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Abstract—The goal of addressee detection is to answer the
question, “Are you talking to me?” When a dialog system
interacts with multiple users, it is crucial to detect when a user is
speaking to the system as opposed to another person. We study
this problem in a multimodal scenario, using lexical, acoustic,
visual, dialog state, and beamforming information. Using data
from a multiparty dialog system, we quantify the benefits of
using multiple modalities over using a single modality. We also
assess the relative importance of the various modalities, as
well as of key individual features, in estimating the addressee.
We find that energy-based acoustic features are by far the
most important, that information from speech recognition and
system state is useful as well, and that visual and beamforming
features provide little additional benefit. While we find that
head pose is affected by who the speaker is addressing, it
yields little nonredundant information due to the system acting
as a situational attractor. Our findings would be relevant to
multiparty, open-world dialogue systems in which the agent plays
an active, conversational role, such as an interactive assistant
deployed in a public, open space. For these scenarios, our study
suggests that acoustic, lexical, and system-state information are
an effective and practical combination of modalities to use for
addressee detection. We also consider how our analyses might be
affected by the ongoing development of more realistic, natural
dialogue systems.

Index Terms—Addressee detection, multimodal, human-
human-computer, multiparty, dialog system, speech recognition,
prosody, head pose, beamforming

I. INTRODUCTION

MORE and more, speech-enabled dialog systems are
embedded in our environment in entertainment sys-

tems, mobile phones, and wearable accessories. These devices
increasingly employ multimodal sensors and allow for natural
interactions via conversational software agents. The confluence
of these trends exacerbates the problem of knowing when to
interpret the user’s inputs as system-directed, rather than as
unrelated actions or communication with other humans. For
vision-based systems, this is often called the “Midas Touch”
problem. For speech-based systems, this problem is known as
addressee detection (AD).

Addressee detection tries to answer the question, “Who
are you talking to?” In human-to-computer (H-C) interac-
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tions, the problem includes the rejection of self-talk and
background speech, but becomes harder in a multi-human-
computer scenario, since users now have a choice of talking
to the system as well to other humans. Traditionally, user
interfaces have been engineered to remove addressee ambi-
guity (e.g., through prompted interaction or push-to-talk), or
to assume that all potential inputs are system-directed and to
reject them based on failure-to-recognize or failure-to-interpret
[1][2]. Both approaches are no longer feasible as systems
allow natural interactions with essentially unlimited domain
coverage (e.g., the input could comprise a general search
query in conversational form). We must therefore look to
more comprehensive cues and more sophisticated classification
methods to determine addressee for a potential input.

The work reported here improves upon two previous lines
of work on human-human-computer (H-H-C) addressee detec-
tion. One is our previous work on multimodal interfaces and
the exploitation of multiple modalities for addressee classi-
fication [3][4]. The other is the characterization of speaking
style and lexical content, which in conjunction yield highly
accurate addressee estimates based on speech alone [5][6][7].
The present paper has two main contributions. The first main
contribution is to present the most comprehensive multimodal
approach to date, which includes a much wider range of
information than previous approaches and incorporates re-
cent advances in speech-only AD. Specifically, we combine
prosodic, lexical, visual, dialog state, and beamforming infor-
mation as can now be obtained from consumer-grade sensors
and speech technology. The second main contribution is to
determine what type of information is most useful for the AD
task in the multimodal scenario, both at the feature level and
by modalities in aggregate. This type of analysis can both
guide future research into the problem and inform engineering
solutions that need to achieve best possible results with the
least resources and complexity.

The paper is organized as follows. Section II reviews related
work. Section III describes the experimental setup, including
a detailed explanation of our multimodal addressee detection
system. Section IV reports the results of our experiments,
while Section V describes various analyses to determine de-
tailed contributions to overall performance. Finally, Section VI
summarizes the findings and open questions.

II. RELATED WORK

In this section we summarize previous work and explain
how this paper fits into the broader landscape of research.

A natural starting point in tackling addressee detection is
understanding human behavior and language in group situa-
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tions involving a computer or robot. There is a large body of
work in the human computer interaction field on this topic,
and out of this large body of work we will sift out three key
observations. The first observation is that people tend to look
at the device they are talking to. Works by Brumitt and Cadiz
[8] and Maglio et al. [9] show that, when confronted with
multiple speech-enabled devices, people specify the recipient
of their request through eye gaze. The second observation is
that how a person sees a robot strongly shapes how he or she
interacts with it. For example, Lee et al. [10] demonstrate that
people interact with a robot differently depending on whether
they see the robot as an information kiosk or a receptionist.
The third observation is that humans tend to rely on several
different types of information to discern the addressee in H-
H-C interactions. Several previous works have examined the
various cues that human evaluators use to discern the intended
addressee in recordings of multiparty interactions involving a
computer or information retrieval agent [11] [12] [13]. These
studies find that humans use a combination of lexical, gaze,
and prosodic information. All of the above work motivates our
multimodal approach to AD.

Next, we look at previous work in automatic addressee
detection in H-H-C scenarios. As mentioned above, the way
people interact with a computer system depends heavily on
the nature of the computer system. For this reason, we
will distinguish between two separate categories: scenarios in
which the computer system is passive and scenarios in which
the computer system is an active, conversational agent.

