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Abstract— Many network phenomena are well modeled being reinfected. It is imperative, then to understand how
as spreads of epidemics through a network. Prominent the topology affects the spread of an epidemic, in other
examples include the spread of worms and email viruses, words how the topology either impedes or facilitates
and, more generally, faults. Many types of information jts spread and maintenance. Such an understanding can
dissemination can also be modeled as spreads of epldemlcsl.ead to better techniques for preventing and fighting

In this paper we address the question of what makes an worms and vir voidin ding failur nd for
epidemic either weak or potent. More precisely, we identify 0 s.a u§es, a. 0 i 9 Ca§ca g_ alures, a 0
improving the dissemination of information.

topological properties of the graph that determine the
persistence of epidemics. In particular, we show that if ~ In this paper we take a step towards developing an
the ratio of cure to infection rates is smaller than the understanding of how the topology affects epidemic
spectral radius of the graph, then the mean epidemic spread. We model the spread of an epidemic as a contact
lifetime is of order logn, wheren is the number of nodes. process over a finite undirected graph (withnodes)
Conyersely, if this ratio is bigger than a generalization of \yhere a node can be infected by its infected neighbors
the isoperimetric constant of the graph, then the mean 4 4 rate that is proportional to their number, and a node
epidemic lifetime is of order e” , for a positive constant can be cured when it is infected. For such a system, given

a. We apply these results to several network topologies . . . .
including the hypercube, which is a representative con- &Y set of initially infected nodes, the epidemic dies out

nectivity graph for a distributed hash table, the complete N & finite amount of time. We develop general, topology
graph, which is an important connectivity graph for BGP, dependent conditions under which the epldemIC dies out

and the power law graph, of which the AS-level Internet either quickly or slowly. More precisely, if denotes
graph is a prime example. We also study the star topology the length of time that the epidemic is active (i.e., at
and the Erd6s-Renyi graph as their epidemic spreading |east one node is infected), then a sufficient condition
behaviors determine the spreading behavior of power law g, quick die out, defined a®[r] = O(logn), is that
graphs. the ratio of infection rate to cure rate not exceed the
Index Terms— Graph theory, Stochastic processes spectral radius of the adjacency matrix of the underlying
topology graph. A sufficient condition for slow die out,
defined asE[r] = Q(e"") for somea > 0, is that

M k ph I deled the ratio of infection rate to cure rate be larger than
any network pnenomena are wel MOJEIEC pq isoperimetric constant associated with the graph.

spreads O.f epidemics through a network. P_rom'ne%ese conditions are not necessary. For some topologies,
examples include the spread of worms and email VIruses, . as a hypercube, clique, and &seRényi graph

"’.‘”d’ morel genirallyio faultso.l ;”:je sprre1ad of mJon;nqhe conditions are quite close. In others, such as a star
tlo_nd can a:o 0 t_e(zjn € mo e; a}s t ehspread CIJ 8d a power law graph, the conditions are farther apart.
epidemic. An epidemic spreads along the underlyinge narrow the gap through supplementary analysis for
networ_k topology from an initial se_t offected nodes to these latter cases. We focus on real world topologies,
susceptible nqdes. In many cases mfectgd nodes can e.slmely the hypercube, clique and power law graph. We
cured, reverting back to being susceptible and possi Yso extensively study the star topology and the@rd

D. Towsley was a visitor at the Cambridge Microsoft Researc,!ﬁényi graph _Since their properties play prominent roles
Lab at the time this work was completed. in the analysis of the power law graph. In all of these
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applications, the condition for fast die out based on tl@ntaminate neighbours at rateand recover at rate.

spectral radius appears to be tight. This defines a Markov process with transition rates:
Several papers have touched on different aspects of the

problem studied here. Much of the work has focused on Xi: 0=1 atratefy cpXj,

infinite scale-free graphs, establishing conditions under Xi: 1 =0 atrated.

which epidemics either die out or sustain themselvﬁenceforth without loss of generality, we set= 1

fpr_ever; S€e, €.9., [15.]' Spme wc_)rk_ has been done Bnote byA the adjacency matrix of the graph structure
fm.'te graphs, using p”m?‘“'y hgunspc arguments' 0 Obdn the set of sites. Denote pf A) the spectral radius
tain conditions under which epidemics spread quickly s 4 namely, its largest eigenvalue. Observe that the

not. For example, [16] uses a mean field approximaticmarkov processX is such that one can reach the
for establishing conditions for quick and slow die out bsorbing stat@ starting from any state: . Thus, it

in scale-free graphs and [12] provides an approximate . , . .
analysis for the case of an EG&-Rényi graph. We iS"the case that epidemics always die out. Even more is

. . - " . k true: the probability that they have not died out by time
rigorously establish similar conditions in Section V. AQ will decgy exponé/ntially wi%/rt. This fact follows fr)(;m

exception |s.the work of D_urrett gnd Liu [8]'. .Wh'Chstandard theory of Markov processes with absorbing
presents a rigorous analysis leading to conditions fO{ . . . .
States, reviewed for instance in [4]. The question of

fast and slow die out on a finite one dimensional ”ne"?‘rr\terest is then: how auickly do the epidemics die out. or
network. Also relevant is the work of Coffman et al. j d y P '

. . o
[7], which models cascading BGP failures on a fu”how quickly does the system recover from the epidemic?

