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Long-range dependence - Ten years of

Internet traffic modeling

Abstract

Self-similarity and scaling phenomena have dominated Internet traffic analy-
sis for the past decade.With the identification of long-range dependence (LRD)
in network traffic, the research community has undergone a mental shift from
Poisson and memory-less processes to LRD and bursty processes. Despite its
widespread use, though, LRD analysis is hindered by our difficulty in actually
identifying dependence and estimating its parameters unambiguously.The au-
thors outline LRD findings in network traffic and explore the current lack of
accuracy and robustness in LRD estimation. In addition, the authors present
recent evidence that packet arrivals appear to be in agreement with the Poisson
assumption in the Internet core.
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Self-similarity and scaling phenomena have dominated Internet traffic analysis for

the past decade.With the identification of long-range dependence (LRD) in

network traffic, the research community has undergone a mental shift from

Poisson and memory-less processes to LRD and bursty processes. Despite its

widespread use, though, LRD analysis is hindered by our difficulty in actually

identifying dependence and estimating its parameters unambiguously.The authors

outline LRD findings in network traffic and explore the current lack of accuracy

and robustness in LRD estimation. In addition, the authors present recent

evidence that packet arrivals appear to be in agreement with the Poisson

assumption in the Internet core.

Traffic modeling and analysis is a fun-
damental building block of Internet
engineering and design. We can’t

replicate the Internet and study it as a
whole, so we rely on thorough analysis of
network measurements and their trans-
formation into models to help explain the
Internet’s functionality and improve its
performance.

About 10 years ago, the introduction
of long-range dependence (LRD) and
self-similarity revolutionized our under-
standing of network traffic. (LRD means
that the behavior of a time-dependent
process shows statistically significant
correlations across large time scales; self-

similarity describes the phenomenon in
which the behavior of a process is pre-
served irrespective of scaling in space or
time.) Prior to that, researchers consid-
ered Poisson processes (that is, the pack-
et arrival process is memory-less and
interarrival times follow the exponential
distribution) to be an adequate represen-
tation for network traffic in real sys-
tems.1 LRD flew in the face of conven-
tional wisdom by stating that network
traffic exhibits long-term memory (its
behavior across widely separated times is
correlated). This assertion challenged the
validity of the Poisson assumption and
shifted the community’s focus from
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assuming memory-less and smooth behavior to
long memory and bursty behavior. 

In this article, we provide an overview of what
the community has learned from 10 years of LRD
research; we also identify the caveats and limita-
tions of our ability to detect LRD. In particular, we
want to raise awareness on two issues: that identi-
fying and estimating LRD is far from straightfor-
ward, and that the large-scale aggregation of the
Internet’s core might have shifted packet-level
behavior toward being a Poisson process. Ultimate-
ly, measuring and modeling the Internet requires us
to constantly reinvent models and methods.

Self-Similarity 
in Internet Traffic
Ample evidence collected over the past decade
suggests the existence of LRD, self-similarity and
heavy-tailed distributions (meaning large values
can exist with non-negligible probability) in vari-
ous aspects of network behavior. 

Before we look at the major advances in LRD
research, we must first describe LRD and self-sim-
ilarity in the context of time-series analysis.

Stochastic Time Series
Let X(t) be a stochastic process. In some cases, X
can take the form of a discrete time series {Xt}, t
= 0, 1, ..., N, either through periodic sampling or
by averaging its value across a series of fixed-
length intervals. We say that X(t) is stationary if its
joint distribution across a collection of times t1, ...,
tN is invariant to time shifting. Thus, we can char-
acterize the dependence between the process’s val-
ues at different times by evaluating the process’s
autocorrelation function (ACF), which is ρ(k). The
ACF measures similarity between a series Xt and a
shifted version of itself Xt+k:

, (1)

where µ and σ are the mean and standard devia-
tions, respectively, for X.