A number of works have focused on H-H-C scenarios
where the computer system is passive and simply receives
commands. Shriberg et al. [5], [7] focus on audio information
only and explore various lexical and prosodic features for
addressee detection. The setup involves two users trying to
accomplish a web-browsing task using speech commands to
control the system. These studies show that acoustic-prosodic
features modeling energy contour and raised voice are very
effective, suggesting that speakers use different speaking styles
depending on who they are talking to. Bakx et al. [14]
explore face orientation and utterance length to do addressee
detection. In this scenario, a user and partner use a tap-
and-talk information kiosk to buy train tickets. Katzenmaier
et al. [15] explore head pose and lexical features based on
automatic speech recognition (ASR) hypotheses. In this setup,
a host introduces an imaginary household robot to a guest and
demonstrates some of its functionality. The studies by Bakx
and Katzenmaier both find that the computer or robot is a
major situational attractor. In other words, people continued
looking at the computer while talking to each other. Note that
the above works consider a variety of features for AD, but each
work only considers a few selected features or modalities.

Finally, we consider works that investigate H-H-C scenarios
where the computer is an active, conversational agent, which
is the scenario of focus in this study. In these scenarios,
the computer both listens and speaks during interactions with
users. Baba, Huang, and colleagues [16], [17] explore prosodic
and head pose information to predict the addressee in a
multiparty, Wizard-of-Oz (WOZ) experiment. They find that
intonation, volume, and rate of speech are useful features, but

that head direction alone is insufficient to make good predic-
tions. Van Turnhout et al. [18] explore eye gaze, dialog state,
and utterance length as predictors for addressee detection. This
is also a WOZ setup in which two users engage with an
interactive information kiosk to book train tickets. They also
find that the screen is a major situational attractor. Skantze
and Gustafson [19] use head pose to monitor a user’s attention
when he or she alternately interacts with a human tutor and
an interactive virtual scheduling assistant. This study finds that
head pose is an effective cue for predicting addressee.

One shortcoming of all of the above approaches is that
they generally focus on only a few selected features or
modalities, which makes it difficult to perform a systematic
study of the importance of various features or modalities.
Understanding which individual features are most important is
useful in guiding the development of more effective features
for AD. Understanding which modalities are most important
is useful for economy of implementation, especially since
adding a modality often incurs a significant cost in equipment
(e.g. adding a microphone array or video camera), in system
complexity (i.e. having to incorporate multiple modalities
of information), and in data processing (e.g. running face
detection on a video stream). Such understanding will be of
practical use to researchers building a system that requires
addressee detection.

The goal of this current work is to undertake such a system-
atic study: we adopt a comprehensive multimodal approach
to AD in a multiparty dialogue system in which the agent
is an active, conversational agent. We are aware of only
one other work, by Vinyals et al. [4], which examines AD
in the context of a rich multimodal data set. Our current
work uses the same rich multimodal data set as their study,
but with a different focus. The Vinyals et al. study explores
discriminative learning techniques applied to raw data streams,
whereas our focus is on exploring a much richer, broader set of
multimodal features in order to facilitate the study of feature
importance as described above. These multimodal features
cover a much wider range of information than any of the
individual works previously described, and they incorporate
recent advances in strong audio-only (prosodic and lexical)
features [5]. Furthermore, this work presents the first detailed
and comprehensive analysis of the relative importance of and
synergies among different features and modalities for the AD
task.1

III. EXPERIMENTAL SETUP

We will explain the experimental setup in three parts: the
data, the features, and the classifiers.

A. Data

In order to explore the use of multimodal features for AD in
H-H-C interactions, we need a data set that satisfies several key

1This paper extends our earlier work [20], expanding the experiments to
include several different classifiers, investigating the most important individual
features, studying the effect of absolute energy and post-utterance context,
looking more closely into why the visual modality was not very important,
and conducting statistical tests on differences in equal error rate.
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Fig. 1. A snapshot of the collection setup.

criteria. First, the data must contain multimodal information.
Some previous work has focused on addressee detection using
only audio information, so the data sets in those experiments
may not be suitable for our purposes. Second, the data should
comprise multiparty interactions in which two or more humans
simultaneously interact with a dialogue system. Third, the
interactions should allow people the option to talk to the
computer or to another person. If people are only allowed
to interact with the computer, the problem of AD becomes
trivial. Fourth, the data must have ground truth annotations
of who is being spoken to. Annotating addressee information
is time-consuming and is perhaps the most restrictive of the
criteria.

Based on these criteria, we selected a data set from a
multiparty dialogue setup described by Bohus and Horvitz
[21]. The scenario involves groups of two or three people
playing a trivia question game with a computer agent. The
computer agent is a represented as a talking face displayed
on a 19-inch computer monitor. The agent has controllable
head pose and limited facial gestures, and it engages with the
participants through dialogue and face movement. The agent
asks the group questions, confirms what one participant says
with one other participant, and then tells them if their answer
is correct. The data set was designed to study computational
models of multiparty turn-taking, and it encourages natural,
fluid interactions. Figure 1 shows a snapshot of the data
collection setup.

Participants were recruited in pairs of people who knew
each other. They were divided into 15 groups of 4, where
each group consists of two pairs. Within each group of 4,
every possible subgroup of two or three was formed, and each
subgroup played one game together. This results in 10 games
per group and 150 games in total.

The data available for our use included audio, video, beam-
forming, system state, and ASR information. The audio was
recorded by a linear microphone array, which can be seen
in Figure 1 as a thin rectangular bar located directly above
the upper bezel of the monitor. The array is symmetric and
contains four uni-directional microphones, where the outer pair
of microphones are located 190 mm apart and the inner pair are
located 55 mm apart. The audio is processed with the built-in
Windows microphone array support, which provides acoustic
echo cancellation, minimum variance distortionless response

beamforming, and source localization in 10 degree increments.
The audio is further processed with the integrated Windows
speech recognizer using simple grammars. The video data was
collected with a wide-angle AXIS 212 camera with a resolu-
tion of 640x480 pixels. The camera can be seen in Figure 1
located above the microphone array. The system processes the
video data in real-time to track the faces of each participant.
It performs face detection on each frame, and then associates
detections across frames using a proximity based algorithm
[22]. For each detected face, the system runs a Bayesian pose-
tracking algorithm [23] which produces estimates of 3D head
orientation. In addition to the audio and video information,
the system logs information describing various aspects of the
interaction, such as how many participants there are, what the
computer agent is saying, and who the agent is looking at.
More detailed information about the setup can be found in the
original works by Bohus and Horvitz [24], [21]. Note that all
of the information described above is collected or computed
in real-time during the actual interaction, but we perform our
AD experiments in an offline setting.

