
Scaling Optimistic Concurrency Control by Approximately
Partitioning the Certifier and Log

Philip A. Bernstein
Microsoft Research

Redmond, WA, USA
phil.bernstein@microsoft.com

Sudipto Das
Microsoft Research

Redmond, WA, USA
sudipto.das@microsoft.com

Abstract

In optimistic concurrency control, a certifier algorithm processes a log of transaction operations to de-
termine whether each transaction satisfies a given isolation level and therefore should commit or abort.
This logging and certification of transactions is often sequential and can become a bottleneck. To im-
prove transaction throughput, it is beneficial to parallelize or scale out the certifier and the log. One
common technique for such parallelization is to partition the database. If the database is perfectly parti-
tioned such that transactions only access data from a singlepartition, then both the log and the certifier
can be parallelized such that each partition has its own independent log and certifier. However, for many
applications, partitioning is only approximate, i.e., a transaction can access multiple partitions. Paral-
lelization using such approximate partitioning requires synchronization between the certifiers and logs
to ensure correctness. In this paper, we present the design of a parallel certifier and a partitioned log
that uses minimal synchronization to obtain the benefits of parallelization using approximate partition-
ing. Our parallel certifier algorithm dynamically assigns constraints to each certifier. Certifiers enforce
constraints using only atomic writes and reads on shared variables, thus avoiding expensive synchro-
nization primitives such as locks. Our partitioned log usesa lightweight causal messaging protocol to
ensure that transactions accessing the same partition appear in the same relative order in all logs where
they both appear. We describe the techniques applied to an abstract certifier algorithm and log protocol,
making them applicable to a variety of systems. We also show how both techniques can be used in Hyder,
a scale-out log-structured indexed record manager.

1 Introduction

Optimistic concurrency control (OCC) is a technique to analyze transactions that access shared data to determine
which transactions commit or abort [14]. Instead of delaying certain operations that might lead to an incorrect
execution, OCC allows a transaction to execute its operations as soon as it issues them. After the transaction
finishes, OCC determines whether the transaction commits oraborts. Acertifier is the component that makes
this determination. It is a sequential algorithm that analyzes descriptions of the transaction one-by-one in a given
total order. Each transaction description, called anintention, is a record that describes the operations that the

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

transaction performed on shared data, such as read and write. One way to determine the total order of intentions
is to store them in alog. In that case, the certifier analyzes intentions in the orderthey appear in the log.

A certifier algorithm has throughput limits imposed by the underlying hardware [7]. This limits the scala-
bility of a system that uses it. To improve the throughput, itis worthwhile to parallelize the algorithm. One way
to do this is to split the set of transactions into partitionssuch that for every pair of transactions from differ-
ent partitions, there are no conflicts between them. Then thecertifier can run independently on each partition.
However, it is often infeasible to partition transactions in this way. In that case, the certifier algorithm needs to
handle transactions that span more than one partition. Thispaper presents such an algorithm.

The log also has throughput limits imposed by the hardware. Thus, a second opportunity for improving
throughput is to partition the log, such that each partitionincludes updates that apply to a distinct database
partition. This enables the log to be distributed over independent storage devices to provide higher aggregate
throughput of read and append operations to the log. However, if the partitioning is imperfect, some transac-
tions need to appear in two or more partitions. In this case, the log partitioning must ensure that conflicting
transactions appear in the same relative order in all logs where they both appear. This paper presents a way of
generating a log partitioning that satisfies this property.

The goal of these these two techniques—parallelizing a certifier and partitioning a log—is to increase trans-
action throughput. Our motivation for designing these techniques is to increase the throughput of our Hyder
system, a database architecture that scales out without partitioning [8]. In Hyder, the logis the database, which
is represented as a multi-version binary search tree. Each transactionT executes on a snapshot of the database
and generates an intention record that containsT ’s writeset and, depending on the isolation level, its readset.
The intention is stored in the log. A certification algorithm, calledmeld [9], reads intentions from the log and
sequentially processes them in log order to determine whether a transaction committed or aborted. If a transac-
tion commits, meld does one more step beyond OCC certification, namely, it merges the transaction’s updates
into the server’s locally-cached copy of the database. Since all servers receive the same log, meld makes the
same commit and abort decisions for every transaction. Therefore, for any two servers, their locally-cached
copies of the database are identical for any data that is stored in both of them. Since there is no synchronization
between the servers apart from appending to and reading fromthe shared log, the system scales out. That is,
throughput increases as more servers are added, until the log, network, or meld algorithm is saturated. Often,
the meld algorithm is the bottleneck. This was demonstratedin [6] by experiments with a distributed implemen-
tation of Hyder on a cluster of enterprise-grade commodity servers. It is therefore important to parallelize meld
to increase transaction throughput. Bernstein et al. [6] describes two approaches that use pipeline parallelism
to speed up meld; it introduces two preliminary stages that reduce the work done by the final sequential meld
algorithm. In this paper, we leverage database partitioning to parallelize the meld algorithm itself.
Organization: We formally define the problem in Section 2 and then present the algorithms for parallel certifi-
cation (Section 3) and log partitioning (Section 4). In Section 5, we revisit the question of how to apply these
parallel solutions to Hyder. Section 6 summarizes related work and Section 7 is the conclusion.

2 Problem Definition

The certifier’s analysis relies on the notion of conflicting operations. Two operationsconflict if the relative order
in which they execute affects the value of a shared data item or the value returned by one of them. The most
common examples of conflicting operations are read and write, where a write operation on a data item conflicts
with a read or write operation on the same data item. Two transactions conflict if one transaction has an operation
that conflicts with at least one operation of the other transaction.

To determine whether a transactionT commits or aborts, a certifier analyzes whether any ofT ’s operations
conflict with operations issued by other concurrent transactions that it previously analyzed. For example, if
two transactions executed concurrently and have conflicting accesses to the same data, such as independent

2

writes of a data itemx or concurrent reads and writes ofx, then the algorithm might conclude that one of the
transactions must abort. Different certifiers use different rules to reach their decision. However, all certifiers
have one property in common: their decision depends in part on the relative order of conflicting transactions.

We define adatabase partitioningto be a set of partition names, such as{P1, P2, . . .}, and an assignment
of every data item in the database to one of the partitions. A database partitioning isperfectwith respect to a
set of transactionsT = {T1, T2, . . .} if every transaction inT reads and writes data in at most one partition.
That is, the database partitioning induces a transaction partitioning. If a database is perfectly partitioned, then it
is trivial to parallelize the certifier and partition the log: For each partitionPi, create a separate logLi and an
independent executionCi of the certifier algorithm. All transactions that accessPi append their intentions toLi,
andCi takesLi as its input. Since transactions in different logs do not conflict, there is no need for shared data
or synchronization between the logs or between executions of the certifier on different partitions.

A perfect partitioning is not possible in many practical situations, so this simple parallelization approach is
not robust. Instead, suppose we can define a database partitioning that isapproximatewith respect to a set of
transactionsT , meaning that most transactions inT read and write data in at most one partition. That is, some
transactions inT access data in two or more partitions (so the partitioning isnot perfect), but most do not.

