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Abstract. This paper addresses accent1 issues in large vocabulary continuous speech recognition. Cross-accent
experiments show that the accent problem is very dominant in speech recognition. Analysis based on multivariate
statistical tools (principal component analysis and independent component analysis) confirms that accent is one
of the key factors in speaker variability. Considering different applications, we proposed two methods for accent
adaptation. When a certain amount of adaptation data was available, pronunciation dictionary modeling was adopted
to reduce recognition errors caused by pronunciation mistakes. When a large corpus was collected for each accent
type, accent-dependent models were trained and a Gaussian mixture model-based accent identification system was
developed for model selection. We report experimental results for the two schemes and verify their efficiency in
each situation.
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1. Introduction

In recent years, automatic speech recognition (ASR)
systems, even in the domain of large vocabulary
continuous ASR, have achieved great improvements.
There are several commercial systems on the shelves
like ViaVoice of IBM, SAPI of Microsoft and Natu-
rallySpeaking of Dragon.

At the same time, speaker variability still affects
the performance of ASR systems greatly. Among the
factors attributing variability, gender and accent are
the most important (Huang et al., 2001). The for-
mer has been managed by gender-dependent mod-
els. However, there is relatively little research on
accented speech recognition, especially for speak-
ers who have the same mother tongue, but vary-
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Tyne, NE1 7RU, U.K.

ing regional accents caused by the dialects of the
speakers.

There are two speech research areas related to accent
issues: accent adaptation through pronunciation mod-
eling and accent identification. It is known that speakers
with heavy accents tend to make more pronunciation er-
rors in terms of the standard pronunciation. Experimen-
tal analysis (Huang et al., 2000) showed that this type of
errors constituted a considerable proportion of total er-
rors. In addition, it was observed that speakers from the
same accent regions had similar tendencies in mispro-
nunciations. Based on the above facts, pronunciation
modeling emerged as a solution. The basic idea was to
catch typical pronunciation variations through a small
amount of data and encode them into a so-called accent-
specific dictionary. Conventional pronunciation model-
ing methods were categorized by two criteria (Strik and
Cucchiarini, 1998): data-driven vs knowledge-driven
and formalized information representation vs enumer-
ated one. It was also observed that simply adding
several alternative pronunciations to the dictionary
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may increase the confusability of words (Riley et al.,
1999).

In accent identification, current research focuses on
classifying non-native accents. In addition, most sys-
tems (Hansen and Arslan, 1995; Teixeira et al., 1996;
Fung and Liu, 1999) were built on hidden Markov mod-
els (HMM). HMM training is time-consuming. Fur-
thermore, HMM training is a supervised procedure
and transcriptions are needed. The transcriptions are
either labeled manually, or obtained from a speaker-
independent model in which the alignment errors will
certainly degrade the identification performance.

In this paper, accent issues are addressed in a general
framework. The impact of accented speech on recog-
nition performance was explored. We trained a model
for each accent and collected test data from different
accents. Cross-accent speech recognition experiments
showed that error rate increased up to 40–50% when
the acoustic model and the test data were from differ-
ent accents. Then principal component analysis (PCA)
and independent component analysis (ICA) were used
to investigate dominant factors in speaker variability.
Experiments confirmed qualitatively the fact that the
accent problem is very crucial in speech technologies.

To deal with accent variability, we suggested two so-
lutions according to different applications. When only a
speaker-independent model and some amount of adap-
tation data from an accent group were available, a Pro-
nunciation Dictionary Adaptation (PDA) was devel-
oped to reduce error rate caused by mis-pronunciation.
We extended the syllable-based context (Liu et al.,
2000) to be more flexible: context level was decided
by the amount of data for PDA. In addition, some pre-
vious work (Riley and Ljolje, 1996; Humphries and
Woodland, 1998; Liu et al., 2000) utilized pronunci-
ation variation information to re-score the N -best hy-
pothesis or lattices resulting from the baseline system.
However we developed a one-pass search strategy to
unify all the information from acoustic, language and
accent models.

When a large amount of training data for each accent
was available, we built Accent-Dependent (AD) mod-
els similar to gender-dependent ones. Although it may
be not efficient to provide multiple models in desk-
top applications, it is still practical in a client-server
framework. The core problem of such a strategy is
to select the proper model for each test speaker au-
tomatically. We propose a Gaussian Mixture Model
(GMM)-based accent identification method, whose
training process is unsupervised. After identification,

the most likely accent dependent model is selected for
recognition.

Although all our experiments were conducted on a
Mandarin ASR system, the investigations and proposed
adaptation methods can be applied to other languages.

This paper is organized as follows. Section 2 inves-
tigates the accent problem from two aspects: quantita-
tively and qualitatively or cross-accent speech recogni-
tion experiments and a high-level analysis by PCA and
ICA. In Section 3 we propose a pronunciation dictio-
nary adaptation to reduce error rate caused by mispro-
nunciation. In Section 4 we describe an automatic ac-
cent identification method based on a Gaussian mixture
model and verify its effectiveness in selecting an ac-
cent dependent model. Finally conclusions were given
in Section 5.

2. Impact of Accent on Speech

As described in Section 1, accent is one of the chal-
lenges in current ASR systems. Before introducing our
solutions to accent issues, we investigated the impact
of accent on speech from two views. First, cross-accent
speech recognition experiments were carried out. Sec-
ond, multivariate analysis tools, PCA and ICA, were
applied to confirm quantitatively the importance of ac-
cent in speaker variability.

