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Abstract— Many network phenomena are well modeled
as spreads of epidemics through a network. Prominent
examples include the spread of worms and email viruses,
and, more generally, faults. Many types of information
dissemination can also be modeled as spreads of epidemics.
In this paper we address the question of what makes an
epidemic either weak or potent. More precisely, we identify
topological properties of the graph that determine the
persistence of epidemics. In particular, we show that if
the ratio of cure to infection rates is smaller than the
spectral radius of the graph, then the mean epidemic
lifetime is of order ����, where � is the number of nodes.
Conversely, if this ratio is bigger than a generalization of
the isoperimetric constant of the graph, then the mean
epidemic lifetime is of order ��

�

, for a positive constant
�. We apply these results to several network topologies
including the hypercube, which is a representative con-
nectivity graph for a distributed hash table, the complete
graph, which is an important connectivity graph for BGP,
and the power law graph, of which the AS-level Internet
graph is a prime example. We also study the star topology
and the Erdős-Rényi graph as their epidemic spreading
behaviors determine the spreading behavior of power law
graphs.

Index Terms— Graph theory, Stochastic processes

I. I NTRODUCTION

Many network phenomena are well modeled as
spreads of epidemics through a network. Prominent
examples include the spread of worms and email viruses,
and, more generally, faults. The spread of informa-
tion can also often be modeled as the spread of an
epidemic. An epidemic spreads along the underlying
network topology from an initial set ofinfected nodes to
susceptible nodes. In many cases infected nodes can be
cured, reverting back to being susceptible and possibly
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being reinfected. It is imperative, then to understand how
the topology affects the spread of an epidemic, in other
words how the topology either impedes or facilitates
its spread and maintenance. Such an understanding can
lead to better techniques for preventing and fighting
worms and viruses, avoiding cascading failures, and for
improving the dissemination of information.

In this paper we take a step towards developing an
understanding of how the topology affects epidemic
spread. We model the spread of an epidemic as a contact
process over a finite undirected graph (with� nodes)
where a node can be infected by its infected neighbors
at a rate that is proportional to their number, and a node
can be cured when it is infected. For such a system, given
any set of initially infected nodes, the epidemic dies out
in a finite amount of time. We develop general, topology
dependent conditions under which the epidemic dies out
either quickly or slowly. More precisely, if� denotes
the length of time that the epidemic is active (i.e., at
least one node is infected), then a sufficient condition
for quick die out, defined as��� � � ����� ��, is that
the ratio of infection rate to cure rate not exceed the
spectral radius of the adjacency matrix of the underlying
topology graph. A sufficient condition for slow die out,
defined as��� � � �

�
��

��
for some� � 	, is that

the ratio of infection rate to cure rate be larger than
the isoperimetric constant associated with the graph.
These conditions are not necessary. For some topologies,
such as a hypercube, clique, and Erdős-Rényi graph,
the conditions are quite close. In others, such as a star
and a power law graph, the conditions are farther apart.
We narrow the gap through supplementary analysis for
these latter cases. We focus on real world topologies,
namely the hypercube, clique and power law graph. We
also extensively study the star topology and the Erdős-
Rényi graph since their properties play prominent roles
in the analysis of the power law graph. In all of these
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applications, the condition for fast die out based on the
spectral radius appears to be tight.

Several papers have touched on different aspects of the
problem studied here. Much of the work has focused on
infinite scale-free graphs, establishing conditions under
which epidemics either die out or sustain themselves
forever; see, e.g., [15]. Some work has been done on
finite graphs, using primarily heuristic arguments to ob-
tain conditions under which epidemics spread quickly or
not. For example, [16] uses a mean field approximation
for establishing conditions for quick and slow die out
in scale-free graphs and [12] provides an approximate
analysis for the case of an Erdős-Rényi graph. We
rigorously establish similar conditions in Section V. An
exception is the work of Durrett and Liu [8], which
presents a rigorous analysis leading to conditions for
fast and slow die out on a finite one dimensional linear
network. Also relevant is the work of Coffman et al.,
[7], which models cascading BGP failures on a fully
connected topology. They identify regimes where BGP
routers recover quickly (corresponding to fast die out)and
others where they go through long periods of repeated
failures (corresponding to slow die out). We treat this in
a rigorous manner in Section V. Last, Wang et al. [18]
show, through simulation and approximate analysis, that
the condition for fast die out relates to the spectral radius
of the adjacency matrix of the underlying graph.

Our model is an example of what is termed an
SIS (Susceptible-Infective-Susceptible) model in the epi-
demic literature. Related work has been concerned
with the so-called SIR (Susceptible-Infective-Removed)
model; see Ball et al. [2] for recent references as well
as a study of vaccination strategies in that context.

The paper is structured as follows. We introduce
the epidemic spreading model in Section II. Sufficient
conditions for the fast die out and slow die out of an
epidemic are derived in Sections III and IV respectively.
Applications of these results to the star, hypercube,
clique, Erd̋os-Rényi graph, and power law graph are
found in Section V. Section VI summarizes the paper
and describes further directions to pursue.