In an approximate partitioning, the transactions that access only one partition can be processed in the same
way as a perfect partitioning. However, transactions that access two or more partitions make it problematic
to partition the certifier. The problem is that such multi-partition transactions might conflict with transactions
that are being analyzed by different executions of the certifier algorithm, which creates dependencies between
these executions. For example, suppose data itemsx andy are assigned to different partitionsP1 andP2, and
suppose transactionTi writesx andy. ThenTi must be evaluated byC1 to determine whether it conflicts with
concurrent transactions that accessedx and byC2 to determine whether it conflicts with concurrent transactions
that accessedy. These evaluations are not independent. For example, ifC1 determines thatTi must abort, then
that information is needed byC2, sinceC2 no longer has the option to commitTi. When multiple transactions
access different combinations of partitions, such scenarios can become quite complex.

A transaction that accesses two or more partitions also makes it problematic to partition the log, because its
intentions need to be ordered in the logs relative to all conflicting transactions. Continuing with the example
of transactionTi above, should its intention be logged onL1, L2, or some other log? Wherever it is logged, it
must be ordered relative to all other transactions that haveconflicting accesses tox andy before it is fed to the
OCC algorithm. The problem we address is how to parallelize the certifier and partition the log relative to an
approximate database partitioning. Our solution takes an approximate database partitioning, an OCC algorithm,
and an algorithm to atomically append entries to the log as input. It has three components:

1. Given an approximate database partitioningP = {P1, P2, . . . , Pn}, we define an additionallogical parti-
tionP0. Each transaction that accesses only one partition is assigned to the partition that it accesses. Each
transaction that accesses two or more partitions is assigned to the master logical partitionP0.

2. We parallelize the certifier algorithm inton + 1 parallel executions{C0, C1, C2, . . . , Cn}, one for each
partition, including the logical partition. Each single-partition transaction is processed by the certifier
execution assigned to its partition. Each multi-partitiontransaction is processed by the logical partition’s
execution of the certifier algorithm. We define synchronization constraints between the logical partition’s
certifier execution and the partition-specific certifier executions so they reach consistent decisions.

3. We partition the log inton + 1 distinct logs{L0, L1, L2, . . . , Ln}, one associated with each partition
and one associated with the logical partition. We show how tosynchronize the logs so that the set of all
intentions across all logs is partially ordered and every pair of conflicting transactions appears in the same
relative order in all logs where they both appear. Our solution is a low-overhead sequencing scheme based
on vector clocks.

Our solution works with any approximate database partitioning. Since multi-partition transactions are more

3

� �� ��

����	
�����

�������������

�� ��
��������� 	��
����
�
����

���
�����

���������
�
����

���
����������

���������
�
����

���
����������

���������
�
����

���
����������

����	
�����

�������������

����	
�����

�������������

����	
�����

��������������
����
 ��������������

�� �

�� �

�� �

�����������������

	�
������ ������������������
	� �

	� �

	� �

���������������������

�� �� �� ��

Figure 1: Design overview of parallel certification showingthe different certifiers and the data structures used.

expensive than single-partition transactions, the fewer multi-partition transactions that are induced by the data-
base partitioning, the better. The synchronization performed between parallel executions of the certifier algo-
rithm is external to the certifier algorithm. Therefore, oursolution works with any certifier algorithm. The same
is true for the synchronization performed between parallellogs.

3 Parallel Certification

We now explain the design of a parallel certifier assuming a single totally-ordered log. In this section, we use the
term certifier to refer to a certifier execution. A certifier can be parallelized using multiple threads within a single
process, multiple processes co-located on the same machine, or multiple processes distributed across different
machines; our discussion encompasses all such scenarios. Section 4, entitled “Partitioned Log,” explains how
the parallel certification of this section can use a partitioned log.

3.1 Design

We dedicate one certifierCi to process intentions from single-partition transactionson partitionPi, and dedicate
one certifierC0 to process intentions from multi-partition transactions.A single schedulerS processes intentions
in log order, assigning each intention to one of the certifiers. The certifiers can process non-conflicting intentions
in parallel. However, they must process conflicting intentions in log order.

Our design uses constraints that capture the log order.S passes these constraints to eachCi. The certifiers
validate the constraints using atomic reads and writes on shared variables, so the synchronization is efficient.
Figure 1 illustrates the design of a parallel certifier showing the different variables and data structures maintained
by eachCi, and the data structures used by S to determine synchronization constraints passed to eachCi.

In what follows, for succinctness we frequently use the word“transaction” to mean the intention produced
by the transaction. Each intention in the log has a unique location, called its log sequence number, or LSN,
which reflects the relative order of intentions in the log. That is, intention Inti precedes intention Intk in the log
if and only if the LSN of Inti is less than the LSN of Intk.

Every certifierCi(∀i ∈ [0, n]) maintains a variableLastProcessedLSN(Ci) that stores the LSN of the last
transaction processed byCi. After Ci processes a transactionTk, it sets LastProcessedLSN(Ci) equal toTk’s
LSN;Ci performs this update irrespective of whetherTk committed or aborted. Every other certifierCj(∀j 6= i)
can atomically read LastProcessedLSN(Ci) but cannot update it. In our algorithm, each LastProcessedLSN(Ci),
i ∈ [1, n], is read only byC0 and LastProcessedLSN(C0) is read by allCi, i ∈ [1, n]. EachCi (i ∈ [0, n]) also
has an associated producer-consumer queueQi whereS enqueues the transactionsCi needs to process (i.e.,S is
the producer forQi). EachCi dequeues the next transaction fromQi when it completes processing its previous
transaction (i.e.,Ci is the consumer forQi). The schedulerS maintains a local structure,LastAssignedLSN-
Map, that maps eachCi, i ∈ [1, n]), to the LSN of the last single-partition transaction it assigned toCi. S

4

maintains another local structure,LastLSNAssignedToC0Map, that stores a map of each partitionPi to the
LSN of the last multi-partition transaction that it assigned toC0 and that accessedPi.

Each certifierCi needs to behave as if it were processing all single-partition and multi-partition transactions
that accessPi in log order. This requires that certifiers satisfy the following synchronization constraint:

Parallel Certification Constraint: Before certifying a transactionT that accessed partitionPi, all
transactions that precedeT in the log and accessedPi must have been certified.

This condition is trivially satisfied by a sequential certifier. Threads in a parallel certifier must synchronize
to ensure that the condition holds. For each transactionT , S determines which certifiersCi will processT .
S uses its two local data structures, LastAssignedLSNMap andLastLSNAssignedToC0Map, to determine and
provide each suchCi with the synchronization constraints it must satisfy beforeCi can processT . Note that this
constraint is conservative since this strict ordering is essential only for conflicting transactions. However, in the
absence of finer-grained tracking of conflicts, this conservative constraint guarantees correctness.

