Microphone Array project in MSR: approach and results

Ivan Tashev Microsoft Research June 2004

Agenda

- Microphone Array project
- Beamformer design algorithm
- Implementation and hardware designs
- Demo

Motivation

- PCs today have pretty bad "ears"; audio captured or recorded from PCs sounds terrible (especially with laptops) – unless a good headset is used.
- Sound will play more and more important role in human-computer interaction, especially in devices without keyboard (tablets, handhelds)
- Increases using computers in collaboration and communication
- Users don't like headsets or other tethered microphones, especially in a video call.
- Existing wireless solutions do not provide enough good sound quality, you have to wear them

Microphone array project: goals

- Far goal: sound capturing quality for untethered user the same as with close-up microphone
- <u>Near goal</u>: Create technology for OS support and devices so cheap to become commodity on the market
- Beamforming is ability to make the microphone array to listen to given location, suppressing the signals coming from other locations

Target scenarios

- Real-time communications
 - Providing good sound capturing for Windows Messenger, MSN Messenger, other applications built on top of the RTC stack
 - New applications for VoIP and enhanced telephony
- Collaboration and groupware
 - High quality sound from meeting rooms for recording and broadcasting purposes (OneNote)
 - Voice messaging
- Speech recognition
 - Voice commands for Tablet PCs and handhelds
 - Voice control and dictation for PCs and laptops

Problems

- "Wear nothing" approach requires using separate microphones: connected or integrated
- These microphones deliver poor sound capturing quality:
 - Too much ambient and electronic noises
 - Reverberation and reflections poor user experience and bad speech recognition results
- Noise suppression and de-reverberation are difficult with a single microphone channel

The solution

- Using microphone arrays for capturing the sound
 - A set of close positioned microphones
 - Synchronous capturing of the signals
- Microphone Array acts as an acoustic antenna
 - This is called spatial filtering or beamforming
 - Listens only to the direction of the speaker
 - Reduces the noises from other directions
 - Reduces the reverberation

Beamforming: known approaches

- Fixed beam formation
 - Delay and sum most intuitive, irregular beam shape
 - Parametric solutions: very complex
 - Fast real-time execution
- Adaptive beamformers
 - Generalized side lobe canceller
 - Vary with the target criteria (MVDR, etc.)
 - Slow adaptation, CPU time intensive

Beamforming: known approaches

- Fixed beam formation
 - Delay and sum most intuitive, irregular beam shape
 - Parametric solutions:
 - Fast real-time execut
- Adaptive beamforme
 - Generalized side lob
 - Vary with the target c
 - Slow adaptation, CPI

Beamforming: known approaches

- Fixed beam formation
 - Delay and sum most intuitive, irregular beam shape
 - Parametric solutions: very complex
 - Fast real-time execution
- Adaptive beamformers
 - Generalized side lobe canceller
 - Vary with the target criteria (MVDR, etc.)
 - Slow adaptation, CPU time intensive

Beamformer: canonical form

• Canonical form of the beamformer:

$$Y(f) = \sum_{i=0}^{M-1} W(f,i) X_{i}(f)$$

M – number of microphones Xi(f) – spectrum of *i*-th channel W(f,i) – weight coefficients matrix Y(f) – output signal

- For each weight matrix we have corresponding shape of the beam $B(\varphi, \theta, f)$ the array gain as function of direction
- The goal is to find weight matrix to satisfy certain criteria

Beamformer: Array parameters

- Noise = ambient + non-correlated + correlated (jammers and reverberation) $\frac{f_s}{2} 2\pi + \frac{\pi}{2}$
- Ambient noise gain
- Non-correlated noise:
- Correlated (from given direction):
- The total noise gain is the combination of the first two

Weights calculation

- Weights calculation as optimization process
- Minimization criterion: the total noise gain
- Multidimensional optimization
 - Slow, especially in real time (adaptive beamformers)
 - Can't follow the changes
- Multimodal 2M dimensional hypersurface local minima
- In all cases the starting point is critical