In addition to the raw data, the data set includes manual an-
notations. The audio was automatically segmented by a speech
activity detector, and the resulting utterances were manually
annotated with speech, speaker, and addressee information.
Because the interactions between participants are unscripted,
overlapped speech is a common occurrence. When there is
overlapping speech, the speaker, speech, and addressee infor-
mation was annotated for each stream of speech separately.
Note that when two people are speaking at the same time, one
might be talking to the computer while the other is talking to
another person. To handle cases like these, we considered an
utterance to be directed towards the computer if any speech
within the utterance is addressed to the computer.

Though this data set satisfies the essential criteria mentioned
above, it is important to point out that there are virtual
agents with more sophisticated capabilities than the computer
agent in our study. For example, DeVault et al. [25] have
developed a full-body virtual human interviewer that tracks
the interviewee’s face pose and location, gaze direction, and
facial expression. This additional information allows the agent
to respond in a more sensitive and personal way, which creates
a more natural social interaction. Bohus et al. [26] have also
deployed physical robots in public spaces that engage with one
or more people, engaging in dialogue and giving directions
both verbally and with physical gestures. When interpreting
the conclusions and findings of our study, it will thus be
important to keep in mind the limitations of the computer
agent and the ongoing development of more natural dialogue
systems.

B. Data Usage

For our experiments, we divided the utterances into 15
folds, which correspond to the 15 groups of 4 participants.
We used 8 of the folds for training and the other 7 for testing.
The training and test sets had 2001 and 1952 utterances,
respectively. Some features are computed as log likelihood
ratios of class-specific models, and require training data for
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those models.2 For these likelihood-ratio features, we were
careful to avoid reuse of the data that could bias the features.
When computing likelihood-ratio features on the training set,
we train the utterance class models on 7 training folds and used
the resulting models to compute features for the 8th fold. We
repeated this in a round-robin fashion to compute features on
all 8 training folds. When computing likelihood-ratio features
on the testing set, we used models trained on all 8 training
folds. This arrangement ensures that our model-based features
are not optimistically biased.

C. Features

We explored 5 different modalities of features: acoustic,
visual, system, beamforming, and ASR. For each modality,
we describe the features extracted and the intuition behind
their design. The number of features is shown in parentheses.

Acoustic. We extracted three families of acoustic features.
The first family consisted of energy features, i.e., measures of
frame-level energy over various intervals of time (21 features).
Examples include: (1) the average energy during the first
third of the utterance, (2) the maximum frame-level energy
throughout the utterance, and (3) the average energy during
the 1 second interval preceding the utterance. The various
intervals include frames up to three seconds before and after
the utterance. The intuition behind these features is that people
tend to speak more loudly when addressing the computer, so
energy measures may help discriminate between computer-
and human-directed utterances.

The second family of acoustic features consisted of energy
change features (24 features). These features compute the
difference in energy between two neighboring intervals in
time. Examples include: (1) the difference between the average
energy during the utterance and the average energy during the
2 second interval after the utterance, and (2) the difference
between the maximum frame-level energy during the first third
of the utterance and the maximum frame energy during the
1 second before the utterance. The intervals span up to 3
seconds before and after the utterance. The intuition here is
that people tend to pause after speaking to the computer while
waiting for the computer’s response. Energy change features
can simultaneously capture the elevated volume during the
utterance and the pause immediately afterwards in a computer-
directed utterance.

The third family of acoustic features characterize the tem-
poral shape of the speech energy contour (2 features), as
first described by Shriberg et al. [5]. Zeroth and first-order
mel frequency cepstral coefficients are computed every 10
milliseconds, and the contours of these values over windows
of 200 milliseconds are characterized by computing a discrete
cosine transform (DCT) in the temporal domain. The first 5
DCT values for cepstral coefficient c0 are retained, as are the
first 2 DCT values for c1, resulting in a 7-dimensional feature
vector for every 200 ms window. Shriberg et al. observed that
users employ a more regular rhythmic up-and-down energy

2These are log likelihood ratios that aggregate a variable number of samples
at the utterance level, and include the lexical n-gram and energy contour
features described in the next subsection.

pattern when talking to the computer versus to humans, similar
to how one might talk to a child or linguistically handicapped
person, and this difference in contour shape is captured by
the resulting distributions of DCT values. Note that the other
two families of acoustic features are utterance-level features,
while the energy contours above are computed at a frame level.
To arrive at utterance-level features we train two Gaussian
mixture models (GMMs): one to model the feature vectors
in human-directed utterances and one for computer-directed
utterances. The log likelihood ratio computed from these two
class-conditioned models becomes a single utterance-level
energy contour feature value, and is used alongside the other
utterance-level features. An alternate version of this feature
normalizes the log likelihood by utterance length, i.e., by the
number of frames.

Visual. We extracted three families of visual features. The
first of these is designed to measure the amount of movement
(12 features). The idea here is that people tend to be more
stationary when interacting with the computer than with other
people. Examples of these features include: (1) the variance
of the speaker’s face location, (2) the variance of the speaker’s
face pose angle, and (3) the average variance of all the
participants’ face locations. We computed these measures over
various intervals up to 3 seconds before and after the utterance.
When we computed features like the variance of the speaker’s
face location, we used ground truth annotations of who the
speaker is, rather than the system’s estimates. By removing
the uncertainty of the system’s estimate, we can more clearly
discern how important this type of information is, independent
of how robust the speaker identification estimate is. If the
speaker-specific features turn out to be very important, we
should interpret performance numbers as an upper bound,
assuming perfect speaker identification. If the speaker-specific
features turn out not to be important, we can more confidently
conclude that this type of information is not very useful for
the given task.