II. M ODEL

Consider the following continuous time version of the
epidemic spread model in Wang et al. [18]. We represent
the system by a connected graph� � ��	��. Here� is
a set of� sites,� � � � and �
	 �� � � represents
a link between the pair of sites
	 � � � . The state
at time � is represented by a vector
���; site 
 is
infected (respectively, healthy) at time� iff 
���� � 

(respectively,
���� � 	). Assume that infected nodes

contaminate neighbours at rate� and recover at rateÆ.
This defines a Markov process with transition rates:


� � 	� 
 at rate�
�

������� 
�	


� � 
� 	 at rateÆ�

Henceforth, without loss of generality, we setÆ � 
.
Denote by� the adjacency matrix of the graph structure
on the set of sites. Denote by���� the spectral radius
of �, namely, its largest eigenvalue. Observe that the
Markov process
 is such that one can reach the
absorbing state	 starting from any state� . Thus, it
is the case that epidemics always die out. Even more is
true: the probability that they have not died out by time
� will decay exponentially with�. This fact follows from
standard theory of Markov processes with absorbing
states, reviewed for instance in [4]. The question of
interest is then: how quickly do the epidemics die out, or
how quickly does the system recover from the epidemic?
More precisely, define� to be the time until the epidemic
dies out provided there is at least one infected node
initially. We are interested in determining the behavior
of ��� � as a function of the system size�, whether it
dies out quickly, i.e.,��� � � ����� ��, or slowly, i.e.,
������ � � ����� for some� � 	. Although parameters
of interest such as� may depend on the system size�,
we do not make this dependency explicit in our notation.

III. A S UFFICIENT CONDITION FOR FAST RECOVERY

We show that the following condition,

���� �



�
	 (1)

implies that the epidemic dies out fast, and the charac-
teristic time before extinction is related to the difference
between the two terms in (1). Note that the threshold
condition (1) is the one proposed in [18].

More precisely, we have the following result.
Theorem 3.1: Suppose condition 1 holds. Then, the

probability that the epidemic has not died out by time
�, given the initial condition
�	� � �		 
�� , admits the
following upper bound:

��
��� �� 	� �
�
��
�	��������	����
	 (2)

where�
�	��� �
��

���
��	�. In addition, under the
condition (1), the time to extinction� verifies

���� � ������ � 



� �����
(3)

for any initial condition,
�	�.
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Proof: Consider the continuous time Markov pro-
cess� � ������� , with values in�� , and transition
rates

�� � � � � � 
 at rate�
�

������� ��	

�� � � � � � 
 at rate���

Standard coupling arguments yield
��� ��
 � ��� for
all � 	 	 when starting from the same initial conditions;
here,
 ��
 � denotes that� stochastically dominates

. This implies that

��
�
�


���� � 	� 	 ��
�
�

����� � 	��

Moreover, it holds that:

��
�
�

����� � 	� �
�
�

���������

However, the transition rates for process� are such that

�

��
��� ���� � ���� ����� ����	

where� denotes the identity matrix. Hence,

��� ���� � 
�� ���� � �	�	

where� � ��� �. Note that
������ is a symmetric
matrix (since� is) with spectral radius�����	����
.
Hence,

���� ������ � �����	����
���� �	����	
where ���� ������ �

���
�����������

�. But, by the
Cauchy-Schwarz inequality,�

���
�������� � ���� ���������	

where � denotes the vector of ones, so���� �


�.

Thus, we obtain:

��
��� �� 	� �
�
�

��������

� 

������	����


���� ��
���

���	���

Equation (2) follows, upon replacing���	� by 
��	�;
note that
��	�

� � 
��	� since
��	� takes values in
�		 
�.

Now, write

���� �

� �

�
��� � ���� �

� �

�
��
��� �� 	����

Replacing��
��� �� 	� by the trivial upper bound

on �		 ���������
 � �������, and by the upper bound
� 
��������� � 
��� on the interval ����������
 �
������	��, in this expression yields the claimed re-
sult (3).

In other words, under condition (1), the probability that
the epidemic hasn’t died out by time�����������	� � � decays
exponentially in�.

However, Condition (1) may not be necessary for en-
suring exponentially fast death of epidemics, with small
characteristic time before extinction. We will observe
this in the case of a star-shaped network in Section V-A.

IV. SUFFICIENT CONDITION FOR LASTING INFECTION

We now provide a condition under which an epidemic
will survive for a long time. To this end, we introduce
the so-calledgeneralized isoperimetric constant of the
graph�, defined as:

���	�� � ���
�����


���������

���	 ��

��� 	 	 � � � 
�����
(4)

In the above,���	 �� denotes the number of edges
connecting the set of vertices� to the complementary
set, �. When � � 
����, this corresponds to the
standard isoperimetric constant����. Henceforth we
omit the reference to�. Define now a Markov process
� on �		 � � � 	��, with transition rate:

� � � � 
 � at rate������	
� � � � 
 � at rate��

Now, standard coupling arguments yield������ ��


����� 
����� due to the fact that(i) ���� can never
exceed�, (ii) their downward transition rates are iden-
tical, and(iii) the upwards transition rate for������ is
������, that for����� 
����� is ���	 ��� where� �
�
 � � � 
���� � 
�, and we have���	 �� 	 �����
whenever��� � � � �.

