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Abstract port for queries based on arbitrary distance measures. Recently,

there has been significant research effort in developing index-

Feature based similarity search is emerging as an importanting mechanisms suitable for multimedia featurasgs. One
search paradigm in database systems. The technique used is @f the techniques idimensionality reductiofDR). Standalone
map the data items as points into a high dimensional featureDR techniques have several limitations: (1) they work well only
space which is indexed using a multidimensional data structure.when the data is strongly correlated (2) they usually do not sup-
Similarity search then corresponds to a range search over theport similarity queries based on arbitrary distance functions [2]
data structure. Although several data structures have been pro-and (3) they are not suitable for dynamic database environments.
posed for feature indexing, none of them is known to scale beWhile the DR approach has merit and should be used whenever
yond 10-15 dimensional spaces. This paper introduces the hyitis possible to use (e.g., correlated data, fixed distance function,
brid tree — a multidimensional data structure for indexing high more or less static datasets), a robust solution to feature index-
dimensional feature spaces. Unlike other multidimensional dataing requires multidimensional data structures that scale to high
structures, the hybrid tree cannot be classified as either a puredimensionality and supports arbitrary distance measures.
data partitioning (DP) index structure (e.g., R-tree, SS-tree, SR-  This paper introduces the hybrid tree for this purpose. What
tree) or a pure space partitioning (SP) one (e.g., KDB-tree, hB- distinguishes the hybrid tree from other multidimensional data
tree); rather, it “combines” positive aspects of the two types of structures is that it iseither a pure DP-based nor a pure SP-
index structures a single data structure to achieve search perfor-based technique Experience has shown that neither of these
mance more scalable to high dimensionalities than either of thetechniques are suitable for high dimensionalities but for differ-
above technigques (hence, the name *hybrid”). Furthermore, un-ent reasons. Simple sequential scan performs better beyond 10-
like many data structures (e.g., distance based index structured5 dimensions [5]. BR-based techniques tend to have low fanout
like SS-tree, SR-tree), the hybrid tree can support queries basednd a high degree of overlap between bounding regions (BRs) at
on arbitrary distance functions. Our experiments on “real” high dimensions. On the other hand, SP-based techniques have
high dimensional large size feature databases demonstrate thafanout independent of dimensionality and no overlap between
the hybrid tree scales well to high dimensionality and large subspaces. But SP-based techniques suffer from problems like
database sizes. It significantly outperforms both purely DP-no guaranteed utilization (e.g., kDB-trees) or require storage of
based and SP-based index mechanisms as well as linear scaredundant information (e.g., hB-trees). The main contribution of
at all dimensionalities for large sized databases. this paper is théhybrid” approach to multidimensional index-
ing: a technique that combines positive aspects of the two types
of index structures a single data structure to achieve search per-
formance more scalable to high dimensionalities than either of
the two technigques. On one hand, like SP-based index struc-
tures, the hybrid tree performs node splitting based on a single

Feature based similarity search is emerging as an importandimension and represents space partitioning using kd-trees. This
search paradigm in database systems. The technique used is igakes the fanout independent of dimensionality and enables fast
map the data items as points into a high dimensional featuréntranode search. On the other hand, space partitions, like the
space. The feature space is usually indexed usinglédimien- BRs in DP-based techniques, are allowed to overlap whenever
sional data structure. Similarity search then corresponds to &lean splits rcessicate downward cascading splits, thus retain-
range search on that data structure. To support efficient similaring the guaranteed utilization property. The tree construction al-
ity search in a database system, robust techniques to index highorithms in the hybrid tree are geared towards providing optimal
dimensional feature spaces needs to be developeditidred search performance. As desired, the hybrid tree allows search
multidimensional data structures (e.g., R-trees [11], kDB-treesbased on arbitrary distance functions. The distance function can
[20], grid files [17]), which were designed for indexing spatial be specified by the user at query time. Our experiments on “real”
data, are not suitable for multimedia feature indexing due to (1)high dimensional large size feature databases show that the hy-
inability to scale to high dimensionality and (2) lack of sup- brid tree scales well to high dimensionality and large database
sizes. It significantly outperforms both purely DP-based and SP-

*This work was supported in part by the National Science Foundation under, : : ; ; [P
Grant No. 11S-9734300, in part by the Army Research Laboratory under Coop-based index mechanisms as well as linear scan at all dimension

erative Agreement No. DAALO1-96-2-0003and in part by NSF/DARPA/NASA  alities for large sized dat'abases.'
Digital Library Initiative Progranunder Cooperative Agreement No. 94-11318. The rest of the paper is organized as follows. Recently, many