The second family of visual features is designed to capture
face orientation (11 features). Based on the research reviewed
earlier, a person’s gaze can be a useful indicator of who
they are talking to. We would have liked to use eye-gaze
information in our study, but this was (and still is) difficult to
obtain at the distances involved. Common eye trackers using
a single camera without mechanical tracking might only be
able to analyze the eyes out to 90 cm [27], which is sufficient
for a seated desktop interface but not nearly far enough for
standing interactions. Head pose information is not as accurate
an indication of people’s attention as eye gaze, but still has
the potential to inform an AD system.

Examples of face-orientation features include: (1) the
speaker’s average pose angle in the up/down direction, (2) the
speaker’s average pose angle away from the computer in the
left/right direction, and (3) the fraction of speaker’s pose-angle
estimates that were unavailable. The normalized pose angle
in the second example is a measure that removes the effect
of speaker location. So, regardless of whether the speaker
is standing on the left or right, the normalized angle simply
measure the angle away from the computer. The third example
refers to the fact that face pose estimates cannot be computed
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when a person turns their face too far to the side. The fraction
of pose angle estimates that could not be computed can thus
still be a useful indication of face orientation. We compute
these measures over various intervals in time to account for
lags between when speech begins and when the face turns.

The third family of visual features are measures of physical
distance between the participants (18 features). The idea here
is that the distance between two people may be a social signal
indicating how comfortable they feel with each other. Two peo-
ple who feel uncomfortable around each other will probably
stand farther apart and will be less likely to have discussions
together. Because depth estimates were not available, we used
pixel distances between participants’ face locations as a proxy.
Some examples of these features include: (1) the distance
between the speaker and the nearest/farthest actor, and (2) the
change in distance between the speaker and nearest/farthest
actor over two neighboring time intervals. To compute a single
distance metric over an interval of time, we considered the
minimum, mean, and maximum of constituent frame-level
distance values. As before, we computed these measures over
various intervals of time.

For more detailed information on how the system did face
detection and pose estimation, see the earlier work by Bohus
and Horvitz [24] and corresponding references.

System. System features comprise various indicators of
the system state, including the state of the dialog manager
(6 features). The idea here is that the context in which a
person speaks is predictive of his or her lingustic behavior.
Some examples of these features include: (1) the number
of participants in the interaction, (2) the time elapsed since
computer agent last spoke, and (3) the dialog act type of the
last computer agent utterance (question, confirmation, answer,
etc.). Note that, unlike most of the features described earlier,
several of the system features are categorical, rather than
numerical, in nature.

Beamforming. The beamforming features include various
descriptors of the distribution of beam values, which indicate
the direction of incoming audio (16 features). A wide spread
of beam values suggests that multiple people are talking. In
this way, the distribution of beam values can be an indicator
of the level of discussion or activity among the participants.
Examples of these features include: (1) the variance of beam
values, (2) the range of beam values (i.e., the difference be-
tween maximum and minimum), and (3) the fraction of beam
values falling within a certain range. Again, we computed
these measures over various time intervals.

ASR. We extracted two families of ASR features. The
first of these model lexical n-grams (2 features) in the same
way as described by Shriberg et al. [5][7]. We trained two
maximum-entropy trigram language models: one model for
computer-directed utterances and another for human-directed
utterances. Similar to the energy-contour features, we com-
puted the log likelihood ratio from these two models to get a
single utterance-level feature value. An alternate version of this
feature normalizes the log likelihood by the number of words
in the utterance. The intuition behind the n-gram modeling is
that people tend to use different words, phrases, and syntactic
patterns depending on who they are addressing.

The second family of ASR features describes various prop-
erties of the hypotheses generated by the speech recognition
engine (5 features). These include: (1) the duration of the
utterance, (2) the confidence of the top hypothesis, (3) the
number of hypotheses, and (4) the number of words in the
top (or all) hypotheses. Classifying utterances based on ASR
confidence capitalizes on the fact that human-directed speech
tends to be less well-matched to the recognizer’s acoustic and
language models than computer-directed utterances.

Feature summary. In total, we extracted 117 different
features. Table I shows a breakdown of the feature count by
modality.

Computational complexity. A meaningful discussion of
computational complexity must discuss the marginal cost of
computing AD features. AD is not very useful in isolation, but
is used in conjunction with other system components. It can
thus reuse a lot of the work that is necessary for other system
components. For example, a dialogue system by its very nature
must compute an auditory spectrogram and perform ASR.
So, the marginal cost of the acoustic AD features consists
of (1) computing average energy across various intervals of
time, which can be done very efficiently using an integral
representation of frame energy (e.g. [28]), and (2) computing
2 discrete cosine transforms every 200 ms for the energy
contour features. The marginal cost of the lexical AD features
is computing the log likelihood ratio between two language
models for the hypothesized word sequence. The marginal
cost of the visual AD features is computing simple statistics
such as average or variance across a set of face locations,
head pose estimates, or distances between faces. Note that in
our experimental setup, most of the heavy visual processing
(i.e. face detection, pose estimation) has already been done by
the dialogue system, though an audio-only dialogue system
would incur a very heavy marginal cost in computing visual
features for AD. The marginal cost for beamforming features
is likewise computing simple statistics across the beam esti-
mates in each utterance. The marginal costs for other features
not explicitly mentioned above are trivial, such as accessing
system state information or using the confidence of the top
ASR hypothesis.