This is useful for establishing the following result.
Theorem 4.1: Assume that the following inequality

holds:
� ��




�����
� 
� (5)

Then for any initial condition
�	� with
��

���
��	� �
	, it holds that,

�

	
� �


���	��
��



	 
� �

�
�
 ������� � (6)

Proof: First consider the embedded discrete time
Markov chain associated with process�, which tracks
the successive states visited by�. We denote it by� 
,
where now � � �. Its transition matrix has as non-
negative terms:

 �
	 
� 
� � �����
�����	� 	 
 � 
	 � � � 	�� 
	

 �
	 
� 
� � �
�����	� 	 	 
 � 
	 � � � 	�	

 �		 	� � 
	
 ��	�� 
� � 
�
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Let !��� denote the probability that, starting from state
�, the Markov chain�� will enter state� before
entering state 0. The evaluation of!��� is a standard
problem, known as the gambler’s ruin problem. It has
the following solution:

!��� �

� ��


� ��
	 � � 
	 � � � 	�� 
	

where� � 
��������. Let" denote the number of steps
before

 is absorbed at 0. The solution ot the gambler’s
ruin problem implies that:

��" � �� 	 
� �


� ��

	

� ����


� ��





� (7)

Indeed," is going to be larger than� if � pays at least
� distinct visits to� before being absorbed. The prob-
ability of the first visit taking place before absorption
is the first term in the above expression; after a visit
to �, the probability of having a subsequent visit prior
to absorption is given by�
 � �������
 � ��� as can
be seen by considering what happens in the step just
after the visit to�, where the process is necessarily
in state � � 
. The formula above follows. Taking
� � 
���	�� in expression (7), the right-hand side is
then at least�
� ���� �
 �������. Conditioned on the
event that there are indeed� visits to� before absorption
at zero, the time before absorption is then larger than
the sum of� exponentially distributed random variables
with parameter�, describing the sojourn times in state
�. When the number of such visits is large, the total
sojourn time is then at least������, with a probability

 � # where the error# is exponentially small in�, and
the result (6) follows.

We have the following corollary.
Corollary 4.1: Consider a sequence of graphs indexed

by �. Suppose there is an$ � 	 and a sequence� �
����� such that� � 
 uniformly in �, for � defined as
in (5). Then��� ���� �� � � ����.

Proof: We have

��� � �

� �

�
��� � ����	

	
� ������	�����

�
��� � ����	

	 
���	��
��


� �

�
�
 ������� �

Upon taking logarithms, this yields

��� ���� �� 	 ���������������	

which establishes the corollary.
We now use Theorem 4.1 to provide sufficient con-

ditions for exponentially long survival of the epidemics

stated in terms of the spectral structure of the underlying
graph�. This will allow comparison with the former
sufficient condition for fast extinction, (1).

The Laplacian matrix% of the graph� is by definition
& � �, where& is the diagonal matrix with as entries
the degrees of the vertices in�, and� is the adjacency
matrix of �. We shall denote the eigenvalues of% by
'��%� � '��%� � � � � � '��%�. We now have:

Corollary 4.2: Let

�
 ��
�

�'��%�
� 
� (8)

Then (6) is still valid, with� replaced by�
 and� �

����.

The proof follows from Corollary 3.8 in [14], which
states that for any graph�, the following inequality
holds:

���� 	 '��%�

�
�

Corollary 4.3: Assume that the graph� is regular,
i.e. all its vertices have the same degree, say�. Denote
by '���� � � � � '���� the eigenvalues of its adjacency
matrix �. Then a sufficient condition for exponentially
long survival of the epidemics is that:

� � ���� '���� � ������ � '����� (9)

Indeed, Condition (9) coincides with (8) in the case
of a �-regular graph. Ignoring the factor 2 in (9), this
condition amounts to comparing the ratio
�� not to
����, as is done in Condition (1), but rather to the gap
between the two largest eigenvalues of�, namely�����
'���.

V. SOME EXAMPLES

In this section we apply the previous results to several
important classes of topologies: star-shaped networks,
hypercubes, cliques, Erdős-Rényi random graphs, and
random power law graphs.

A. Star-shaped networks

The star-shaped network is of interest for several
reasons. First, it illustrates that neither of the preceding
conditions are sufficient. We are able to get much tighter
conditions because the star is simple enough to study
exhaustively. Second, the spreading behavior of a large
class of power law graphs is determined by the spreading
behavior of stars embedded within them, as we will
observe in Section V-E.

Consider a star-shaped network, with� � 
 nodes,
where the only edges are�		 
�, 
 � 
	 � � � 	 �. Let us first
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identify the spectral radius of the corresponding matrix
�. An eigenvector� associated with eigenvalue' must
satisfy

'�� �
��
���

��	 '�� � ���

The only solutions for' are 	 and �
�, and thus
���� �



�. The results from the previous two sections

tell us that
1) epidemics die out quickly provided that� �


�


�, and

2) epidemics die out slowly provided that� � 
.
These results are clearly quite loose. In this section we
derive tighter thresholds for fast and slow die out.

We describe the state of the epidemic on a star-shaped
network by a vector�
���	 (���� of length two. Here

��� is the indicator that the hub is infected, and(���
is the number of infected leaves, at time�. The pairwise
infection rate is�, while each infected node recovers
at rate
. Thus, the process�
���	 (���� is Markovian,
with transition rates

�		 
� � �
	 
�	 rate�
	 �
	 
� � �		 
�	 rate
	
�		 
� � �		 
 � 
�	 rate 
 �
	 
� � �
	 
 � 
�	 rate 
	
�
	 
� � �
	 
 � 
�	 rate���� 
��

all other transition rates equal zero. Standard coupling
arguments establish�
���	 (���� to be stochastically
nondecreasing in�
�	�	 (�	��. During each interval
over which the state of the hub is fixed at
, the leaves
evolve as independent Markov chains on�		 
� with
transition rate� from 	 to 
, and
 from 
 to 	. Denote
the transition rate matrix by)�. A straightforward
calculation yields that the transition probability matrix
is

* ���� � ��
�


�




 � �

	

 � �����	��
 ��
 � ����	��
�


� ����	��
 � � ����	��




�(10)

Define the process�(��� to be the second component
of the Markov process�
���	 (����, conditioned on

�+� � 
 for all + � �		��. It is easy to see by a
coupling argument that, for any� � 	, (��� ��

�(���
provided(�	� ��

�(�	�; for random variables
, � ,
we write 
 �� � to mean that
 is stochastically
dominated by� . But conditioning on �
�+� � 
 ensures
that the transition probabilities for each leaf are given by
(10). Hence, if we take�(�	� � �, then �(��� is binomial
with parameters� and�������	��
���
���. Since the
latter is a decreasing function of�, we also note that�(�+�
stochastically dominates�(��� for any + � �. In fact, if
" 	 + is a random time which is independent of the(���
process, then(�+� stochastically dominates(�" �. The

following theorem shows that (1) is not sufficient for fast
die out.

