search on that data structure. To support efficient similar-
ity search in a database system, robust techniques to index high
dimensional feature spaces needs to be developed. Traditional
multidimensional data structures (e.g., R-trees [11], kDB-trees
[20], grid files [17]), which were designed for indexing spatial
data, are not suitable for multimedia feature indexing due to (1)
inability to scale to high dimensionality and (2) lack of sup-
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port for queries based on arbitrary distance measures. Recently,
there has been significant research effort in developing index-
ing mechanisms suitable for multimedia feature spaces. One
of the techniques isdimensionality reduction(DR). Standalone
DR techniques have several limitations: (1) they work well only
when the data is strongly correlated (2) they usually do not sup-
port similarity queries based on arbitrary distance functions [2]
and (3) they are not suitable for dynamic database environments.
While the DR approach has merit and should be used whenever
it is possible to use (e.g., correlated data, fixed distance function,
more or less static datasets), a robust solution to feature index-
ing requires multidimensional data structures that scale to high
dimensionality and supports arbitrary distance measures.

This paper introduces the hybrid tree for this purpose. What
distinguishes the hybrid tree from other multidimensional data
structures is that it isneither a pure DP-based nor a pure SP-
based technique. Experience has shown that neither of these
techniques are suitable for high dimensionalities but for differ-
ent reasons. Simple sequential scan performs better beyond 10-
15 dimensions [5]. BR-based techniques tend to have low fanout
and a high degree of overlap between bounding regions (BRs) at
high dimensions. On the other hand, SP-based techniques have
fanout independent of dimensionality and no overlap between
subspaces. But SP-based techniques suffer from problems like
no guaranteed utilization (e.g., kDB-trees) or require storage of
redundant information (e.g., hB-trees). The main contributionof
this paper is the“hybrid” approach to multidimensional index-
ing: a technique that combines positive aspects of the two types
of index structures a single data structure to achieve search per-
formance more scalable to high dimensionalities than either of
the two techniques. On one hand, like SP-based index struc-
tures, the hybrid tree performs node splitting based on a single
dimension and represents space partitioning using kd-trees. This
makes the fanout independent of dimensionality and enables fast
intranode search. On the other hand, space partitions, like the
BRs in DP-based techniques, are allowed to overlap whenever
clean splits necessicate downward cascading splits, thus retain-
ing the guaranteed utilization property. The tree construction al-
gorithms in the hybrid tree are geared towards providing optimal
search performance. As desired, the hybrid tree allows search
based on arbitrary distance functions. The distance function can
be specified by the user at query time. Our experiments on “real”
high dimensional large size feature databases show that the hy-
brid tree scales well to high dimensionality and large database
sizes. It significantly outperforms both purely DP-based and SP-
based index mechanisms as well as linear scan at all dimension-
alities for large sized databases.

The rest of the paper is organized as follows. Recently, many
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KDB-tree 1 1 1 High (Independent of k) None No None

hB-tree d (1 � d � k) d d High (Independent of k) None Yes Yes

R-tree k 2k - Low for large k (/ 1

k
) High Yes None

Hybrid tree 1 1 or 2 1 High (Independent of k) Low Yes None

Table 1. Splitting strategies for various index structures.k is the total number of dimensions.

multidimensional data structures have been developed for the
purpose of high dimensional feature indexing. In Section 2, we
develop a classification of these data structures that allows us
to compare them to the hybrid tree. Section 3 introduces the
hybrid tree and is the main contribution of this paper. In Section
4, we present the performance results. Section 5 offers the final
concluding remarks and future work.

2. Classification of Multidimensional Index Struc-
tures

The increasing need of applications to be able to store multi-
dimensional objects (e.g., features) in a database and index them
based on their content has trigerred a lot of research on multidi-
mensional index structures. In this section, we develop a classi-
fication of multidimensional indexing techniques which allows
us to compare the hybrid tree with the previous research in this
area.

