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Abstract

We consider the problem of multi-task learn-
ing, that is, learning multiple related func-
tions. Our approach is based on a hierar-
chical Bayesian framework, that exploits the
equivalence between parametric linear mod-
els and nonparametric Gaussian processes
(GPs). The resulting models can be learned
easily via an EM-algorithm. Empirical stud-
ies on multi-label text categorization suggest
that the presented models allow accurate so-
lutions of these multi-task problems.

1. Introduction

In this paper we consider the case where there are
multiple related predictive functions to estimate. Hi-
erarchical Bayesian modeling provides a natural way of
obtaining a joint regularization for individual models
by assuming that model parameters are drawn from
a common hyperprior. In its simplest form, hierarchi-
cal Bayesian modeling means to learn point estimates
for the hyperparameters in the model. Effectively, an
“informed prior” distribution is learned.

Previous efforts were mostly put into hierarchical mod-
eling with parametric functions. Only few authors
have addressed hierarchical Bayesian modeling from
a nonparametric perspective. In this paper we study
the application of hierarchical Bayesian modeling to
Gaussian processes. First, we motivate the use of a
normal-inverse Wishart prior distribution for the mean
and covariance function at the training data points.
Then we show that, in a setting with a fixed number
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of data points, we can derive a finite representation
and an EM algorithm to find MAP estimates of func-
tional values, as well as prior mean and covariance
matrix. In addition, we show that also in a general
inductive setting, it is possible to write down both
the finite representations of the Gaussian process and
EM equations. Thus, we obtain exact predictions at
arbitrary test points. As a particular feature of the
presented approach, it is possible to explicitly write
down the “learned kernel” that captures all informa-
tion extracted from the individual tasks. Moreover, as
a practical issue of the suggested work, our nonpara-
metric model is more efficient than parametric models
in the situation of learning high dimensional functions,
since the complexity only depends on the training size.

The paper is organized as follows. In the following
section we describe the link between parametric lin-
ear models and Gaussian processes. In Sec. 3 we
briefly introduce multi-task learning from a hierarchi-
cal Bayesian point of view, followed by a discussion of
hierarchical linear models in Sec. 4. The main results
of our paper, namely hierarchical Bayesian modeling
applied to Gaussian processes, are presented in Sec. 5.
Sec. 6 contains experimental results validating our the-
oretical analysis.

1.1. Related Work

Research on modeling multiple related functions has
been carried in several strands. Multi-task learning
(Caruana, 1997) is aiming at sharing knowledge gained
in individual scenarios, by, for example, sharing hid-
den units in neural networks. A recent work is that of
(Evegniou & Pontil, 2004), where a set of linear func-
tions is used in a support vector machine framework.
The model considers only the mean of those linear
functions. Ando and Zhang (2004) present an iterative
algorithm that alternatively estimates the weights of
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linear functions and then performs PCA on the mul-
tiple functions’ weights. This essentially models the
covariance of the linear functions, and restricts the
freedom of the common structure by the chosen di-
mensionality of PCA. In contrast, the model we will
present subsequently considers both mean and covari-
ance of the multiple functions. Also, the dimensional-
ity of the common structure does not need to be chosen
explicitly.

In statistics, modeling data from related scenarios is
typically done via mixed effects models or hierarchical
Bayesian (HB) modeling (Gelman et al., 1995). In HB,
parameters of models for individual scenarios are as-
sumed to be drawn from a common (hyper)prior distri-
bution, allowing the individual models to interact and
regularize each other. Recent examples of HB mod-
eling in machine learning include (Bakker & Heskes,
2003; Blei et al., 2003). (Gelman et al., 1995) also
lists a number of references on hierarichal Bayesian
modeling, including hierarchical linear models. Most
recently, Chapelle and Harchaoui (2005) applied hi-
erarchical linear models for conjoint analysis, which
appears to be similar to our models in linear case.