Implementation. The ASR, face detection, and face pose
estimates were done in real-time during the actual interactions.
We then extracted the necessary information from log files,
carried out the “marginal” processing described above, and
conducted our AD experiments in an offline manner. Even
though our implementation was entirely offline, it is useful to
point out that the marginal costs described above are relatively
small, and could easily be performed in real-time. However,
note that some features incorporate context outside of the
duration of the utterance itself, including up to 3 seconds after
the utterance ends. These features would require a delay in
processing, and would probably not be acceptable for use in
a real-time system. However, it will be useful to know if the
context after an utterance ends provides useful information in
predicting addressee. We will investigate this in Section V-C.
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TABLE I
BREAKDOWN OF FEATURE COUNT BY MODALITY.

Feature Type Count
Acoustic 47
Visual 41
System 6
Beamforming 16
ASR 7
Total 117

D. Fusion

There are many different methods of combining information
from multiple modalities. As Atrey et al. point out in their
survey of multimodal fusion strategies [29], two key choices
are the level of fusion and the method of fusion.3 The level of
fusion can be at the feature level (early fusion), the decision
level (late fusion), or a combination or blend of both. The
method of fusion can be rule-based, classification-based, or
estimation-based. Much of the recent work in classification-
based fusion methods have explored fusing representations
within a deep belief network or deep Boltzmann machine [31]
[32] [33] [34], or combining the benefits of generative and
discriminative models in a hybrid architecture [35].

In this work, we adopt a similar approach to Perez-Rosas
[36], in which we perform early fusion and compare the
performance of various subsets of features. We have selected
this methodology for two main reasons. First, because of the
limited amount of labeled training data, we prefer a simple
architecture so as not to introduce too many parameters.
Second, because one of our main goals is to understand and
analyze the relative importance of various features, we prefer a
simple architecture which facilitates a straightforward analysis
of feature importance. For these two reasons, we adopt a
simple early-fusion methodology.

E. Classifiers

We experimented with four different types of classifiers:
logistic regression, decision tree, random forest, and Adaboost
with tree stumps. Logistic regression models the probability of
a binary outcome as a function of the features using a linear
logistic function [37]. Decision trees recursively partition the
data to minimize some measure of node impurity, and they
assign each partition a categorical or numerical prediction
[38]. Random forest is an ensemble learning method which
differs from decision trees in two ways: (1) it trains multiple
decision trees, each based on a bootstrap sample of the data,
and (2) each decision tree is grown using a modified tree
learning algorithm which selects a random subset of features
at each candidate split [39]. Adaboost is a meta-algorithm
for combining the predictions of a set of weak learners,
where each subsequent weak learner is selected to address
the mistakes of previous classifiers [40].

We experimented with both classification trees and regres-
sion trees, and we found that regression trees have slightly

3This provides one perspective on multimodal fusion strategies. The survey
paper by Lalanne et al. [30] provides a different perspective.

better performance, both for the single tree classifier and
the random forest model. We report only the results with
regression trees in this work. We also tried Adaboost with
trees of greater depth but found the results to be no better.
We only report the results with tree stumps. For the random
forest and Adaboost models, we selected the number of trees
to ensure convergence. We will investigate the performance of
these classifiers in the next section.

F. Evaluation

We evaluate models, features, and modalities using method-
ology commonly used for detection tasks. A good way to
visualize the performance of a detection system is to plot
its detection-error-tradeoff (DET) curve [41]. The DET curve
shows the tradeoff between the false alarm rate (on the x-
axis) and the missed detection rate (on the y-axis). Both axes
use a normal deviate scale to achieve a roughly linear plot
shape. Sometimes it is more convenient to express system
performance in a single number, especially when comparing
several systems and when the DET curves run roughly in
parallel. In that case we use equal error rate (EER), which
refers to the point on the DET curve where the false alarm
and missed detection rates are equal. Importantly, the EER is
invariant to changing class priors, and also equals the overall
classification error rate at the corresponding operating point.
Statistical significance of EER differences is assessed using
a McNemar (matched pairs) test, as described in [42] (see
section 2.3.4). Also note that a system outputting random
decisions would have an EER of 50%.

IV. RESULTS

In this section we report overall performance of our mul-
timodal system for the different classifiers, as well as perfor-
mance of subsets of the modalities.

A. Performance with all classifiers

First we show the overall results of all four classifiers
and the benefit of using multiple modalities. Figure 2 shows
the EER for the four classifiers when they are incrementally
provided with more and more modalities, where the modalities
are added in order of their individual performance. So, for
example, the leftmost group of bars shows the performance
of the classifiers when only the acoustic modality is available,
and the rightmost group of bars show the performance of the
classifiers when all five modalities are used. This plot shows a
system designer how much marginal benefit will be gained at
each step by adding the next most important modality. We will
justify this particular ordering of modalities in section 5B, but
we defer this discussion in order to present the overall results
as concisely as possible. For now, we simply point out that
the ordering of modalities is acoustic (most important), ASR,
system, visual, and beamforming (least important).

There are three observations to make about Figure 2. First,
there is significant improvement by including multiple modal-
ities. For example, the Adaboost classifier improves its EER
from 13.9% with one modality to 9.8% with all 5 modalities.
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Fig. 2. Equal error rates of all four classifiers when adding more and more
feature modalities. The leftmost column shows the performance with only the
most important feature modality (acoustic), and the rightmost column shows
the performance with all 5 feature modalities.