Existing multidimensional techniques can be classified in two
different ways. One way to classify them is intoData Par-
titioning (DP)-based and Space Partitioning (SP)-basedin-
dex structures. A DP-based index structure consists of bound-
ing regions (BRs) arranged in a (spatial) containment hierarchy.
At the data level, the nearby data items are clustered within
BRs. At the higher levels, nearby BRs are recursively clus-
tered within bigger BRs, thus forming a hierarchical directory
structure. The BRs may overlap with each other. The BRs
can be bounding boxes (e.g., R-tree[11], X-tree[4]) or bounding
spheres/diamonds (e.g., SS-tree[23], M-tree[9], TV-tree[15]).
On the other hand, a SP-based index structure consists of space
recursively partitioned into mutually disjoint subspaces. The hi-
erarchy of partitions form the tree structure (e.g., kDB-tree[20],
hB-tree[16] and LSDh-tree[12]). We compare these two types
of index structures with the hybrid tree as a solution to high di-
mensional feature indexing in Section 3.6.

An alternative way of classification is intoFeature-based
and Distance basedtechniques. In feature based techniques,
the data/space partitioning is based on the values of the vectors
along each independent dimension and is independent of the dis-
tance function used to compute the distance among objects in the
database or between query objects and database objects. Exam-
ples of DP-based techniques that are feature based include R-
tree and X-tree. Examples of SP-based techniques that are fea-
ture based include kDB-tree, hB-tree, LSDh-tree. On the other
hand, distance based techniques partition data/space based on
the distance of objects from one or more selected pivot point(s),
where the distance is computed using a given distance function.
Examples of DP-based techniques that are distance based in-

clude SS-tree, M-tree and TV-tree. Examples of SP-based tech-
niques that are distance based include vp-tree [8] and mvp-tree
[6]. A comparison between the two classes can be found in [7].

3. The Hybrid Tree

In this section, we introduce the hybrid tree. We discuss how
the hybrid tree partitions the space into subspaces and how the
space partitioning is represented in the hybrid tree. We discuss
the node splitting algorithms and show how they optimize ex-
pected search performance. We describe the tree operations and
conclude with a discussion on where the hybrid tree fits into the
classification developed in Section 2.

3.1. Space Partitioning in the Hybrid Tree

First, we describe the “space partitioning strategy” in the hy-
brid tree i.e. how to partition the space into two subspaces when
a node splits. The first issue is the number of dimensions used
to partition the node. The hybrid tree always splits a node using
a singledimension. 1-d split is theonly way to guarantee that
the fanout is totally independent of dimensionality. This is in
sharp contrast with DP-based techniques which are at the other
extreme: they use all the k dimensions to split, leading to a lin-
ear decrease in fanout with increase in dimensionality. Some in-
dex structures follow intermediate policies [16]. The only disk-
based index structure that follows a 1-d split policy is the kDB-
tree [20]. Single dimension splits in the kDB-tree necessitate
costly cascading splits and causes creation of empty nodes. Due
to the above reasons, kDB-tree shows poor performance even in
4 dimensional feature spaces [10]. kDB-trees cause cascading
splits since it requires the node splits to be necessarilycleani.e.
the splitmustdivide the indexed space into two mutually disjoint
partitions. We relax the above constraint in the hybrid tree: the
indexed subspaces neednot be mutually disjoint. The overlap
is allowed only when trying to achieve an overlap-free would
cause downward cascading splits and hence a possible violation
of utilization constraints. The splitting strategies of the various
index structures is summarized in the Table 1.

It is clear from the above discussion that the hybrid tree
is more similar to SP-based data structures than DP-based in-
dex structures. But the above “relaxation” necessicates several
changes in terms of representation and algorithms for tree oper-
ations as compared to the pure SP-based index structures. The
first change is in the representation. As in other SP-based tech-
niques, the space partitioning withineach indexnode in a hybrid
tree is represented using a kd-tree. Since regular kd-trees can
represent only overlap free splits, we need to modify the kd-tree
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in order to represent possibly overlapping splits. Each internal
node of the regular kd-tree represents a split by storing the split
dimension and the split position. We add a second split position
field to the kd-tree internal node. The first split position rep-
resents the right (higher side) boundary of the left (lower side)
partition (denoted bylsp or left side partition) while the second
split position represents the left boundary of the right partition
(denoted byrsp or right side partition). Whilelsp = rsp means
non-overlapping partitions,lsp > rsp indicate overlapping par-
titions. The second change is in the algorithms for regular tree
operations, namely, search, insertion and deletion. The tree op-
erations in SP-based index structures are based on the assump-
tion that the partitions are mutually disjoint. This is not true for
the hybrid tree. We solve the problem by treating the indexed
subspaces as BRs in a DP-based data structure (which can over-
lap). In other words, we define amappingthe kd-tree based
representation to an “array of BRs” representation. This allows
us to directly apply the search, insertion and deletion algorithms
used in DP-based data structures to the hybrid tree. The map-
ping is defined recursively as follows:Given any index nodeN
of the hybrid tree and the BRRN corresponding to it, we define
the BRs corresponding to each child ofN . The BR of the root
node of the hybrid tree is the entire data space. Given that, the
above “mapping” can compute the BR of any hybrid tree node.