3.2 Synchronizing the Certifier Threads

Let Ti denote the transaction thatS is currently processing. We now describe howS generates the synchroniza-
tion constraints forTi. OnceS determines the constraints, it enqueues the transaction and the constraints to the
queue corresponding to the certifier.
Single-partition transactions: If Ti accessed a single partitionPi, thenTi is assigned to the single-partition
certifierCi. Ci must synchronize withC0 before processingTi to ensure that the parallel certification constraint
is satisfied. LetTk be the last transaction thatS assigned toC0, that is, LastLSNAssignedToC0Map(Pi) = k.
S passes the synchronization constraint LastProcessedLSN(C0)≥ k to Ci along withTi. The constraint tells
Ci that it can processTi only afterC0 has finished processingTk. WhenCi starts processingTi’s intention,
it accesses the variable LastProcessedLSN(C0). If the constraint is satisfied,Ci can start processingTi. If the
constraint is not satisfied, thenCi either polls the variable LastProcessedLSN(C0) until the constraint is satisfied
or uses an event mechanism to be notified when LastProcessedLSN(C0)≥ k.
Multi-partition transactions: If Ti accessed multiple partitions{Pi1, Pi2, . . .}, thenS assignsTi to C0. C0

must synchronize with the certifiers{Ci1, Ci2, . . .} of all partitions{Pi1, Pi2, . . .} accessed byTi. LetTkj be the
last transaction assigned toPj ∈ {Pi1, Pi2, . . .}, that is, LastAssignedLSNMap(Cj) = kj . S passes the following
synchronization constraint toC0:

∧
∀j:Pj∈{Pi1,Pi2,...} LastProcessedLSN(Cj) ≥ kj ,

The constraint tellsC0 that it can processTi only after allCj in {Ci1, Ci2, . . .} have finished processing their cor-
respondingTkj ’s, which are the last transactions that precedeTi and accessed a partition thatTi accessed. When
C0 starts processingTi’s intention, it reads the variables LastProcessedLSN(Cj) ∀j : Pj ∈ {Pi1, Pi2, . . .}. If the
constraint is satisfied,C0 can start processingTi. Otherwise,C0 either polls the variables LastProcessedLSN(Cj)
∀j : Pj ∈ {Pi1, Pi2, . . .} until the constraint is satisfied or uses an event mechanism to be notified when the
constraint is satified.

Notice that for allj such thatPj ∈ {Pi1, Pi2, . . .}, the value of the variable LastProcessedLSN(Cj) increases
monotonically over time. Thus, once the constraint LastProcessedLSN(Cj)≥ kj becomes true, it will be true
forever. Therefore,C0 can read each variable LastProcessedLSN(Cj) independently, with no synchronization.
For example, it does not need to read all of the variables LastProcessedLSN(Cj) within a critical section.

5

� �� ��

�
�

��

������	
��������

���������� ���

���������������	

�� ��

����
�� �		�
�������

�� ����	

��	������		�������������

�� �

�� �

�� �

����
������

��	���

������	
������

�������

��� ��� ��� ���

�� �

�� �

�� �
������������	�������	����

�� 	����	�����		��
��

���

��	������		���������

�������

�

�

�

�

!

!

"

"

� �������	#���#	��������	�

�

�$��%����&��������	�������

Figure 2: An example of the parallel certifier processing a single-partition transaction that accessed partitionP2.

3.3 An Example

Consider a database with three partitionsP1, P2, P3. Let C1, C2, C3 be the parallel certifiers assigned to
P1, P2, P3 respectively, and letC0 be the certifier responsible for multi-partition transactions. In this exam-
ple, we consider the following sequence of transactions:

T
[P2]
1 , T

[P1]
2 , T

[P2]
3 , T

[P3]
4 , T

[P1,P2]
5 , T

[P2]
6 , T

[P3]
7 , T

[P1,P3]
8 , T

[P2]
9

A transaction is represented in the formT
[Pj]
i wherei is the transaction’s unique identifier and[Pj] is the set

of partitions thatTi accesses. In this example, we use the transaction’s identifier i also as its LSN. That is, we
assumeT1 appears in position1 in the log,T2 in position2, and so on.

S processes the transactions (i.e., intentions) in log order. For each transaction, it determines which certifiers
will process the intention and determines the synchronization constraint it needs to pass to the certifiers to
enforce the parallel certification constraint. The sequence of figures 2– 8 illustrate the parallel certifier in action
while it is processing the above sequence of transactions, showing how the certifiers synchronize. In each figure,
we emphasize the transaction(s) at the tail of the log being processed byS; time progresses from top to bottom.
The LastProcessedLSN at the top of the figure shows the variable’s value for each certifier before it has started
processing the recently-arrived transactions, i.e., the values after processing the transactions from the previous
figure in the sequence. The vertical arrows beside each vertical line shows the processing time of each intention
at a certifier. The values updated as a result of processing anintention are highlighted in red. To avoid cluttering
the figure, we show minimal information about the previous transactions.

Figure 2 shows a single-partition transactionT1 accessingP2. The numbers1 – 6 identify points in the
execution. At 0 , S determines the synchronization constraint it must pass toC2, namely, thatC0 must
have at least finished processing the last multi-partition transaction that accessedP2. S reads this value in
LastLSNAssignedToC0Map(P2). SinceS has not processed any multi-partition transaction beforeT1, the con-
straint is LastProcessedLSN(C0)≥ 0. At 1 , S updates LastAssignedLSNMap(C2)= 1 to reflect its assignment
of T1 to C2. At 2 , S assignsT1 to C2, and then moves to the next transaction in the log. At3 , C2 reads
LastProcessedLSN(C0) as0 and hence determines at4 that the constraint is satisfied. Therefore, at5 C2 starts
processingT1. After C2 completes processingT1, at 6 it updates LastProcessedLSN(C2) to 1.

Figure 3 shows the processing of the next three single-partition transactions—T2 , T3, T4—using steps sim-
ilar to those in Figure 2. As shown in Figure 4, whenever possible, the certifiers process the transactions in
parallel. In the state shown in Figure 3, at2 C1 is still processingT2, at 3 C2 completed processingT3 and
updated its variable LastProcessedLSN(C2) to 3, and at4 C3 completed processingT4 and updated its variable
LastProcessedLSN(C3) to 4.

Figure 4 shows the processing of the first multi-partition transaction,T5, which accesses partitionsP1

andP2. S assignsT5 to C0. At 0 , S specifies the required synchronization constraint, which ensures that

6

� �� ��

�
�

�� ���

��	
����		�����

�� ��

����

�� �

�� �

�� �

��	
�		�����

������

��	
����		�����

������

	
� 	
� 	�� 	
�

��

��

��

�
�

��

	
�
���

�
�

�� ���

	��

���

���
	
�

���

�
�

�	

�

� �

�� �������������������

���������������������

�������

���������������������

�������

�

�

���������������������������

� ��!����"����������������

Figure 3: S processes transactions in log order and updates its local structures. Each certifier processes the
transactions thatS assigns to it.

� �� ��

�
�

�� ���

��	
����		�����

�� ��

����

�� �

�� �

�� 	

��	
�		�����

������

��	
����		�����

������

��
��
��
	�

� �

� �

� �

�
�

��

��
���

�
�

�� ���

����
�

�	

�

�����

��	
�		�����

�������������

��	
�		�����

�������������

���

�

�

�

�

	

�

�
�

�� ������

�������������������������

�� ������

�������������������������

������������ ����� ����������!�

�� �"���#����������

�� ���$%�������&�"$������

�������������������

�� ����������!�����������

�� ����� ���������

�

�

	

�

�

��"$������%���%����"��"����

�' �(�� �)���� ��� ����� ��

�� �������$������� *��
�

��

��

Figure 4: For multi-partition transactions,S determines the synchronization constraints and assigns the transac-
tion toC0.