Also of interest is a time series’ aggregated
process Xk

(m):

,  k = 0, 1, 2, …, — 1. (2)

Intuitively, {Xk
(m)} describes the average value of

the time series across “windows” of m consecutive
values from the original time series. If {Xk

(m)} were
independent and identically distributed, then
Var(X(m)) = σ2/m. However, if the sequence exhibits

long memory, then the aggregated process’s vari-
ance converges to zero at a much slower rate than
1/m.2

Self-Similarity and LRD
A stationary process X is long-range dependent if
its autocorrelations decay to zero so slowly that
their sum doesn’t converge — that is, ∑k=1

∞ |ρ(k)| 
= ∞. Intuitively, memory is built-in to the process
because the dependence among an LRD process’s
widely separated values is significant, even across
large time shifts.

A stochastic process X is self-similar if 

X(at) = aHX(t), a > 0,

where the equality refers to equality in distribu-
tions, a is a scaling factor, and the self-similarity
parameter H is called the Hurst exponent. Intu-
itively, self-similarity describes the phenomenon
in which certain process properties are preserved
irrespective of scaling in space or time.

Second-order self-similarity describes the prop-
erty that a time series’ correlation structure (ACF) is
preserved irrespective of time aggregation. Simply
put, a second-order self-similar time series’ ACF is
the same for either coarse or fine time scales. A sta-
tionary process Xt is second-order self-similar3 if

ρ(k) =1/2 [(k + 1)2H – 2k2H + (k – 1)2H], 
0.5 < H < 1 (3)

and asymptotically exactly self-similar if

ρ(k) =1/2 [(k + 1)2H – 2k2H + (k – 1)2H], 
0.5 < H < 1.

Second-order self-similar processes are char-
acterized by a hyperbolically decaying ACF and
used extensively to model LRD processes. Con-
versely, quickly decaying correlations characterize
short-range dependence. From these definitions,
we can infer that LRD characterizes a time series if
0.5 < H < 1. As H → 1, the dependence is stronger.

For network-measurement processes, X refers
to the number of packets and bytes at consecutive
time intervals, meaning that X describes the vol-
ume of bytes/packets observed in a link every time
interval t.

Self-Similarity in Internet Traffic
Leland and colleagues’ pioneering work provided
the first empirical evidence of self-similar charac-
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teristics in LAN traffic.4 They performed a rigor-
ous statistical analysis of Ethernet traffic mea-
surements and established its self-similar nature.
Specifically, they observed that Internet traffic
variability was invariant to the observed time scale
— that is, traffic didn’t become smooth with aggre-
gation as fast as the Poisson traffic model indicat-
ed. Subsequently, Paxson and Floyd described the
failure of using Poisson modeling in wide-area
Internet traffic.5 They demonstrated that packet
interarrival times for Telnet and FTP traffic were
described by heavy-tailed distributions and char-
acterized by burstiness, which indicated that the
Poisson process underestimated both burstiness
and variability. In addition, they proved that large-
scale correlations characterized wide-area traffic
traces, concluding, “We should abandon Poisson-
based modeling of wide-area traffic for all but user
session arrivals.”

These two landmark studies nudged researchers
away from traditional Poisson modeling and inde-
pendence assumptions, which were discarded as
unrealistic and overly simplistic. The nature of the
congestion produced from self-similar network traf-
fic models had a considerable impact on queuing
performance,6 due in large part to variability across
various time scales. Further studies proved that
Poisson-based models significantly underestimated
performance measures, showing that self-similari-
ty resulted in performance degradation by drasti-
cally increasing queuing delay and packet loss.7

Self-similarity’s origins in Internet traffic are
mainly attributed to heavy-tailed distributions of
file sizes.8,9 Several studies correlated the Hurst
exponent with heavy-tailed distributions, indicat-
ing that extremely large transfer requests could
occur with non-negligible probability.