Theorem 5.1: Suppose� � ,�


� for a fixed, � 	.

Then,��� � � ������� when either
�	� � 
 and/or
(�	� 	 
.
Proof: As �
���	 (���� is nondecreasing in the size of
the initial population of infectives, it suffices to consider
the initial state�
	 ��. Fix # � 	, and take� � � �������

�	� ,

so that �	��������

�	� � ��	���
�	� . Define

"� � ���
�
+ 	 � �����#�


 � �
� 
�+� � 	

�
(11)

to be the first time after� that the central hub becomes
uninfected in the original Markov process�
���	 (����.
By the arguments above,(�"�� is stochastically domi-
nated by �(���. Note that"� � � is stochastically dom-
inated by the time for the hub to become uninfected
(assuming that it is infected at time�), which is an
exponentially distributed random variable with mean
,
denoted-�. Since� � ,�



�, we have

"� � ����

�
�����#,��-�	 ��"�� � ��� �

�
�����#,��
�

(12)
Next, observe that, conditioned on(�"�� � �, the

probability that the infection dies out before the hub
becomes infected again is
��
 � ���. This is because
each leaf becomes uninfected before infecting the hub
with probability 
��
 � ��, and the infection attempts
of different leaves are independent. Let�� � ����� �
"� � 
��� � 
�, with the convention that�� �� if the
infection dies out before the centre is re-infected. Then,

���� ��� � �


� 



 � �

������� 	 �


� 



 � �

� 
��
��
	

Recall that� � � �������
�	� and that �(��� is binomial with

parameters� and ��	���
�	� . Hence, using the generating

function for the binomial, we have

���� ��� 	
�

� �
 � #��


 � �
�

�
 � #��


 � �





 � �

��
�

�

� �
 � #���

�
 � ���

��
�

Substituting� � ,�


�, we have for all� sufficiently

large, that

! �� ���� ��� 	 


�

�����
 � #�,��� (13)

Next, we bound the time by which either the hub
becomes re-infected or the infection dies out. Associate
with each leaf
 an exponential random variable of unit
mean,��, denoting the time at which this node would
become uninfected if it was initially infected. Define
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��� � "� � ������� ��. Then, either the infection has
died out before���, which happens with probability at
least! (as given by (13)), or the hub was re-infected at
some time in�"�	 ����. On the latter event, the evolution
of the process after��� can be stochastically dominated
by the evolution which starts at��� in the state�
	 ��.
But this is the state we considered at time	, so ��� is a
regeneration time for the dominating process. We have
thus shown that the time to extinction is stochastically
dominated by the sum of
 � � independent copies of
���, where� is geometric with mean�
� !��!.

Now consider��� � "� � ������� ��. We have

�

�
�

���
���

�� 	 ��� �� .
�
� 
�

�

� ���

�

��
� ����

In other words,��� � "� � ���� is stochastically domi-
nated by an exponential random variable with mean
,
denoted-�. We now have from (12) that

��� � �

�
����� ����#,� � -� � -�	

�� ���� � �

�
����� ����#,� � �	 (14)

where -� and -� are independent�� �
� random
variables defined on the same probability space as���.
Finally, the time to extinction,� , satisfies

� �
�	��
���

���	 ��� � �� � !�
� !�� 	 � � 		 
	 �	 � � �

(15)
where ��� are iid and independent of� . Here! is given
by (13), and is bounded below by a constant that doesn’t
depend on�. It is now immediate from (14) and (15)
that ��� � � ����� ��. This completes the proof of the
theorem.

Next, suppose� � ��� �

� , for some� � �		 ���. Define
/ � ��

���	�� , and let

� �
��

���

��		 �� � �
	 ���	

be the set of states in which/ or more leaves are
infected. We shall show that, starting from any state in
�, the Markov chain�
���	 (���� returns to the set�
before hitting�		 	� with high probability.

Theorem 5.2: Suppose� � ��� �

� , for some� �
�		 ��� and� is defined as above. Then:
1) There is a constant0 � 	 such that, for all�
sufficiently large and all� � �,

��� �
���	 (���� hits �		 	� before returning to� �

� 
����0����

Here, �� denotes probabilities for the Markov chain
�
���	 (����, conditioned on�
�	�	 (�	�� � �.
2) For all � �� �		 	�, ������� � � �����.

The proofs of 1) and 2) rely on the following three
lemmas, whose proofs can be found in the Appendix.

The first lemma states that, for the Markov chain
started in�		 ��, with high probability the hub becomes
infected before the number of infected leaves decreases
by


� or more.

Lemma 5.1: Suppose�
�	�	 (�	�� � �		 ��, with
� �



�. Let 1 � ����� � 	 � 
��� � 
�. Then,

��(�1� � � �
�� � 
��
�
� ��


 � �

�
�

Recall that/ � ��
���	�� . Fix � � / and consider the

Markov chain�
���	 (���� started in the state�
	 ��.
The following lemma states that, with high probability,
either
��� � 	 or (��� � / before(��� � � � 
�.
Note that, if(��� � /, then�
���	 (���� � �.