1. Introduction
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Index Struc- || Number of di- | Number of | Number of kd-| Fanout Degree Node Uti- | Storage

ture mensions used tq (k-1)-d hyper-| tree nodes used t of lization Redun-
split planes used tg representthe splif Overlap | Guarantee | dancy

split

KDB-tree 1 1 1 High (Independent of k) None No None

hB-tree dl <d<k) d d High (Independent of k) None Yes Yes

R-tree k 2k Low for large k < %) High Yes None

Hybrid tree 1 lor2 1 High (Independentof k) Low Yes None

Table 1. Splitting strategies for various index structukeis. the total number of dimensions.

multidimensional data structures have been developed for thelude SS-tree, M-tree and TV-tree. Examples of SP-based tech-
purpose of high dimensional feature indexing. In Section 2, weniques that are distance based include vp-tree [8] and mvp-tree
develop a classification of these data structures that allows u§6]. A comparison between the two classes can be found in [7].
to compare them to the hybrid tree. Section 3 introduces the

hybrid tree and is the main contribution of this paper. In Section ;

4, we present the performance results. Section 5 offers the fina?' The Hybrid Tree

concluding remarks and future work. . i i i ,
In this section, we introduce the hybrid tree. We discuss how

the hybrid tree partitions the space into sudrgs and how the
space partitioning is represented in the hybrid tree. We discuss
the node splitting algorithms and show how they optimize ex-
pected search performance. We describe the tree operations and
The increasing need of app”cations to be ab|e to store mu'ti_conclude W|th a diSCUSSiOﬂ on Where the hyb”d tree f|tS in'[O the

dimensional objects (e.g., features) in a database and index thelassification developed in Section 2.
based on their content has trigerred a lot of research on multidi- o )
mensional index structures. In this section, we develop a classi3.1. Space Partitioning in the Hybrid Tree
fication of multidimensional indexing techniques which allows
us to compare the hybrid tree with the previous research in this First, we describe the “space partitioning strategy” in the hy-
area. brid tree i.e. how to partition the space into two sudxsgs when
Existing multidimensional techniques can be classified in two a node splits. The first issue is the number of dimensions used
different ways. One way to classify them is inDmta Par- to partition the node. The hybrid tree always splits a node using
titioning (DP)-based and Space Partitioning (SP)-baseth- asingledimension. 1-d split is thenly way to guarantee that
dex structures. A DP-based index structure consists of boundthe fanout is totally independent of dimensionality. This is in
ing regions (BRs) arranged in a (spatial) containment hierarchysharp contrast with DP-based techniques which are at the other
At the data level, the nearby data items are clustered withinextreme: they use all the k dimensions to split, leading to a lin-
BRs. At the higher levels, nearby BRs are recursively clus-ear decrease in fanout with increase in dimensionality. Some in-
tered within bigger BRs, thus forming a hierarchical directory dex structures follow intermediate policies [16]. The only disk-
structure. The BRs may overlap with each other. The BRsbased index structure that follows a 1-d split policy is the kDB-
can be bounding boxes (e.g., R-tree[11], X-tree[4]) or boundingtree [20]. Single dimension splits in the kDB-treecessitate
spheres/diamonds (e.g., SS-tree[23], M-tree[9], TV-tree[15]).costly cascading splits and causes creation of empty nodes. Due
On the other hand, a SP-based index structure consists of spade the above reasons, kDB-tree shows poor performance even in
recursively partitioned into mutually disjoint sulzg@s. The hi- 4 dimensional feature spaces [10]. kDB-trees cause cascading
erarchy of partitions form the tree structure (e.g., kDB-tree[20], splits since it requires the node splits to leeassarilycleani.e.
hB-tree[16] and LSDh-tree[12]). We compare these two typesthe splitmustdivide the indexed space into two mutually disjoint
of index structures with the hybrid tree as a solution to high di- partitions. We relax the above constraint in the hybrid tree: the
mensional feature indexing in Section 3.6. indexed subspaces neadt be mutually disjoint. The overlap
An alternative way of classification is inteeature-based is allowed only when trying to achieve an overlap-free would
and Distance basedechniques. In feature based techniques, cause downward cascading splits and hence a possible violation
the data/space partitioning is based on the values of the vectorsf utilization constraints. The splitting strategies of the various
along each independent dimension and is independent of the dishdex structures is summarized in the Table 1.
tance function used to compute the distance among objectsinthe It is clear from the above discussion that the hybrid tree
database or between query objects and database objects. Exaims-more similar to SP-based data structures than DP-based in-
ples of DP-based techniques that are feature based include Riex structures. But the above “relaxation” necessicates several
tree and X-tree. Examples of SP-based techniques that are fe@hanges in terms of representation and algorithms for tree oper-
ture based include kDB-tree, hB-tree, LSDh-tree. On the otherations as compared to the pure SP-based index structures. The
hand, distance based techniques partition data/space based irst change is in the representation. As in other SP-based tech-
the distance of objects from one or more selected pivot point(s)niques, the space partitioning withéach indexnode in a hybrid
where the distance is computed using a given distance functiortree is represented using a kd-tree. Since regular kd-trees can
Examples of DP-based techniques that are distance based imepresent only overlap free splits, we need to modify the kd-tree