) : . ore precisely, define to be the time until the epidemic
connected topology. They identify regimes where BGdées out provided there is at least one infected node

routers recover quickly (corresponding to fast die out)a tially. We are interested in determining the behavior

: in
others where they go through long periods of repeat%d E[7] as a function of the system size whether it
failures (corresponding to slow die out). We treat this i ies out quickly, i.e..B[r] = O(logn), or slowly, i.e
a rigorous manner in Section V. Last, Wang et al. [1{1{1 Bir] = Q(na)' f(.)r.somea o Alth(’)ugh pararhété’rs
show, through simulation and approximate analysis, th '

. . .Of interest such ag may depend on the system siz
the condition for fast die out relates to the spectral radius § may dep y ©

of the adjacency mairix of the underlying graph. we do not make this dependency explicit in our notation.
Our model is an example of what is termed an

SIS (Susceptible-Infective-Susceptible) model in the epHl. A SUFFICIENT CONDITION FOR FAST RECOVERY

demic literature. Related work has been concerned

with the so-called SIR (Susceptible-Infective-Removed)

model; see Ball et al. [2] for recent references as well 1

as a study of vaccination strategies in that context. p(A) < B’ 1)
The paper is structured as follows. We introduce

the epidemic spreading model in Section II. Sufficiefplies that the epidemic dies out fast, and the charac-

conditions for the fast die out and slow die out of aferistic time before extinction is related to the difference
epidemic are derived in Sections Ill and IV respectivelyetween the two terms in (1). Note that the threshold
Applications of these results to the star, hypercubgondition (1) is the one proposed in [18].

clique, Erds-Rényi graph, and power law graph are More precisely, we have the following result.

found in Section V. Section VI summarizes the paper Theorem 3.1: Suppose condition 1 holds. Then, the
and describes further directions to pursue. probability that the epidemic has not died out by time
t, given the initial conditionX (0) € {0,1}", admits the
following upper bound:

We show that the following condition,

II. MODEL

Consider the following continuous time version of the P(X(t) #0) < /n[|X(0)[[;ePA-DE(2)
epidemic spread model in Wang et al. [18]. We represent n N
the system by a connected gragh= (V, E). HereV is  Where [X(0)]l: = -, X;(0). In addition, under the
a set ofn sites, E C V2 and (i,j) € E represents condition (1), the time to extinction verifies
a link between the pair of site§j € V. The state log(n) + 1
at time ¢ is represented by a vectak(t); site i is E(r) < T- Bo(d) (3)
infected (respectively, healthy) at timeiff X;(¢) = 1
(respectively,X;(t) = 0). Assume that infected nodesfor any initial condition, X (0).



Proof: Consider the continuous time Markov prodn other words, under condition (1), the probability that
cessY = {Y;}icv, with values inN", and transition the epidemic hasn't died out by tlmielM +1t decays

rates
Vit k—=k+1 atratef> ;. cpY;,
Y,;: k—k—1 atrateY;.

Br(A)
exponentially int.

However, Condition (1) may not be necessary for en-
suring exponentially fast death of epidemics, with small
characteristic time before extinction. We will observe

Standard coupling arguments yieRi(t) < Y'(t) for thjs in the case of a star-shaped network in Section V-A.
all ¢ > 0 when starting from the same initial conditions;

here,X <y Y denotes thal” stochastically dominates|V. SUFFICIENT CONDITION FOR LASTING INFECTION

X. This implies that
P(Y_Xit) =0) > P(}_Yi(t) =

Moreover, it holds that:

P(Z_m(t) >0) < ZE(YZ(t))

We now provide a condition under which an epidemic
will survive for a long time. To this end, we introduce
the so-calledgeneralized isoperimetric constant of the
graphG, defined as:

E(S,S)

G.m) = me 250 el
&™) = o e TS <m_W(i)

However, the transition rates for procéssare such that |, the above,E(S,S) denotes the number of edges

CB(Y(1) = (BA - 1 B(Y (1),

wherel denotes the identity matrix. Hence,

E(Y ()) = exp (M) Y (0),

connecting the set of vertice$ to the complementary
set, S. Whenm = |[n/2], this corresponds to the
standard isoperimetric constan{G). Henceforth we

omit the reference t@s. Define now a Markov process
Z on{0,...,m}, with transition rate:

whereM = A — I. Note thatexp(¢M) is a symmetric z—z+1: atraten(m)Bz,
matrix (since A is) with spectral radiuse(%P(4)-1)t, z—z—1: atratez.
Hence,

Now, standard coupling arguments yieldZ ()} <g

1210 ( Nllz < PV EY(0))]|2, {D iev Xi(t)} due to the fact thati) Z(t) can never
where [E(Y (1))l = \/M—t) But, by the gxceedm .(_|'|) their downward trgr_13|t|on rates are |.den—

Cauchy- Schwarz inequality,

Y EXi(®) < [EY @211,

eV
where 1 denotes the vector of ones, §a|. =
Thus, we obtain:

X(t) #0) < B(Y(t

< /neBr(AH-1t ZYZ(O)Q

Equation (2) follows, upon replacing;(0) by X;(0);

tical, and(iii) the upwards transition rate fdrZ(¢)} is

n(m)pBz, that for {3}, ., Xi(¢)} is E(S,S)8 whereS =
{i € V: X;(t) = 1}, and we havel(S,S) > n(m)z
whenever|S| = z < m.

NG This is useful for establishing the following result.

Theorem 4.1: Assume that the following inequality
holds: 1

~ Bn(m)
Then for any initial conditionX (0) with >-"" ; X;(0) >
0, it holds that,

pomtl —r
P(T>L2+J>Z1 (1+0(@(™). (6)

<1 (5)

m (&

note thatX;(0)? = X;(0) since X;(0) takes values in

[0,1}.

Now, write

E(r) = /OOP(T > t)dt = /OOOP(X(t) £ 0)dt

Proof: First consider the embedded discrete time
Markov chain associated with proce&s which tracks
the successive states visited By We denote it byZ;,
where nowt € N. Its transition matrix has as non-
negative terms:

ReplacmgP( (t) # 0) by the trivial upper bound o Bn(m) )
n [0, (log(n)/(1 — Bp(A))], and by the upper bound ~ P(Li+1)  =goys, i=1...,m-1
nexp((ﬁp( ) — 1)t) on the interval [(log(n)/(1 — plibi=1) = gemy i=L...,m,

sult (3).