Apart from LRD, Internet traffic presents com-
plex scaling and multifractal characteristics. Many
simulations and empirical studies illustrate how
scaling behavior and the intensity of the observed
dependence is related to the scale of observation.
Specifically, loose versus strong dependence exists
in smaller versus larger time scales, respectively.
The change point is usually associated with either
the round-trip time (RTT) or intrusive “fast” flows
with small interarrival times.10,11

Despite the overwhelming evidence of LRD’s
presence in Internet traffic, a few findings indi-
cate that Poisson models and independence could
still be applicable as the number of sources
increases in fast backbone links that carry vast
numbers of distinct flows, leading to large vol-

umes of traffic multiplexing.12 In addition, other
studies13 point out that several end-to-end net-
work properties seem to agree with the indepen-
dence assumptions in the presence of nonstation-
arity (that is, statistical properties vary with time). 

LRD Estimation 
and Its Limitations
The predominant way to quantify LRD is through
the Hurst exponent, which is a scalar, but calcu-
lating this exponent isn’t straightforward. First, it
can’t be calculated definitively, only estimated.
Second, although we can use several different
methods to estimate the Hurst exponent, they
often produce conflicting results, and it’s not clear
which provides the most accurate estimation.

We can classify Hurst exponent estimators into
two general categories: those operating in the time
domain and those operating in the frequency or
wavelet domain. Due to space constraints, we can’t
give a complete description of all available esti-
mators, but an overview appears elsewhere.14

Time-domain estimators investigate the
power-law relationship between a specific statis-
tical property in a time series and the time-aggre-
gation block size m: LRD exists if the specific
property versus m is a straight line when plotted
in log-log scale. This line’s slope is an estimate of
the Hurst exponent, so time-domain estimators
imply two presuppositions for LRD to exist: sta-
tistically significant evidence that the relevant
points do indeed represent a straight line, and the
line’s slope is such that 0.5 < H < 1 (the Hurst
exponent H depends on this slope). These estima-
tors use several methodologies: R/S (rescaled
range statistic), absolute value, variance, and vari-
ance of residuals. 

Naturally, frequency- and wavelet-domain
estimators operate in the frequency or wavelet
domain. Similarly to the time-domain method-
ologies, they examine if a time series’ spectrum or
energy follows power-law behavior. These esti-
mators include the Periodogram, the Whittle, and
the wavelet Abry-Veitch (AV) estimators.15

We can test these estimation methodologies’
capabilities by first examining their accuracy on
synthesized LRD series and then testing their abil-
ity to discriminate LRD behavior when applied to
non-LRD data sets. In agreement with similar
findings in earlier studies,14,16 our findings
demonstrate that no consistent estimator is robust
in every case: estimators can hide LRD or report
it erroneously. Furthermore, each estimator has
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different strengths and limitations. We used the
software package SELFIS (publicly distributed at
our Web site, www.cs.ucr.edu/~tkarag) to perform
the experiments described next.

Estimator Accuracy 
on Synthesized LRD Series
The most extensively used self-similar processes
for simulating LRD are fractional Gaussian noise
(fGn) and fractional Auto Regressive Integrated
Moving Average (ARIMA) processes. fGn is an
increment of fractional Brownian motion (fBm) (a
random walk process with dependent increments);
fGn is a Gaussian process and its ACF is given by
Equation 3. The fractional ARIMA(p,d,q) model is a
fractional integration of the autoregressive moving
average, or ARMA(p,q), model. Fractional ARIMA
processes describe LRD series when 0 < d < 0.5, in
which H = d + 0.5.

We tested each estimator against two different
types of synthesized long-memory series: frac-
tional ARIMA and fGn.17 For each Hurst value
between 0.5 and 1 (using a step of 0.1), we gener-
ated 100 fGn and 100 fractional ARIMA synthe-
sized data sets of 64 Kbytes. Figure 1 reports the
average estimated Hurst value for these data sets
for each estimator as well as the 95 percent confi-
dence intervals of the mean (that is, the range of
values that has a high probability of containing
the mean). However, these intervals are so close to
the average that they’re barely discernible.
Although many estimators and generators exist,
we used and evaluated the most common and
widely used ones.