Weights calculation (2)

- Our approach:
 - Deterministic beam formation
 - Use as much prior info as possible
 - Do your homework: calculate the weights in advance
 - Calculate set of beams to cover the work volume
 - Fast real-time engine: switches the beams on the fly

- Prerequisites:
 - Microphone array geometry microphones coordinates and orientation
 - Directivity response of the microphones $U_m(f, c)$
 - Hardware noise model $N_{I}(f)$
 - Ambient noise model $N_A(f)$

- Prerequisites:
 - Microphone array geometry microphones coordinates and orientation
 - Directivity response of
 - Hardware noise model
 - Ambient noise model /

- Prerequisites:
 - Microphone array geometry microphones coordinates and orientation
 - Directivity response of the microphones $U_m(f, c)$
 - Hardware noise model $N_{I}(f)$
 - Ambient noise model $N_A(f)$

• Prerequisites:

- Microphone array geometry microphones coordinates and orientation
- Directivity respons
- Hardware noise m
- Ambient noise mc

- Prerequisites:
 - Microphone array geometry microphones coordinates and orientation
 - Directivity response of the microphones $U_m(f, c)$
 - Hardware noise model $N_{I}(f)$
 - Ambient noise model $N_A(f)$

- Design in the beamspace
- **Define the target beam shape:** $T(\rho, \varphi, \theta, \delta) = \cos\left(\frac{\pi(\rho_T - \rho)}{k\delta}\right) \cos\left(\frac{\pi(\varphi_T - \varphi)}{\delta}\right) \cos\left(\frac{\pi(\theta_T - \theta)}{\delta}\right)$
- Define the weight function
- Combine the microphone directivity patterns using weighted MMSE

 $\boldsymbol{T}_{1\times L} = \boldsymbol{V}_{1\times L} \boldsymbol{D}_{M\times L} \boldsymbol{M}_{M\times L} \boldsymbol{W}_{1\times M}$

• Do the design in 3D

- Design in the beamspace
- Define the target have above Beams at 1250 Hz $T(\rho, \varphi, \theta, \delta) = \cos\left(\frac{\pi(\rho)}{2}\right)$ 1.2 Define the weight 1 0.8 • Combine the m 0.6 weighted MMS Desired Delay and sum 0.4 $\boldsymbol{T}_{1 \times L} = \boldsymbol{V}_{1 \times L} \boldsymbol{D}_{M \times}$ 0.2 • Do the design 0 100 200 300 400 -0.2 Angle, deg

- Design in the beamspace
- **Define the target beam shape:** $T(\rho, \varphi, \theta, \delta) = \cos\left(\frac{\pi(\rho_T - \rho)}{k\delta}\right) \cos\left(\frac{\pi(\varphi_T - \varphi)}{\delta}\right) \cos\left(\frac{\pi(\theta_T - \theta)}{\delta}\right)$
- Define the weight function
- Combine the microphone directivity patterns using weighted MMSE

 $\boldsymbol{T}_{1\times L} = \boldsymbol{V}_{1\times L} \boldsymbol{D}_{M\times L} \boldsymbol{M}_{M\times L} \boldsymbol{W}_{1\times M}$

• Do the design in 3D

- Design in the beamspace
- Define the target $T(\rho, \varphi, \theta, \delta) = \cos\left(\frac{\pi(\rho_T - \rho)}{k\delta}\right)$
- Define the weigh
- Combine the mic using weighted Λ $T_{1\times L} = V_{1\times L} D_{M\times L} M_{M}$
- Do the design in

- Design in the beamspace
- **Define the target beam shape:** $T(\rho, \varphi, \theta, \delta) = \cos\left(\frac{\pi(\rho_T - \rho)}{k\delta}\right) \cos\left(\frac{\pi(\varphi_T - \varphi)}{\delta}\right) \cos\left(\frac{\pi(\theta_T - \theta)}{\delta}\right)$
- Define the weight function
- Combine the microphone directivity patterns using weighted MMSE