(i
Bp(A)),00), Iin this expression yields the claimed re-  p(0,0) =1,
(

[ | p(m,m—1) =1.



Let ¢(k) denote the probability that, starting from statstated in terms of the spectral structure of the underlying
k, the Markov chainZ, will enter statem before graphG. This will allow comparison with the former
entering state 0. The evaluation gfk) is a standard sufficient condition for fast extinction, (1).

problem, known as the gambler’s ruin problem. It has The Laplacian matrix. of the graphG is by definition

the following solution: D — A, whereD is the diagonal matrix with as entries
1k the degrees of the vertices @», and A is the adjacency
q(k) = {—m k=1,....,m—1, matrix of G. We shall denote the eigenvalues bfby
—-T

A (L) < Xo(L) < --+ < A\y(L). We now have:
wherer = 1/(Bn(m)). LetT denote the number of steps  Corollary 4.2: Let

beforeX; is absorbed at 0. The solution ot the gambler’s 9
: o _ ,

ruin problem implies that: - r Boa(l) < 1. (8)

P(T >t)> L-r (1 7 > . (7) Then (6) is still valid, withr replaced byr’ andm =

1—rm 1—rm U’L/QJ
Indeed,T" is going to be larger thahif Z pays at least The proof follows from Corollary 3.8 in [14], which
t distinct visits tom before being absorbed. The probstates that for any graply, the following inequality
ability of the first visit taking place before absorptiorholds:
is the first term in the above expression; after a visit X2(L)
n(G) 2

to m, the probability of having a subsequent visit prior 2
to absorption is given byl — ™ 1)/(1 — ™) as can  Corollary 4.3: Assume that the graply is regular,
be seen by considering what happens in the step just all its vertices have the same degree, éapenote
after the visit tom, where the process is necessarilpy A\1(4) < ...\, (A) the eigenvalues of its adjacency
in statem — 1. The formula above follows. Taking matrix A. Then a sufficient condition for exponentially
t = [r~™*!] in expression (7), the right-hand side idong survival of the epidemics is that:
then at leas{l —r)/e (1 + O(r™)). Conditioned on the
event that th(ere ar)e/ irfdeediéits 2[())m before absorption 2 <B(d=An-1) =Bp(4) = An-1). ©)
at zero, the time before absorption is then larger than
the sum oft exponentially distributed random variables |ndeed, Condition (9) coincides with (8) in the case
with parametern, describing the sojourn times in statef a d-regular graph. Ignoring the factor 2 in (9), this
m. When the number of such visits is large, the tota&londition amounts to comparing the ratlg3 not to
sojourn time is then at leagf(2m), with a probability ,(A), as is done in Condition (1), but rather to the gap
1 — e where the errok is exponentially small irt, and between the two largest eigenvaluesipinamelyp(A)—

the result (6) follows. o), .
We have the following corollary.
Corollary 4.1: Consider a sequence of graphs indexed V. SOME EXAMPLES

by n. Suppose there is atn > 0 and a sequence: =
©(n®) such thatr < 1 uniformly in n, for » defined as
in (5). Thenlog (E[7]) = Q (n%).

Proof: We have

In this section we apply the previous results to several
important classes of topologies: star-shaped networks,
hypercubes, cliques, Edd-Rényi random graphs, and
random power law graphs.

Bl = / P(r > a)dr,
OLr_m 1 /(2m) A. Star-shaped networks
> / P(r > z)dz, The star-shaped network is of interest for several
0_m+1 reasons. First, it illustrates that neither of the preceding
> A R Sk (14 0@™)). conditions are sufficient. We are able to get much tighter
B 2m € conditions because the star is simple enough to study
Upon taking logarithms, this yields exhaustively. Second, the spreading behavior of a large

class of power law graphs is determined by the spreading
behavior of stars embedded within them, as we will
which establishes the corollary. B observe in Section V-E.

We now use Theorem 4.1 to provide sufficient con- Consider a star-shaped network, with+ 1 nodes,
ditions for exponentially long survival of the epidemicsvhere the only edges afé,i), i = 1,...,n. Let us first

log (E[r]) > ©(n") — O(log(n)),



identify the spectral radius of the corresponding matriollowing theorem shows that (1) is not sufficient for fast
A. An eigenvectorr associated with eigenvaluemust die out.

satisfy Theorem 5.1: Suppose’ = C/+/n for a fixedC > 0.
n .
Then, E[r] = O(logn) when eitherX(0) = 1 and/or
Axp = 2@, Ax; = xg. N(0) > 1.
1=

_ Proof: As (X (t), N(t)) is nondecreasing in the size of
The only solutions forA are 0 and ++/n, and thus the initial population of infectives, it suffices to consider

p(A) = /n. The results from the previous two sectiongne initial state(1,n). Fix ¢ > 0, and taket = — 2859,
tell us that Be= U0 (14e)B , 1o
. _ _ _ so that=—-5— = *55~. Define
1) epidemics die out quickly provided tha&t <
1/y/n, and . log(Be) | _
2) epidemics die out slowly provided thAt> 1. = mf{s = 1+8 X(s) = 0} (11)

These results are clearly quite loose. In this section Wg be the first time aftet that the central hub becomes
derive tighter thresholds for fast and slow die out.  yninfected in the original Markov proce$¥ (t), N (t)).