LetN be an index node of the hybrid tree. LetKN be the kd-
tree that represents the space partitioning withinN andRN be
the BR ofN . We define a BR associated with eachnode (both
internal as well as leaf nodes) ofKN . This defines the BRs of
the children ofN since the leaf nodes ofKN are the children
of N . For example, the leaf nodesL1 to L7 are the children
of the hybrid tree nodeN shown in the Figure 1. The BR as-
sociated with the root ofKN is RN . Now given an internal
nodeI ofKN and the corresponding BRRI, the BRs of the two
children ofI are defined as follows. LetI = hdim; lsp; rspi,
wheredim; lsp and rsp are the split dimension, left split po-
sition and right split position respectively. The BR of the left
child of I is defined asRI \ (dim � lsp) where, in the ex-
pression(dim � lsp), dim denotes the variable that represents
the value along dimensiondim (for simplicity) and\ represents
geometric intersection. Similarly, the BR of the right child ofI
is defined asRI \ (dim � rsp). For example,(0; 0; 6; 6) is the
BR for the hybrid tree node shown in Figure 1 (BR is denoted
asxlo; ylo; xhi; yhi). The BR of I1 (the root) is(0; 0; 6; 6). The
BRs of I2 and I3 are(0; 0; 6; 6) \ (x � 3) = (0; 0; 3; 6) and
(0; 0; 6; 6)\ (x � 3) = (3; 0; 6; 6) respectively. Similarly, the
BR of L3, which, being a leaf ofKN , is a child ofN , is obtained
by BR(I2) \ (y � 2) i.e. (0; 0; 3; 6)\ (y � 2) = (0; 2; 3; 6).
The children of internal nodes withlsp > rsp have overlapping
BRs (e.g., BRs of I4 and L3 (children of I2) overlap). Figure
1 shows all the BRs – the shaded rectangles are the BRs of the
children of the node while the white ones correspond to the in-
ternal nodes ofKN .

Note that the above mapping is “logical”. The
search/insert/delete algorithmdoes not actually compute the “ar-
ray of BRs” during tree traversal: rather it navigates the node
using the kd-tree and computes the BR only when necessary (cf.
Section 3.4). The kd-tree based navigation allows faster intran-
ode search compared to array-based navigation. While search-
ing for a correct lower level node using a kd-tree usually requires
order logn comparisons (for a balanced kd-tree), searching in a
array requires linear number of comparisons. Also, in a kd-tree
representation, BRs share boundaries. In an array representa-
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2 split positions 
(lsp and rsp) instead
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Figure 1. Mapping between eachnode and the correspond-
ing BR. The shaded area represents overlap between BRs

tion, the boundaries are checked redundantly while in a kd-tree,
a boundary is checked only once [16].

3.2. Data Node Splitting

The choice of a split of a node consists of two parts: the
choice of the split dimension and the split position(s). In this
section, we discuss the choice of splits for data nodes in the
hybrid tree.

Choice of split dimension: When a data node splits, it is
replaced by twonodes. Assuming that the rest of the tree has not
changed, the expected number of disk accesses per query (EDA)
would increase due to the split. The hybrid tree chooses as the
split dimension the one that minimizes the increase in EDA due
to the split, thereby optimizing the expected search performance
for future queries.