With the random forest classifier, the EER improves from
14.5% to 9.9%. Second, the ensemble classifiers (random
forest and Adaboost) show more robustness to overfitting on
the modality level. We can clearly see that the regression
tree shows overfitting beyond the top three modalities. Just
as it is possible to overfit the data with features, we see a
similar phenomenon of overfitting with modalities. In this case,
using more modalities adds more noise than useful informa-
tion. In contrast, the ensemble classifiers show consistent but
diminishing gains. One of the benefits of ensemble methods
is that they tend to be more robust to overfitting. Third, the
general ordering of classifiers by performance is Adaboost
(best), random forest, logistic regression, and then regression
tree (worst). We can see that the regression tree is consistently
the worst. Logistic regression and random forest both perform
fairly well, but are not as consistent. Adaboost has the most
consistent and competitive performance. For this reason, we
focus our attention on the Adaboost model in the remainder
of our analyses.

B. Performance of best classifier

Next we examine more closely the performance of our best-
performing classifier: Adaboost. Whereas EER reflects the
performance of a system at a single operating point, DET
curves characterize the performance across a whole range
of operating points. Figure 3 shows the DET curves for
the Adaboost classifier when incrementally adding modalities,
again in order of their individual performance. These five
DET curves show the full performance characteristic for the
rightmost bar in each group in Figure 2.

We highlight two observations about Figure 3. First, adding

Fig. 3. DET curves showing the incremental improvement by modality for
the Adaboost classifier. The order of modalities is acoustic (most important),
ASR, system, visual, and beamforming (least important). Each curve shows
the performance when features from the top N modalities are used.

more modalities yields increasingly smaller gains. Only the
top 3 modalities (acoustic, ASR, system) yield statistically
significant incremental improvements in EER at a p < .01
level of significance. In this case, it may not be worth the effort
to compute visual features for marginal gains. We often see the
law of diminishing returns when combining features and com-
bining systems, and here we see the law of diminishing returns
with combining modalities as well. Second, the performance
of the system with the single best modality (acoustic) has very
poor performance in the low false-alarm region. Note that all
five DET curves have roughly converged in performance for
low miss rates (< 5%), but that the system with only one
modality has much higher miss rate for low false alarms. Here,
we are detecting computer-directed utterances, so a low false-
alarm rate means that we want to keep human-directed speech
from the system. In these scenarios, including two or more
modalities significantly improves system performance.

Overall, we can summarize the benefit of multimodal ad-
dressee detection as follows. The best-performing classifier
reduces the EER from 13.9% with the single best modality
(acoustic features only) to 9.8% with all five feature modali-
ties. Beyond the top three modalities (acoustic, ASR, system),
using additional modalities yields little to no benefit.

V. ANALYSIS

In this section we investigate which features and modalities
contribute most to overall performance. We will start by
assessing the importance of individual features, and then turn
our attention to the importance of modalities in aggregate. For
these analyses, we again focus on our single best-performing
classifier, Adaboost.
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Fig. 4. Relative influence of top 30 features in Adaboost model. The names
of the features have been color coded by modality for ease of reference. The
modality is also indicated by the first letter of the feature name for those
reading in black and white (A=Acoustic,L=ASR).

A. Importance of Individual Features

For any classifer architecture it is not always clear how
to quantify the importance of individual features. One useful
metric in the case of Adaboost is the concept of relative
influence [43][39]. Relative influence is the reduction in the
loss function attributable to a single feature, normalized by
the total reduction in loss due to all features. This measure
indicates how much an individual feature influences the Ad-
aboost prediction. So, a feature with 0% relative influence does
not affect the ensemble prediction at all, while a feature with
100% relative influence would deterministically control the
prediction.

Figure 4 shows the relative influence of the top 30 features
in the Adaboost model, sorted in decreasing order. These top
30 features account for more than 95% of the total relative
influence. The names of the features have been color coded
by modality for ease of interpretation.

Perhaps the most enlightening thing we can do is to simply
look at what the 10 most influential features are. These 10
features make up more than 80% of the total relative influence.
Here, we explain what the features are.

1) Log likelihood ratio of two energy contour GMMs
2) Log likelihood ratio of two language models
3) Log likelihood ratio of two energy contour GMMs,

normalized by the length of audio
4) Confidence of top ASR hypothesis
5) Average energy during the utterance minus the average

energy during the 1 sec interval after the utterance
6) Dialog act type of the last computer agent speech

(question, confirmation, answer, etc.)
7) Time elapsed since the last computer agent speech

8) Average energy during utterance
9) Max frame-level energy during utterance

10) Log average energy during utterance
Looking at the list of top 10 features above, we can make

a few observations. First, acoustic features dominate. Six of
the top 10 features are related to acoustic energy. Second,
ASR contributes in the form of n-gram likelihood ratios and
confidence score. Third, context helps. Some of the top 10
features have to do with what or when the computer agent
last spoke, or the energy level immediately after the utterance.
These features capture information outside of the time interval
in which the utterance was actually spoken. And finally, no
beamforming or visual features appear in the top 10 feature
list. This suggests that these modalities are much less useful
for this task, confirming the results from Section IV. It may
seem surprising that visual features such as face-pose angle
are not very important, and we will explain the main reasons
for this in the discussion subsection.

Finally we note that the three most important features are
the model-based prosodic and lexical features that were found
to be highly effective in recent work by Shriberg et al. [5],
[7]. The fact that these features perform similarly here, on an
entirely different data set, motivates examining the marginal
benefit of other modalities when added to the acoustic and
ASR-based features.4

B. Importance of Different Modalities

In addition to knowing the relative importance of individual
features, we would also like to know the relative importance
of different modalities. We will approach this using three
different methods.

The first approach is to visualize the importance of individ-
ual features when grouped by modality. Figure 5 shows the
relative influence of all 117 features in our Adaboost model,
grouped by modality. Within each grouping, the features are
sorted in decreasing order of relative influence. A brief glance
at this figure immediately reveals the major trends among the
various modalities: The top several acoustic features dominate.
The top few ASR and system features are useful. The rest don’t
seem to contribute much. Note that the ordering of modalities
suggested by Figure 5 matches the ordering in Figure 3.