2. Classification of Multidimensional Index Struc-
tures
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in order to represent possibly overlapping splits. Each internal i bybrid o6

index node

node of the regular kd-tree represents a split by storing the split ~—  Note: Parttions
dimension and the split position. We add a second split position ety o
field to the kd-tree internal node. The first split position rep- A

resents the right (higher side) boundary of the left (lower side) Bim. 2 3 Corresponding
partition (denoted bysp or left side partition) while the second : Z'f%ﬁil'rl’i”n‘?'a nodes
split position represents the left boundary of the right partition 2 split positions

0 2 3 4 5 6 (Isp and rsp) instead

(denoted by‘Sp or I’Ight Side partition). Whllésp = rsp means Dim. 1 (x) of one to represent
non-overlapping partitionssp > rsp indicate overlapping par- overiapping spits
titions. The second change is in the algorithms for regular tree l
operations, namely, search, insertion and deletion. The tree op- — 6.6
erations in SP-based index structures are based on the assump-
tion that the partitions are mutually disjoint. This is not true for , 6
the hybrid tree. We solve the problem by treating the indexed im= @
subspaces as BRs in a DP-based data structure (which can over- ~ -
lap). In other words, we define mappingthe kd-tree based
representation to an “array of BRs” representation. This allows o0
us to directly apply the search, insertion and deletion algorithms
used in DP-based data structures to the hybrid tree. The map-

ping is defined recursively as follow&iven any index nod&’ E
of the hybrid tree and the BRyy corresponding to it, we define igree Lear Node L6
the BRs corresponding to each child/&gf The BR of the root (O kd-treentemalNode E“ EGA
node of the hybrid tree is the entire datasp. Given that, the = B corespondngtoan inemalnode of he ke it
& . [ BR corresponding to a leaf node of the kd-tree '
above “mapping” can compute the BR of any hybrid tree node.
Let NV be an index node of the hybrid tree. L€}, be the kd-
tree that represents the space partitioning withiand Ry be Figure 1. Mapping between eanbde and the correspond-
the BR of V. We define a BR associated with eaubde (both ing BR. The shaded area represents overlap between BRs