The work of (Lawrence & Platt, 2004) presents a
multi-task approach specifically for Gaussian process
models, by inferring parameters of a shared covariance
function. As this is computationally very intensive, a
sparse approximation scheme has to be adopted. Sub-
sequently, (Schwaighofer et al., 2005) presented an ap-
proach to learning covariance matrices from multi-task
data via an EM-algorithm. Yet, generalization to new
data could only be achieved by an ad-hoc form of ker-
nel extrapolation. In contrast, the models presented
here address all these issues in one framework.

2. From Linear Models to Gaussian
Processes

In the subsequent sections, we will present a num-
ber of algorithms that can be used to learn from data
in multiple related scenarios. All of these algorithms
will make use of the duality between parametric linear
models and the equivalent Gaussian process. Thus, we
will first briefly outline this equivalence. The exposi-
tion here follows (Williams, 1998).

Data are given as input/output pairs D =
{(xi, yi)}n

i=1, with feature vector xi ∈ Rd and the out-
put yi ∈ R. If we assume that y is generated from a
linear function f(x) = wᵀx with additive noise ε, the

ridge regression estimate of f is

ŵ = arg min
w

n∑

i=1

(wᵀxi − yi)2 + λ‖w‖2, (1)

where ‖w‖ = wᵀw is the regularizer to constrain the
freedom of weights w.

From a Bayesian point of view, the regularizer is the
outcome of a prior distribution on function weights,
which in this case is assumed to be a Gaussian distri-
bution, i.e. w ∼ N (0, I). Given the training examples
D, the a posteriori distribution of w can be calculated
by applying Bayes rule,

p(w|D) =
1
Z

p(y|w,X)p(w) ∝ exp{−1
2
J(w)},

where Z is a constant independent of w, and J(w) =
1

σ2

∑
i(w

ᵀxi−yi)2+‖w‖2. It is easy to see that J(w) is
the same as the cost function in ridge regression if σ2 =
λ, thus the maximum a posteriori (MAP) estimate of
w gives the same result as ridge regression.

Furthermore, the sufficient statistics of p(w) com-
pletely specify the properties of the considered func-
tion space, which in turn are characterized by the mean
function

E(f(x)) = E(wᵀ)x = 0 (2)

and the covariance function

E(f(xi), f(xj)) = xᵀ
i Cwxj = 〈xi,xj〉 (3)

where Cw = I is the covariance matrix of w. It is easy
to see that, given any finite set {xi}, the joint distribu-
tion of {f(xi)} is a multivariate Gaussian distribution
N (0,K) with Ki,j = 〈xi,xj〉. Therefore, p(w) directly
specifies a Gaussian process (GP) prior on the function
space, with a zero mean function, Eq. (2), and covari-
ance function K(·, ·) given by Eq. (3). By appealing
to the standard equations for prediction with Gaus-
sian process, the predictive mean for training data
D = {(xi, yi)}n

i=1 is given by

f̂(x) =
∑

i

αiK(xi,x).

The coefficients α = (K + σ2I)−1y, with K being
the covariance matrix on training points, and y =
[y1, . . . , yn]ᵀ.

Viewing linear models as Gaussian processes offers a
number of advantages. Firstly, GPs directly work on
the kernel matrix for finite training points. Thus,
the modeling complexity is independent of the dimen-
sionality of x, which allows us to work on high or
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even infinite dimensional input spaces. Second, non-
linear functions can be handled by adopting a kernel
K(xi,xj) = 〈x′i,x′j〉 via a nonlinear feature mapping
x′ = φ(x).