The second approach is to run full end-to-end experiments
using one feature modality at a time. These experiments will
reveal how well we can do addressee detection when only
using information from a single modality. Figure 6 shows a
barplot of EERs for our leave-one-group-in experiments. The
leftmost group of bars shows the performance when all feature
modalities are used, as a reference.

There are several things to notice in Figure 6. The group
EER increases as we go from left to right. This trend holds
true regardless of the classifier. This suggests that the order
of importance among the various modalities is acoustic (most
important), ASR, system, visual, and beamforming (least im-
portant). Also, using multiple modalities helps substantially.

4The results obtained here with energy contour features alone (about 19%
EER, cf. Table II), are remarkably close to the 17% EER obtained on the
corpus used in [7].
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Fig. 5. Relative influence of all 117 features in the Adaboost model. The
features are grouped first by modality, then in decreasing order of influence.

Fig. 6. Equal error rates of systems when only one feature modality is used.

The leftmost group of bars is much lower than any other group
of bars. No matter which single modality you pick, there is
significant benefit to using multiple modalities. Again, note
that the ordering of modalities suggested by Figure 6 matches
the ordering in Figure 3.

The third approach is to run full end-to-end experiments
omitting one group of features at a time. These experiments
will reveal how much it negatively affects system performance
to remove a particular modality from the full multimodal
system. Figure 7 shows a barplot of EERs for our leave-one-

Fig. 7. Equal error rates of systems when one feature modality is removed.

group-out experiments. The rightmost group of bars shows the
performance of the full multimodal feature set, as a reference.
Since we are measuring the effect of removing a modality,
a higher EER indicates that the modality is more important.
Higher bars mean greater importance.

Figure 7 generally supports our other findings. The results
get much worse when we remove acoustic features, suggesting
that they are very important. The results are somewhat worse
when we remove ASR or system features, suggesting that
they are moderately important. The results are not negatively
affected much when we remove the visual or beamforming
features. In fact, the results actually get better in some cases
due to overfitting with the regression tree. This suggests
that these feature modalities are not very important. For our
Adaboost model, only leaving out energy or ASR features
yielded a statistically significant increase in EER at a p <
.01 level of significance, and leaving out system features
yielded a statistically significant increase at a p < .05 level
of significance. Importantly, leave-one-in and leave-one-out
experiments arrive at the same ordering of modalities, which
justifies the ordering of importance used in Section IV.

Putting all our analysis experiments together, we can char-
acterize the relative importance of the individual modalities
as follows: Acoustic features are extremely important. ASR
and system features have medium importance. Visual and
beamforming features have little to no importance.

C. Additional Analyses

We have seen that acoustic energy-based features are very
important in predicting addressee for the given experimental
setup. With a view toward generality and future applications,
we may not want our addressee detection system to depend on
the users speaking more loudly when addressing the system.



1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2454332, IEEE Transactions on Multimedia

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 10

This dependence on differing vocal effort is an artifact of the
computer agent’s limited capabilities, and may be a barrier
to more natural interaction with the agent. We therefore tried
to determine how our system would perform if we removed
dependence on utterance-level energy. This analysis anticipates
the ongoing development of dialogue systems which allow
humans to speak to the system in a more natural manner.
To this end, we repeated several of the above experiments
and analyses, but excluding features that depend on absolute
energy levels. We also modified the energy contour models to
omit the first DCT value describing c0 energy. This effectively
removes all of the acoustic features except those that model
speaking style as expressed by utterance-internal energy vari-
ation [5].

Table II shows the EERs of the Adaboost model without
absolute energy information. The second column shows the
system performance when only a single feature modality is
used. The third column shows the system performance when
a single feature modality is omitted. The rightmost column
shows the results of incrementally adding feature modalities
from top to bottom. So, the top entry refers to using ASR fea-
tures only, and the bottom entry refers to using all five feature
modalities. The result in the bottom row, right-most column
has the performance with all five modalities, and therefore
serves as a reference point. The numbers in Table II show a
significant drop in performance compared to the system with
absolute energy information. For example, with only acoustic
features, the EER drops from 13.9% (“top1modalities” curve
in Figure 3) to 19.2% (acoustic only in Table II), a relative
change of 38%. Similarly, with all modalities, the EER drops
from 9.8% (“top5modalities” curve in Figure 3) to 14.0%
(bottom right entry of Table II), a relative change of 43%.

Several additional observations should be noted. First, the
leave-one-group-in experiments suggest the same ordering of
modalities as before, except that acoustic features have fallen
from being most important to being second in importance
behind ASR features. Second, ASR and acoustic features
as a group (both based on audio input) remain dominant.
The leave-one-in and leave-one-out experiments indicate that
these two modalities are dominant in importance compared
to the other three modalities. Only these two modalities yield
statistically significant changes to EER at a p < .01 level of
significance in the leave-one-out experiments. Similarly, only
these two modalities yield statistically significant incremental
improvement to EER at a p < .01 level of significance in
the incremental-by-modality experiments. Third, the visual
and beamforming modalities seem to contribute more when
absolute energy information is stripped away. Whereas before
these two modalities did not benefit system performance
almost at all, here we see that they play a more important
role when either omitted or added incrementally.

Another question of interest is to determine how useful
it is to consider the context after an utterance is spoken.
As described earlier, several of our features look at intervals
of time up to 3 seconds after an utterance is spoken. Are
these features actually useful? When we look at the Adaboost
model with the full set of 117 multimodal features, we find
that the 30 features which use post-utterance information

TABLE II
EQUAL ERROR RATES (IN %) OF ADABOOST MODEL WHEN WE STRIP

AWAY ABSOLUTE ENERGY INFORMATION. THE TWO MIDDLE COLUMNS
SHOW THE RESULTS WHEN WE LEAVE ONE FEATURE MODALITY IN OR

TAKE ONE FEATURE MODALITY OUT. THE RIGHTMOST COLUMN SHOWS
THE RESULTS OF INCREMENTALLY ADDING FEATURE MODALITIES FROM

TOP TO BOTTOM.