internal as well as leaf nodes) &fy. This defines the BRs of
the children of N since the leaf nodes df y are the children
of N. For example, the leaf noddsl to L7 are the children
of the hybrid tree node/ shown in the Figure 1. The BR as-  tjon, the boundaries are checked redundantly while in a kd-tree,
sociated with the root of{y is Ry. Now given an internal g boundary is checked only once [16].
nodel of K and the corresponding BR;, the BRs of the two
children of I are defined as follows. Lat = (dim, lsp, rsp),
wheredim, lsp andrsp are the split dimension, left split po-
sition and right split position respectively. The BR of the left
child of I is defined ask; N (dim < Isp) where, in the ex- The choice of a split of a node consists of two parts: the
pression(dim < Isp), dim denotes the variable that represents choice of the split dimension and the split position(s). In this
the value along dimensiafim (for simplicity) andn represents  section, we discuss the choice of splits for data nodes in the
geometric intersection. Similarly, the BR of the right childiof  hybrid tree.
is defined agt; N (dim > rsp). For example(0, 0,6, 6) is the Choice of split dimension When a data node splits, it is
BR for the hybrid tree node shown in Figure 1 (BR is denoted replaced by twmodes. Assuming that the rest of the tree has not
aS&io, Yo, Thi, Yni)- The BR of 11 (the root) i40,0,6,6). The  changed, the expected number of disk accesses per query (EDA)
BRs of 12 and I3 arg0,0,6,6) N (¢ < 3) = (0,0,3,6) and  would increase due to the split. The hybrid tree chooses as the
(0,0,6,6)n (z > 3) = (3,0,6,6) respectively. Similarly, the  spit dimension the one that minimizes the increase in EDA due
BRof L3, which, being a leaf o'y, is a child of V', is obtained  tg the split, thereby optimizing the expected search performance
by BR(12) N (y > 2)i.e. (0,0,3,6)N (y > 2) = (0,2,3,6).  for future queries.
The children of internal nodes withp > rsp have overlapping Let N be the data node being split. Lt be the k-
BRs (e.g., BRs of 14 and L3 (children of I12) overlap). Figure gimensional BR associated witli. Let s; be the extent of?
1 shows all the BRs — the shaded rectangles are the BRs of thgong theith dimension,i = [1, k]. Consider a bounding box
children of the node while the white ones correspond to the i”'range quen with each side 6f length. We assume that the
ternal nodes oft . feature space is normalized (extent is from O to 1 along each di-
Note that the above mapping is “logical”. The mension) and the queries are uniformly distributed in the data
search/insert/delete algorithm does not actually compute the “arspace. LetP,, . iap(q,r) denote the probability thap overlaps
ray of BRs” during tree traversal: rather it navigates the nodewith R. To determineP,, c.iap(Q,r), W€ move the center point
using the kd-tree and computes the BR only when necessary (chf the query to each point of the data space marking the posi-
Section 3.4). The kd-tree based navigation allows faster intrantions where the query rectangle intersects the BR. The resulting
ode search compared to array-based navigation. While searchset of marked positions is called the Minkowski Sum which is
ing for a correct lower level node using a kd-tree usually requiresthe original BR having all sides extended by query side length
order logn comparisons (for a balanced kd-tree), searching in a[1]. Therefore,P, e iap(q,r) = (51+7)(s247)...(sx +7). This
array requires linear number of comparisons. Also, in a kd-treeis the probability that) needs to acceswdeN (1 disk access)
representation, BRs share boundaries. In an array representéi is the volume of lightly shaded region in Figure 2).

3.2. Data Node Splitting
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Split dimension: 2 Split dimension: 1

l:l Represents the probability of the query accessing the node before the split

assuming uniform query distribution

l:l Represents the increase in average number of disk accesses due to the split
assuming uniform query distribution

Figure 2. Choice of split dimension for data nodes. The
first split is the optimal choice in terms for search perfor-
mance.

Now let us consider the splitting af and let; be the split-
ting dimension. LetN1 and N2 be the nodes after the split
and R1 and R2 be the corresponding BRsR1 and R2 have
the same extent a& along all dimensions excepti.e. s;,

i = [1,k],i # j. Letas; andfs; be the extents oR1 and
R2 along thejth dimension. Since the split is overlap-free,
8=1—a. The probabiIitiesPoverlap(Qm) andPoverlap(Qym)
are(sy +7)...(as; +7)...(sg +r)and(sy + r)...((1 — a)s; +
7)...(sg+r) respectively. Sinc& = R1UR2 (whereJ is the ge-
ometric union) and) is uniformly distributed Py, criap(g,r) =
Poverlap(Q,RlUR2) = Poverlap(Q,Rl)Uoverlap(Q,R2)- ThUS, the
probability Poy e iap(Q,R1)noveriap(Q,r2) that bothN'1 and N2
are accessed is equaﬁ ©,ycriap(Q,R1) + Povertap(Q,r2) —
Poverlap(Q,R)- (Poverlap(Q,Rl)ﬂoverlap(Q,RZ) is equal to the vol-
ume of the dark shaded region in Figure 2)Q1floes not overlap

Dimension 1 (split dimension)

T il

! " ; l:l Theincrease in expected number of disk
1| 2+r Dimension2
| M accesses due to split

B

I:l Physical overlap between the two nodes
after split (w1 isthe amount of overlap)

I:l The probability of the query accessing the
node before split

Figure 3. Index node splitting (with overlap;, w; and
split positions (LSP and RSP) only along dimension 1 are
shown.

performance. We performed experiments to compare our choice
of maximum extent dimension as the splitting dimension with
the maximum variance choice and is discussed is Section 5.

Choice of split positiort The most common choice of the
split position for data node splitting is the median [20, 16, 24].
The median choice, in general, distributes the data items equally
among the two nodes (assuming unique median). The hybrid
tree, however, chooses the split position as close to the middle
as possible! This tends to produce more cubic BRs and hence
ones with smaller surface areas. The smaller the surface area,
the lower the probability that a range query overlaps with that
BR, the lower the number of expected number of disk accesses
[3]. Our experiments validate the above observation.