 $\boldsymbol{T}_{1\times L} = \boldsymbol{V}_{1\times L} \boldsymbol{D}_{M\times L} \boldsymbol{M}_{M\times L} \boldsymbol{W}_{1\times M}$

• Do the design in 3D

- Design in the beamspace
- **Define the target** $T(\rho, \varphi, \theta, \delta) = \cos\left(\frac{\pi(\rho_T - \rho)}{k\delta}\right)$
- Define the weigh
- Combine the mic using weighted N
 T_{1×L} = V_{1×L}D_{M×L}M_{M>}
- Do the design in

- Design in the beamspace
- **Define the target beam shape:** $T(\rho, \varphi, \theta, \delta) = \cos\left(\frac{\pi(\rho_T - \rho)}{k\delta}\right) \cos\left(\frac{\pi(\varphi_T - \varphi)}{\delta}\right) \cos\left(\frac{\pi(\theta_T - \theta)}{\delta}\right)$
- Define the weight function
- Combine the microphone directivity patterns using weighted MMSE

 $\boldsymbol{T}_{1\times L} = \boldsymbol{V}_{1\times L} \boldsymbol{D}_{M\times L} \boldsymbol{M}_{M\times L} \boldsymbol{W}_{1\times M}$

• Do the design in 3D

- Design in the beamspace
- Define the target beam shape:

$$T(\rho, \varphi, \theta, \delta) = \cos\left(\frac{\pi(\rho_T - \rho)}{k\delta}\right) \cos\left(\frac{\pi(\varphi_T - \varphi)}{\delta}\right) \cos\left(\frac{\pi(\theta_T - \theta)}{\delta}\right)$$

- Define the weight fu
- Combine the microp using weighted MM $T_{1xL} = V_{1xL}D_{MxL}M_{MxL}V$
- Do the design in 3D

- Design in the beamspace
- **Define the target beam shape:** $T(\rho, \varphi, \theta, \delta) = \cos\left(\frac{\pi(\rho_T - \rho)}{k\delta}\right) \cos\left(\frac{\pi(\varphi_T - \varphi)}{\delta}\right) \cos\left(\frac{\pi(\theta_T - \theta)}{\delta}\right)$
- Define the weight function
- Combine the microphone directivity patterns using weighted MMSE

 $\boldsymbol{T}_{1\times L} = \boldsymbol{V}_{1\times L} \boldsymbol{D}_{M\times L} \boldsymbol{M}_{M\times L} \boldsymbol{W}_{1\times M}$

• Do the design in 3D

- Design in the beamspace
- **Define the target** $T(\rho, \varphi, \theta, \delta) = \cos\left(\frac{\pi(\rho_T - \rho)}{k\delta}\right)$
- Define the weigh
- Combine the mic using weighted N
 *T*_{1xL} = *V*_{1xL}*D*_{MxL}*M*_M

 Do the design in

- Design in the beamspace
- **Define the target beam shape:** $T(\rho, \varphi, \theta, \delta) = \cos\left(\frac{\pi(\rho_T - \rho)}{k\delta}\right) \cos\left(\frac{\pi(\varphi_T - \varphi)}{\delta}\right) \cos\left(\frac{\pi(\theta_T - \theta)}{\delta}\right)$
- Define the weight function
- Combine the microphone directivity patterns using weighted MMSE

 $\boldsymbol{T}_{1\times L} = \boldsymbol{V}_{1\times L} \boldsymbol{D}_{M\times L} \boldsymbol{M}_{M\times L} \boldsymbol{W}_{1\times M}$

• Do the design in 3D

- Design in the beamspace
- **Define the targe** $T(\rho, \varphi, \theta, \delta) = \cos\left(\frac{\pi(\rho_T - \rho)}{k\delta}\right)$
- Define the weigh
- Combine the minute of the combine the minute of the combine the minute of the combine of the
- Do the design in