Features Leave-in Leave-out Incremental
ASR 19.01 16.39 19.01
Acoustic 19.16 16.39 15.27
System 30.02 14.50 15.37
Visual 32.68 14.65 14.60
Beamforming 40.98 14.60 13.99

constitute about 9.4% of the total relative influence. Of these
30 features, 7 consider time intervals up to 1 second after
the utterance ends, and these 7 features constitute 6.4% of
the total relative influence, more than 2

3 of the post-utterance
combined influence. So, it seems that there is some useful
information contained in the interval after an utterance is
spoken, but most of this information is concentrated in the
interval immediately after the utterance ends. We can also
verify this hypothesis by observing the effect of removing
post-utterance features. When we remove all 30 post-utterance
features, the EER of the Adaboost classifier falls from 9.8%
to 10.5%. However, when we remove only the 23 features not
contained in the “utterance + 1sec” subset, the EER only falls
from 9.8% to 9.9%. This result is useful, since it suggests that
significant performance benefits may be gained from limited
post-utterance information, while still operating within a real-
time, low-latency scenario. A half-second or one-second delay
may be acceptable in many real-time applications, whereas a
3 second delay would almost certainly be unacceptable.

D. Discussion

The fact that visual features were not very important may
seem surprising. Because it is such an important cue in H-H
interactions, one would naturally assume that it would be an
important cue in H-H-C interactions as well. The main reason
for this result is that the computer was a major situational
attractor: people continued looking at the screen even when
they were talking amongst themselves, a phenomenon that
has been observed and studied in social psychology [44]. For
the given scenario, we can characterize the face orientation
as “necessary but not sufficient.” In other words, if a person
is not looking at the computer, they are almost certainly
not addressing the system. But if a person is looking at the
computer, they may or may not be addressing the system.
Because people’s default face orientation for this task was
towards the computer, face pose provides little useful informa-
tion. The strength of a situational attractor may vary widely
depending on the context, but the general phenomenon has
been observed in other studies [17][18]. Another contributing
factor is that the face pose estimates were not robust enough
to be useful. The pose estimates were fairly noisy and could
only track face angles within a limited range. We can take
measures to partially compensate for these shortcomings (such
as measuring the fraction of time that pose estimates are
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Fig. 8. Distribution of left-right head pose angle of speaker, separated by
speaker location and intended addressee. This only includes data for which
there is a single speaker and single addressee, and the speaker is located on
the left or the right (not the center).

unavailable), but they didn’t seem to provide enough reliable
information to be useful. In some instances, however, head
pose angle might be useful. Figure 8 shows the distribution
of the speaker’s head pose angle in the left-right direction
for the subset of training data satisfying all of the following
conditions: (1) there is a single speaker, (2) there is a single
intended addressee, and (3) the speaker is located on the left
or right side (not the center). We can see that there is some
separation in the distributions that might be exploited if we
partition the data according to appropriate criteria.

Some of the most important features are features that we
may not want to rely upon. Acoustic energy was a very
important source of information in our dataset, but it relies
on the fact that people speak differently to a computer than to
another person. As conversational systems become more and
more natural, we may not want to rely on people speaking in a
distinctly different manner towards computers. Similarly, ASR
confidence was a very useful feature, but is highly sensitive to
the acoustic environment, language model coverage, nonnative
accents, and other incidental factors affecting the recognition
system.

Features describing context should be explored in more
depth. We saw that what the computer agent last said and when
the computer agent last spoke are useful indicators. We also
saw that features describing the time intervals immediately af-
ter the utterance were informative. These features all describe
the context in which the utterance is spoken. Dialog context
is also readily and reliably available to the system, especially
since much of it is produced by the system itself (such as the
dialog act or display contents last generated). Context features
are therefore attractive to use for addressee detection, and

merit further exploration. One potential drawback is that they
are highly specific to the system task, i.e., it would hard to
incorporate them in a general way in a “black box” addressee
detector, at least without retraining and calibration of the
overall system. It might be possible to develop a descriptive
schema for dialog context that generalizes across systems and
allows sharing of training data, which would facilitate the
development of new H-H-C systems.

VI. CONCLUSION

We have proposed a multimodal addressee detection system
that uses acoustic, visual, system state, beamforming, and ASR
information. Using data from a multiparty dialogue scenario,
we assess its performance and determine which types of
information are most useful in predicting addressee. We find
that acoustic information is most useful, dominating the other
modalities in importance. Lexical and dialog state information
are also useful, providing significant performance gains. Visual
and beamforming information provide little to no additional
benefit. Our findings would be relevant to multiparty, open-
world dialogue systems in which a computer agent plays an
active role in structuring the conversation. For these situations,
our experiments suggest that audio-based information (both
prosodic and lexical) and system state information are a good
combination of modalities to use, providing a good balance
between performance and economy of implementation. We
also conduct analyses suggesting that as dialogue systems
become more and more natural, the acoustic information will
become less dominant, though still important, while the other
modalities will increase in relative importance.

There are two primary avenues for future work. The first is
to explore a richer set of features that describe the context in
which a person speaks – what the user is responding to and
how their response fits into the larger, overarching interaction.
The second avenue is to collect a rich multimodal data set
in a human-human-computer scenario where the user is the
active initiator, rather than the computer. Such a data set with
addressee annotations would enable further study on how to
design effective and general automatic addressee detection
systems.
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