T5 is processed afterT2 (the last single-partition transaction accessingP1) and T3 (the last single-partition
transaction accessingP2). S reads LastAssignedLSNMap(P1) and LastAssignedLSNMap(P2) to determine
the LSNs of the last single-partition transactions forP1 andP2, respectively. The synchronization constraint
shown at 0 corresponds to this requirement, i.e., LastProcessedLSN(C1)≥ 2

∧
LastProcessedLSN(C2)≥ 3.

S passes the constraint toC0 along withT5. Then, at 1 , S updates LastLSNAssignedToC0Map(P1)= 5 and
LastLSNAssignedToC0Map(P2)= 5 to reflect thatT5 is the last multi-partition transaction accessingP1 andP2.
Any subsequent single-partition transaction accessingP1 orP2 must now follow the processing ofT5. At 2 and
3 C0 reads LastProcessedLSN(C2) and LastProcessedLSN(C1) respectively to evaluate the constraint. At this

point in time,C1 is still processingT2 and hence at4 the constraint evaluates to false. Therefore, even though
C2 has finished processingT3, C0 waits forC1 to finish processingT2. This occurs at5 , where it updates
LastProcessedLSN(C1) to 2. Now, at 6 C1 notifiesC0 about this update. SoC0 checks its constraint again and
sees that it is satisfied. Therefore, at7 it starts processingT5.

Figure 5 shows processing of the next transactionT6, a single-partition transaction that accessesP2. Since
both T5 and T6 accessP2, C2 can processT6 only after C0 has finished processingT5. Similar to other
single-partition transactions,S constructs this constraint by looking up LastLSNAssignedToC0Map(P2) which
is 5. Therefore, at0 S passes the constraint LastProcessedLSN(C0)≥ 5 to C2 along withT6, and at 1 sets
LastLSNAssignedToC0Map(P2)= 6. At 2 C2 reads LastProcessedLSN(C0)= 0. So its evaluation of the con-
straint at 3 yields false.C0 finishes processingT5 at 4 and sets LastProcessedLSN(C0)= 5. At 5 , C0 notifies
C2 that it updated LastProcessedLSN(C0), soC2 checks the constraint again and finds it true. Therefore, at6

it starts processingT6.
While C2 is waiting for C0, other certifiers can process subsequent transactions if the constraints allow

7

� �� ��

�
�

�� ���

��	
����		�����

�� ��

����

�� �

�� �

�� 	

��	
�		�����

������

��	
����		�����

������

��
��
��
	�

� �

� �

� �

�
�

��

���

�
�

��

���

����
�

�	

�

�� ���

�

�

�� ������

�������������������������

�������������������������������

�� � ���!����������

�� ���"#������
$� "������

�������������������

�� �����������������������

������������������

�� �������"��������%���

�

�

	

�

&

�� "������#���#���� �� ����

�'��(����)�����������������

������

������

�
�

��

�

	

�
&

���

��

�

���

��

Figure 5: Synchronization constraints to order single-partition transactions after a multi-partition transaction.

� �� ��

�
�

�� ���

��	
����		�����

�� ��

������ �

�� �

�	 �

��	
�		�����

������

��	
����		�����

������

��
��
	�
�

�� �

�� �

�	 �

�
�

��

���

�
�

��

���

����
�

�	

�

�� ���

�

�

�	 ������

��������������������������

����������������������������

�	 ������� ��������!���

������������������	��

" �����

�

	

�

��" ������#���#����"��"����

�$��%����&�����������������

������

������

�

��

���

����
�

�	

�
	

�

�

���
��

	�

Figure 6: Benefits of parallelization for single-partitiontransactions.C3 can start processingT7 while T6 is
waiting forT5 to complete onC0.

it. Figure 6 illustrates this scenario where the next transaction in the log,T7, is a single-partition transaction
accessingP3. Since no multi-partition transaction precedingT7 has accessedP3, at 0 the constraint passed to
C3 is LastProcessedLSN(C0)≥ 0. The constraint is trivially satisfied, whichC3 observes at3 . Therefore, while
C2 is waiting, at 4 C3 starts processingT7 in parallel withC0’s processing ofT5 andC2’s processing ofT6,
thus demonstrating the benefit of parallelizing the certifiers.

Figure 7 illustrates that if the synchronization constraints allow, even a multi-partition transaction can be
processed in parallel with other single-partition transactions without any waits. TransactionT8 accessesP1

andP3. At 0 , based on LastAssignedLSNMap,S generates a constraint of LastProcessedLSN(C1)≥ 2
∧

LastProcessedLSN(C3)≥ 7 and passes it along withT8 to C0. By the timeC0 starts evaluating its con-
straint, bothC1 andC3 have completed processing the transactions of interest toC0. Therefore, at2 and
3 C0 reads LastProcessedLSN(C1)= 2 and LastProcessedLSN(C3)= 7. So at 4 C0 finds that the constraint

LastProcessedLSN(C1)≥ 2
∧

LastProcessedLSN(C3)≥ 7 is satisfied. Thus, it can immediately start processing
T8 at 5 , even thoughC2 is still processingT6. This is another example demonstrating the benefits of parallelism.

As shown in Figure 8,S processes the next transaction,T9, which accesses only one partition,P2. Although
T8 is still active atC0 and hence blocking further activity onC1 andC3, by this timeT7 has finished running at
C2. Therefore, whenS assignsT9 to C2 at 0 , C2’s constraint is already satisfied at3 , soC2 can immediately
start processingT9 at 4 , in parallel withC0’s processing ofT8. Later,T8 finishes at 5 andT9 finishes at 6 ,
thereby completing the execution.

8

� �� ��

�
�

�� ���

��	
����		�����

�� ��

������ �

�� �

�	

��	
�		�����

������

��	
����		�����

������

�� �� �	 �

�� �

�� �

�	 �

�
�

��

���

�
�

��

���

����
�

�	

�

�� ���

�

�

������

������

�
�

��

���

����

�	

�
�

�� ��	 ������

������ � 	��

�

�
�

�	

�� ������

��������������������������

�� ������

������������������	�������

������������ ����� ���������

�� �������!������� "���

�� ���!#�������$�%!������

��������������������

�

	

�

�

�

��%!������#���#����%��%����

�& �'�� �(���� ��� ����� ��

���

Figure 7: Benefits of parallelization for multi-partition transaction.C0 can start processingT8 while C2 contin-
ues processingT6.

� �� ��

�
�

�� ���

��	
����		�����

�� ��

������ �

�� �

�� 	

��	
�		�����

������

��	
����		�����

������

��
��
�
	�

�� �

�� �

�� �

�
�

��

���

�
�

��

���

����
�

�	

�

�� ���

�

�

������

������

�
�

��

���

����

�	

�
�

�� ��	 ������

������
��

�� ������

��������������������������

������������ ����� ���������

�� �������!������� "���

�� ���!#�������$�%!������

��������������������

�

�

&

�

��%!������#���#����%��%����

�' �(�� �)���� ��� ����� ��

�
�

�� ���

�
�

&

�

���
���

�

�� ���!#�������$�%!������

��������������������

Figure 8: Parallel certifier continues processing the transactions in log order and the synchronization constraints
ensure correctness of the parallel design.

3.4 Discussion

Correctness requires that for each partitionPi, all transactions that accessPi are certified in log order. There are
two cases, single-partition and multi-partition transactions.