2.1. Cross-Accent Speech Recognition Experiments

In order to investigate the impact of accent on state-of-
the-art ASR systems, extensive experiments were car-
ried on the Microsoft Mandarin speech engine (Chang
et al., 2000), which has been successfully released with
Office XP and SAPI. In the system, tone-related infor-
mation, which is very helpful in ASR for tonal lan-
guages, also was integrated through pitch features and
tone modeling. All the speech recognition experiments
in this paper were based on this solid and powerful
baseline system.

The training corpora and model configurations
are listed in Table 1. Three typical Mandarin ac-
cents, Beijing (BJ), Shanghai (SH) and Guangdong
(GD) were considered. For comparison, an accent-
independent model (X6) was also trained based on
∼3000 speakers. In addition, gender-dependent mod-
els were trained and used in all experiments. Table 2
lists the test corpora.

Table 3 shows the recognition results. Character Er-
ror Rate (CER) was used for evaluation. It is easily
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Table 1. Summary of training corpora for cross-accent experi-
ments.

Approx. amount
Model tag Training corpus configurations of data

BJ 1500 Beijing Speakers 330 hours

SH 1000 Shanghai Speakers 220 hours

GD 500 Guangdong Speakers 110 hours

X6 BJ + SH + GD (3000 Speakers) 660 hours

concluded that accent variations between the training
and test corpus degrade recognition accuracy signif-
icantly. Compared with an accent-dependent model,
cross-accent models increased error rate up to 40–50%
while an accent-independent model (X6) increased er-
ror rate by 15–30%. It should be noted that the great
performance difference on three testing sets given the
same acoustic model were due to the different complex-
ities of the sets, shown as character perplexity (PPC2)
in Table 2.

2.2. Investigation of Accent Variability

In this subsection, we investigate some of the key fac-
tors in speaker variability. What these factors are and
how they correlate with each other are of great concern
in speech research. One of the difficulties in this inves-
tigation was the complexity of the speech model. There
usually are a huge number of free parameters associ-
ated with a set of models. Thus, the representation of
a speaker is usually high-dimensional when different
phones are taken into account.

Fortunately, several powerful tools, such as principal
component analysis (PCA) (Hotellings, 1933) and in-
dependent component analysis (ICA) (Hyvarinen and
Oja, 2000), are available for high dimension multivari-
ate statistical analysis. They have been applied success-

Table 2. Summary of test corpora for cross-accent experiments (PPC is perplexity of
character according to the language model developed on a 54 k dictionary).

Test sets Gender Accent Speakers Utterances Characters PPC

BJ-M Male Beijing 25 500 9570 33.7

BJ-F Female Beijing 25 500 9423

SH-M Male Shanghai 10 200 3243 59.1

SH-F Female Shanghai 10 200 3287

GD-M Male Guangdong 10 200 3233 55–60

GD-F Female Guangdong 10 200 3294

fully in speech analysis (Malayath et al., 1997; Hu,
1999). PCA decorrelates second order moments cor-
responding to low frequency properties and extracts
orthogonal principal components of variations. ICA,
while not necessarily orthogonal, makes unknown lin-
ear mixtures of multi-dimensional random variables
as statistically independent as possible. It not only
decorrelates the second order statistics but also reduces
higher-order statistical dependency. ICA representa-
tion manages to capture the essential structure in the
data of many applications including feature extraction
and blind source separation (Hyvarinen and Oja, 2000).

In this subsection, we present a subspace analysis
method for the analysis of speaker variability. A trans-
formation matrix obtained from maximum likelihood
linear regression (MLLR) (Leggetter and Woodland,
1995) was adopted as the original representation of the
speaker characteristics. Generally, each speaker was
represented by a super-vector that included different
regression classes, with each class a vector. Important
components in low-dimensional space were extracted
by PCA or ICA. It is hypothesized that the dominant
components extracted by PCA or ICA represent the
key factors of speaker variability. More details of this
method can be found in Huang et al. (2001).

2.2.1. Speaker Representation. A speaker adaptation
model (MLLR transformation matrix) was adopted to
represent the characteristics of a speaker. Such a repre-
sentation provides a flexible way to control the model
parameters according to the available adaptation data.
To reflect a speaker in detail, up to 65 regression classes
are used in accordance with Mandarin phonetic struc-
ture. Limited by adaptation data, only six single vow-
els (/a/, /i/, /o/, /e/, /u/, /v/) were selected empirically
as supporting regression classes.3 Also, experiments
(Huang et al., 2001) showed that using only offset vec-
tors in MLLR can achieve better results in gender clas-
sification. In the end, some acoustic features are pruned
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Table 3. Character error rate (%) for cross-accent experiments.

Different accent test sets

Model BJ SH GD

BJ 8.81 21.85 31.92

SH 10.61 15.64 28.44

GD 12.94 18.71 21.75

X6 9.02 17.59 27.95

by experiments to eliminate poorly estimated parame-
ters. In summary, after MLLR adaptation, the following
strategy was adopted to represent a speaker.

• Supporting regression classes: six single vowels (/a/,
/i/, /o/, /e/, /u/, /v/).

• Offset items in MLLR transformation matrices.
• 26 dimensions of acoustic features (13-d MFCC +

�MFCC).

As a result, a speaker is typically described by a super-
vector of 6∗1∗26 = 156 dimensions before PCA/ICA
projection.

2.2.2. Experiments. The whole corpus consisted of
980 speakers, with 200 utterances per speaker. Speak-
ers are from two accent areas: Beijing (BJ) and
Shanghai (SH). The gender and accent distributions
are summarized in Table 4.