3.3. Index Node Splitting

In this section, we discuss the choice of split dimension and
split position for index nodes.

Choice of the split dimension Like data node splitting, the
choice of split dimension for index nodes splitting is also based
on minimization of the increase in EDA. However, unlike data

with R, there is no increase in number of disk accesses due tg,qde splitting where the choice is independent of the query size,

the split. If it does,Poycriap(Q,R1)noveriap(Q,r2) IS the proba-
bility that the diskaccesses increases by 1 due to thie. sghus,
the conditional probability thaf) overlaps with bothR1 and

. . . P,
R2 given @) overlaps withR, i.e, —2verten(@.Runoverlap(Q./2)

Pyyeriap(Q,R)

the choice of the split dimension for index nodes depends on the

probability distribution of the query size as discussed below.
The main difference here compared to data node splitting is

splits are not always overlap free. Let (w; < s;) be the

represents the increase in EDA due to the split. The increas@mount of overlap betweelil and 2 along thejth dimension

in EDA if j is chosen as the split dimension evaluates out to
be # Note that# is minimum if j is chosen such that

s; = mazf_,s;, independent of the value of The hybrid tree

always chooses the dimension along with the BR has the larges

extent as the split dimension for splitting data nodes so as t
minimize the increase in EDA due to the split.

An example of the choice of split dimension is shown in Fig-
ure 2. Note that the optimality of the above choice is indepen-
dent of the distribution of data. It is also independent of the
choice of split position. Previous proposals regarding choice
of splitting dimensions include arbitrary/round-robin [12] and
maximum variance dimension [24]. The maximum variance di-
mension is chosen to make the choice insensitive to “outliers”

Dro

(how w; is computed is discussed in the following paragraph
on choice of split position). Ses; + fs; = s; + w;. An
example of an index node split is shown in Figure 3. The proba-
iIitieSPoveTlap(Qle) andPoverlap(Qsz) are(51 + 7“)...(0[8]' +

sg + ) and(sy + 7)...(8s; + r)...(sk + r) respectively.
eeding in the same way as before, the increase in ERA if
is chosen as the split dimension evaluates out tés”ﬁé. The
choice ofj that minimizes the above quantity optimizes search
performance. But the choice depends-@amd can differ for dif-
ferent values of. For a given probability distribution of, the
hybrid tree chooses the dimension that minimizes the increase
in EDA averaged over all queries. L&) be probability dis-
tribution of ». The increase in EDA averaged over all queries

I

[24]. Since the number of disk accesses to be made depends om;

the size of the subspaces indexed by daetdes and is indepen-
dent of the actual distribution of data items within the subspace,

To find the position, we first check whether it is possible to split in the
middle without violating tilization constraint. If yes, it is chosen. Otherwise
the split position is shifted from the middle position in the proper direction just

presence or absence of “outliers” is inconsequential to the quergnough to satisfy thetilization requirement.
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ting. This is true for data node splitting due to the “maximum
- extent” choice. To ensure that these dimensions are indeed elim-
S oded Live Spece (ELS inated, we must guarantee that an eliminated dimension is never
- chosen for splitting the index node. LE&tbe an index node. Let
Dy be the set of dimensions used for partitioning space within
N. We can provide the above guarantee if the the split dimen-

O oeT ol o1 100 Tor T 111 siondy of N satisfiesiy € D, The reason is that a dimension
Live space encoding using 3 bit precision (ELSPRECISION=3) not qsed to Sp|l't any data no'de'canno't b&in. Suppose we
Encoded Live Space BR = (001, 001, 101, 111) restrict our choice of the split dimension of to Dy instead

Bit required: 2*number_of_dimensions* EL SPRECISION=12 bits A .
of all dimensions. We show that even then we would make the

EDA-optimal choice.
Figure 4. Encoded Live Space (ELS) Optimization Lemma 1 (Implicit Dimensionality Reduction) It is possible
to make the EDA-optimal choice even when restricting the

R+AR choice of the split dimension of nodéto Dy .

is equal tof, P(r).fjjj_’: dr wherer can vary fromR to
R 4+ AR. The dimension that minimizes the above quantity is  Proof:

chosen as the split dimension. For example, for uniform dis- The EDA-optimal choice of the split dimension of is the
tribution, whereP(r) = Z, the above integral evaluates t0 one with the lowest+: ratio. We need to show that the above

be (1 — () log(1 + AR )). In this case, the hybrid tree ratio for any dimensiorj € Dy is less than or equal to the

AR si+R . . LY . S
: - ; tio for every dimension ¢ Dy . For any dimensiofi € Dy
chooses that for which (s; — w;)log(1 + 2£ ) is maximum. 2 s TN
A (85 = w)log(1 + 7 3p) w; < s;. So foranyj € Dy and for any value of, 2% < 1.