3. Learning from Multiple Tasks

In the previous section, we have outlined linear models
for the case of estimating one function f that is un-
derlying some data D. In contrast, we consider here
the estimation of m related functions fl, l = 1, . . . ,m,
based on training data Dl = (Xl,yl). We assume
Xl ∈ Rnl×d, yl ∈ Rnl and nl is the size of training
data for fl. Since each function has a different set of
labeled points, there are in total n distinct data points
in {Dl} with min({nl}) ≤ n ≤ ∑

l nl. ∪Xl denotes the
set of distinguished x in {Dl}.
To allow the functions to share some common struc-
ture, one way would be to assume that {fl} are all sam-
pled from a common prior p(f). Thus, when trying to
capture the dependency between {fl}, one inevitably
has to learn the prior p(f). In general, it is very dif-
ficult to directly deal with an infinite-dimensional dis-
tribution p(f), unless it is conditioned on a finite set
of parameters of the form p(f |θ). In the latter case,
solutions are often quite straightforward. For exam-
ple, one can specify a GP prior with the covariance
function as a convex combination of some given kernel
functions, and then try to optimize the coefficients. In
essence, this approach is taken by (Lawrence & Platt,
2004). The maximum-likelihood (ML) estimate of θ
can be obtained by maximizing

p({yl}|{Xl}, θ) =
∏

l

∫
p(yl|fl,Xl)p(fl|θ)dfl

Alternatively, one can also derive the maximum
penalized likelihood estimate by specifying a hy-
per prior distribution p(θ) and then maximizing
p({yl}|{Xl}, θ)p(θ).

4. Multi-Task Linear Models

In this section we will consider multi-task learning with
(parametric) linear models. Linear models are both
highly relevant and popular for many real world ap-
plications (Zhang & Oles, 2001). More importantly,
like the connection between ridge regression and GPs,
linear models offer insights to nonparametric modeling
and thus pave the way for our further discussions.

Instead of the fixed p(w) we had assumed in Sec. 2 for
Bayesian ridge regression, we assume w ∼ N (µw,Cw)
and try to estimate µw,Cw from the data. To obtain a
maximum penalized likelihood estimate of µw,Cw, we

assume a normal-inverse-Wishart distribution as the
hyper prior,

p(µw,Cw) = N (µw|µw0
,
1
π
Cw)IW(Cw|τ,Cw0). (4)

This distribution is the conjugate prior for a multivari-
ate Gaussian distribution (Gelman et al., 1995). It can
be specified1 by means of scale matrix Cw0 with preci-
sion (or “equivalent sample size”) τ , and a prior mean
µw0

for µw with precision π. Similar to the setting
in Bayesian ridge regression, we assume Cw0 = I and
µw0

= 0. With these parameters, we obtain the fol-
lowing model:
Model 1. Given the hyper parameters π, τ,Cw0 = I
and µw0

= 0, define the generative model as:

1. µw,Cw are sampled once from the hyper prior as
in Eq. (4);

2. For each function fl, wl ∼ N (µw,Cw);

3. Given xi ∈ Xl, yl
i = wᵀ

l x + ε where ε ∼ N (0, σ2).

Learning such a model can be done by considering the
penalized likelihood, and optimizing with respect to
θ = {µw,Cw, σ2} via the following EM algorithm.2

• E-step: For each fl, compute the sufficient statistics
of p(wl|Dl, θ) based on current θ.

ŵl = Cwl

( 1

σ2
Xᵀ

l yl + C−1
w µw

)
(5)

Cwl =
( 1

σ2
Xᵀ

l Xl + C−1
w

)−1

(6)

• M-step: Optimize θ based on the last E-step.

µw =
1

π + m

∑

l

ŵl (7)

Cw =
1

τ + m

{
πµwµᵀ

w + τI +
∑

l

Cwl (8)

+
∑

l

[
ŵl − µw

][
ŵl − µw

]ᵀ
}

σ2 =
1∑
l nl

∑

l

‖yl −Xlŵl‖2 + tr[XlCwlX
ᵀ
l ] (9)

Here, tr[·] denotes the trace of a matrix.

Most computational complexity is in the E-step, where
a (modified) ridge regression problem has to be solved
for each of the m tasks. Thus the total cost is
O(kmd3), where k is the number of EM iterations.