Lemma 5.2: Suppose�
�	�	 (�	�� � �
	 ��, with �
� /. Let 1 � ����� � 	 � �
���	 (���� � � or 
��� �
	�. Then,

* �(��� � � �
� for some� � �		 1� � � ��
�
��

The last lemma states that the Markov chain
�
���	 (����, starting in state�
	 �� for any �, has
probability at least one third of hitting the set� before
the hub becomes uninfected.

Lemma 5.3: Suppose�
�	�	 (�	�� � �
	 ��, with
� � /. Let 1 � ����� � 	 � 
��� � 	�. Then,

* ��
�1�	 (�1�� � �� 	 


�
	

for all � sufficiently large.
Proof of Theorem 5.2: Let � be an arbitrary state in
the set�. Define�� to be the return time to the set�;
�� � 	 if the first transition out of state� takes the chain
to another state in�. We want to show that* �� � ��� �

����0���.

We recursively define the times"� and�� as follows:
"� � ����� � 	 � 
��� � 	�, which could possibly be
zero; for 
 	 
, �� � ����� � "��� � 
��� � 
� and
"� � ����� � �� � 
��� � 	�. Note that the state�		 	�
is absorbing. Hence, if(�"�� � 	 for some
, then we
define�� and"� to be� for all � � 
. Now, by Lemmas
5.1 and 5.2, we have

*
�
(�"�� 	 ��

��
 � ��
�
�

�
	 
� 
����
� ��� ��	
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and, for all� 	 
,

*
�
(���� 	 ��

��
 � ��
� ��



�
���

(�"���� 	 ��

��
 � ��
� ��� � 
�



�
�

	 
� 
��
�
� ��


 � �

�
	

*
�
(�"�� 	 ��

��
 � ��
� ��� � 
�



�
���

(���� 	 ��

��
 � ��
� ��



�
�

	 
� 
����
� ��� ���

Now, � � ���
�

� , so ��
���	��

�
�
�
�
� ��

���	�� 	 ��


 for all
� sufficiently large. Thus, we obtain by the union bound
that

* �"���
 ��� 	 
�
����

�
�

�

��
�
� ��


 � �

�
� (16)

Note that, on this event,� � "���
. Moreover, on each
interval ���	 "��, � � ����, there is probability at least
�
� of hitting the set�, by Lemma 5.3. Hence,

* ��� 	 "���
�"���
 ��� �
��
�

����

� 
��

�
� ��������

�
��
�
�

Combining this with (16), we get

* ��� � �� 	 * ��� � "���
 � ��

	 
� * ��� 	 "���
�� * �"���
 � ��

� * �"���
 ���� * ��� 	 "���
�

	 
�
����

�
� 

�

��
�
� ��


 � �

�
� 
��

�
� ��������

�
��
�
�

Taking0 � �
� �

��������

 for instance, we see that the first

claim of the theorem is satisfied.
To establish the second claim, observe that the Markov

chain started in any state of the form�		 �� with � � 	
dominates the chain started in the state�		 
�. Likewise,
the chain started in�
	 �� dominates that started in�
	 	�.
Thus, we need only consider the initial conditions�		 
�
and �
	 	�. Now, if the chain is started in�		 
�, it
hits �
	 
� before �		 	� with probability � � ���

�

� ,
and subsequently dominates the chain started in�
	 	�.
Moreover, by Lemma 5.3, the chain started in�
	 	� hits
the set� before hitting�		 	�, with probability at least
a third. Consequently,*���� � �� 	 ���

�

� �� for all
� �� �		 	�. Next, starting from any state2 � �, we have
shown that*��� � ��� � 
����0���. Consequently,

the number of returns to� before hitting�		 	� stochas-
tically dominates a geometric random variable with mean

���0���. The time for each return to� dominates the
time for a single transition from state2; for all 2 � �,
this time dominates an exponential random variable with
mean
��. Consequently,

���
���

���� � 	 


�
���

�

	

���
� 
������

���� � 	 


�
���

�

� ���
� 	 ��

��� 	

for large enough� and suitably chosen0 
 � 	; 0
 � 0��
will suffice. Thus������� � � �����. This completes the
proof of the theorem.

Remark 5.1: It is interesting to note that the system
behavior is greatly affected by the initial set of infected
hosts in the following way. If
�	� � 	 and(�	� �
3��������, then the probability that the hub becomes
infected goes to zero as� � �. In particular, if " �
����+ � 
�+� � 
�, then��" � �� � ��������������

for � � 	 and large�. Furthermore, these epidemics are
of short duration,����� ��. However, even though nearly
all epidemics die out (with high probability), the rare
occasions that they do not yield epidemics of such long
durations that the average epidemic length is exponential
in �. On the other hand, if either
�	� � 
 or (�	� �
���������, then a non-zero fraction of the epidemics do
not die out quickly, even as���.

B. Hypercubes

The hypercube is of interest because of the widespread
and growing interest in distributed hash tables and ap-
plications, such as file sharing [17], being built on top
of them. Already worms and viruses have appeared in
some applications, [11]. As many DHT structures are
hypercubic in nature, it is important to understand the
spreading behavior of such worms on a hypercube. Here
we represent a hypercube as a graph� with vertex set
�		 
�� for some4 � �, and where the edge�5	 6� is
present if and only if the Hamming distance���5	 6�
equals 1. As a hypercube is a regular graph, its spectral
radius is���� � ���� �. Hence, from Section III we
know that the epidemic dies out provided that� �

� ���� �. We now determine conditions for the epidemic
to die out slowly. In particular, we establish that the
epidemic dies out slowly provided� � �

����� ���� � , for
any 	 � $ � 
. Thus, unlike the star topology, there is
essentially no gap for the hypercube.