All the speakers are concatenated into a 980×156
matrix. Then speakers are projected onto the top six
components extracted by PCA and a new whitened ma-
trix of 980 × 6 is obtained. The matrix is fed to ICA
(implemented according to the FastICA algorithm pro-
posed by Hyvarinen and Oja (2000)). Figures 1 and 2
show the projections of all the speakers onto the first
two independent components. The horizontal axis is the
speaker index whose alignment is: BJ-F (1–250), SH-F
(251–440), BJ-M (441–690) and SH-M (691–980).

It can be concluded from Fig. 1 that the first indepen-
dent component corresponds to gender characteristics
of a speaker: projections on this component almost sep-
arate all speakers into gender categories. In Fig. 2, four

Table 4. Speaker distribution for speaker variability analysis.

Beijing Shanghai

Female 250 (BJ-F) 190 (SH-F)

Male 250 (BJ-M) 290 (SH-M)

Figure 1. Projection of all the speakers onto the first independent
component (The first block corresponds to the speaker sets BJ-F and
SH-F, and the second block corresponds to the sets BJ-M and SH-M).

Figure 2. Projections of all speakers onto the second independent
component. (The four blocks correspond to the speaker sets BJ-F,
SH-F, BJ-M and SH-M, from left to right).

subsets occupy four blocks. The first and the third one
correspond to the Beijing accent while the second and
the fourth one correspond to Shanghai. It is obvious
that this component has strong correlations with ac-
cent. A 2-d illustration of an ICA projection is shown
in Fig. 3. It can be concluded that accent and gender
are the main components that constitute the speaker
space.

2.3. Summary

In this section, both cross-accent experiments and
speaker variability analysis showed that accent is one of
the most important factors leading to fluctuating perfor-
mance of an ASR system. The accent problem is very
crucial, especially in countries with large areas. Across
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Figure 3. Projection of all the speakers onto the space constructed
by the first (horizontal axis) and the second (vertical axis) indepen-
dent components.

China, almost every province has its own dialect.4

When speaking Mandarin, a person’s dialect usually
brings a heavy accent to his/her speech. Different solu-
tions can be developed according to applications. When
some amount of data are available, adaptation meth-
ods, such as MLLR and MAP (Lee et al., 1991), can
be used to reduce the variations between the baseline
model and the test speaker. In the following section,
an adaptation method based on a pronunciation dictio-
nary is described that it decreases recognition errors
caused by the speaker’s own pronunciation mistakes.
As a pronunciation model is complementary to a acous-
tic model, this method is expected to achieve more im-
provement over the baseline system when combined
with standard MLLR adaptation. In other situations,
a large amount of speech data may be collected from
each accent region while only several utterances are
available for a test speaker. We trained one model for
each accent, and a distance criterion was developed
to select an accent-dependent model according to the
limited data. These methods will be discussed in the
Sections 3 and 4, respectively.

3. Pronunciation Dictionary Adaptation

From cross-accent experiments in Section 2.1, we
found that a speech recognizer built for a certain accent
type usually obtains a much higher error rate when ap-
plied to speech with another accent. The errors come
from two sources. One is misrecognition of confusable
sounds by the recognizer. The other one is the speaker’s
own pronunciation mistakes in terms of standard pro-

nunciation. For example, some Chinese people are not
able to differentiate between /zh/ and /z/ in standard
Mandarin. Error analysis shows that the second type of
errors constitutes a large proportion of the total errors
in the cross-accent scenario. Furthermore it is observed
that speakers belonging to the same accent region have
similar tendencies in mispronunciation.

Based on the above fact, an accent modeling technol-
ogy named pronunciation dictionary adaptation (PDA)
is proposed. The basic idea is to catch the typical pro-
nunciation variations for a certain accent through a
small amount of adaptation data and encode these dif-
ferences into the dictionary (accent-dependent dictio-
nary). Depending on the amount of adaptation data,
a dynamic dictionary construction process can be pre-
sented in multiple levels such as phoneme, base syllable
or tonal syllable. Both context-dependent and context-
independent pronunciation models were considered. To
ensure that the confusion matrices reflected the accent
characteristics, both the occurrences of reference ob-
servations and the probability of pronunciation vari-
ation were taken into account when deciding which
transformation pairs should be encoded. In addition,
as pronunciation variations and acoustic deviations are
complementary, PDA combined with standard MLLR
adaptation was also applied.

Compared with the method proposed by Humphries
and Woodland (1998), which synthesizes the dictio-
nary completely from the adaptation corpus, we en-
hanced the process by incorporating obvious pronun-
ciation variations into the accent-dependent dictionary
with varying weights. As a result, the adaptation corpus
for catching the accent characteristics could be com-
paratively small. Essentially, the entries in the adapted
dictionary consisted of multiple pronunciations with
prior probabilities that reflected accent variation. We
extended syllable-based context (Liu et al., 2000) to
phone-level and phone-class level, which was decided
by the amount of data for PDA. This flexible method
can extract the essential variation in continuous speech
from a limited corpus while maintaining a detailed de-
scription of the effect of articulation on pronunciation
variation. Furthermore, tone changes, as a part of pro-
nunciation variation, also can be modeled.