We describe the state of the epidemic on a star-shapeg the arguments abovey (T) is stochastically domi-
network by a vecto X (¢), N(t)) of length two. Here nated byN(¢). Note thatT; — ¢ is stochastically dom-
X (1) is the indicator that the hub is infected, antt) inated by the time for the hub to become uninfected
is the number of infected leaves, at timeThe pairwise (assuming that it is infected at tim#, which is an
infection rate isj, while each infected node recovergxponentially distributed random variable with megn

at ratel. Thus, the procesgX (¢), N(t)) is Markovian, denotedU;. Sincef = C/+/n, we have
with transition rates

logn logn
(0,7) — (1,4), rate i,  (1,4) — (0,1), ratel, T < ~log(eC)+U1, E[I] < ——~log(eC)+1.
(0,7) = (0,7 — 1), ratei (1,7) — (1,7 — 1), rateq, (12)
(1,7) — (1,¢ + 1), rate B(n — 9); Next, observe that, conditioned aN(7,) = k, the

obability that the infection dies out before the hub

all other transition rates equal zero. Standard couplirﬁ)% . . o
: . becomes infected again is/(1 + 8)*. This is because
t tablisiX (¢), N(¢)) to be stochasticall : : .
arguments establishX (1), N(t)) to be stochastically each leaf becomes uninfected before infecting the hub

nondecreasing i X (0), N(0)). During each interval " . . .
over which the state of the hub is fixed Btthe leaves with probability 1/(1 + f5), and the infection attempts
of different leaves are independent. L&t = inf{t >

evolve as independent Markov chains éf, 1} with ) . .
P o0, 1} T, : X (t) = 1}, with the convention thaf; = oo if the

transition rate3 from 0 to 1, and1 from 1 to 0. Denote . ) . . .
the transition rate matrix byQl. A straightforward infection dies out before the centre is re-infected. Then,

f:alculation yields that the transition probability matrixP(S1 o) = E[( 1 >N(T1)] > E[( 1 >N(t)}

IS 1+p 1+
Pl(t) = e Recall thatt = _10ng(§) and thatNV (¢) is binomial with

_ 1 ( 14 Be~ (4R g1 — e~ (1A >(10) parameters: and (11166)/3' Hence, using the generating
1+4\ 1—e (Bt g4 e—(14H) function for the binomial, we have

Define the processV(t) to be the second component p g (1 _(1+¢)pB n (1+¢p 1 )”
of the Markov procesg X (t), N(¢)), conditioned on 1+p 1+8 1+p
X(s) = 1 for all s € (0,00). It is easy to see by a (14 €)B2\n

coupling argument that, for any > 0, N(t) < N(t) ( 1+ p)? ) :

provided N(0) <, N(0); for random variablesX, Y, - -

we write X <, Y to mean thatX ~is stochastically ;Lrjbesniﬂg?gﬁ = C/+/n, we have for alln sufficiently
dominated byY". But conditioning onX (s) = 1 ensures g
that the trans_ition probabilities for each Iegf are giv_en by g:=P(S) = 00) > lexp(—(l +e)C2). (13)
(10). Hence, if we takeéV (0) = n, thenN(t) is binomial 2

with parameters, and (64 e~(1*%)!) /(14 3). Since the  Next, we bound the time by which either the hub
latter is a decreasing function ffwe also note thal(s) becomes re-infected or the infection dies out. Associate
stochastically dominateB?(t) for any s < ¢. In fact, if with each leafi an exponential random variable of unit
T > sis arandom time which is independent of tN¢-) mean,Z;, denoting the time at which this node would
process, therV(s) stochastically dominated' (7). The become uninfected if it was initially infected. Define

Y

| = o)



S, =T + max; , Z;. Then, either the infection hasHere, P, denotes probabilities for the Markov chain
died out beforeS;, which happens with probability at (X (t), N(t)), conditioned on(X (0), N(0)) = z.
leastq (as given by (13)), or the hub was re-infected &) For allz # (0,0), log E;[7] = Q(n®).
some time in(77, S1). On the latter event, the evolution The proofs of 1) and 2) rely on the following three
of the process aftef; can be stochastically dominatedemmas, whose proofs can be found in the Appendix.
by the evolution which starts a#; in the state(1,n). The first lemma states that, for the Markov chain
But this is the state we considered at tiheso S; is a started in(0, k), with high probability the hub becomes
regeneration time for the dominating process. We haifected before the number of infected leaves decreases
thus shown that the time to extinction is stochasticallyy \/n or more.
dominated by the sum of + V' independent copies of | emma 5.1: Suppose(X(0), N(0)) = (0,k), with
S1, whereV' is geometric with meaiil — ¢)/q. k> /n. Leto =inf{t > 0: X(t) = 1}. Then,

Now considerS; — T = max}_; Z;. We have

P(N(0) < k— vn) < exp( o).

eiu 1+B

P(m%xZi > logn+u> =1- (1 — —)n <e Y.
=1 n
In other words,S; — T} — logn is stochastically domi- Recall thatK = 415—1[3 Fix ¥ < K and consider the

nated by an exponential random variable with méan Markov chain (X (t), N(t)) started in the statél, k).

denotedU,. We now have from (12) that The following lemma states that, with high probability,
~ 3 either X (t) = 0 or N(t) = K before N(t) = k — \/n.
S1 < 5 logn —log(eC) + Ui + Ua, Note that, if N(t) = K, then (X (t),N(t)) € C.
. 3 Lemma 5.2: Suppose X (0), N(0)) = (1,k), with &k
E[Si] < 5logn —log(eC) +2, (14) < K. Leto = inf{t > 0: (X(t), N(t)) € C or X(t) =
0}. Then,

where U; and U, are independentZzp(1) random

variables defined on the same probability spaceSas P(N(t) < k — v/n for somet € [0,0] ) < 4~ V7,
Finally, the time to extinctionr, satisfies o ’ a