In our experiments, we use all queries of the same size[lsay T+s;

] . P _ r+w;
In this case, the dimensionthat minimizesf?i_’g should be ~ Forany dimensiot ¢ Dy, w; = s;, hence; = = 1 forall r
chosen as the split dimension which is indeed the case sincéVOrstcase). Hence the proof. _ n
. si=wiyg AR \\ _ w 4R The hybrid tree achieves implicit dimension elimination
limap—o (1 — (Zxg*)log(1 + Sj+R)) ~ S5,+R" through the above choice. This effect is not seen in most pagi-

Choice of split positiont Given the split dimension, the split nated multidimensional data structures. For example, DP-based
positions are chosen such that the overlap is minimized with-techniques, all dimensions are used for indexing - so nothing is
out violating the utilization requirement. The problem of deter- eliminated. SP-based techniques which choose the split dimen-
mining the best split positions along a given dimension is a 1-dsion arbitrarily/round robin fashion cannot provide the above
version of the R-tree bipartitioning problem. In the latter, the guarantee.
problem is to equally divide the rectangles into two groups to
reduce the total area covered by the bounding boxes. while ir 4. Dead Space Elimination
the former, the problem is to divide the line segments (indexed

subspaces of the children projected along the split dimension) e hybrid tree, like other SP techniques, indexes dead space
into two groups in a way to minimize the the overlap along the j ¢ "gpace the contains no data objects. DP-techniques, on other
split dimension without violating the utilization constraint. We other hand, does not. Dead space indexing cause unnecessary
sort the line segments based on both their left (leftmost to right-; accesées. This effect increases at higher dimerigiona
most) and right (rightmost to leftmost) boundaries. Then we giqraqe of the live space BRs would reduce the hybrid tree into
choose new segments alternately from the left and right sorted, pp_hased technique, making the fanout of the node sensitive
lists and place them in left and right partitions respectively till ;, dimensionality. Instead, we encode the live spaca@®ive
the utilization is achieved. The remaining line segments are put, the entire BR (defined by kd-tree partitioning) using a few
in the partition that needs least elongation without caring aboutyjis a5 suggested in [12]. The live space encoding is explained
utilization. The above bipartitioning algorithm is similar to the ;, Figure 4. More the number of bits used, the higher the preci-
R-tree quadratic algorithm but runs @(nlogn) time instead  gjon of the representation, lower the number of unnecessary disk
of O(n”) (wheren is the number of children nodes) since 1- 5;cegses. We observed that using as few as 4 bits per dimension
. L : Eliminates most dead space. For 8K page, 4 bit precision and
boundaries) along the split dimension. _64-d space, the overhead is less than 1% of the database size and
Before the split dimension is actually chosen, the best splitcan pe stored in memory. The overhead is even less for lower
positions are determined for all the dimensions. Thenfie  gimensionality. During search (say range search), the overlap
ands;'s are calculated for each dimension and the one with thecheck is performed in 2 steps: first, the BR defined by kd-tree
IowestflfJFAR P(r).f?—jr’:dr is selected. After the selection of is checked and if they overlap, the live space BR is decoded and

7

the split dimension, the split positions for the selected dimen-checked, thus saving any unnecessary decoding/checking costs.
sion determined during the pre-selection phase are used as spl¥e performed experiments to demonstrate the effect of ELS op-
positions. timization in the hybrid tree as discussed in Section 5.