• The constraint on a single-partition transactionTi ensures thatTi is certified after all multi-partition trans-
actions that precede it in the log and that accessedPi. Synchronization conditions on multi-partition
transactions ensure thatTi is certified before all multi-partition transactions that follow it in the log and
that accessedPi.

• The constraint on a multi-partition transactionTi ensures thatTi is certified after all single-partition trans-
actions that precede it in the log and that accessed partitions {Pi1, Pi2, . . .} thatTi accessed. Synchro-
nization conditions on single-partition transactions ensure that for eachPj ∈ {Pi1, Pi2, . . .}, Ti is certified
before all single-partition transactions that follow it inthe log and that accessedPj .

Note that transactions that modify a given partitionPi will be certified byCi orC0 (but not both), depending on
whether it is single-partition or multi-partition.

The extent of parallelism achieved by the proposed parallelcertifier depends on designing a partitioning that
ensures most transactions access a single partition and that spreads transaction workload uniformly across the
partitions. With a perfect partitioning, each certifier canhave a dedicated core. So withn partitions, a parallel
certifier will run up ton times faster than a single sequential certifier.

9

Each of the variables that is used in a synchronization constraint—LastAssignedLSNMap, LastProcess-
edLSN, and LastLSNAssignedToC0Map—is updatable by only one certifier. Therefore, there areno race con-
ditions on these variables that require synchronization between certifiers. The only synchronization points are
the constraints on individual certifiers which can be validated with atomic read operations.

3.5 Finer-Grained Conflict Testing

The parallelized certifier algorithm generates constraints under the assumption that certification of two trans-
actions that access the same partition must be synchronized. This is a conservative assumption, in that two
transactions that access the same partition might access the same data item in non-conflicting modes, or might
access different data items in the partition, which impliesthe transactions do not conflict. Therefore, the syn-
chronization overhead can be improved by finer-grained conflict testing. For example, in LastAssignedLSNMap,
instead of storing one value for each partition that identifies the LSN of the transaction assigned to the partition,
it could store two values: the LSN of the last transaction that read the partition and was assigned to the partition
and the LSN of the last transaction that wrote the partition and was assigned to the partition. A similar distinc-
tion could be made for the other variables. Then, S could generate a constraint that would avoid requiring that
a multi-partition transaction that only read partitionPi be delayed by an earlier single-partition transaction that
only read partitionPi, and vice versa. Of course, the constraint would still need to ensure that a transaction that
wrotePi is delayed by earlier transactions that read or wrotePi, and vice versa.

This finer-grained conflict testing would not completely do away with synchronization betweenC0 and
Ci, even when a synchronization constraint is immediately satisfied. Synchronization would still be needed to
ensure that only one ofC0 andCi is active on a partitionPi at any given time, since conflict-testing within a
partition is single-threaded. Aside from that synchronization, and the use of finer-grained constraints, the rest of
the algorithm for parallelizing certification remains the same.

4 Partitioned Log

Partitioning the database also allows partitioning the log, provided ordering constraints between intentions in
different logs are preserved. The log protocol is executed by each server that processes transactions. Alterna-
tively, it could be embodied in a log server, which receives requests to append intentions from servers that run
transactions.

4.1 Design

In our design, there is one logLi dedicated to every partitionPi(∀i ∈ [1, n]), which stores intentions for
single-partition transactions accessingPi. There is also a logL0, which stores the intentions of multi-partition
transactions. If a transactionTi accesses onlyPi, its intention is appended toLi without communicating with
any other log. IfTi accessed multiple partitions{Pi}, its intention is appended toL0 followed by communication
with all logs{Li} corresponding to{Pi}. The log protocol must ensure the following constraint for correctness:

Partitioned Log Constraint: There is a total order between transactions accessing the same parti-
tions, which is preserved in all logs where both transactions appear.

Figure 9 provides an overview of the log sequence numbers used in the partitioned log design. A technique
similar to vector clocks is used for sequence-number generation [11, 17]. Each logLi for i ∈ [1, n] maintains
the single-partition LSN ofLi, denoted SP-LSN(Li), which is the LSN of the last single-partition log record
appended toLi. To order single-partition transactions with respect to multi-partition transactions, every log also
maintains the multi-partition LSN ofLi, denoted MP-LSN(Li), which is the LSN of the last multi-partition

10

�� ���� ��
��������	����
��

�

��������	����
��

�
�����

��������	����
��

�
�����

��������	����
��

�
�����

���	�
�����

�	�
������

�������

���	�
�����

�	�
������

�������

���	�
�����

�	�
������

�������

���	�
�����

�	�
������

�������

Figure 9: Ordering of entries in the log. Each logLi maintains a compound LSN ([MP-LSN(Li), SP-LSN(Li)])
to induce a partial order across conflicting entries in different logs.

transaction that accessedPi and is known toLi. The sequence number of each recordRk in logLi for i ∈ [1, n]
is expressed as a pair of the form[MP-LSNk(Li),SP-LSNk(Li)] which identifies the last multi-partition and
single-partition log records that were appended toLi, includingRk itself. The sequence number of each record
Rk in log L0 is of the form [MP-LSNk(L0), 0], i.e., the second position is always zero. All logs start with
sequence number[0, 0].

The order of two sequence numbers is decided by first comparing MP-LSN(Li) and then SP-LSN(Li).
That is,[MP-LSNm(Li),SP-LSNm(Li)] precedes[MP- LSNn(Lj),SP- LSNn(Lj)] iff either MP-LSNm(Li) <
MP- LSNn(Lj), or (MP-LSNm(Li) = MP-LSNn(Lj)

∧
SP-LSNm(Li) < SP-LSNn(Lj)). This technique

totally orders intentions in the same log (i.e., ifi = j), while partially ordering intentions of two different
logs (i.e., if i 6= j). If the ordering between two intentions is not defined, thenthey are treated as concurrent.
Notice that LSNs in different logs are incomparable, because their SP-LSN’s are independently assigned. The
assignment of sequence numbers is explained in the description of the log protocol.

4.2 Log Protocol

Single-partition transactions: Given transactionTi, if Ti accessed a single partitionPi, thenTi’s intention is
appended only toLi. SP-LSN(Li) is incremented and the LSN ofTi’s intention is set to[mp-lsn,SP-LSN(Li)],
where mp-lsn is the latest value of MP- LSN(L0) thatLi has received fromL0.
Multi-partition transactions: If Ti accessed multiple partitions{Pi1, Pi2, . . .}, thenTi’s intention is appended
to log L0 and the multi-partition LSN ofL0, MP-LSN(L0), is incremented. After these actions finish, MP-
LSN(L0) is sent to all logs{Li1, Li2, . . .} corresponding to{Pi1, Pi2, . . .}, which completesTi’s append.

This approach of log-sequencing enforces a causal order between the log entries. That is, two log entries
have a defined order only if they accessed the same partition.