1In the literature, a number of different parameteriza-
tions of the Wishart distribution are used, yet all can be
reduced to the one used here.

2A derivation is given in Sec. A. expectation-
maximization (EM) algorithm:
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5. Multi-Task Gaussian Processes

Similar to ridge regression, the learned prior
N (µw,Cw) in Model 1 defines a Gaussian process with
mean function µ(x) = µᵀ

wx and covariance function
K(xi,xj) = xᵀ

i Cwxj . When x is high-dimensional, it
is usually impossible to handle the prior N (µw,Cw)
directly. For such cases, the GP view of the linear
model can provide a feasible solution. Similar to the
discussion in Sec. 2, we will show in the following that
the multi-task linear Model 1 also has a nonparametric
counterpart in the GP framework.

We assume that the feature space is sufficiently high-
dimensional (or infinite), such that for the considered
range of random sample size n ¿ d, the inner prod-
uct κ(xi,xj) = 〈xi,xj〉 gives a valid positive definite
kernel. In case x is the outcome of a nonlinear map-
ping φ(t) from some original feature t, κ(·, ·) actually
defines a nonlinear kernel on the original feature space.

We will later refer to κ as the base kernel that de-
scribes the properties of the shared Wishart prior.
Note that this base kernel is different from the GP
kernel K(xi,xj), which denotes covariances in func-
tion space.

5.1. Transductive Multi-Task GPs

Sec. 4 described a hierarchical model, by specifying
properties of the weights of linear models. The follow-
ing theorem now relates these to the properties of the
mean and covariance function of the equivalent Gaus-
sian process.3

Theorem 5.1. Let S ⊂ Rd be the set of data
points, such that ∀x,x′ ∈ S, κ(x,x′) = 〈x,x′〉
defines a positive definite kernel. Then for any
given finite subset of points X = [x1, . . . ,xn] in S,
Model 1 equivalently specifies a prior distribution for
the mean µf and the covariance K of function values
f = [f(x1), . . . , f(xn)]ᵀ, which is a normal-inverse-
Wishart distribution,

p(µf ,K) = N (µf |0,
1
π
K)IW(K|τ, κ), (10)

where κ Â 0 with κi,j = κ(xi,xj).

The theorem essentially states that the GP kernel ma-
trix K on any subset of data points in S is a random
sample drawn from an inverse-Wishart distribution,
with the scale matrix equal to the base kernel matrix
κ and precision τ . One can simply generalize the con-
clusion to the case d →∞ such that S can be the whole
infinite-dimensional feature space. Then for any finite

3All proofs are given in the appendix.

set of data points, the corresponding µf and K follow
an inverse-Wishart distribution associated with a pos-
itive definite base kernel function κ(·, ·). In particular,
this holds if a nonlinear mapping is used for the base
kernel κ.

In this section, we restrict attention to the case that
one is only interested in function values and the kernel
matrix on a finite set of data (sometimes referred to as
transduction or working with partially labeled data).
In this case, the above theorem suggests the following
generative model:

Model 2. (Transductive Model) Let f l be the values
of fl on a set X, satisfying ∪Xl ⊆ X. Given the hyper
prior distribution described in Eq. (10), define as the
generative model:

1. µf ,K are sampled once from the hyper prior;

2. For each function fl, f l ∼ N (µf ,K);

3. Given xi ∈ Xl, yl
i = f l

i + ε where ε ∼ N (0, σ2).

The model is actually a realization of Model 1 but fo-
cusing on a finite set X. It indicates that the joint
distribution of function values on X is a Gaussian dis-
tribution with the hyper prior, Eq. (4), where the scale
matrix is the base kernel κ(·, ·) evaluated on X.

A similar model has been derived by (Schwaighofer
et al., 2005). Note that Model 2 still works if X is ex-
panded by including any number of new test points x,
as long as ∪Xl ⊆ X. This point was not well clarified
in (Schwaighofer et al., 2005). We call Model 2 trans-
ductive since the test points must be known before the
training.