14V
r< Z gj’ P(V=j)=q(l-q), j=0,1,2,... The last lemma states that the Markov chain
= (X(t),N(t)), starting in state(1,k) for any k, has
. (15) probability at least one third of hitting the sétbefore
where S; are iid and independent df. Hereq is given the hub becomes uninfected.
by (13), and is bounded below by a constant that doesn’t_emma 5.3: Suppose(X(0),N(0)) = (1,k), with
depend omn. It is now immediate from (14) and (15)k < K. Leto = inf{t > 0: X(t) = 0}. Then,
that E[7] = O(logn). This completes the proof of the

theorem. 1 - P((X(0).N(0)) €€) > 3,
Next, suppos® = n“~ =, for somea € (0, %). Define 3
K= %1 and let for all n sufficiently large.
n Proof of Theorem 5.2: Let » be an arbitrary state in
C = U {(0,k) U (1,k)}, the setC. Define ¢ to be the return time to the sét
Py ¢ = 0 if the first transition out of state takes the chain

i i to another state id. We want to show thaP (7 < 7¢) <
be the set of states in whick® or more leaves are (—kn®)

infected. We shall show that, starting from any state in - - : .
) We recursively define the timeg;, and.S; as follows:
C, the I\/I_a_rkov cham(_X(t),N(t)) returns to the sef To = inf{t > 0 : X(¢) = 0}, which couI(; possibly be
before hitting(0,0) with high probaplllty. zero: fori > 1, §; = inf{t > To_, : X(t) = 1} and
. _ oa—= H - ] — .
Tlheore(rjn 52 ngppgseﬁ o n ;] f?l’ SOmea € 7 — inf{t > S; : X(t) = 0}. Note that the staté0, 0)
(0,3) andC is defined as above. Then: is absorbing. Hence, iV (T}) = 0 for somei, then we

1) There s a constank > 0 such that, for alln defineS; andT) to beoo for all j > i. Now, by Lemmas
sufficiently large and alk € C, 51 and 5.2. we have

(N () > % Vi) 21— exp(~Vilog4),

P,( (X(t),N(t)) hits (0,0) before returning t& )
< exp(—kn?).



and, for allk > 1, the number of returns t6 before hitting(0,0) stochas-
tically dominates a geometric random variable with mean

n
P<N(Sk) > ﬁ —2kv/n ‘ exp(kn®). The time for each return t6 dominates the
Bn time for a single transition from statg for all y € C,
N(Ty_1) > Tl — (2k — 1)\/ﬁ> this time dominates an exponential random variable with
o (L+5) meanl/n. Consequently,
>1— -
> 1o~ 5). | -
Bn min Fy[r] > —e™" |
P(N(Tk) > 1 h (2k+1)\/ﬁ‘ yeC "
b win Belrl 2 gu i 2 e,
N(Sp) > —2 2#(0,
(Sk) 2 41+ B) kﬂ)
> 1 — exp(—v/nlog4). for large enough and suitably choser’ > 0; k' = k/2
- b 1 e e will suffice. Thuslog E.[7] = ©(n®). This completes the
Now, 5 = n®"%, S0 755 % = griga = ‘o or @l proof of the theorem. "
n sufficiently large. Thus, we obtain by the union bound remark 5.1¢ It is interesting to note that the system
that behavior is greatly affected by the initial set of infected
2n® n hosts in the following way. IfX(0) = 0 and N(0) =
P(T, 9 < >1—(—+1 ——). (16 -
(T o < 00) 2 ( 9 )eXp( 1+ﬁ) (16) o(n'/?2-®), then the probability that the hub becomes

Note that, on this event; > T, /o. Moreover, on each INfected goes to zero as — oo. In particglva}[),)/iigl_:a
interval [Sy, T3, k < n%/9, there is probability at leastinf{s : X(s) = 1}, thenP(T' < o0) < Ae

L of hitting the setC, by Lemma 5.3. Hence, for A > 0 and largen. Furthermore, these epidemics are
of short duration( (log n). However, even though nearly
P(1e > Ty jo|Te jo < 50) < (2)""/9 all epidemics die out (with high probability), the rare
3 occasions that they do not yield epidemics of such long

_ exp(_log(3/2) na>_ durations that the average epidemic length is exponential
9 in n. On the other hand, if eitheX (0) = 1 or N(0) =
Combining this with (16), we get Q(n'/?~*), then a non-zero fraction of the epidemics do
not die out quickly, even as — oo.

P(re <7) > P(r¢ <Tpeyg <7)
> 1—=P(rc 2 Tpey9) = P(Tyesg > 7)
= P(The 9 < 00) = P(1c > Tpa9) B. Hypercubes
> 11— (? + 1) exp(— 1T6> The hypercube is of interest because of the widespread
and growing interest in distributed hash tables and ap-
% exp<_10g(;’/2)na>_ plications, such as file sharing [17], being built on top

of them. Already worms and viruses have appeared in

Taking s = %Jrlog(g/Z) for instance, we see that the firsfome applications, [11]. As many DHT structures are
claim of the theorem is satisfied. hypercubic in nature, it is important to understand the

To establish the second claim, observe that the Mark§@reading behavior of such worms on a hypercube. Here
chain started in any state of the forf, k) with & >0 We represent a hypercube as a gréphvith vertex set
dominates the chain started in the stéel). Likewise, {0;1}* for someZ € N, and where the edge,w) is
the chain started ifiL, k) dominates that started {1,0). Present if and only if the Hamming distandg; (v, w)
Thus, we need only consider the initial conditigios1) €quals 1. As a hypercube is a regular graph, its spectral
and (1,0). Now, if the chain is started in0,1), it radius isp(G) = log, n. Hence, from Section IIl we
hits (1,1) before (0,0) with probability 8 = no—3, know that the epldemlc. dies ou_t_ provided th@'t< '
and subsequently dominates the chain starte¢l jn). 1/ logQ n. We now determlne conditions for the epidemic
Moreover, by Lemma 5.3, the chain started1n0) hits © die out slowly. In particular, we establish that the
the setC before hitting(0,0), with probability at least ePidemic dies out slowly provided > %’ for
a third. ConsequentlyP, (e < 7) > n®"3/3 for all a0 <a <1. Thus, unlike the star topology, there is
z # (0,0). Next, starting from any statg € C, we have €ssentially no gap for the hypercube.
shown thatP, (7 < 7¢) < exp(—xn®). Consequently, We first establish the following result.