Instead of using pronunciation variation information
to re-score the N -best hypothesis or lattices, we devel-
oped a one-pass search strategy that unified all kinds of
information like acoustic model, language model and
accent model about pronunciation variation, in accor-
dance with the existing baseline system.
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3.1. Accent Modeling with PDA

Conventional acoustic model adaptation technologies
assume that speakers pronounce words in a predefined
and unified manner, which is not always valid for ac-
cented speech. For example, a Chinese speaker from
Shanghai probably utters syllable5 /shi/ as /si/ in the
canonical dictionary. Therefore, a recognizer trained
on the pronunciation criterion of standard Mandarin
cannot accurately recognize speech from a Shanghai
speaker. Fortunately, pronunciation variation between
accent groups usually presents certain clear and fixed
tendencies. There exist some distinct transformation
pairs at the level of phones or syllables. These provide
the premise by which to carry out accent modeling
through PDA, which can be divided into the following
stages.

The first stage is to transcribe available accented
speech data by a recognizer based on a canonical pro-
nunciation dictionary. To reflect true pronunciation de-
viation, no language model was used here. The ob-
tained transcriptions were aligned with the reference
ones through dynamic programming. Then error pairs
were identified. Only substitution errors were con-
sidered. Mapping pairs with few observations or low
transformation probabilities were pruned to eliminate
those caused by recognition error. For example, as
the pair “/si/ -> /ci/” appeared only several times in
the corpus, it was regarded as coming from recog-
nition error, not from pronunciation deviation. Ac-
cording to the amount of accented corpus, context-
dependent or context-independent mapping pairs with
different transformation probabilities were selectively
extracted at the level of sub-syllable, base-syllable or
tone-syllable.

The second stage is to construct a new dictionary that
reflects accent characteristics based on the transforma-
tion pairs. We encoded these pronunciation transforma-
tion pairs into the original canonical lexicon, and con-
struct a new dictionary adapted to a certain accent. In
fact, pronunciation variation was implemented through
multiple pronunciations with corresponding weights.
All the pronunciation variations’ weights correspond-
ing to the same word were normalized.

The final stage is to integrate the adapted dictionary
into the recognition or search framework. Many re-
searchers make use of prior knowledge of pronuncia-
tion transformation to re-score the multiple hypotheses
or lattices obtained in the original search process. In our
work, a one-pass search mechanism was adopted: PDA

information was utilized simultaneously with the lan-
guage model and acoustic evaluation. This is illustrated
with the following example.

Assume that speakers with a Shanghai accent prob-
ably utter “du2-bu4-yi1-shi2” ( ) as “du2-bu4-
yi1-si2”. The adapted dictionary could be as follows:

· · ·
shi2 shi2 0.83
shi2(2) si2 0.17
· · ·
si2 si2 1.00
· · ·

Therefore, scores of the three partial paths
yi1 -> shi2, yi1 -> shi2(2) and yi1 -> si2 could be
computed respectively with formulae (1) (2) and (3).

Score(shi2 | yi1)

= wLM ∗ PLM(shi2 | yi1) + wAM

∗ PAM(shi2) + wPDA ∗ PPDA(shi2 | shi2) (1)

Score(shi2(2) | yi1)

= wLM ∗ PLM(shi2(2) | yi1) + wAM ∗ PAM(shi2(2))

+ wPDA ∗ PPDA(shi2(2) | shi2)

= wLM ∗ PLM(shi2 | yi1) + wAM ∗ PAM(si2)

+ wPDA ∗ PPDA(si2 | shi2) (2)

Score(si2 | yi1)

= wLM ∗ PLM(si2 | yi1) + wAM

∗ PAM(si2) + wPDA ∗ PPDA(si2 | si2) (3)

where PLM, PAM and PPDA stand for the logarith-
mic score of the language model (LM), acoustic
model (AM) and pronunciation variation, respectively.
wLM, wAM and wPDA are the corresponding weight co-
efficients, which are usually determined empirically.

Obviously, the partial path yi1 -> shi2(2) has
adopted the true pronunciation or acoustic model (as
/si2/) while keeping the ought-to-be LM, e.g., bigram of
(shi2 | yi1). At the same time, prior information about
pronunciation transformation was incorporated. The-
oretically, it should outscore the other two paths. As
a result, the recognizer successfully recovers from a
user’s pronunciation mistake with PDA.

3.2. Experiments and Result

3.2.1. System Setup. Our baseline ASR system has
been described in Section 2.1, but the training corpus
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used is different. The acoustic model was trained on
a database of 100,000 utterances collected from 250
male speakers from Beijing (BJ Set), a subset of which
was used to train model BJ as shown at Table 1. The
baseline dictionary was an official published one that
was consistent with the acoustic model. A tonal sylla-
ble trigram language model with perplexity of 98 on
the test corpus was used in all experiments. Although
the language model can compensate for some pronun-
ciation discrepancies, experiments showed that PDA
still significantly reduces recognition error of accented
speech. Other data sets were as follows:

• Dictionary adaptation set (PDA Set): 24 male speak-
ers from the Shanghai region, 250 utterances per
speaker, only 1/3 of the corpus (2000) utterances
factually used.

• Testing set (Test Set) 10 male speakers different
from PDA set, with Shanghai accent, 20 utterances
per speaker, tagged with SH-M, as shown at Table 2;

• MLLR adaptation set (MLLR Set): Same speaker
set as testing set, 180 utterances that are different
from Test set per speaker.

• Accent-dependent set (SH Set): 290 male speakers
from Shanghai area, 250 utterances per speaker.

• Mixed accent set (MIX Set): BJ Set plus SH Set.

3.2.2. Analysis. 2000 sentences from the PDA Set
were transcribed with the benchmark recognizer in
term of standard sets and syllable loop grammar.
Dynamic programming was applied to these re-
sults and some interesting linguistic phenomena were
observed.

Front nasal and back nasal
Table 5 shows that final ING and IN are often exchange-
able and ENG are often uttered as EN. However EN is
seldom pronounced as ENG and not listed in the Table.