5.2. Inductive Multi-Task GPs

In general, transductive models are not convenient for
practical use. Each time new test data is seen, the
EM algorithm needs to be re-run. A more flexible
(“inductive”) model can be derived from the following
theorem:

Theorem 5.2. Given µf and K sampled from the
hyper prior specified in Eq. (10), there exist unique
µα ∈ Rn and Cα ∈ Rn×n such that

1. µf = κµα, K = κCακ

2. ∀f = [f(x1), . . . , f(xn)]ᵀ, there exists a unique
α ∈ Rn such that, f = κα and α ∼ N (µα,Cα)

3. µα,Cα follow a normal-inverse-Wishart distribu-
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tion with scale matrix κ−1:

p(µα,Cα) = N (µα|0,
1
π
Cα)IW(Cα|τ, κ−1)

(11)

This suggests the following equivalent form of Model 2:
Model 3. (Inductive Model) Let f l be the values of
fl on a set X, satisfying ∪Xl ⊆ X. Given the hyper
prior distribution of µα,Cα described in theorem 5.2,
define as the generative model:

1. µα,Cα are generated once Eq. (11);

2. For each function fl, αl ∼ N (µα,Cα);

3. Given x ∈ Xl, y =
∑n

i=1 αl
iκ(xi,x) + ε where

ε ∼ N (0, σ2), xi ∈ X.

The estimates of θ = {µα,Cα, σ2} and αl can be
again learned via the following EM algorithm:4 The
complexity is now independent of dimensionality d of
data, but dependent on the training size n, which is
O(kmn3). When the training size is much smaller
than dimensionality (the case in our experiment on
text categorization), Model 3 is much more efficient
then Model 1.

• E-step: Estimate the expectation and covariance
of αl, l = 1, . . . ,m, given the current θ. .

α̂l =
( 1

σ2
κᵀ

l κl + C−1
α

)−1( 1

σ2
κᵀ

l yl + C−1
α µα

)
(12)

Cαl =
( 1

σ2
κᵀ

l κl + C−1
α

)−1

(13)

where κl ∈ Rnl×n is the base kernel κ(·, ·) evalu-
ated between Xl and X.

• M-step: Optimize µα,Cα and σ.

µα =
1

π + m

∑

l

α̂l (14)

Cα =
1

τ + m

{
πµαµᵀ

α + τκ−1 +
∑

l

Cαl

+
∑

l

[
α̂l − µα

][
α̂l − µα

]ᵀ
}

(15)

σ2 =
1∑
l nl

∑

l

‖yl − κlα̂
l‖2 + tr[κlCαlκ

ᵀ
l ] (16)

After the EM algorithm we obtain θ = {µα,Cα, σ2},
{α̂l} and the estimated inductive functions

f̂l(x) =
n∑

i=1

α̂l
iκ(xi,x) (17)

4The derivation is essentially the same as that for
Model 1, and is thus omitted.

Very importantly, the following theorem justifies the
estimated functions in Eq. (17).
Theorem 5.3. Suppose a finite set X is given, satis-
fying ∪Xl ⊆ X. Let S ⊂ Rd be the subspace spanned
by the columns of X and P be the orthogonal projec-
tion onto S. If there is a constraint w = Pw′ and
w′ ∼ N (µw,Cw) in Model 1, then the following holds:

1. The constrained Model 1 is equivalent to Model 3;

2. The estimates of wl, l = 1, . . . , m, in Model 1 are
invariant to the constraint.

According to Theorem 5.3, a certain modification to
the linear model 1 does not change the estimates of
functions, and meanwhile the newly derived model
becomes identical to the inductive multi-task GP
Model 3. The message is that, working with a finite
model Model 3 will give exactly the same estimates of
functions fl achieved in the infinite dimensional case
of 1. Furthermore, the theorem also indicates that
Model 3 will give the same f̂l as long as ∪Xl ⊆ X,
which suggests we can just set X = ∪Xl in Model 3
to achieve the highest efficiency.