Implicit Dimensionality Reduction: ]

We conclude the subsection on index node splitting with the 3.5. Tree Operations
following observation. The hybrid tregnplicitly eliminates
“non-discriminating” dimensions i.e. those dimensions along The hybrid tree, like other disk based index structures (e.g.,
which the feature vectors are not much different from each otherB-tree, R-tree) is completely dynamic i.e. insertions, deletions
In other words, these dimensions are never used for node splitand updates can occur interspersed with search queries without
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Property of index structure || BR-based index structures kd-tree based index structures} Hybrid Tree

Representation of space partji- Array of bounding boxes kd-tree kd-tree (modified to represent overlap-
tioning ping partitions)

Indexed subspaces May mutually overlap Strictly disjoint May mutually overlap

Node splitting Using all dimensions Using 1 or more dimensions | Using 1 dimension

Dead spacé elimination Yes No Yes (with live space encoding)

Table 2. Comparison of the hybrid tree with the BR-based and kd-tree based index strucidees. space refers to portions
of feature space containing no data items (cf. Section 4.2).

requiring any reorganization. The tree operations in the hybrid4. Experimental Evaluation
tree are similar to the R-trees i.e. indexed subspaces are treated
as BRs but the kd-tree based organization is exploited to achieve \we performed extensive experimentation to (1) evaluate the
faster intranode search. In addition to point and bounding-boxvarious design decisions made in the hybrid tree and (2) com-
queries (i.e. feature-based queries), the hybrid tree supportgare the hybrid tree with other competitive techniques. We
distance-based queries: both range and nearest neighbor querie®nducted our experiments over the following two “real world”
Unlike several index structures (e.g., distance-based index strucdjatasets:
tures like SS-tree, M-tree), the hybrid tree, being a feature-based (1) TheFOURIER dataset contains 1.2 million 16-d vectors
technique, can support queries with arbitrary distance measuregroduced by fourier transformation of polygons. We construct
This is important advantage since the distance function can vang-d, 12-d and 16-d vectors by taking the first 8, 12 and 16 fourier
from query to query for the same feature or even between severaloefficients respectively.
iterations of the same query in a relevance feedback environment (2) TheCOLHIST dataset comprises of color histograms ex-
[13, 21]. tracted from about 70,000 color images obtained from the Corel
The insertion and deletion operationsin the hybrid tree is alsoDatabase. We generate 16, 32 and 64 dimensional vectors by
similar to that in R-trees. The insertion algorithm recursively extracting 4x4, 8x4 and 8x8 color histograms [18] from the im-
picks the child node in which the new object should be inserted.ages.
The best candidate is the node that needs the minimum enlarge- The queries are randomly distributed in the data space with
ment to accomodate the new object. Ties are broken based on theppropriately chosen ranges to get constant selectivity. In all ex-
size of the BR. The deletion operation is based on the eliminateperiments discussed below, the selectivity is maintained constant
and-reinsert policy as in [11]. at 0.07 % for FOURIER and 0.2 % for COLHIST. All the ex-
periments were conducted on a Sun Ultra Enterprise 3000 with
512MB of physical memory and several GB of secondary stor-
age. In all our experiments, we use a page size of 4096 bytes.
We performed experiments to evaluate (1) the impact of
It is clear from the above discussion that the hybrid tree re- EDA-optimal node splitting algorithms and (2) the effect of live
sembles both DP and SP techniques in some aspects and di§pace optimizationin the hybrid tree. Both the experiments were
fers from them in others: rather it is a “hybrid” of the two ap- performed onthe 64-d COLHIST data. The performance is mea-
proaches. The comparison of the hybrid tree with the two tech-sured by (1) the average number of disk accesses required to
niques is shown in Table 2. Now we summarize the reasongexecute a query and (2) the average CPU time required to exe-
why hybrid tree is more suitable for high dimensional indexing cute a query. Figure 5(a) and (b) show the performance of the
either DP or SP techniques. It is more suitable than than pure Dybrid tree constructed using EDA-optimal node splitting algo-
techniques since (1) its fanout is independent of dimensionalityrithms compared to the hybrid tree constructed using the VAM-
while DP-techniques have low fanout at high dimensionalities split node splitting algorithm [24]. The EDA-optimal split algo-
(2) enables faster intranode search by organizing the space partiithms consistently outperforms the VAMSplit algorithm. The
tioning as a kd-tree instead of an array and (3) eliminates overlagperformance gap increases with the increase in dimensionality.
from the lowest level (since data node splits are always mutuallyFigure 5(c) shows the effect of live space optimization. Using
non-overlapping) and reduces overlap at higher levels by usingt-bit ELS improves the performance significantly compared to
EDA-optimal 1-d splits instead of k-d splits as in DP techniques. no ELS but using more bits does not improve it much further.
The hybrid tree performs better than other SP-based techniques We conducted experiments to compare the performance of
using 1-d splits (e.g., KDB-trees) since unlike the latter, it pro- the hybrid tree with the following competitive techniques: (1)
vides (1) guaranteed storage utilization (2) avoids costly cascadSR-tree [14] (2) hB-tree [16] (3) Sequential Scan. We chose
ing splits and (3) chooses EDA-optimal split dimensions insteadSR-tree since it is one of the most competitive BR-based data
of arbitrarily. It performs better than SP-based techniques usingstructures proposed for high dimensional indexing. Similarly,
multiple dimensional splits (e.g., hB-trees) since (1) 1-d splits hB-tree is among the best known SP-based techniques for high
usually provide better search performance compared to multi-dimensionalities. We normalize the I/O cost and the CPU cost
ple dimensional ones since the latter tends to produce aubsp of each of the 3 indexing techniques against the cost of linear
with larger surface area and hence more disk accesses [3] angtan. We define the normalized costs as follows:
(2) it does not require storage of redundant information (e.g., e The Normalized 1/O costthe ratio of the average num-
posting full paths). ber of disk accesses required to execute a query using the