Let N be the data node being split. LetR be the k-
dimensional BR associated withN . Let si be the extent ofR
along theith dimension,i = [1; k]. Consider a bounding box
range queryQ with each side of lengthr. We assume that the
feature space is normalized (extent is from 0 to 1 along each di-
mension) and the queries are uniformly distributed in the data
space. LetPoverlap(Q;R) denote the probability thatQ overlaps
with R. To determinePoverlap(Q;R), we move the center point
of the query to each point of the data space marking the posi-
tions where the query rectangle intersects the BR. The resulting
set of marked positions is called the Minkowski Sum which is
the original BR having all sides extended by query side lengthr
[1]. Therefore,Poverlap(Q;R) = (s1+r)(s2+r):::(sk+r). This
is the probability thatQ needs to accessnodeN (1 disk access)
(It is the volume of lightly shaded region in Figure 2).
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Represents the probability of the query accessing the node before the split
assuming uniform query distribution

Represents the increase in average number of disk accesses due to the split
assuming uniform query distribution
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Dimension 1

Dimension 2

Split dimension: 2 Split dimension: 1

Figure 2. Choice of split dimension for data nodes. The
first split is the optimal choice in terms for search perfor-
mance.

Now let us consider the splitting ofN and letj be the split-
ting dimension. LetN1 andN2 be the nodes after the split
andR1 andR2 be the corresponding BRs.R1 andR2 have
the same extent asR along all dimensions exceptj i.e. si,
i = [1; k]; i 6= j. Let �sj and�sj be the extents ofR1 and
R2 along thejth dimension. Since the split is overlap-free,
� = 1��. The probabilitiesPoverlap(Q;R1) andPoverlap(Q;R2)
are(s1 + r):::(�sj + r):::(sk + r) and(s1 + r):::((1� �)sj +
r):::(sk+r) respectively. SinceR = R1[R2 (where[ is the ge-
ometric union) andQ is uniformly distributed,Poverlap(Q;R) =
Poverlap(Q;R1[R2) = Poverlap(Q;R1)[overlap(Q;R2) . Thus, the
probabilityPoverlap(Q;R1)\overlap(Q;R2) that bothN1 andN2
are accessed is equal toPoverlap(Q;R1) + Poverlap(Q;R2) �
Poverlap(Q;R). (Poverlap(Q;R1)\overlap(Q;R2) is equal to the vol-
ume of the dark shaded region in Figure 2). IfQ does not overlap
with R, there is no increase in number of disk accesses due to
the split. If it does,Poverlap(Q;R1)\overlap(Q;R2) is the proba-
bility that the diskaccesses increases by 1 due to the split. Thus,
the conditional probability thatQ overlaps with bothR1 and
R2 given Q overlaps withR, i.e.

Poverlap(Q;R1)\overlap(Q;R2)

Poverlap(Q;R)

represents the increase in EDA due to the split. The increase
in EDA if j is chosen as the split dimension evaluates out to
be r

sj+r
. Note that r

sj+r
is minimum if j is chosen such that

sj = maxki=1si, independent of the value ofr. The hybrid tree
always chooses the dimension along with the BR has the largest
extent as the split dimension for splitting data nodes so as to
minimize the increase in EDA due to the split.

An example of the choice of split dimension is shown in Fig-
ure 2. Note that the optimality of the above choice is indepen-
dent of the distribution of data. It is also independent of the
choice of split position. Previous proposals regarding choice
of splitting dimensions include arbitrary/round-robin [12] and
maximum variance dimension [24]. The maximum variance di-
mension is chosen to make the choice insensitive to “outliers”
[24]. Since the number of disk accesses to be made depends on
the size of the subspaces indexed by datanodes and is indepen-
dent of the actual distribution of data items within the subspace,
presence or absence of “outliers” is inconsequential to the query

alpha*s1
beta*s1

Physical overlap between the two nodes

 s1+ r

w1
w1 + r

s2 + r Dimension 2

RSP

after split (w1 is the amount of overlap)

The increase in expected number of disk
accesses due to split

The probability of the query accessing the
node before split

Dimension 1 (split dimension)

LSP

Figure 3. Index node splitting (with overlap).sj, wj and
split positions (LSP and RSP) only along dimension 1 are
shown.

performance. We performed experiments to compare our choice
of maximum extent dimension as the splitting dimension with
the maximum variance choice and is discussed is Section 5.