Theorem 5.3: Let m = 2%, for somek € {0,...,¢/ — of routers failing and coming up can be modeled as the

1}. Assume that the following inequality holds: spread of an epidemic within a complete graph, [7].
1 Consider a complete graph with vertices, namely
ri= m <1 (17) the graph where an edge is present between each pair of

nodes. The adjacency matrix of this grapmis= 117 —
Assume further that™ goes to zero as — co. Thenthe 1 \where1 denotes the column vector of ones, ahtl
time to extinction satisfies identity (6), with our currens its transposed has the spectral radiygA) = n — 1.
choices forr andm. _ o The isoperimetric constanf(m) is easily shown to be
The result follows by a direct application of Theos, . Application of Theorem 3.1 and Corollary 4.1 tell
rem 4.1. In order to prove the theorem, we need thg that epidemics die out quickly wheh< 1/(n—1)
following result established by Harper [10] (see also [Hnd slowly whers > 1/(n—m), whenm = n® for some
for background and recent extensions). a > 0. Thus1/n is essentially the correct threshold and,

Lemma 5.4: (Harper [10]) LetS be a set ofn vertices as in the case of the hypercube, there is no gap.
of the hypercubg0, 1}¢. Then the edge-boundary size

E(S,S) is larger than or equal t&(S*, S*), whereS* D Erdés-Rényi random graphs
denotes the set of the, smallest vertices according to
lexicographic order.

Proof: (of Theorem 5.3) Letm = 2%, for some
k < £. Let us first establish the following inequality:

The Erds-Rényi graplt(n, p) with parameters and
p is defined as a random graph ennodes, where the
edge between each pair of nodes is present with prob-
ability p, independent of all other edges. The spreading
n(m) >0 — k. (18) behavior of an epidemic on an EistRényi graph is
of interest for a number of reasons. First, it is a graph
Indeed, in view of the lemma it is the case that the%set nat has received considerable attention in the past [3].
achieving the minimumlisoperime_trilc ratigm) consists  second, it is an important component of the class of
of all points 0° *'x1" ", wherexz{ ~ spans the Wh10|e power law random graphs that model the Internet AS
set{0,1}/!, plus some points of the typg# 711", graph. Thus if we are to understand the robustness of
for somej < k. It turns out that any poing; /2], where the Internet AS-level graph, we need to characterize the
Zf,gl yp = 1 and 0°~7z] belongs toS*, contributes robustness of the Eéd-Rényi graph.
exactly one edge t(E(S*,E*). Hence the lower bound We shall consider a sequence of such graphs indexed
J— s by n. Denote byd the corresponding average degree,
E(S",8%) 2 (€~ 5)I57], i.e.d = (n — 1)p. Note thatp andd depend om, but
from which (18) directly follows. this is suppressed in the notation. We say that a property

The resu|t fO”OWS by app|y|ng Theorem 4.1. [ ] hOIdS W|th h|gh pI’ObabIIIty |f |tS pI’ObabIIIty goes to1l
Now reverting to the notation andm, condition (17) aS7 — o0.
can be expressed as We consider the regimieg(n) < d, i.e.,log(n)/d —
| 0 asn — oo. In this case, it is known that the graphs
- . are connected with high probability. Moreover, by the
logy n —logy m Perron-Frobenius theorem, the spectral ragigs) lies
Takem = n® for somea such thal < a < 1, we obtain between the smallest and largest node degree. Since the
1 node degrees are binomidl,,_; ,, it is easy to see using
g > the Chernoff bound thab(A) = (1 + o(1))np = (1 +
o(1))d, with high probability.
Theorem 5.4: Let m be such thain/n — a asn —
oo, for a fixeda € (0, 1). Assume further thabg(n) <

The complete graph also plays a prominent role i Then it holds that, with high probability,
networks. For example, the BGP routers belonging to
n(G,m) = (1 +0(1))(1 — a)d. (19)

the top level autonomous systems of the Internet form a
completely connected component. In addition, large ISPs
often organize their internal BGP (iBGP) routers into  Proof: Fix somek ¢ (0,1 — ). By the union
a set ofroute reflectors that are completely connectedbound,

Because of the importance of BGP to the Internet, it is m

important to understand what effect BGP router failuresP (n(G, m) < kd) < Z Z P (E(S,S) < kdi) .
can have on each other. At a very high level, the behavior i=1 S:|S|=i

8>

(1 —a)logyn’

C. Complete graph



Note that F(S,S) has a binomial distribution with hold with high probability: an epidemic ofi(n,p) dies
parameters(n —i) andp. Denote byB;,,_;) , a generic out quickly, E[r] = O(logn), provideds < (1 —u)/d
Binomial random variable with this distribution. We thudor 0 < u < 1. On the other hand, the epidemic dies out

have slowly, log E[r] = Q(n) provided thatg > (1 4+ v)/d
mo. for v > 0.
P(n(G,m) < kd) < Z <Z>P (Bitn—iyp < kdi). Proof: The theorem follows from Theorem 3.1 and
i=1 Corollary 4.1, the expressigiA) = (1+o(1))d for the
Sincek < 1 —a andm = (1 + o(1))an, we have forn  Spectral radius, and Theorem 5.4. L

large enough thatn — i)p > kd for all i € {1,...,m} Notice that there is very little gap between the two
and that?=! < 1/(1 — «). We now apply the following thresholds as: and v can be chosen to be arbitrarily
Chernoff bound, close to zero.