3.6. Summary
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Figure 6. Scalability to dimensionality. (a) and (b) shows the query performance (I/O and CPU costs) for medium dimensional
data (FOURIER dataset(400K points)). (¢) and (d) shows the same for high dimensional data (COLHIST dataset(70K points))

indexing technique to the number of disk accesses to exe-an order of magnitude for all database sizes. The hybrid tree

cute a linear scan. The latter is computed g‘g’ggjf;’ze shows a decreasing normalized cost with increase in database
i@ NumberOfObjectssDimensionalityssizeof(float)  Note size indicating sublinear growth of the actual cost with database

PageSize
that since sequential disk accesses big10 times faster

compared to randoraccesses, the normalized 1/0 cost of
linear scan is 0.1 instead of 1.0. Hence, for any index
mechanism, a normalized 1/O cost of more than 0.1 indi-

size. Figures 7(c) and (d) compares the query performance of
various techniquesfor distance-based queries. As suggested in
[18], we use the L1 metric. Again, the hybrid tree outperforms
the other techniques.

. From the experiments, we can conclude that the hybrid tree
cate worse I/O performance compared to linear scan. scales well to high dimensional feature spaces, large database

* The !\Iormahzed CPU casthe ratio of average CPU time  qjzes and efficiently supports arbitrary distance measures.
required to execute a query using the index mechanism to

the average CPU time required to perform a linear scan. .
The normalized CPU cost of linear scan is 1.0. 5. Conclusion

Using normalized costs instead of direct costs (1) allows us
to compare each of the techniques against linear scan as the lat- Feature based similarity search is emerging as an important
ter is widely recognized as a competitive search technique insearch paradigm in database systems. Efficient support of simi-
high dimensional feature spaces [5] whité#l somparing them  larity search requires robust feature indexing techniques. In this
to each other and (2) makes the measurements independent Bgper, we introduce the hybrid tree - a multidimensional data
the experimental settings (e.g., H/W platform, pagesize). structure for inqiexing high dimensional feature_spaceg. The hy-

Figures 6 shows the scalability of the various techniques toP"id tree combines positive aspects of bounding region based
medium dimensional and high dimensional feature spaces re@nd space partitioning based data structures into a single data
spectively. The hybrid tree performs significantly better than structure to achieve better scalability. It supports queries based
any other technique including linear scan. The hB-tree perform?n arbitrary distance functions. Our experiments show that the
better compared to SR-tree since SP-based techniques are moR¥Prid tree is scalable to high dimensional featuracgs and

suited for high dimensional indexing than BR-technques as arProvides efficient support of distance based retrieval. The hy-

gued in [22]. The fast intranode search in the hybrid tree due tgPrid tree is a fully operational software and is currently being

its kd-tree based organization account for the faster CPU timesdeployed for feature indexing in MARS [19].
As part of future work, we intend to support new types of

Figures 7(a) and (b) compares the different techniques in o ; : , -
termg of thei(r )scalabi(lit)y to vgry large databases. Theqhybridquenes like approximate nearest neighbor queries efficiently us-

tree significantly outperforms all other techniques by more than  2hB-tree is not used since it does not support distance-based search.
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Figure 7. (a) and (b) compares the scalability of the various techniques with database size of high dimensional data. (c) and (d)
compares the query performance of the various techniques for distance-based queries (Manhattan Distance). Both experiments
were performed on 64-d COLHIST data.
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back [13, 21]) efficiently using the hybrid tree. 615, 1989.
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searching. IfProc. ACM SIGMOD Conf., pp. 47-571.984.
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