Choice of split position: The most common choice of the
split position for data node splitting is the median [20, 16, 24].
The median choice, in general, distributes the data items equally
among the two nodes (assuming unique median). The hybrid
tree, however, chooses the split position as close to the middle
as possible.1 This tends to produce more cubic BRs and hence
ones with smaller surface areas. The smaller the surface area,
the lower the probability that a range query overlaps with that
BR, the lower the number of expected number of disk accesses
[3]. Our experiments validate the above observation.

3.3. Index Node Splitting

In this section, we discuss the choice of split dimension and
split position for index nodes.

Choice of the split dimension: Like data node splitting, the
choice of split dimension for index nodes splitting is also based
on minimization of the increase in EDA. However, unlike data
node splitting where the choice is independent of the query size,
the choice of the split dimension for index nodes depends on the
probability distribution of the query size as discussed below.

The main difference here compared to data node splitting is
splits are not always overlap free. Letwj (wj � sj) be the
amount of overlap betweenR1 andR2 along thejth dimension
(how wj is computed is discussed in the following paragraph
on choice of split position). So�sj + �sj = sj + wj. An
example of an index node split is shown in Figure 3. The proba-
bilitiesPoverlap(Q;R1) andPoverlap(Q;R2) are(s1 + r):::(�sj +
r):::(sk + r) and (s1 + r):::(�sj + r):::(sk + r) respectively.
Proceeding in the same way as before, the increase in EDA ifj

is chosen as the split dimension evaluates out to bewj+r
sj+r

. The
choice ofj that minimizes the above quantity optimizes search
performance. But the choice depends onr and can differ for dif-
ferent values ofr. For a given probability distribution ofr, the
hybrid tree chooses the dimension that minimizes the increase
in EDA averaged over all queries. LetP (r) be probability dis-
tribution of r. The increase in EDA averaged over all queries

1To find the position, we first check whether it is possible to split in the
middle without violating utilization constraint. If yes, it is chosen. Otherwise
the split position is shifted from the middle position in the proper direction just
enough to satisfy the utilization requirement.
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is equal to
RR+�R
R

P (r):wj+r
sj+r

dr wherer can vary fromR to
R + �R. The dimension that minimizes the above quantity is
chosen as the split dimension. For example, for uniform dis-
tribution, whereP (r) = 1

�R , the above integral evaluates to

be
�
1� ( sj�wj

�R
)log(1 + �R

sj+R
)
�

. In this case, the hybrid tree

chooses thatj for which(sj � wj)log(1 +
�R
sj+R

) is maximum.
In our experiments, we use all queries of the same size, sayR.
In this case, the dimensionj that minimizeswj+R

sj+R
should be

chosen as the split dimension which is indeed the case since

lim�R!0

�
1� (

sj�wj

�R )log(1 + �R
sj+R

)
�
=

wj+R
sj+R

.

Choice of split position: Given the split dimension, the split
positions are chosen such that the overlap is minimized with-
out violating the utilization requirement. The problem of deter-
mining the best split positions along a given dimension is a 1-d
version of the R-tree bipartitioning problem. In the latter, the
problem is to equally divide the rectangles into two groups to
reduce the total area covered by the bounding boxes. while in
the former, the problem is to divide the line segments (indexed
subspaces of the children projected along the split dimension)
into two groups in a way to minimize the the overlap along the
split dimension without violating the utilization constraint. We
sort the line segments based on both their left (leftmost to right-
most) and right (rightmost to leftmost) boundaries. Then we
choose new segments alternately from the left and right sorted
lists and place them in left and right partitions respectively till
the utilization is achieved. The remaining line segments are put
in the partition that needs least elongation without caring about
utilization. The above bipartitioning algorithm is similar to the
R-tree quadratic algorithm but runs inO(nlogn) time instead
of O(n2) (wheren is the number of children nodes) since 1-
d intervals can be sorted based on their values (left and right
boundaries) along the split dimension.

Before the split dimension is actually chosen, the best split
positions are determined for all the dimensions. Then thewj ’s
andsj ’s are calculated for each dimension and the one with the

lowest
R R+�R
R

P (r):wj+r
sj+r

dr is selected. After the selection of
the split dimension, the split positions for the selected dimen-
sion determined during the pre-selection phase are used as split
positions.