P (B < (1 —0)E(B)) < e BB®/2 (20)

valid for any Binomial random variablB, [13, Theorem E. Power law graphs

4.2], 10 By(,—),p in the above expression. Takirg= There has been considerable interest in power law
1-— kﬁ—j >1- % this yields graphs since it was first noticed that the Internet AS-
m level graph exhibits a power law degree distribution, [9].
P()(G,m) < kd) < Z (”) efi(nfi)pej (21) Briefly a power law graph is one where the number of
? nodes with degreé: is proportional tok " for some
9 v > 1. For the mean degree to be finite, we need 2
wheree = 1 (1 — 1%) > 0. We thus have the upperand this is the range we shall consider. The Internet AS-

(07

=1

bound level graph is characterized by~ 2.1
moi In this section we consider a class of random power
P(n(G,m) < kd) < Zﬁe”(”’”pf, law graphs first introduced in [6]. Lel,wo,...,w,
i=1 " denote the expected degrees of the nodes in the graph.
_ zm: le—i((n—i)pe—logn) An edge is assigned to a pair of vertices with probability
il wiw;/ > p_, wi. Letd denote the average degree and

W _ the maximum degree. if); = c(ig+1i) (1 <i<mn)
where we have also used the upper boyfigl < n’/:! g2, d(y—2) \7 !

to obtain the first inequality. By assumptioog(n) < wherec = Spdn T, do = n( ) then the
d = (n —1)p, ande is a positive constant that doesn
depend omn. Thus, for any constank > 0, it holds

that, forn large enough,

m(y—1)
number of nodes with degréeis proportional tok~7.
Theorem 4 from [6] states under mild conditions that,

with high probability, the spectral radius of the graph is

P(n(G,m) < kd) < Z %n*m < exp (niK) -1

(1 o(1))v/'m, v > 2.5,
d(y—2) —1)m 37 22)
This suffices to conclude that for ally< 1 — «, with (1+o(1))5 (Y)(g),v) (((77,2);3) 2<v< 25

high probabilityn(G m) > kd. _ _

rection, choose any sef of cardinality m. Then one epldemlcs on the above class of power law graphs. Here

certainly has we will takem to be the foIIowmg increasing function
E(S,S) of n, m = n* where0 < \ < r
n(G,m) < ' Theorem 5.6:
Let k£ > (1 — a) be fixed. One then has that 1) Fory > 2.5,
(a) theinfection dies out quickl[7] = O(logn),
P(n(G,m) > kd) < P(Bun-m)p > km(n —1)p). provided that3 < (1 — u)//m for somel >
It is readily seen using a Chernoff bound that the right- u>0, _
hand side goes to zero as— oco. This concludes the (0)  the infection dies out slowlylogE[r] =
proof of the theorem. m Q(n?), provided thatg > m®~'/2 for some
Theorem 5.5: Consider Eréds-Rényi random graphs a € (0,1).

G(n,p) with log(n) < d = np. The following claims 2) Fory € (2,2.5),
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(@) theinfection dies out quickl¥[7] = O(logn), Let us now takeN = eiy, for some positivee. The

provided thatGp < (1 — u) where average degree of the induced BsdRényi graph is then
o (y - 2)2 ((’Y B 1)m>37 equivalent to
(v=1)B =7 \(y—-2)d (N = 1)pn
for some0 < u < 1, N d<7—2>2 € (£>(37)/(71)
(b) the infection dies out slowlylogE[r] = y—=1) (14 €)2/0=1 \iy
Q(n'~*0-1) provided that (i)8n > (1 + u) v —2\2 . m(y — 1)\
where - (7 - 1) (14?01 ( d(y - 2) >
2 3= 3—y
_ (r=2°B—7)" ((’Y ~ 1)m> Simple calculus shows that this is maximized by setting
22/ (y=1) \ (y-2)d e = (y—1)/(3 —v), for which choice we arrive at
for someu, > 0, and (ii) the following condition (N = Dpy ~
holds: ) . 3y
n > log(ip). (23) S g =276 —7) ((v - 1)m>
Proof: The first part of each of the claims follows 22/ D(y —=1) \ (y-2)d

from Theorem 3.1 and (22). Consider claim 1.b. We canThe die out result is a direct application of Theo-

bound the time to die out of an epidemic that starts igm 5.4 and Corollary 4.1, which is applicable under
either the maximum degree node or one of its neighba¥se condition (23).

by the time to die out on a star of size + 1. Now |t the initially infected nodes are not within the
consider the case that some other randomly chosen negggss-Rényi subgraph, then because the diameter of the
is initially infected. Theorem 4 in [5] states that, withyower law graph i9(logn) with high probability, the
high probability, the diameter of the power law graplrobability that the epidemic dies out before infecting a
is ©(logn) wheny > 2. Hence the probability that anpode within the Erds-Rényi component i©(1/n®18")
epidemic starting from a randomly infected node spreaglsy someq > 0 independent of.. This combined with

to either the maximum degree node or its immediatgguments used to establish Theorem 5.2 establishes the
neighbors is9(1/n°e") for somea > 0 independent ¢jaim.