We first establish the following result.
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Theorem 5.3: Let � � ��, for some� � �		 � � � 	 4�

�. Assume that the following inequality holds:

� ��



��4� ��
� 
� (17)

Assume further that�� goes to zero as���. Then the
time to extinction satisfies identity (6), with our current
choices for� and�.

The result follows by a direct application of Theo-
rem 4.1. In order to prove the theorem, we need the
following result established by Harper [10] (see also [1]
for background and recent extensions).

Lemma 5.4: (Harper [10]) Let� be a set of� vertices
of the hypercube�		 
��. Then the edge-boundary size
���	 �� is larger than or equal to����	 ���, where��

denotes the set of the� smallest vertices according to
lexicographic order.

Proof: (of Theorem 5.3) Let� � ��, for some
� � 4. Let us first establish the following inequality:

���� 	 4� �� (18)

Indeed, in view of the lemma it is the case that the set��

achieving the minimum isoperimetric ratio���� consists
of all points 	���	�����

� , where����
� spans the whole

set �		 
����, plus some points of the type	���
����
� ,

for some� � �. It turns out that any point2���� ���, where����
 �� 2 � 
 and 	������ belongs to��, contributes

exactly one edge to����	 ���. Hence the lower bound

����	 ��� 	 �4� ������	
from which (18) directly follows.

The result follows by applying Theorem 4.1.
Now reverting to the notation� and�, condition (17)

can be expressed as

� �



���� �� �����
�

Take� � �� for some$ such that	 � $ � 
, we obtain

� �



�
� $� ���� �
�

C. Complete graph

The complete graph also plays a prominent role in
networks. For example, the BGP routers belonging to
the top level autonomous systems of the Internet form a
completely connected component. In addition, large ISPs
often organize their internal BGP (iBGP) routers into
a set ofroute reflectors that are completely connected.
Because of the importance of BGP to the Internet, it is
important to understand what effect BGP router failures
can have on each other. At a very high level, the behavior

of routers failing and coming up can be modeled as the
spread of an epidemic within a complete graph, [7].

Consider a complete graph with� vertices, namely
the graph where an edge is present between each pair of
nodes. The adjacency matrix of this graph is� � ��

� �
�, where� denotes the column vector of ones, and��

is its transpose.� has the spectral radius���� � �� 
.
The isoperimetric constant���� is easily shown to be
���. Application of Theorem 3.1 and Corollary 4.1 tell
us that epidemics die out quickly when� � 
��� � 
�
and slowly when� � 
������, when� � �� for some
$ � 	. Thus
�� is essentially the correct threshold and,
as in the case of the hypercube, there is no gap.

D. Erdős-Rényi random graphs

The Erd̋os-Rényi graph���	  � with parameters� and
 is defined as a random graph on� nodes, where the
edge between each pair of nodes is present with prob-
ability  , independent of all other edges. The spreading
behavior of an epidemic on an Erdős-Rényi graph is
of interest for a number of reasons. First, it is a graph
that has received considerable attention in the past [3].
Second, it is an important component of the class of
power law random graphs that model the Internet AS
graph. Thus if we are to understand the robustness of
the Internet AS-level graph, we need to characterize the
robustness of the Erdős-Rényi graph.

We shall consider a sequence of such graphs indexed
by �. Denote by� the corresponding average degree,
i.e. � � �� � 
� . Note that and � depend on�, but
this is suppressed in the notation. We say that a property
holds with high probability if its probability goes to 1
as���.

We consider the regime������� �, i.e., ���������
	 as� � �. In this case, it is known that the graphs
are connected with high probability. Moreover, by the
Perron-Frobenius theorem, the spectral radius���� lies
between the smallest and largest node degree. Since the
node degrees are binomial,7���� , it is easy to see using
the Chernoff bound that���� � �
 � 3�
��� � �
 �
3�
���, with high probability.

Theorem 5.4: Let � be such that��� � � as��
�, for a fixed� � �		 
�. Assume further that�������
�. Then it holds that, with high probability,

���	�� � �
 � 3�
���
 � ���� (19)

Proof: Fix some� � �		 
 � ��. By the union
bound,

�����	�� � ��� �
��
���

�
�������

�
�
���	 �� � ��


�
�
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Note that ���	 �� has a binomial distribution with
parameters
��� 
� and . Denote by7������� a generic
Binomial random variable with this distribution. We thus
have

�����	�� � ��� �
��
���

	
�






�
�
7������� � ��


�
�

Since� � 
� � and� � �
 � 3�
����, we have for�
large enough that�� � 
� � �� for all 
 � �
	 � � � 	��
and that���

��� � 
��
���. We now apply the following
Chernoff bound,

* �7 � �
� Æ���7�� � ����!�Æ���	 (20)

valid for any Binomial random variable7, [13, Theorem
4.2], to 7������� in the above expression. TakingÆ �


� � ���
��� 	 
� �

��� , this yields

�����	�� � ��� �
��
���

	
�






�������� �	 (21)

where# � �
�

�

� �

���
��

� 	. We thus have the upper
bound

�����	�� � ��� �
��
���

��


�
�������� �	

�

��
���





�
��������� ����� ��

where we have also used the upper bound
�
�
�

� � ���
�
to obtain the first inequality. By assumption,������ �
� � �� � 
� , and # is a positive constant that doesn’t
depend on�. Thus, for any constant/ � 	, it holds
that, for� large enough,

�����	�� � ��� �
��
���





�
���� � 
��

�
���

�� 
�

This suffices to conclude that for any� � 
 � �, with
high probability���	�� 	 ��.