Implicit Dimensionality Reduction :
We conclude the subsection on index node splitting with the

following observation. The hybrid treeimplicitly eliminates
“non-discriminating” dimensions i.e. those dimensions along
which the feature vectors are not much different from each other.
In other words, these dimensions are never used for node split-

ting. This is true for data node splitting due to the “maximum
extent” choice. To ensure that these dimensions are indeed elim-
inated, we must guarantee that an eliminated dimension is never
chosen for splitting the index node. LetN be an index node. Let
DN be the set of dimensions used for partitioning space within
N . We can provide the above guarantee if the the split dimen-
siondN ofN satisfiesdN 2 DN , The reason is that a dimension
not used to split any data node cannot be inDN . Suppose we
restrict our choice of the split dimension ofN to DN instead
of all dimensions. We show that even then we would make the
EDA-optimal choice.

Lemma 1 (Implicit Dimensionality Reduction) It is possible
to make the EDA-optimal choice even when restricting the
choice of the split dimension of nodeN toDN .

Proof:
The EDA-optimal choice of the split dimension ofN is the

one with the lowestr+wj

r+sj
ratio. We need to show that the above

ratio for any dimensionj 2 DN is less than or equal to the
ratio for every dimensioni 62 DN . For any dimensionj 2 DN ,
wj � sj . So for anyj 2 DN and for any value ofr, r+wj

r+sj
� 1.

For any dimensioni 62 DN , wi = sj , hencer+wj

r+sj
= 1 for all r

(worst case). Hence the proof.
The hybrid tree achieves implicit dimension elimination

through the above choice. This effect is not seen in most pagi-
nated multidimensional data structures. For example, DP-based
techniques, all dimensions are used for indexing - so nothing is
eliminated. SP-based techniques which choose the split dimen-
sion arbitrarily/round robin fashion cannot provide the above
guarantee.

3.4. Dead Space Elimination

The hybrid tree, like other SP techniques, indexes dead space
i.e. space the contains no data objects. DP-techniques, on other
other hand, does not. Dead space indexing cause unnecessary
disk accesses. This effect increases at higher dimensionality.
Storage of the live space BRs would reduce the hybrid tree into
a DP-based technique, making the fanout of the node sensitive
to dimensionality. Instead, we encode the live space BRrelative
to the entire BR (defined by kd-tree partitioning) using a few
bits as suggested in [12]. The live space encoding is explained
in Figure 4. More the number of bits used, the higher the preci-
sion of the representation, lower the number of unnecessary disk
accesses. We observed that using as few as 4 bits per dimension
eliminates most dead space. For 8K page, 4 bit precision and
64-d space, the overhead is less than 1% of the database size and
can be stored in memory. The overhead is even less for lower
dimensionality. During search (say range search), the overlap
check is performed in 2 steps: first, the BR defined by kd-tree
is checked and if they overlap, the live space BR is decoded and
checked, thus saving any unnecessary decoding/checking costs.
We performed experiments to demonstrate the effect of ELS op-
timization in the hybrid tree as discussed in Section 5.

3.5. Tree Operations

The hybrid tree, like other disk based index structures (e.g.,
B-tree, R-tree) is completely dynamic i.e. insertions, deletions
and updates can occur interspersed with search queries without
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Property of index structure BR-based index structures kd-tree based index structures Hybrid Tree

Representation of space parti-

tioning

Array of bounding boxes kd-tree kd-tree (modified to represent overlap-

ping partitions)

Indexed subspaces May mutually overlap Strictly disjoint May mutually overlap

Node splitting Using all dimensions Using 1 or more dimensions Using 1 dimension

Dead spacey elimination Yes No Yes (with live space encoding)

Table 2. Comparison of the hybrid tree with the BR-based and kd-tree based index structures.y Dead space refers to portions
of feature space containing no data items (cf. Section 4.2).

requiring any reorganization. The tree operations in the hybrid
tree are similar to the R-trees i.e. indexed subspaces are treated
as BRs but the kd-tree based organization is exploited to achieve
faster intranode search. In addition to point and bounding-box
queries (i.e. feature-based queries), the hybrid tree supports
distance-based queries: both range and nearest neighbor queries.
Unlike several index structures (e.g., distance-based index struc-
tures like SS-tree, M-tree), the hybrid tree, being a feature-based
technique, can support queries with arbitrary distance measures.
This is important advantage since the distance function can vary
from query to query for the same feature or even between several
iterations of the same query in a relevance feedback environment
[13, 21].