Each logLi(∀i ∈ [1, n]) maintains MP-LSN(Li) as the largest value of MP-LSN(L0) it has received from
L0 so far. However, eachLi does not need to store its MP-LSN(Li) persistently. IfLi fails and then recovers, it
can obtain the latest value of MP-LSN(L0) by examiningL0’s tail. It is tempting to think that this examination of
L0’s tail can be avoided by havingLi log each value of MP-LSN(L0) that it receives. While this does potentially
enableLi to recover further without accessingL0’s tail, it does not avoid that examination entirely. To see why,
suppose the last transaction that accessedPi beforeLi failed was a multi-partition transaction that succeeded
in appending its intention toL0, butLi did not receive the MP-LSN(L0) for that transaction beforeLi failed.
In that case, afterLi recovers, it still needs to receive that value of MP-LSN(L0), which it can do only by
examiningL0’s tail. If L0 has also failed, then after recovery,Li can continue with its highest known value of
MP-LSN(L0) without waiting forL0 to recover. As a result, a multi-partition transaction might be ordered inLi

at a later position than where it would have been ordered if the failure did not happen.
Alternatively, for each multi-partition transaction,L0 could run two-phase commit with the logs correspond-

ing to the partitions that the transaction accessed. That is, it could send MP-LSN(L0) to those logs and wait for

11

�� ��

�
�

��

���

�� ��

�� ������������	
��� ������

��������������	��

�����

�� ������������	
��� ����

����������������	��

�

�

�

�� ������������	
��� ����

����������������	��
�

����� ����� �����

�
�

��

��	�

�

�
�

��

�
�

��

�
�

�	

�
�

��

��	�

�

�
�

��

��	�

�

�
�

�	

��	�

�

�� ������������	
��� ����

����������������	��

Figure 10: Single-partition transactions are appended to the single-partition logsL1, L2, andL3.

acknowledgments from all of them before logging the transaction atL0. However, like any use of two-phase
commit, this protocol has the possibility of blocking if a failure occurs between phases one and two.

To avoid this blocking, in our design, whenL0 recovers, it communicates with everyLi to pass the latest
value of MP-LSN(L0). When one of theLi’s recovers, it reads the tail ofL0. This recovery protocol ensures
that MP- LSN(L0) propagates to all single-partition logs.

4.3 An Example

Let us assume that a database has three partitionsP1, P2, P3. LetL1, L2, L3 be the logs assigned toP1, P2, P3

respectively, andL0 be the log for multi-partition transactions. Consider the following sequence of transactions:

T
[P2]
1 , T

[P1]
2 , T

[P2]
3 , T

[P3]
4 , T

[P1,P2]
5 , T

[P2]
6 , T

[P3]
7 , T

[P1,P3]
8 , T

[P2]
9

As earlier, a transaction is represented in the formT
[Pj...]
i wherei is a unique transaction identifier; note

that this identifier does not induce an ordering between the transactions. The superscript onTi identifies the
partitions thatTi accesses. We useTi to refer to both a transaction and its intention. In figures 10–14, the
vertical line at the extreme left shows the order in which theappend requests arrive; time progresses from top
to bottom. The LSN at the top of each figure shows each log’s LSNbefore it has appended the recently-arrived
transactions, i.e., the values after processing the transactions from the previous figure in the sequence. The black
circles on each vertical line for a log shows the append of thetransaction and the updated values of the LSN.
A multi-partition transaction is shown using a triangle andreceipt of a new multi-partition LSN at the single
partition logs is shown with the dashed triangle. The valuesupdated as a result of processing an intention are
highlighted in red.

Figure 10 shows four single-partition transactionsT1, T2, T3, T4 that are appended to the logs correspond-
ing to the partitions that the transactions accessed; the numbers 1 - 4 identify points in the execution. When
appending a transaction, the log’s SP-LSN is incremented. For instance, in Figure 10,T1 is appended toL2 at
1 which changesL2’s LSN from [0, 0] to [0, 1]. Similarly at 2 - 4 , the intentions forT2 − T4 are appended

and the SP-LSN of the appropriate log is incremented. Appends of single-partition transactions do not need
synchronization between the logs and can proceed in parallel; an order is induced only between transactions
appended to the same log. For instance,T1 andT3 both access partitionP2 and hence are appended toL2 with
T1 (at 1) precedingT3 (at 3); however, the relative order ofT1, T2, andT4 is undefined.

Multi-partition transactions result in loose synchronization between the logs to induce an ordering among
transactions appended to different logs. Figure 11 shows anexample of a multi-partition transactionT5 that
accessedP1 andP2. WhenT5’s intention is appended toL0 (at 1), MP-LSN(L0) is incremented to1. In step
2 , the new value MP-LSN(L0) = 1 is sent toL1 andL2. On receipt of this new LSN (step3), L1 andL2

12

�� ��

�
�

��

���

�� ��

�� ������ �	��
��
�������

����
������������

�����

�

�

�� ���		������
���� ����

��������������	��
��
�

����� ����� �����

�
�

��
�����

�
�

��

�
�

��

�
	

�

�
�

�� �����

�

�
�

��

�����

�
	

�
 �����

�� ��
���������������
��

�� ������

��	�

��	�

��	�

�

�
�
�

�����

�
�

�����

Figure 11: A multi-partition transaction is appended toL0 and MP-LSN(L0) is passed to the logs of the partitions
accessed by the transaction.

�� ��

�
�

��

���

�� ��

����� ����� ����� �����

�
�

��
�����

�
�

��

�
�

��

�
�

�	

�
�

�� �����

�

�
�

��

�����

�
�

�	 �����

�

�����

�����

�����

����� �

�
�

��

�

�	

�

�����

�
�

�� ��	�

�

�	
��	�

�

�����	
������	��	��
�	

����������	��	���
���
�

� ��	
������	��	��
�	

����������	��	���
���

Figure 12: Single-partition transactions that follow a multi-partition transaction persistently store the new value
of MP-LSN(Li) in Li.

update their corresponding MP-LSN, i.e.,L1’s LSN is updated to[1, 1] andL2’s LSN is updated to[1, 2]. As an
optimization, this updated LSN is not persistently stored in L1 or L2. If either log fails, this latest value can be
obtained fromL0 that stores it persistently.

Any subsequent single-partition transaction appended to either L1 or L2 will be ordered afterT5, thus es-
tablishing a partial order with transactions appended toL0. As shown in Figure 12,T6 is a single-partition
transaction accessingP2 which when appended toL2 (at 1) establishes the orderT3 < T5 < T6. As a
side-effect of appendingT6’s intention, MP-LSN(L2) is persistently stored as well.T7, another single-partition
transaction accessingP3, is appended toL3 at 2 . It is concurrent with all transactions exceptT4, which was
appended toL3 beforeT7.

Figure 13 shows the processing of another multi-partition transactionT8 which accesses partitionsP1 and
P3. Similar to the steps shown in Figure 11,T8 is appended toL0 (at 1) and MP-LSN(L0) is updated. The new
value of MP-LSN(L0) is passed toL1 andL3 (at 2) after which the logs update their corresponding MP-LSN
(at 3). T8 induces an order between multi-partition transactions appended toL0 and subsequent transactions
accessingP1 andP3. The partitioned log design continues processing transactions as described, establishing a
partial order between transactions as and when needed. Figure 14 shows the append of the next single-partition
transactionT9 appended toL2 (at 1).