Figure 1 shows significant variation in the
estimated Hurst exponent value between the var-
ious methodologies, especially as the Hurst expo-
nent tends to 1, where the intensity of long-
range dependence is larger. Frequency-domain
estimators seem to be more accurate. In the case
of the fGn synthesized series, Whittle and Peri-
odogram estimators fall exactly on top of the
optimal estimation line. The Whittle estimator
has the a priori advantage of being applied to a
time series whose underlying structure matches
the assumptions under which the estimator was
derived. The wavelet AV estimator always over-
estimates the Hurst exponent’s value (usually by
0.05). Overall, time-domain estimators fail to
report the correct Hurst exponent value, under-
estimating it by more than 20 percent. (In Figure
1, lines clustered under the optimal estimation
line represent these estimators.) When we used

fractional ARIMA to synthesize the time series,
the estimations were generally closer to the opti-
mal estimation line. However, none of the esti-
mators consistently followed the optimal line
across all Hurst values.

Discrimination of LRD 
Behavior in Deterministic Series
To study the estimations’ sensitivity, we examined
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Figure 1. Estimating Hurst exponent values. We tested the
performance of estimators on (a) fractional Gaussian noise (fGn)
estimator and (b) fractional ARIMA (Auto Regressive Integrated
Moving Average) synthesized time series.The target line is the
optimal estimation. In both cases, time-domain estimators,
represented by the lines clustered below the target line, failed to
capture the synthesized Hurst exponent value, especially as H
tended to 1. Frequency-based estimators appear to be more
accurate, following the target line closer.
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the effects of various phenomena common to
time-series analysis, such as periodicity, noise, and
trend (where the mean of the process is steadily
increasing or decreasing). Our analysis revealed
that the presence of such processes significantly
affects estimators. Furthermore, most methodolo-
gies fail to distinguish between LRD and such phe-
nomena, and falsely report LRD in deterministic
non-LRD time series. We examined four cases and
learned that, essentially, no estimator is consis-
tently robust in every case. Each one evaluates dif-
ferent statistics to estimate the Hurst exponent,
which requires the examination of many estima-
tors to get an overall picture of the time series’
properties. Applying signal-processing techniques
and methodologies could help us overcome some
of these limitations, but networking practitioners
aren’t necessarily familiar with such practices. 

Cosine plus white Gaussian noise. In our first test,
we applied the estimators to periodic data sets and
then synthesized the series with white Gaussian
noise and a cosine function: Acos(αx). Periodicity
can mislead the Whittle, Periodogram, R/S, and AV
methods into falsely reporting LRD. The Hurst
exponent estimation depends mainly on A, so the
estimations approach 1 as A increases. Thus, as the
amplitude increases, estimations become less reli-
able. If the amplitude is large and the period is
small, Whittle always estimates the Hurst exponent
to be 0.99. (Whittle estimates of 0.99 represent the
failure of robust estimation.)

fGn series plus white Gaussian noise. We next
examined the effect of noise on LRD data. We
found that all estimators underestimate the Hurst
exponent in the presence of noise, but with the
exception of Whittle and the wavelet estimator, the
difference is negligible. Depending on the signal-
to-noise ratio and the fGn series’ Hurst exponent
value, however, these two estimators could signif-
icantly underestimate the Hurst exponent — by
more than 20 percent in some cases.

fGn series plus a cosine function. In studying the
effect of periodicity on LRD data, we found that all
estimations were affected by its presence. Depend-
ing on the cosine function’s amplitude, time-
domain estimators tend to underestimate the Hurst
exponent. On the other hand, frequency-based
methodologies overestimate the Hurst exponent.
As we increase the cosine function’s amplitude,
estimates tend toward 1.