According to Theorem 5.2, the GP kernel matrix on
the finite points X is restored as K = κCακ. However,
the general kernel function K(·, ·) is still unknown, but
can be approximated by:

K(xi,xj) ≈ κ(xi, ·)ᵀCακ(xj , ·) (18)

where κ(x, ·) = [κ(x,x1), . . . , κ(x,xn)]ᵀ. The learned
kernel will be helpful in learning new functions. Since
the approximation is finite-dimensional, we use the
base kernel to compose a valid positive definite ker-
nel function

K(xi,xj) ≈
[
mκ(xi, ·)ᵀCακ(xj , ·) + τκ(xi,xj)

]

τ + m
.

(19)

The composition is rather empirical, but the intuition
behind is to weight the learned covariance function
and the base kernel by their corresponding equivalent
sample sizes.

6. Experiments

6.1. A Toy Problem

To illustrate how the presented models can learn co-
variance functions, we reproduce the toy problem of
(Schwaighofer et al., 2005). The data in Fig. 1(a) are
samples from a Gaussian process with neural network
covariance function, each of the M = 20 scenarios cor-
responds to one “noisy line” of points. The underlying
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Figure 1. Kernels learned from multiple functions: (a) toy
data—multiple functions; (b) true kernel matrix; (c) base
kernel matrix; (d) learned kernel matrix.

covariance function is visualized in Fig. 1(b), by eval-
uating the true covariance on a grid on [−1, 1]. Model
3 was used to learn on this data, with the base kernel
shown in Fig. 1(c). The “learned covariance” Eq. (18)
is visualized in Fig. 1(d), again by plotting the covari-
ance matrix on the [−1, 1] grid.

6.2. Text Categorization

We next consider multi-task learning on a subset of the
RCV1-v2 text data set, provided by Reuters and fur-
ther processed by (Lewis et al., 2004). Since it is com-
mon that one document is assigned to multiple topics,
this is an ideal data set for multi-task learning, with
a binary classifier for each category. As preprocessing,
we pick 10000 documents (all topics with more than
50 examples), with a total of 81 categories, and use
TFIDF features. On average, each category contains
180 positive documents, and each document belongs
to 3.96 topics.

In the first experimental setting, we aim to learn bi-
nary classifiers using Model 3 for 50 selected cate-
gories. The training example set is fixed with 1000
examples, from which 300 examples for each category
are randomly selected to be labeled as +1 (in this
class) or −1 (not in this class). The remaining ex-
amples are left as unlabeled. Each category has its
own labeled example set, which is different from each
other. The learned classifiers are then used to pre-
dict the labels of all the unlabeled examples. In this
case the test set contains 9700 examples for each class.
However, we distinguish two settings All and Par-
tially Labeled. The first is the evaluation on all

the test points, while the second is on those exam-
ples with at least one label in some category. We
use three common metrics, namely AUC (area un-
der ROC curve), micro-averaged F-value, and macro-
averaged F-value. AUC mainly reflects the ranking
quality of predictions. The both F-values measure the
classification accuracy in the situation of unbalanced
classes. In particular, micro-averaged F-value reflects
the quality on the classes with more positive exam-
ples, while macro-averaged F-value emphasizes on the
minor classes. For all the three criteria, larger value
indicates better performance. We compare multi-task
GP, regularized multi-task learning (Evegniou & Pon-
til, 2004), linear ridge regression and linear support
vector machine (SVM-light, Joachims, 1998). For the
multi-task GP, π is set to a large value, to constrain the
mean function of the learned GP to zero, and τ = 1.
The base kernel is just the linear inner product. For
the other algorithms, parameters are set to the val-
ues that optimize error rates in cross-validation on the
training data. We randomize the setting for 10 times.
The averaged results are reported in Tab. 1. Multi-
task learning outperforms the other two algorithms
with respect to all performance criteria, in particular
the performance on the partially labeled data is signif-
icantly better. The poor performance of SVMs can be
explained in part by the fact that the SVM hinge loss
is not well suited for unbalanced data (Zhang & Oles,
2001). Regularized multi-task learning performs sim-
ilar to SVM. We attribute this to the fact that there
is no shared mean function over these categorization
classifiers, thus regularized multi-task learning models
each function independently.