of n. This combined with arguments used to establish -

Theorem 5.2 establishes the claim. ~ Remark. Note that in the case of € (2,2.5), the
We focus on claim 2.b. We shall now identify &nresholds for fast and slow recovery are almost the

subgraph of the original power-law random graph thagme, since, in the statement of Theorem 5.6 is smaller
is an Erds-Rényi random graph. Consider the firét than p(A) by a factor of

nodes, whereV < n is to be chosen, with respective

weightsw;,, . .., w;,+n. Then the probability of an edge 3—7 2/0=1)
being present between any two of these nodes is at least ( 2 > '
as large as Put together, our results determine the outcome of the
(wiy1n)? epidemics for such graphs in the rang@,s(A? <1
Py = nd (fast extinction) and3p(A4) > [2/(3 — v)]%~Y (long
2 (N+z‘o)*2/(7*1) survival). Our techniques do not cover the range in
= nd between at the present time.
v - 2 2 1 n 2/(v-1)
d (ﬁ) " <N+z’0> ) VI. SUMMARY

The original graph thus contains an BedRényi graph We have presented a preliminary inyestigation of how
with parametersN and py. Survival of the epidemic topology affects the spread of an epidemic, motivated

on the original graph will be at least as long as on tHY Nétworking phenomena such as worms and viruses,
Erd6s-Rényi subgraph provided that at least one no&@scadlng failures, and 'd!ssemmatl'o.n of mformatlgn.
within the Erdbs-Rényi component is initially infected, W& have developed sufficient conditions under which

The average degree of the subgraph is then given byepidemics either die out quickly (Iogarithmi.cally'in the
size of the network) or slowly (exponentially in the
- 2>2 N ( n >2/(7_1) ‘ size of the network). These conditions are tight for sev-

Y
(N =Tpy ~d (7 -1 N + g eral network topologies, such as hypercubes, complete

n
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graphs, and Er@s-Rényi random graphs. They are notve observe thatV/(¢) is a martingale and that is a

tight for topologies such as stars and power law graprstopping time. Defineg = P(N (&) = N(0) — /n). By

We provided a supplementary analysis of the star thide optional stopping theorenk M (6) = EM(0), i.e

significantly tightened the condition for slow die out so 3

that it is close to that for fast die out. In the case of K N(O)—vn 1 K K
: - Y T +A=-MINz—=

a power law graph, we presented tight conditions by B(n — K) B(n — K)

drawing on results for the star and BsiRényi random B K N(0)
graph. In all cases, the condition for fast die out appears - (mn — K))
to be tight.
. . . . : _Bn__ _ (44+38)n _ (4438)K
There are several interesting directions to pursue thigow, K = gy Son — K = g = 7 >

As we remarked within the paper, the behavior of thex . Hence, it is immediate from the above that
epidemic in the case of the star and power law graph i

sensitive to the initial set of infected nodes. It would be K ViR

useful to understand this relationship better. In addition, 7s (m) <4V (25)
as pointed out in [12], there is a notion ofratastable

set of nodes that are infected given that one is infected This establishes the claim of the lemma. n

the regime of slow die out. They present an approximateProof of Lemma 5.3: Clearly, the Markov chain started
analysis of the distribution of the number of nodes thén (1,%) stochastically dominates the chain started in
belong to this set. It would be useful to pursue this in @, 0), so it suffices to establish the claim of the lemma
more rigorous manner and for other classes of netwoidr £ = 0. By conditioning on the timer that it takes
topologies. the hub to become uninfected, which is exponentially

distributed with unit mean, we get
APPENDIX

ProoF OFLEMMAS 5.1, 5.2, 5.3

Proof of Lemma 5.1: When the Markov chain is in
state(0, k), the probability that it hit§0, k — 1) before X (s) = 1Vs € [0,¢t])dt. (26)
(1,k) is k/(k + Bk) = 1/(1 + B); no other transitions

are possible fronf0, k). Hence, by the Markov property, Now, conditional onN(0) = 0 and X(s) = 1 on
[0,t], N(t) is binomial with parameters and §(1 —

PVE@) 2 K) = [PV 2 KINO) =0,

P(N(o) Skk —/n) e~ (1+A) /(1 + B). Applying the Chernoff bound (20)
_ 1 _ 1 i log 2
= II Py hit (0,5 — 1) before(1, ;) ) Wlth 0= 1 apeemy Yields fort > 15
j=k—v/n+1 pn
B ( ) )ﬁ P(N(t)<4(1+ﬁ))
1+5/ B(3 — de—(1+P))2
Using the inequalityog z < x\/—_; we obtain ) < eXP( 32(1+ B)((1 — e 1+5)t)>a
P(N(0) < k=) < exp(—22)) = exp(——— ), gnatl/?
1+ 1+ < exp(—————"—72%
p (o) ( 16(1+ﬁ)>
as claimed.

L] log 2 . . i
Proof of Lemma 5.2: Observe that, whilex (f) = 1, er€% = T35 minimizes the denominator and= oo

N(t) evolves as a birth-death Markov chain with pirtnaximizes the numerator of the exponent in the right

rate B(n — N(¢)) and death rateV(¢). Now, over the hand expression of the first inequality thus yielding the

time interval[0,0), X(f) = 1 and N(t) < K. Hence, S€cond inequality.

over [ON,U), N(t) stochastically dominates the Markov

chain N (t) with birth rate3(n — K) and death rate, w12 N

having the same initial conditiotV(0) = k. Hence, it S (1 _exp( 9n )>>/ "
1

suffices to show that, with probability at least- 4=vn,
N(t) hits K before it hitsk — y/n. Defining

~ > 7
( K )N(t) - 3
pln-K)/ for all n sufficiently large. This establishes the claim of
= inf{t>0:N(t) =K or N(0) —/n}, the lemma. .

(27)
M(t) =
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