ZH (SH, CH) VS. Z (S, C)
Because of phonemic diversity, it is hard for Shanghai
speakers to utter initial phonemes like /zh/, /ch/ and
/sh/. As a result, syllables that include such phones are
uttered into syllables initialized with /z/, /s/ and /c/, as
shown in Table 6. Such results are in agreement with
the philologists’ studies.

3.2.3. Results. Recognition results with PDA, MLLR
and the combination of the two are reported here.
To illustrate the impact of different baseline systems

Table 5. Front/Back nasal mappings of accent speakers in term of
standard pronunciations.

Canonical Observed Canonical Observed
pron. pron. Prob. (%) pron. pron. Prob. (%)

QIN QING 47.37 QING QIN 19.80

LIN LING 41.67 LING LIN 18.40

MIN MING 36.00 MING MIN 42.22

YIN YING 35.23 YING YIN 39.77

XIN XING 33.73 XING XIN 33.54

JIN JING 32.86 JING JIN 39.39

PIN PING 32.20 PING PIN 33.33

(IN) (ING) 37.0 (ING) (IN) 32.4

RENG REN 55.56 SHENG SHEN 40.49

GENG GEN 51.72 CHENG CHEN 25.49

ZHENG ZHEN 46.27 NENG NEN 24.56

MENG MEN 40.74 (ENG) (EN) 40.7

Table 6. ZH/SH/CH vs. Z/C/S mappings of accented speakers in
term of standard pronunciations.

Canonical Observed Prob. (%) Canonical Observed Prob.

ZHI ZI 17.26 CHAO CAO 37.50

SHI SI 16.72 ZHAO ZAO 29.79

CHI CI 15.38 ZHONG ZONG 24.71

ZHU ZU 29.27 SHAN SAN 19.23

SHU SU 16.04 CHAN CAN 17.95

CHU CU 20.28 ZHANG ZANG 17.82

on PDA and MLLR, the performance of the accent-
dependent model (trained on SH Set) and the accent-
independent model (trained on Mix Set) are also
presented.

3.2.3.1. PDA, MLLR, and the Combination of Both.
Starting with many kinds of mapping pairs, we first
removed pairs with few observations and low vari-
ation probabilities, and encoded the remaining ones
into the dictionary. Table 7 shows the recognition re-
sult when we used 37 transformation pairs, consisting

Table 7. Performance of PDA (37 transformation
pairs used for PDA).

Dictionary Syllable error rate (%)

Baseline 23.18

+ PDA (w/o Prob.) 20.48 (+11.6%)

+PDA (with Prob.) 19.96 (+13.9%)
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Table 8. Performance of MLLR and PDA/MLLR with different number of adaptation
utterances.

No. of adp. utterances 0 10 20 30 45 90 180

MLLR 23.18 21.48 17.93 17.59 16.38 15.89 15.50

Rel. err. reduction – 7.33 22.65 24.12 29.34 31.45 33.13

MLLR + PDA 19.96 21.12 17.50 16.59 15.77 15.22 14.83

Rel. err. reduction 13.89 8.89 24.50 28.43 31.97 34.34 36.02

Rel. err. reduction (on MLLR) – 1.68 2.40 5.69 3.72 4.22 4.32

mainly of pairs shown in Tables 5 and 6. We tried two
kinds of methods to deal with transformation pairs:
without probability and with probability. The former
factually assumes the same probability for both the
canonical pronunciation and the alternative one. It is
a method of simply introducing multiple pronuncia-
tions. The later method is more accurate to describe
the pronunciation variations with real probabilities ex-
tracted from the accented corpora, as shown at Tables 5
and 6.

To evaluate the acoustic model adaptation perfor-
mance, we also carried out a standard MLLR adapta-
tion. All 187 phones were classified into 65 regression
classes. Both diagonal matrix and bias offset are used in
the MLLR transformation matrix. Adaptation sets sizes
ranging from 10 to 180 utterances per testing speaker
were used. Results are shown in the Table 8. The results
show that when the number of adaptation utterances
reaches 20, relative error reduction is more than 22%.
Based on the assumption that PDA and MLLR can be
complementary in pronunciation variation and acous-
tic characteristics, respectively, experiments combin-
ing MLLR and PDA were carried out. Compared with
performance without adaptation, a 28.43% error reduc-
tion is achieved (30 adaptation utterances per speaker).
Compared with MLLR alone, a further error reduction
of 5.69% is obtained.

Table 9. Performance of PDA/MLLR based on different base-
lines (cross-accent (BJ Set), accent-independent (Mix Set) and
accent-dependent (SH Set)).

Different setup Baseline (%)

BJ Set MIX Set SH Set

Baseline 23.18 16.59 13.98

+PDA 19.96 15.56 13.76

+MLLR (30 Utts.) 17.59 14.40 13.49

+PDA+MLLR 16.59 14.31 13.52

3.2.3.2. Comparison of Different Models. Table 9
shows the results of PDA/MLLR based on three dif-
ferent baselines: cross-accent model, accent-dependent
model and accent-independent model, trained on the
BJ set, SH set and Mix set, respectively, as shown at
Table 9. The performance of PDA and/or MLLR in-
creases with the distance between the baseline model
available and the testing speakers. When the base-
line did not include any accent information for the
test speakers, PDA/MLLR has achieved the best re-
sults. When accent-independent model did include
some training speakers with the same accent as the
test speaker, PDA/MLLR still achieved positive, but
not significant results. However, given an accent-
dependent model, contributions of PDA/MLLR be-
come marginal. In addition, the accent-dependent
model still outperforms any other combinations of
baseline models and adaptation methods. This moti-
vated us to develop accent identification methods in
those cases for which sufficient accent corpora exists.