The insertion and deletion operations in the hybrid tree is also
similar to that in R-trees. The insertion algorithm recursively
picks the child node in which the new object should be inserted.
The best candidate is the node that needs the minimum enlarge-
ment to accomodate the new object. Ties are broken based on the
size of the BR. The deletion operation is based on the eliminate-
and-reinsert policy as in [11].

3.6. Summary

It is clear from the above discussion that the hybrid tree re-
sembles both DP and SP techniques in some aspects and dif-
fers from them in others: rather it is a “hybrid” of the two ap-
proaches. The comparison of the hybrid tree with the two tech-
niques is shown in Table 2. Now we summarize the reasons
why hybrid tree is more suitable for high dimensional indexing
either DP or SP techniques. It is more suitable than than pure DP
techniques since (1) its fanout is independent of dimensionality
while DP-techniques have low fanout at high dimensionalities
(2) enables faster intranode search by organizing the space parti-
tioning as a kd-tree instead of an array and (3) eliminates overlap
from the lowest level (since data node splits are always mutually
non-overlapping) and reduces overlap at higher levels by using
EDA-optimal 1-d splits instead of k-d splits as in DP techniques.
The hybrid tree performs better than other SP-based techniques
using 1-d splits (e.g., KDB-trees) since unlike the latter, it pro-
vides (1) guaranteed storage utilization (2) avoids costly cascad-
ing splits and (3) chooses EDA-optimal split dimensions instead
of arbitrarily. It performs better than SP-based techniques using
multiple dimensional splits (e.g., hB-trees) since (1) 1-d splits
usually provide better search performance compared to multi-
ple dimensional ones since the latter tends to produce subspaces
with larger surface area and hence more disk accesses [3] and
(2) it does not require storage of redundant information (e.g.,
posting full paths).

4. Experimental Evaluation

We performed extensive experimentation to (1) evaluate the
various design decisions made in the hybrid tree and (2) com-
pare the hybrid tree with other competitive techniques. We
conducted our experiments over the following two “real world”
datasets:

(1) TheFOURIER dataset contains 1.2 million 16-d vectors
produced by fourier transformation of polygons. We construct
8-d, 12-d and 16-d vectors by taking the first 8, 12 and 16 fourier
coefficients respectively.

(2) TheCOLHIST dataset comprises of color histograms ex-
tracted from about 70,000 color images obtained from the Corel
Database. We generate 16, 32 and 64 dimensional vectors by
extracting 4x4, 8x4 and 8x8 color histograms [18] from the im-
ages.

The queries are randomly distributed in the data space with
appropriately chosen ranges to get constant selectivity. In all ex-
periments discussed below, the selectivity is maintained constant
at 0.07 % for FOURIER and 0.2 % for COLHIST. All the ex-
periments were conducted on a Sun Ultra Enterprise 3000 with
512MB of physical memory and several GB of secondary stor-
age. In all our experiments, we use a page size of 4096 bytes.

We performed experiments to evaluate (1) the impact of
EDA-optimal node splitting algorithms and (2) the effect of live
space optimization in the hybrid tree. Both the experiments were
performed on the 64-d COLHIST data. The performance is mea-
sured by (1) the average number of disk accesses required to
execute a query and (2) the average CPU time required to exe-
cute a query. Figure 5(a) and (b) show the performance of the
hybrid tree constructed using EDA-optimal node splitting algo-
rithms compared to the hybrid tree constructed using the VAM-
split node splitting algorithm [24]. The EDA-optimal split algo-
rithms consistently outperforms the VAMSplit algorithm. The
performance gap increases with the increase in dimensionality.
Figure 5(c) shows the effect of live space optimization. Using
4-bit ELS improves the performance significantly compared to
no ELS but using more bits does not improve it much further.