13

�� ��

�
�

��

���

�� ��

����� ����� ����� �����

�
�

��
�����

�
�

��

�
�

��

�
�

�	

�
�

�� �����

�
�

��

�����

�
�

�	 �����

�

�����

�����

�����

�����

�
�

��

�

�	

�

�����

�
�

�� �����

�

�	
�����

�
�

����	

�
�

����	

� ��	�

��	�

�

�

��	�

�� 	
���� ��	������������

�����������������

�

�

�� ���	���
��������� 	
��

����������������	���
�

��
����������������������

�� 	
����

Figure 13: Different logs advance their LSNs at different rates. A partial order is established by the multi-
partition transactions.

�� ��

�
�

��

���

�� ��

����� ����� ����� �����

�
�

��
�����

�
�

��

�
�

��

�
�

�	

�
�

�� �����

�
�

��

�����

�
�

�	 �����

�

�����

�����

�����

�����

�
�

��

�

�	

�

�����

�
�

�� �����

�

�	
�����

�
�

����	

�
�

����	

�

�����

�����

�����

�� �	
������
��
�� ���

����������
�	
������
�

�
�

��

�
�

��
��	
�

Figure 14: The partitioned log design continues appending single-partition transactions without the need to
synchronize with other logs.

4.4 Concurrent Appends toL0

To ensure that multi-partition transactions have a consistent order across all logs, a new intention is appended to
L0 only after the previous append toL0 has completed, i.e., the new value of MP-LSN(L0) has propagated to
all single-partition logs corresponding to the partitionsaccessed by the transaction. This sequential appending
of transactions toL0 might increase the latency of multi-partition transactions. A simple extension can allow
parallel appends toL0 simply by requiring that each log partition retains only thelargest MP- LSN(L0) that it
has received so far. If a logLi receives values of MP-LSN(L0) out of order, it simply ignores the stale value
that arrives late. For example, suppose a multi-partition transactionTi is appended toL0 followed by another
multi-partition transactionTj, which have MP-LSN(L0) = 1 and MP-LSN(L0) = 2, respectively. Suppose log
Li receives MP-LSN(L0) = 2 and later receives MP-LSN(L0) = 1. In this case,Li ignores the assignment
MP-LSN(L0) = 1, since it is a late-arriving stale value.

4.5 Discussion

With a sequential certification algorithm, the logs can be merged by each compute server. A multi-partition
transactionTi is sequenced immediately before the first single-partitiontransactionTj that accessed a partition
thatTi accessed and was appended withTi’s MP-LSN(L0). To ensure all intentions are ordered, each LSN is
augmented with a third component, which is its partition ID,so that two LSNs with the same multi-partition and
single-partition LSN are ordered by their partition ID.

14

�

�

�

�

� �

�

�	
��������

�

�

�

�

� �

�	
��������

(a) Independent trees
�����������	 �����������

������������

�������������������

�����������������

�

�

�

�

� �

�

�

� �

(b) Lazily-maintained inter-partition links

Figure 15: Partitioning a database in Hyder. Subfigure (a) shows partitions as independent trees. Subfigure (b)
shows a single database tree divided into partitions with inter-partition links maintained lazily.

With the parallel certifier, the schedulerS adds constraints when assigning intentions to the certifiers. Cer-
tifiers Ci (i ∈ [1, . . . , n]) will process single-partition transactions appended toLi andC0 will process multi-
partition transactions appended toL0. ForCi (i ∈ [1, . . . , n]) processing a single-partition transaction with LSN
[MP-LSNk(Li), SP-LSNk(Li)], the certification constraint forCi is LastProcessedLSN(C0) ≥ [MP-LSNk(Li),
0]. This constraint ensures that the single-partition transaction is certified only afterC0 has certified the multi-
partition transaction with MP-LSNk(Li). ForC0 processing multi-partition transactionT that accessed partitions
{Pi} and has LSN [MP-LSNk(L0), 0], the scheduling constraint is

∧
(∀j:Pj∈{Pi}) LastProcessedLSN(Cj) ≥ Xj ,

whereXj is the LSN of the last single-partition transaction accessing Pj that appeared inLj beforeT . This
constraint ensures that the multi-partition transactionT is certified only after all single-partition transactions
that are ordered beforeT have been certified. These constraints can be deduced from the data structures that the
scheduling threadS maintains, as described in Section 3.1.

Consider for example the sequence of transactions in Section 4.3 and the LSNs assigned as shown in Fig-
ure 14. T6 is a single partition transaction with LSN [1, 3] is ordered after multi-partition transactionT5 with
LSN [1, 0]. T5’s position inL2 is betweenT3 and T6. The constraint passed toC2 which certifiesT6 is
LastProcessedLSN(C0) ≥ [1, 0]. This constraint ensures thatC2 certifiesT6 only afterC0 has certifiedT5.
Now consider the certification of multi-partition transaction T8 which accessed partitionsP1 andP3. C0’s con-
straint is LastProcessedLSN(C1) ≥ [0, 1]

∧
LastProcessedLSN(C3) ≥ [0, 2]. This ensures thatC0 certifiesT8

only afterC1 has certifiedT2 andC3 has certifiedT7.
To argue about correctness, we need to show that the partitioned log behaves the same as a non-partitioned

log. For sequential certification, the partitioned log is merged into a single non-partitioned log, so the result
follows immediately. For parallel certification, for each logLi (i 6= 0), the constraints ensure that each multi-
partition transaction is synchronized betweenL0 andLi in exactly the same way as in the single-log case.

If most of the transactions access only a single partition and there is enough network capacity, this partitioned
log design provides a nearly linear increase in log throughput as a function of the number of partitions. The
performance impact of multi-partition transactions is notexpected to be very high.

5 Partitioning in Hyder – An application scenario

As we explained in Section 1, Hyder is a system that uses OCC and a log-structured database that is shared by
all servers. Given an approximate partitioning of the database, the parallel certification and partitioned log algo-
rithms described in this paper can be directly applied to Hyder. Each parallel certifier would run Hyder’s OCC
algorithm, called meld, and each log partition would be an ordinary Hyder log storing updates to that partition.
Each log stores the after-image of the binary search tree created by transactions updating the corresponding par-
tition. Multi-partition transactions result in a single intention record that stores the after-image of all partitions,
though this multi-partition intention can be split so that aseparate intention is created for every partition.

15

The application of approximate partitioning to Hyder assumes that the partitions are independent trees as
shown in Figure 15(a). Directory information is maintainedthat describes which data is stored in each partition.
During transaction execution, the executer tracks the partitions accessed by the transaction. This information is
included in the transaction’s intention, which is used by the scheduler to parallelize certification and by the log
partitioning algorithm.

In addition to the standard Hyder design where all compute nodes run transactions (on all partitions), it is
possible for a given compute node to serve only a subset of thepartitions. However, this increases the cost of
multi-partition transaction execution and meld.

A design with a partitioned tree, as shown in Figure 15(b), isalso possible, though at the cost of increased
complexity. Cross-partition links are maintained as logical links, to allow single-partition transactions to pro-
ceed without synchronization and to minimize the synchronization required to maintain the database tree. For
instance, in Figure 15(b), the link between partitionsP1 andP3 is specified as a link from nodeF to the rootK
of P3. Since single-partition transactions onP3 modify P3’s root, traversing this link fromF requires a lookup
of the root of partitionP3. This link is updated during meld of a multi-partition transaction accessingP1 and
P3 and results in adding an ephemeral node replacingF if F ’s left subtree was updated concurrently with the
multi-partition transaction. The generation of ephemeralnodes is explained in [9].