4. Accent Identification for Accent-Dependent
Model Selection

In some situations we can collect a large amount of data
for each accent type, and thus accent-dependent (AD)
models can be trained. As we observed in Sections 2
and 3, accent-dependent models always achieve the
best performance. So, the remaining core problem for
applying AD in recognition is the automatic identifica-
tion of the accents of testing speakers given very little
data.

Current accent identification research focuses on
the foreign accent problem. That is, identifying non-
native accents. Teixeira et al. (1996) proposed a HMM-
based (Hidden Markov Model) system to identify
English with six foreign accents: Danish, German,
British, Spanish, Italian and Portuguese. A context-
independent HMM was applied because the corpus
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consisted of isolated words only, which is not al-
ways the case in applications. Hansen and Arslan
(1995) also built a HMM to classify foreign ac-
cents of American English. They analyzed the im-
pacts of prosodic features on classification perfor-
mance and concluded that carefully selected prosodic
features would improve classification accuracy. Instead
of phoneme-based HMM, Fung and Liu (1999) used
phoneme-class HMMs to differentiate Cantonese En-
glish from native English. Berkling et al. (1998) added
English syllable structure knowledge to help recognize
three accented speaker groups of Australian English.

Although foreign accent identification has been ex-
plored extensively, little has been done regarding do-
mestic accents, to the best of our knowledge. Domes-
tic accent identification is more challenging: (1) Some
linguistic knowledge, such as syllable structure (used
in Berkling et al., 1998), is of little use since people
seldom make such mistakes in their mother language;
and (2) Differences among domestic speakers are rel-
atively smaller than these among foreign speakers. In
our work, we are engaged in identifying different accent
types spoken by people with the same mother tongue.

Most of current accent identification systems, as
mentioned above, are built based on the HMM frame-
work. Although HMM is effective in classifying ac-
cents, its training procedure is time-consuming. Also,
using HMM to model every phoneme or phoneme-
class is not efficient. Furthermore, HMM training is
a supervised training that requires transcriptions. The
transcriptions either are manually labeled, or obtained
from a speech recognizer, in which case the word error
rate degrades the identification performance.

In this section, we propose a GMM-based method
for the identification of domestic speaker accents (Chen
et al., 2001). GMM training is unsupervised: no tran-
scriptions are needed. Four typical Mandarin accent
types were explored: Beijing, Shanghai, Guangdong
and Taiwan. We trained two GMMs for each accent:
one for male, the other for female. Given test data,
the speaker’s gender and accent can be identified si-
multaneously, compared with the two-stage method
discussed in Teixeira et al. (1996). The relationship
between GMM parameter configurations and recogni-
tion accuracy was examined. We also investigated how
many utterances per speaker were sufficient to recog-
nize his/her accent reliably. We showed the correla-
tions among accents, and provided some explanations.
Finally, the efficiency of accent identification was also
examined by applying it to speech recognition.

4.1. Multi-Accent Mandarin Corpus

The multi-accent Mandarin corpus, consisting of 1,440
speakers, is part of a corpora collected by Microsoft
Research Asia. There are four accents: Beijing (BJ, in-
cluding 3 channels: BJ, EW and FL), Shanghai (SH,
including 2 channels: SH and JD), Guangdong (GD)
and Taiwan (TW). All waveforms were recorded at
a sampling rate of 16 KHz except for the TW ones,
which were collected at 22 KHz and then downsam-
pled. In the training corpus, there were 150 female and
150 male speakers of each accent with two utterances
per speaker. In the test corpus, there were 30 female and
30 male speakers of each accent with 50 utterances per
speaker. Most of the utterances lasted approximately 3–
5 seconds each, forming about 16 hours’ speech data
for the entire corpus. There was no overlap of speakers
and utterances the between training and test corpora.

4.2. Accent Identification System

Since gender and accent are important factors in
speaker variability, the probability distributions of dis-
torted features caused by different genders and accents
are different. As a result, we used a set of GMMs to es-
timate the probability that the observed utterance came
from a particular gender and accent.

In our work, M GMMs, {�k}M
k=1 are independently

trained using the speech produced by a given gender
and accent group. That is, model �k is trained to max-
imize the log-likelihood function

log
T∏

t=1

p(x(t) | �k)

=
T∑

t=1

log p(x(t) | �k), k = 1, . . . , M, (4)

Where the speech feature is denoted by x(t). T is the
number of speech frames in the utterance and M is
twice (two genders) the total number of accent types.
The GMM parameters are estimated by the expecta-
tion maximization (EM) algorithm (Dempster et al.,
1977). During identification, an utterance is fed to all
the GMMs. The most likely gender and accent type is
identified according to

k̂ = arg
M

max
k=1

T∑

t=1

log p(x(t) | �k). (5)
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4.3. Experiments

As described in Section 4.1, there are eight subsets
(accent plus gender) in the training corpora. In each
subset, two utterances per speaker, altogether 300 ut-
terances per subset, were used to train the GMMs.
Because the 300 utterances are from 150 speakers with
different ages, speaking rates and even recording chan-
nels, speaker variability caused by these factors was
averaged. The test set consisted of 240 speakers from
four accents with 50 utterances each. The features used
were 39-order Mel-Frequency Cepstral Coefficients
(MFCC), consisting of 12 cepstral coefficients, energy,
and their first and second order differences. Cepstral
mean subtraction was performed within each utterance
to remove the effect of channels. Data preparation and
training procedures were performed using the HTK 3.0
toolkit.