In order to obtain an inequality in the opposite di-
rection, choose any set� of cardinality �. Then one
certainly has

���	�� � ���	 ��

�
�

Let � � �
� �� be fixed. One then has that

�����	�� � ��� � ��7������� � ����� 
� ��

It is readily seen using a Chernoff bound that the right-
hand side goes to zero as� � �. This concludes the
proof of the theorem.

Theorem 5.5: Consider Erd̋os-Rényi random graphs
���	  � with ������ � � � � . The following claims

hold with high probability: an epidemic on���	  � dies
out quickly,��� � � ����� ��, provided� � �
 � .���
for 	 � . � 
. On the other hand, the epidemic dies out
slowly, ������ � � ���� provided that� � �
 � 5���
for 5 � 	.

Proof: The theorem follows from Theorem 3.1 and
Corollary 4.1, the expression���� � �
�3�
��� for the
spectral radius, and Theorem 5.4.

Notice that there is very little gap between the two
thresholds as. and 5 can be chosen to be arbitrarily
close to zero.

E. Power law graphs

There has been considerable interest in power law
graphs since it was first noticed that the Internet AS-
level graph exhibits a power law degree distribution, [9].
Briefly a power law graph is one where the number of
nodes with degree� is proportional to��" for some
8 � 
. For the mean degree to be finite, we need8 � �
and this is the range we shall consider. The Internet AS-
level graph is characterized by8 � ��


In this section we consider a class of random power
law graphs first introduced in [6]. Let6�	 6�	 � � � 	 6�

denote the expected degrees of the nodes in the graph.
An edge is assigned to a pair of vertices with probability
6�6��

��
���6�. Let � denote the average degree and�

the maximum degree. If6� � 9�
�� 
��
�

��� (
 � 
 � �)

where 9 � "��
"����

�

��� , 
� � �
�

#�"���
��"���

�"��
then the

number of nodes with degree� is proportional to��" .
Theorem 4 from [6] states under mild conditions that,
with high probability, the spectral radius of the graph is

���� ��
�
 � 3�
��



�	 8 � ���	

�
 � 3�
�� #�"����

�"������"�
�
�"����
�"���#

���"
� � 8 � ���

(22)

We have the following result on the fast/slow die out of
epidemics on the above class of power law graphs. Here
we will take � to be the following increasing function
of �, � � �$ where	 � ' � �

"�� .
Theorem 5.6:

1) For 8 	 ���,

(a) the infection dies out quickly,��� � � ����� ��,
provided that� � �
 � .��



� for some
 �

. � 	,
(b) the infection dies out slowly,������ � �

���$��, provided that� � ������ for some
� � �		 
�.

2) For 8 � ��	 ����,
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(a) the infection dies out quickly,��� � � �������,
provided that�� � �
� .� where

� � �
�8 � ���

�8 � 
��� � 8�

	
�8 � 
��

�8 � ���


��"

for some	 � . � 
,
(b) the infection dies out slowly,������ � �

�����$�"���� provided that (i)�� � �
 � .�
where

� � �
�8 � ������ 8�

���

���

����"����8 � 
�

	
�8 � 
��

�8 � ���


��"

for some. � 	, and (ii) the following condition
holds:

� � ����
��� (23)
Proof: The first part of each of the claims follows

from Theorem 3.1 and (22). Consider claim 1.b. We can
bound the time to die out of an epidemic that starts in
either the maximum degree node or one of its neighbors
by the time to die out on a star of size� � 
. Now
consider the case that some other randomly chosen node
is initially infected. Theorem 4 in [5] states that, with
high probability, the diameter of the power law graph
is ����� �� when8 � �. Hence the probability that an
epidemic starting from a randomly infected node spreads
to either the maximum degree node or its immediate
neighbors is��
��� ��� �� for some$ � 	 independent
of �. This combined with arguments used to establish
Theorem 5.2 establishes the claim.

We focus on claim 2.b. We shall now identify a
subgraph of the original power-law random graph that
is an Erd̋os-Rényi random graph. Consider the first(
nodes, where( � � is to be chosen, with respective
weights6�� 	 � � � 	 6��	� . Then the probability of an edge
being present between any two of these nodes is at least
as large as

 � � �
�6��	� ��

��

�
9� �( � 
��

����"���

��

� �

	
8 � �

8 � 



� 


�

	
�

( � 
�


���"���

�

The original graph thus contains an Erdős-Rényi graph
with parameters( and  � . Survival of the epidemic
on the original graph will be at least as long as on the
Erdős-Rényi subgraph provided that at least one node
within the Erd̋os-Rényi component is initially infected.
The average degree of the subgraph is then given by

�( � 
� � � �

	
8 � �

8 � 



� (

�

	
�

( � 
�


���"���

�

Let us now take( � #
�, for some positive#. The
average degree of the induced Erdős-Rényi graph is then
equivalent to

�( � 
� �

� �

	
8 � �

8 � 



� #

�
 � #����"���

	
�


�


���"���"���

� �

	
8 � �

8 � 



� #

�
 � #����"���

	
��8 � 
�

��8 � ��


��"
�

Simple calculus shows that this is maximized by setting
# � �8 � 
���� � 8�, for which choice we arrive at

�( � 
� � �

� �� �
�8 � ������ 8�

���

���

����"����8 � 
�

	
�8 � 
��

�8 � ���


��"
�

The die out result is a direct application of Theo-
rem 5.4 and Corollary 4.1, which is applicable under
the condition (23).