6 Related Work

Optimistic concurrency control (OCC) was introduced by Kung and Robinson in [14]. Its benefits and tradeoffs
have been extensively explored in [1,2,12,16,18,20]. Manyvariations and applications of OCC have been pub-
lished. For example, Tashkent uses a centralized OCC validator over distributed data [10]. An OCC algorithm
for an in-memory database is described in [15]. None of theseworks discuss ways to partition the algorithm.

An early timestamp-based concurrency control algorithm that uses partitioning of data and transactions is
described in [5]. More recent examples of systems that partition data to improve scalability are in [3,13,19,21].

The only other partitioned OCC algorithm we know of is for theTango system [4]. In Tango, after a
server runs a multi-partition transactionT and appendsT ’s log record, it rolls forward the log to determine
T ’s commit/abort decision and then writes that decision to the log. The certifier of each partition uses that
logged decision to decide how to act on log records from multi-partition transactions. This enables the certifier
to update its version state of data, so it can perform OCC validation of single-partition transactions. That is,
each certifierCi reads the sequence of single-partition and multi-partition log records that read or updatedPi.
WhenCi encounters a multi-partition log record, it waits until it sees a decision record for that transaction in the
log. This synchronization point is essentially the same as that ofCi waiting forC0 in our approach. However,
the mechanism is different in two ways: the synchronizationinformation is passed through the log, rather than
through shared variables; and every server that runs a multi-partition transaction also performs the log roll-
forward to determine the transaction’s decision (althoughthis could be done by a centralized server, likeC0).
The experiments in [4] show good scalability with a moderatefraction of cross-partition transactions. It remains
as future work to implement the algorithm proposed here and compare it to Tango’s.

In Tango, all partitions append log records to a single sequential log. Therefore, the partitioned log constraint
is trivially enforced. By contrast, our design offers explicit synchronization between log records that access the
same partition. This enables them to be written to differentlogs, which in aggregate can have higher bandwidth
than a single log, like Tango’s.

Another approach to parallelizing meld is described in [6].It uses a pipelined design that parallelizes meld
onto multiple threads. One stage of the pipeline preprocesses each intentionI by testing for conflicts with
committed transactions before the final meld step. It also “refreshes”I by replacing stale data inI by committed
updates. The other stage combines adjacent intentions in the log, also before the final meld step. Each of these
stages reduces the work required by the final meld step.

16

7 Concluding Remarks

In this paper, we explained a design to leverage approximatepartitioning of a database to parallelize the certifier
of an optimistic concurrency control algorithm and its accompanying log. The key idea is to dedicate a certifier
and a log to each partition so that independent non-conflicting transactions accessing only a single partition can
be processed in parallel while ensuring transactions accessing the same partition are processed in a sequence.
Since partitioning of the database, and hence the transactions, need not be perfect, i.e., a transaction can ac-
cess multiple partitions, our design processes these multi-partition transactions using a dedicated multi-partition
certifier and log. The efficiency of the design stems from using lightweight synchronization mechanisms—
the parallel certifiers synchronize using constraints while the partitioned log synchronizes using asynchronous
causal messaging. The design abstracts out the details of the certifier and the logging protocol, making it ap-
plicable to a wide variety of systems. We also discussed the application of the design in Hyder, a scale-out
log-structured transactional record manager. Our design allows Hyder to leverage approximate partitioning to
further improve the system’s throughput.

References

[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient optimistic concurrency control using loosely
synchronized clocks.Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 23–34, 1995.

[2] D. Agrawal, A. J. Bernstein, P. Gupta, and S. Sengupta. Distributed multi-version optimistic concurrency
control with reduced rollback.Distributed Computing, 2(1):45 – 59, 1987.

[3] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Hush-
prakh. Megastore: Providing scalable, highly available storage for interactive services. InProc. 5th
Biennial Conf. on Innovative Data Systems Research, 2011.

[4] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M. Wei, J. Davis, S. Rao, T. Zou, and
A. Zuck. Tango: distributed data structures over a shared log. In Proc. 24th ACM Symp. on Operating
System Principles, pages 325–340, 2013.

[5] P. Bernstein, D. Shipman, and J. R. Jr. Concurrency control in a system for distributed databases (sdd-1).
ACM Trans. Database Syst., 5(1):1 – 17, 1980.

[6] P. A. Bernstein, S. Das, B. Ding, and M. Pilman. Optimizing optimistic concurrency control for tree-
structured, log-structured databases. InProc. ACM SIGMOD Int. Conf. on Management of Data, 2015.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[8] P. A. Bernstein, C. W. Reid, and S. Das. Hyder - a transactional record manager for shared flash. InProc.
5th Biennial Conf. on Innovative Data Systems Research, pages 9–20, 2011.

[9] P. A. Bernstein, C. W. Reid, M. Wu, and X. Yuan. Optimisticconcurrency control by melding trees.Proc.
VLDB Endowment, 4(11):944–955, 2011.

[10] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: Uniting durability with transaction ordering for high-
performance scalable database replication. InProc. 1st ACM SIGOPS/EuroSys European Conf. on Com-
puter Systems, pages 117 – 130, 2006.

17

[11] M. J. Fischer and A. Michael. Sacrificing serializability to attain high availability of data in an unreliable
network. InProc. 1st ACM SIGACT-SIGMOD Symp. on Principles of DatabaseSystems, pages 70–75,
1982.

[12] R. Gruber. Optimistic concurrency control for nested distributed transactions. Technical Report
MIT/LCS/TR-453, MIT, June 1989.

[13] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S.Zdonik, E. Jones, S. Madden, M. Stonebraker,
Y. Zhang, J. Hugg, and D. Abadi. H-store: a high-performance, distributed main memory transaction
processing system.Proc. VLDB Endowment, 1(2):1496 – 1499, 2008.

[14] H. T. Kung and J. Robinson. On optimistic methods for concurrency control.ACM Trans. Database Syst.,
6(2):213 – 226, 1981.

[15] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. Patel,and M. Zwilling. High-performance concurrency
control mechanisms for main-memory databases.Proc. VLDB Endowment, 5(4):298–309, 2011.

[16] G. Lausen. Concurrency control in database systems: A step towards the integration of optimistic methods
and locking. InProc. ACM Annual Conf., pages 64 – 68, 1982.

[17] D. S. Parker Jr., G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton, J. M. Chow, D. A. Edwards,
S. Kiser, and C. S. Kline. Detection of mutual inconsistencyin distributed systems.IEEE Trans. Software
Eng., 9(3):240–247, 1983.

[18] S. Phatak and B. R. Badrinath. Bounded locking for optimistic concurrency control. Technical Report
DCS-TR-380, Rutgers University, 1999.

[19] J. Rao, E. Shekita, and S. Tata. Using paxos to build a scalable, consistent, and highly available datastore.
Proc. VLDB Endowment, 4(4):243 – 254, 2011.

[20] A. Thomasian and E. Rahm. A new distributed optimistic concurrency control method and a comparison
of its performance with two-phase locking. InProc. 10th Int. Conf. on Distributed Computing Systems,
pages 294 – 301, 1990.

[21] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi. Calvin: fast distributed transac-
tions for partitioned database systems. InProc. ACM SIGMOD Int. Conf. on Management of Data, pages
1 – 12, 2012.

18