4.3.1. Number of Components in GMM. In this ex-
periment, we examined the relationship between the
number of components in GMMs and the identification
accuracy. Since the eight subsets were labeled with gen-
der and accent, our method identified speaker’s gender
and accent at the same time.

Table 10 and Fig. 4 show the gender and accent iden-
tification error rate, respectively, as a function of the
number of components in GMMs. Table 10 shows that
the gender identification error rate decreases signifi-
cantly when components increase from 8 to 32. How-
ever, only a small improvement is gained by using 64
components, as compared with 32. It can be concluded
that a GMM with 32 components is capable of model-
ing gender variability of speech signals effectively.

Figure 4 shows a similar trend. It is clear that the
number of components in GMMs greatly affects the
accent identification performance. In contrast with the
gender experiment, for accent, GMMs with 64 compo-
nents still gain some improvement over 32-component
GMMs (Error rate decreases from 19.1% to 16.8%).

Table 10. Gender identification vs. number of GMM
components (four utterances used per speaker, relative
error reduction is calculated when regarding GMM with
eight components as the baseline).

No. of components 8 16 32 64

Error rate (%) 8.5 4.5 3.4 3.0

Rel. err. reduction (%) – 47.1 60.0 64.7

Figure 4. Accent identification error rate vs. different number of
components of GMM. The right Y axis is the relative error reduction
to eight components, when regarding GMM with eight components
as the baseline. “All” means error rate averaged between females and
males.

It is probably due to there are larger variances among
accents types than that of gender.

Considering the training effort and the reliability of
estimations, GMMs with 32 components are a good
tradeoff and are used in the following experiments.

4.3.2. Number of Utterances per Speaker. In this
experiment, we were concerned with the robustness
of the method: how many utterances are sufficient to
classify accent types reliably. We randomly selected N
(N ≤ 50) utterances for each test speaker and averaged
their log-likelihood in each GMM. The test speaker
was classified into the subset with the largest averaged
log-likelihood. The random selection was repeated ten
times to guarantee the achievement of reliable results.

Table 11 and Fig. 5 show the gender and accent iden-
tification error rates, respectively, varying the number
of utterances. When averaging the log-likelihood of all
50 utterances of a speaker, there was no need to perform
random selection.

Table 11 shows that gender identification is more re-
liable when more utterances are used. When the num-

Table 11. Gender identification vs. number of testing utterances
(32 components/GMM used, relative error reduction is calculated
when regarding one utterance as the baseline).

No. of utterances 1 2 3 4 5 10 20 50

Error rate (%) 3.4 2.8 2.5 2.2 2.3 1.9 2.0 1.2

Rel. error reduction (%) – 18 26 35 32 44 41 65
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Figure 5. Accent identification error rate vs. different number of
testing utterances per speaker. The right Y axis is the relative error
reduction regarding one utterance as the baseline. “All” means error
rate averaged between females and males.

ber of utterances increased from one to four, the gender
identification errors were greatly reduced (35%). Fur-
ther improvement was observed when using more than
ten utterances, but it is not practical to collect so much
data in many applications. As a tradeoff, 3–5 utterances
are good enough in most situations.

It is clear from Fig. 5 that increasing the number of
utterances improved the identification of accents. This
is consistent with our intuition that more utterances
from a speaker help in identifying his/her accent. Con-
sidering the tradeoff between accuracy and costs, using
3–5 utterances is a good choice, with an error rate of
13.2%–13.6%.

4.3.3. Discussions on Inter-Accent Results. To in-
vestigate the internal relationships among four accent
types, we used the experiment based on 32 components
and four utterances per testing speaker as a case, as il-
lustrated in Table 12. Some findings are discussed as
follows:

Table 12. Accents identification confusion matrices (32
components/GMM and four utterances per testing speaker).

Testing utterances from

Recognized as BJ SH GD TW

BJ 0.775 0.081 0.037 0.001

SH 0.120 0.812 0.076 0.014

GD 0.105 0.105 0.886 0.000

TW 0.000 0.002 0.001 0.985

• Compared with Beijing and Taiwan, Shanghai and
Guangdong are likely to be misrecognized mutually,
except themselves. In fact, Shanghai and Guangdong
both belong to the southern language tree in phonol-
ogy and share some common characteristics. For
example, they do not differentiate front nasal and
back nasal.

• The excellent performance for Taiwan speakers may
have occurred for two reasons. First, Taiwan civilians
may present some specialty on pronunciations from
mainland due to regions distance. Second, limited by
the recording condition, there is a certain portion of
noise in the waveforms of the Taiwan corpora (both
training and test) that makes them more distinct from
the other accent types.

• The reason for the relatively low accuracy of Beijing
possibly may be due to larger channel variations ex-
isting in the corpora. There are three channels in the
Beijing corpus while there are two in the Shanghai
corpus and one for Guangdong and Taiwan.

• Channel effects may constitute a considerable fac-
tor in GMM-based accent identification systems.
For Beijing, Shanghai and Guangdong, accuracy de-
creased with an increasing number of channels. Fur-
ther work is needed to weaken this effect.