If the initially infected nodes are not within the
Erdős-Rényi subgraph, then because the diameter of the
power law graph is����� �� with high probability, the
probability that the epidemic dies out before infecting a
node within the Erd̋os-Rényi component is��
��� ��� ��
for some$ � 	 independent of�. This combined with
arguments used to establish Theorem 5.2 establishes the
claim.

Remark. Note that in the case of8 � ��	 ����, the
thresholds for fast and slow recovery are almost the
same, since� in the statement of Theorem 5.6 is smaller
than���� by a factor of	

�� 8

�


���"���

�

Put together, our results determine the outcome of the
epidemics for such graphs in the ranges����� � 


(fast extinction) and����� � ����� � 8�����"��� (long
survival). Our techniques do not cover the range in
between at the present time.

VI. SUMMARY

We have presented a preliminary investigation of how
topology affects the spread of an epidemic, motivated
by networking phenomena such as worms and viruses,
cascading failures, and dissemination of information.
We have developed sufficient conditions under which
epidemics either die out quickly (logarithmically in the
size of the network) or slowly (exponentially in the
size of the network). These conditions are tight for sev-
eral network topologies, such as hypercubes, complete
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graphs, and Erd̋os-Rényi random graphs. They are not
tight for topologies such as stars and power law graphs.
We provided a supplementary analysis of the star that
significantly tightened the condition for slow die out so
that it is close to that for fast die out. In the case of
a power law graph, we presented tight conditions by
drawing on results for the star and Erdős-Rényi random
graph. In all cases, the condition for fast die out appears
to be tight.

There are several interesting directions to pursue this.
As we remarked within the paper, the behavior of the
epidemic in the case of the star and power law graph is
sensitive to the initial set of infected nodes. It would be
useful to understand this relationship better. In addition,
as pointed out in [12], there is a notion of ametastable
set of nodes that are infected given that one is infected in
the regime of slow die out. They present an approximate
analysis of the distribution of the number of nodes that
belong to this set. It would be useful to pursue this in a
more rigorous manner and for other classes of network
topologies.

APPENDIX

PROOF OFLEMMAS 5.1, 5.2, 5.3

Proof of Lemma 5.1: When the Markov chain is in
state�		 ��, the probability that it hits�		 � � 
� before
�
	 �� is ���� � ��� � 
��
 � ��; no other transitions
are possible from�		 ��. Hence, by the Markov property,

* �(�1� � � �
��

�

��
������	�

*������ hit �		 � � 
� before�
	 �� �

�
� 



 � �

���
�

Using the inequality��� � � �� 
, we obtain

* �(�1� � ��
�� � 
��
�
�


��


 � �

�
� � 
��

�
� ��


 � �

�
	

(24)
as claimed.

Proof of Lemma 5.2: Observe that, while
��� � 
,
(��� evolves as a birth-death Markov chain with birth
rate ��� � (���� and death rate(���. Now, over the
time interval �		 1�, 
��� � 
 and(��� � /. Hence,
over �		 1�, (��� stochastically dominates the Markov
chain �(��� with birth rate����/� and death rate/,
having the same initial condition�(�	� � �. Hence, it
suffices to show that, with probability at least
���

�
�,

�(��� hits / before it hits� �
�. Defining

���� �
� /

����/�

� 
��
�
	

�1 � ����� � 	 � �(��� � / or (�	��
��	

we observe that���� is a martingale and that�1 is a
stopping time. Define8 � * � �( ��1� � �(�	� �
��. By
the optional stopping theorem,����1� � ���	�, i.e.,

8
� /

����/�

� 
�������
� �
� 8�

� /

����/�

��
�

� /

����/�

� 
����
�

Now, / � ��
���	�� , so � �/ � ��	����

���	�� � ��	����
� 	

��
� . Hence, it is immediate from the above that

8 �
� /

����/�

���
� ��

�
�� (25)

This establishes the claim of the lemma.
Proof of Lemma 5.3: Clearly, the Markov chain started

in �
	 �� stochastically dominates the chain started in
�
	 	�, so it suffices to establish the claim of the lemma
for � � 	. By conditioning on the time1 that it takes
the hub to become uninfected, which is exponentially
distributed with unit mean, we get

* �(�1� 	 /� �

� �

�
��
* �(��� 	 /�(�	� � 		


�+� � 
�+ � �		 ������ (26)

Now, conditional on(�	� � 	 and 
�+� � 
 on
�		 ��, (��� is binomial with parameters� and ��
 �
����	��
���
 � ��. Applying the Chernoff bound (20)
with Æ � 
� �

������������� yields for � � ��� �
�	�

*
�
(��� �

��

��
 � ��

�
� 
��

�
�� ��� � �����	��
��

���
 � ����
 � ����	��
�

�
	

� 
��
�
� ���	���


��
 � ��

�

Here � � ��� �
�	� minimizes the denominator and� � �

maximizes the numerator of the exponent in the right
hand expression of the first inequality thus yielding the
second inequality.

* �(�1� 	 /�

	
�

� 
��

�
� ���	���


��
 � ��

��� �

��	 �

���

��
��

	 


�
	 (27)

for all � sufficiently large. This establishes the claim of
the lemma.
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