Trend. The definition of LRD assumes stationary
time series. To study the impact of nonstationarity
on the estimators, we therefore synthesized vari-
ous series with different decaying or increasing
trends. We also examined combinations of previ-
ous categories (white Gaussian noise and cosine
functions) with trend. In every case, the Whittle
estimate was consistently 0.99; the Periodogram
method’s estimates for the Hurst exponent were
greater than 1, whereas self-similarity is only
defined for H < 1. No other methodology produced
statistically significant estimations.

Examining the Poisson
Assumption in the Backbone
We studied the Poisson assumption’s validity on
several OC48 (2.5 Gbps) backbone traces taken
from CAIDA (Cooperative Association for Internet
Data Analysis) monitors located at two different
SONET OC48 links belonging to two US tier-1
Internet service providers (ISPs).

To capture the traces, we used Linux-based
monitors with Dag 4.11 network cards and pack-
et-capture software originally developed at the
University of Waikato and currently produced by
Endace. We analyzed various backbone traces:
August 2002 (backbone 1, eight hours), January
2003 (backbone 1, one hour), April 2003 (back-
bone 1, eight hours), May 2003 (backbone 1, 48
hours; backbone 2, two hours), and January 2004
(backbone 2, one hour).

Our analysis demonstrates that backbone pack-
et arrivals appear to agree with the Poisson
assumption,12,18 but our traces also appear to agree
with self-similarity and past LRD findings. A more
elaborate discussion of our findings as well as a
traffic characterization that reconciles these con-
tradictory results appears elsewhere;18 there, we
argue how Internet traffic demonstrates a nonsta-
tionary, time-dependent Poisson process and,
when viewed across very long time scales, exhibits
the observed LRD.

To test the Poisson traffic model’s validity, we
must examine two key properties: whether packet
interarrival times follow the exponential distribu-
tion, and whether packet sizes and interarrival
times appear mutually independent. Congestion in
today’s Internet usually appears on access links
rather than in the backbone where ISPs overpro-
vision their networks: traffic characteristics can
vary in such links, which means our findings
might not apply.



Distribution of Packet Interarrival Times
An interarrival-time distribution consists of two
portions, one that contains back-to-back packets
and another with packets guaranteed to be sepa-
rated by idle time. For heavily utilized links, inter-
arrival times are a function of packet sizes because
many packets are sent back to back. For overpro-
visioned links, the distribution tends to contain
most probability in the “idle” portion (where pack-
ets are separated by idle time). 

We can closely approximate packet interarrival
times for our traces by using an exponential dis-
tribution. Figure 2 shows the packet interarrival
distributions for two of the backbone traces. The
Complementary Cumulative Distribution Function
(CCDF) of packet interarrival times is a straight line
when the y-axis is plotted in log scale, which cor-
responds to exponential distribution.

To highlight the differences between current
backbone traces and past Ethernet-link traces, Fig-
ure 2 also shows the CCDF of interarrival times for
the famous BC-pAug89 trace, which was first used
to prove LRD in network traffic in the pioneering
work of Leland and colleagues.4 It was recorded at
11:25 (EDT) on 29 August 1989 from an Ethernet
at the Bellcore Morristown Research and Engi-
neering facility.

Figure 2 shows a minor discrepancy between
our traces and the exponential distribution for
small values (that is, less than 6µs; 5 µs is the time
required for the transmission of 1,500-byte packets
in an OC48 link) of the interarrival times. This dis-
crepancy is caused by train-like interarrivals
(back-to-back packets not separated by any inter-
mediate idle time) during busy periods at the
upstream router. However, the Poisson traffic
model assumption does not require that interar-
rival times follow a perfect exponential distribu-
tion. In fact, these deviations and short-range arti-
facts can be incorporated into the Poisson model
as “packet trains.”19