In the second experimental setting, we test the learned
kernel Eq. (19) on 31 new categories. The results are
shown in Fig. 2, where the method labeled ’Multi-task
GP’ is in fact kernel ridge regression using the kernel
learned by the multi-task GP. We increase the training
size from 10 to 500 and randomize 50 times by choos-
ing the learned kernel (recall that there are 10 choices
from the first experimental setting) and the training
set. Mean performance and error bars are visualized.
The results demonstrate that the multi-task GP learns
an implicit feature mapping from previously handled
tasks, and then generalizes to new, related tasks.

7. Summary and Conclusions

In this paper, we presented a Gaussian process ap-
proach to HB learning, by employing the correspon-
dence between parametric linear models and the equiv-
alent Gaussian process model. The final model, pre-
sented in Sec. 5, is a both efficient and accurate tool
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Table 1. Comparison of four algorithms for text categorization on RCV1

ALL Partially Labeled
AUC F-micro F-macro AUC F-micro F-macro

Multi-Task GP 0.773 0.605 0.260 0.826 0.623 0.281
Regularized Multi-Task Learning 0.701 0.571 0.232 0.709 0.545 0.216
Ridge Regression 0.756 0.584 0.245 0.771 0.564 0.240
SVM 0.697 0.573 0.221 0.716 0.547 0.212
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Figure 2. Generalization of learned kernels on new categories

for solving multi-task learning problems, as our exper-
iments on multi-label text categorization suggest. We
emphasize that, for the models presented here, no form
of complex optimization problem needs to be solved,
so that real-world multi-task problems can be han-
dled. Also, note that the inductive model 3 is learning
a new kernel function that captures information col-
lected from the individual data sets in a compact form,
that can be used in further learning tasks.
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A. Derivation of the EM Algorithm for
Model 1

The joint distribution of yl and wl given θ is

p({yl}, {wl}|{Xl}, θ) =
∏

l

1

Zl
exp

(− 1

2
J(wl)

)

where Zl is a normalization term, and the exponential term
J(wl) equals to

1

σ2

∑

i∼l

(wᵀ
l xi − yl

i)
2 + (wl − µw)ᵀC−1

w (wl − µw)

Based on the joint distribution and Bayes rule, at the E-
step, since the a posteriori distribution of latent variables
wl as a product of m Gaussian posteriori distributions,
we compute the sufficient statistics of each Gaussian. The

expectation of wl is obtained by setting ∂J(wl)
∂wl

= 0, which

leads to

ŵl =
( 1

σ2
Xᵀ

l Xl + C−1
w

)−1( 1

σ2
Xᵀ

l yl + C−1
w µw

)

The covariance of wl can be derived from computing the

inverse of Hessian Cwl =
( ∂J(wl)

∂wl∂w
ᵀ
l

)−1
=

(
1

σ2 Xᵀ
l Xl +

C−1
w

)−1

At the M-step, we optimize µw,Cw, σ2 to maxi-

mize the penalized expected log-likelihood of complete data
over the a posteriori distribution estimated from the E-
step. The negative log-likelihood of complete data is

− ln p({yl}, {wl}|µw,Cw, σ)

=
1

2

∑

l

[
(nl + d) ln 2π + nl ln(σ2) + ln |Cw|

+
1

σ2
‖yl −Xlwl‖2 + (wl − µw)ᵀC−1

w (wl − µw)
]