4.3.4. Accent Dependent Model. In this subsec-
tion, we verify the efficiency of applying an accent-
dependent model in speech recognition. Here, the
baseline ASR system is the same as that used in
the cross-accent experiments (Section 2.1). Consider-
ing three accent types (Beijing (BJ), Shanghai (SH)
and Guangdong (GD)), there are six gender/accent-
dependent acoustic models. Test sets were the same
as that in Section 2.1, except that ten utterances per
speaker were used for testing while the remaining
ten utterances were used for MLLR adaptation (four
utterances for selecting the right model). As shown
in Table 13, AD models selected by automatic accent

Table 13. Performance of automatic accent identification in
terms of speech recognition accuracy (Number shown in this table
are measured with character error rate (%)).

BJ SH GD

Baseline (X6) 9.07 17.86 30.42

AD (manually labeled accent) 9.16 16.62 25.72

AD (identified accent by GMM) 9.55 17.37 26.28

MLLR (1 class, diagonal + bias) 9.47 17.97 30.70
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identification achieved comparable results to those that
were manually labeled, especially for GD, which has
only 1/6 the data of X6. The remaining gap is due
mainly to incorrectly selected AD models rather than
gender-dependent model. Relative to the baseline, no
improvements were observed with MLLR adaptation
of ten utterances per speaker.

5. Conclusion

It is widely known that speaker variability affects
speech recognition performance greatly. It is also intu-
itive that accent is one of the main factors that causes
variability and should impact the recognition. But what
are the real effects and how should we deal with the
problem in a real recognizer? In this paper, we first
confirm this issue both quantitatively and qualitatively.
Specifically, we carried out extensive experiments to
evaluate the effect of accent on speech recognition,
based on a state-of-the-art recognizer, and showed a
40–50% error increase for cross-accent speech recog-
nition. Then, a high-level analysis based on PCA/ICA
confirmed qualitatively that accent is another dominant
factor, in addition to gender, in speaker variability.

Based on the above investigations, we explore this
problem in two directions:

• Pronunciation adaptation. A pronunciation dictio-
nary adaptation (PDA) method was proposed to
model the pronunciation variation between speakers
with standard pronunciation and the accented speak-
ers. In addition to pronunciation level adjustments,
we also applied acoustic level adaptation techniques,
such as MLLR and an integration of both PDA and
MLLR. PDA can deal with most dominant varia-
tion among accents group at the phonology level,
while general speaker adaptation can trace the de-
tailed changes of specific speakers such as speaking
speed and style, at the acoustic level. Result shows
that they are complementary.

• Building accent-dependent models and automatic
accent identification. In cases where there are
enough training data for each accent, more specific
models can be trained with less speaker variability. In
the paper, we proposed a GMM-based automatic de-
tection method for regional accents. Compared with
HMM-based identification methods, there is no need
to know the transcription in advance because the
training is text-independent. Also, the model size
of a GMM is much more compact than that of a

HMM. Therefore, there is much less training effort
for a GMM, and its decoding procedure also is more
efficient. The efficiency of accent identification in
selecting accent-dependent models in recognition is
supported by our experiments.

These two methods can be adopted in different cases
according to available corpora. Given an amount of ac-
cented utterances insufficient to train an accent-specific
model, we can extract the main pronunciation vari-
ations between accent groups and standard speakers
through PDA. Without any changes at the acoustic and
language model levels, pronunciation dictionaries can
be adapted to deal with accented speakers. When a large
amount of corpora for different accents can be obtained,
accent-specific models can be trained and applied in
speech recognition through a GMM-based automatic
accent identification strategy.

The second method can be extended to more general
cases, in addition to accent and gender. Given more
detailed-labeled data such as speaking rate, we can train
a speed-specific model in addition to the accent/gender-
specific model to fit accurately to the speaker. The auto-
matic identification strategy also can be used to cluster
the huge amount of untagged data into more subsets
and form clustered models. Then the right model can
be selected with the same strategy. This strategy is ap-
plicable especially in client-server based applications
where there are fewer limitations of space and com-
putation. In this case, incrementally collected data can
be classified and formed into more and more specific
clustered models. The final target speaker model can
be selected or adaptively combined (Gales, 2000) from
multiple models.

Currently we are trying some new speaker represen-
tation methods for more efficient analysis of speaker
variability (Chen et al., 2002). We are also introduc-
ing the GMM-based automatic identification strategy
into unsupervised clustering training. Furthermore, a
general speaker adaptation method, namely speaker
selection training (Huang et al., 2002), which in-
cludes accent adaptation, is under development for fast
adaptation
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Notes

1. Accent, as addressed in this paper, is determined by the phonetic
habits of the speaker’s dialect carried over to his or her use of the
mother tongue. In particular, it refers to speaking Mandarin with
different regional accents caused by dialects, such as Shanghai
and Guangdong.

2. PPC is a measure similar to word perplexity (PPW) except that
it is based on character level. Usually PPW = PPC∧n, where n
is the average word length in terms of characters of test corpora
with a given lexicon.

3. Compared with the rest of the phone classes, these single vowels
can reflect the speakers’ characteristics efficiently. In addition,
they are widely used and therefore can be estimated reliably. As
a result, regressions classes corresponded to them are chosen as
“supportive” representations of speakers.

4. There are eight major dialectal regions in China in addition to
Mandarin (Northern China).They are called Wu, Xiang, Hui,
Gan, Min, Jin, Hakka and Yue. The BJ, SH, GD and TW we
discuss in this paper are speakers mainly from Mandarin, Wu,
Yue and Min dialectal regions, respectively and they can and are
required to speak Mandarin in the paper.

5. Syllable in Mandarin is a complete unit to describe a pronuncia-
tion of a Chinese character. It usually has five different tones and
consists of two parts, called initial and final. E.g. /shi4/, /shi/ is
the base syllable, 4 is the tone part and /sh/ is the initial and /i/
is the final.
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