Independence
We separately examined and showed that packet
sizes and interarrival times appear to be uncorre-
lated in our traces. We validated the independence
by using various tests, such as the ACF and cross-
correlation function (XCF), visual examination of
conditional probabilities and scatter plots, the
Box-Ljung statistic, and Pearson’s chi-square test
for independence. Other researchers have used
similar tools in the literature to test the indepen-
dence hypothesis.5,13

Using the ACF, we examined two different time
series. The sizes series consisted of the actual pack-
et sizes as individual packets arrive, and the inter-
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Figure 2. Complementary Cumulative Distribution Function of
packet interarrival times over two backbone networks. For OC48
link traces on (a) January 2003, backbone 1, and (b) January 2004,
backbone 2, as well as for (c) the BC-pAug89 1989 Bellcore trace,
the y-axis is plotted in logarithmic scale.We can approximate the
distributions of OC48 traces with an exponential distribution
(straight line in log-linear scale), but the BC-pAug89 data set clearly
deviates from the exponential distribution.
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arrival series consisted of timestamp differences
between consecutive packets. Apart from limited
correlation at small time lags (less than 20), sizes
and interarrivals weren’t correlated. The trivial cor-
relation at small time lags close to zero was due to
back-to-back packets, as described earlier. The XCF
between sizes and interarrivals points to indepen-
dence beyond minimal correlation at small lags.

Independence was also suggested by the Box-
Ljung statistic Qk,  defined as

,

where ρi is the autocorrelation coefficient for lags
1 ≤ i ≤ k and n is the series’ length. To test the null
hypothesis (that is, independence), we compared
the Qk statistic with the chi-square distribution,
which had k degrees of freedom. We applied the
test for varying numbers of consecutive packet
arrivals for both the interarrival times and packet
sizes. The Box-Ljung statistic shows that we can
consider that both variables are not correlated with
95 percent confidence for up to a certain number
of consecutive packet arrivals. The point at which
dependence appears differs with the trace and time
within the trace — for example, independence
holds for 20,000 consecutive packet interarrivals
on average according to the test for the January
2003, backbone 1 trace. For the packet-sizes series,
the average is approximately 16,000 consecutive
packet arrivals.

We validated these findings by applying Pear-
son’s chi-square test for independence. In all cases,
we accepted the null hypothesis for similar num-
bers of consecutive interarrivals (as with the Box-
Ljung statistic), provided that we apply the test to
the “idle” portion of the distribution (that is, using
interarrival times larger than 6 µs to remove back-
to-back packet effects). Independence held for
hundreds of thousands of consecutive interarrivals
for the May 2003, backbone 2 trace.

LRD
Despite the Poisson characteristics of packet
arrivals, our traces and analysis agreed with pre-
vious findings, showing that LRD characterizes
backbone traffic. However, the intensity of corre-
lation depends on the scale of observation. Specif-
ically, in all traces analyzed, we saw a dichotomy
in the scaling in agreement with previous stud-
ies;10,11 The intensity of LRD depends on the scale.
The change point is within the millisecond scale,

albeit slightly different for each case, but the pat-
tern is the same: at scales below the change point,
the Hurst exponent is just above 0.6. At larger
scales, it varies between 0.7 and 0.85 depending
on the trace and the estimator used. We studied the
series of byte and packet counts with smallest
aggregation level at 10 µs.

Conclusions
The findings we’ve presented here might further
challenge established beliefs. They reflect an
extremely dynamic and constantly evolving net-
work expanding in size and complexity. Further
analysis of other backbone links as well as links
near the network’s periphery seems compelling.
We could very well discover that individual links
exhibit varying behavior, especially at small time
scales. Why should traffic be an exception to the
Internet’s diversity?

The problem of characterizing Internet traffic
is not one that can be solved easily, once and for
all. As the Internet increases in size and the tech-
nologies connected to it change, we must con-
stantly monitor and reevaluate our assumptions to
ensure that our conceptual models correctly rep-
resent reality.
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