The corresponding expectation is

Q(θ) = const +
m ln |Cw|

2
+

∑

l

nl ln σ

+
1

2

∑

l

{
E

[
wᵀ

l

( 1

σ2
Xᵀ

l Xl + C−1
w

)
wl

]

− 2E

[
wᵀ

l

( 1

σ2
Xᵀ

l yl + C−1
w µw

)]

+
1

σ2
yᵀ

l yl + µᵀ
wC−1

w µw

}

where const = 1
2

∑
l(nl+d) ln 2π, and the two expectations

are

E

[
wᵀ

l

( 1

σ2
Xᵀ

l Xl + C−1
w

)
wl

]
=

Tr

[( 1

σ2
Xᵀ

l Xl + C−1
w

)
Cwl

]
+ ŵᵀ

l

( 1

σ2
Xᵀ

l Xl + C−1
w

)
ŵl

E

[
wᵀ

l

( 1

σ2
Xᵀ

l yl + C−1
w µw

)]
= ŵl

( 1

σ2
Xᵀ

l yl + C−1
w µw

)

The updates of θ are then achieved by arg maxθ Q(θ) +
ln p(µw,Cw) where p(µw,Cw) is the hyper prior. The
maximization is very straightforward and has to be omitted
due to the space limitation here.

B. Proofs

In the proofs we often use the following property of
the Wishart distribution (Gupta & Naga, 1999, Theo-
rem 3.3.11):

Lemma 1. For A ∈ Rp×p, A ∼ IW(τ, Λ), and nonsingu-
lar B ∈ Rp×q, then BᵀAB ∼ IW(τ,BᵀΛB).

B.1. Theorem 5.1

Proof. This is a simple application of Lemma 1. Since
X is always a linearly independent set, κ = XXᵀ Â 0
and X is nonsingular. Given the normal-inverse-Wishart
distribution defined in Eq. (4), the new base covariance
matrix E(fᵀf) = XCw0X

ᵀ = κ and the covariance of µf

clearly becomes 1
π
K, which completes the proof.

B.2. Theorem 5.2

Proof. (1) Given κ Â 0, there are unique µα = κ−1

and Cα = κ−1Kκ−1; (2) Again, since κ Â 0, α =
κ−1f , E(α) = κ−1E(f) = µα and Cα = E(ααᵀ) =
κ−1E(f fᵀ)κ−1; (3) The conclusion simply follows from
Lemma 1, since Cα = κ−1Kκ−1, the corresponding base
covariance Cα0 = Cα = κ−1Cfκ

−1 = κ−1.

B.3. Theorem 5.3

Proof. For w ∈ S, since X is nonsingular and thus com-
posed by a set of linearly independent columns, there
is a unique α satisfying w = Xᵀα. Then we have
f(x) = wT x =

∑n
i=1(α)iκ(xi,x) and the function val-

ues on X with the form f = κα. Furthermore, there
is K = E(f fᵀ) = XE(wwᵀ)Xᵀ = κE(ααT)κ = κCακ
which gives Cα = κ−1Kκ−1. Then it is clear that The-
orem 5.2 as well as Model 3 apply here, which finishes
the first part. For the second part, we first show that
the mean µw lies S. There is a decomposition µw =
Pµw + (I − P)µw = µ‖ + µ⊥. The part µ⊥ is orthog-
onal to labeled examples ∪Xl, thus has no impact on the
likelihood but just decreases the probability p(µw). Thus,
this term vanishes at the optimum, which means µw ∈ S.
Then, any function weight w ∈ N (µw,Cw) can be decom-
posed as w = µw+v, where the offset v ∼ N (0,Cw) can be
further decomposed as v = Pv + (I−P)v = v‖ +v⊥. For
the same reason v⊥ also vanishes at the optimum. There-
fore we simply restrict µ⊥ and v⊥ = 0 and still obtain the
same estimates ŵl.