We conducted experiments to compare the performance of
the hybrid tree with the following competitive techniques: (1)
SR-tree [14] (2) hB-tree [16] (3) Sequential Scan. We chose
SR-tree since it is one of the most competitive BR-based data
structures proposed for high dimensional indexing. Similarly,
hB-tree is among the best known SP-based techniques for high
dimensionalities. We normalize the I/O cost and the CPU cost
of each of the 3 indexing techniques against the cost of linear
scan. We define the normalized costs as follows:
� The Normalized I/O cost: the ratio of the average num-

ber of disk accesses required to execute a query using the
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Figure 5. (a) and (b) shows the effect of EDA Optimization on query performance. (c) shows the effect of ELS Optimization on
query performance. Both experiments were performed on 64-d COLHIST data.
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Figure 6. Scalability to dimensionality. (a) and (b) shows the query performance (I/O and CPU costs) for medium dimensional
data (FOURIER dataset(400K points)). (c) and (d) shows the same for high dimensional data (COLHIST dataset(70K points))

indexing technique to the number of disk accesses to exe-
cute a linear scan. The latter is computed byDatabaseSize

PageSize

i.e. NumberOfObjects�Dimensionality�sizeof(float)
PageSize

. Note
that since sequential disk accesses are about 10 times faster
compared to randomaccesses, the normalized I/O cost of
linear scan is 0.1 instead of 1.0. Hence, for any index
mechanism, a normalized I/O cost of more than 0.1 indi-
cate worse I/O performance compared to linear scan.

� The Normalized CPU cost: the ratio of average CPU time
required to execute a query using the index mechanism to
the average CPU time required to perform a linear scan.
The normalized CPU cost of linear scan is 1.0.

Using normalized costs instead of direct costs (1) allows us
to compare each of the techniques against linear scan as the lat-
ter is widely recognized as a competitive search technique in
high dimensional feature spaces [5] while still comparing them
to each other and (2) makes the measurements independent of
the experimental settings (e.g., H/W platform, pagesize).

Figures 6 shows the scalability of the various techniques to
medium dimensional and high dimensional feature spaces re-
spectively. The hybrid tree performs significantly better than
any other technique including linear scan. The hB-tree performs
better compared to SR-tree since SP-based techniques are more
suited for high dimensional indexing than BR-technques as ar-
gued in [22]. The fast intranode search in the hybrid tree due to
its kd-tree based organization account for the faster CPU times.

Figures 7(a) and (b) compares the different techniques in
terms of their scalability to very large databases. The hybrid
tree significantly outperforms all other techniques by more than

an order of magnitude for all database sizes. The hybrid tree
shows a decreasing normalized cost with increase in database
size indicating sublinear growth of the actual cost with database
size. Figures 7(c) and (d) compares the query performance of
various techniques2 for distance-based queries. As suggested in
[18], we use the L1 metric. Again, the hybrid tree outperforms
the other techniques.

From the experiments, we can conclude that the hybrid tree
scales well to high dimensional feature spaces, large database
sizes and efficiently supports arbitrary distance measures.

5. Conclusion

Feature based similarity search is emerging as an important
search paradigm in database systems. Efficient support of simi-
larity search requires robust feature indexing techniques. In this
paper, we introduce the hybrid tree - a multidimensional data
structure for indexing high dimensional feature spaces. The hy-
brid tree combines positive aspects of bounding region based
and space partitioning based data structures into a single data
structure to achieve better scalability. It supports queries based
on arbitrary distance functions. Our experiments show that the
hybrid tree is scalable to high dimensional feature spaces and
provides efficient support of distance based retrieval. The hy-
brid tree is a fully operational software and is currently being
deployed for feature indexing in MARS [19].

As part of future work, we intend to support new types of
queries like approximate nearest neighbor queries efficiently us-

2hB-tree is not used since it does not support distance-based search.
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Figure 7. (a) and (b) compares the scalability of the various techniques with database size of high dimensional data. (c) and (d)
compares the query performance of the various techniques for distance-based queries (Manhattan Distance). Both experiments
were performed on 64-d COLHIST data.

ing the hybrid tree. We also plan to explore techniques to sup-
port queries in interactive environments (e.g., relevance feed-
back [13, 21]) efficiently using the hybrid tree.
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