• Design in the beamspace

et beam shape: $\frac{1}{2} \cos\left(\frac{\pi}{4}\right)$ ht fur

• Do the design in 3D

n > 1

- Design in the beamspace
- **Define the target beam shape:** $T(\rho, \varphi, \theta, \delta) = \cos\left(\frac{\pi(\rho_T - \rho)}{k\delta}\right) \cos\left(\frac{\pi(\varphi_T - \varphi)}{\delta}\right) \cos\left(\frac{\pi(\theta_T - \theta)}{\delta}\right)$
- Define the weight function
- Combine the microphone directivity patterns using weighted MMSE

 $\boldsymbol{T}_{1\times L} = \boldsymbol{V}_{1\times L} \boldsymbol{D}_{M\times L} \boldsymbol{M}_{M\times L} \boldsymbol{W}_{1\times M}$

• Do the design in 3D

Dimensions reduction

- Dimensions reduction: from 2M to 1
- Two controversial processes:
 - Narrow beam: better ambient noise reduction
 - Wide beam: better internal noise reduction
- One dimensional search: beam width
- Cover the whole frequency band
- Calculate set of beams

On next charts:

- Z-axis: noise gain in dB
- X-axis: frequency, logarithmic, 1-100Hz, 2-200 Hz, 3-400Hz, ...7-6400Hz
- Y-axis: beam width, linear, 0 180⁰, every 5⁰, 33-15⁰.

Ambient noise gain

Non-correlated noise gain

Total noise gain

Dimensions reduction

- Dimensions reduction: from 2M to 1
- Two controversial processes:
 - Narrow beam: better ambient noise reduction
 - Wide beam: better internal noise reduction
- One dimensional search: beam width
- Cover the whole frequency band
- Calculate set of beams

Implementation: overall

Implementation: Real-time engine

Hardware designs

- USB MicArray Prototypes
 - 4-mic desktop
 - 8-mic conference tabletop
 - Bus-powered (no power grid)
 - Compatible with USB audio (no device drivers to install)
- Integrated in laptops/monitors

Microphones of the L-shaped microphone array for Tablet PC

Results: noise suppression

Microphone Array noise suppression

- Provides itself 14-18 dB ambient noise suppression
- Helps the noise suppressor to do better job
- More at <u>http://micarray</u>

• One of the best technologies on the market

Device	Noise	Signal	SNR
Omni-directional Microphone	-45.53	-40.64	4.89
Unidirectional Microphone	-44.51	-33.91	10.6
Close-Up Microphone	-64.46	-30.04	34.42
Andrea DA 400 2.0, 4 el. MA, \$135	-51.72	-26.19	25.53
Acoustic Magic, 8 element MA, \$250	-62.39	-32.6	28.79
MSR 4 elements + WinXP NS	-61.68	-33.86	27.82
MSR 4 elements + New NS	-64.41	-32.14	33.27

Results: speech recognition

• Microphone Arrays for speech recognition

- Linear processing, speech recognition friendly
- Reduces ambient noises
- Partial de-reverberation
- Results

Device	Error rate, %	Time
PC Mic	20.391	3:25
VoiceTracker	17.9	3:17
MSR MicArray	14.22	4:03
MSR MicArray+NS	13.683	3:34
Close-up	6.171	2:35

4 element array, Yakima SAPI 5.2 374 utterances, 7 speakers (4 male, 3 female), age 25-53

Results: conclusions

- Ambient noise suppression
 - The current technology provides good noise suppression under the quality requirements constrains
 - Telecommunication scenario has good quality sound
 - Meetings recording for listening purposes OK.
- Speech recognition results
 - Need improvement
 - Reverberation as major reason
 - Important for recorded meetings search technology

Microphone Array - Example

• Person speaking at 3 ft from microphones

Microphone array - demo

• First demo:

- Records in parallel the output of the microphone array and a regular PC microphone.
- After this merges both WAV files to one file ...
- ... and plays it with CoolEdit.
- Second demo: ClearMessage application

Take outs

Most of our projects are optimization in one way or another:

- Try carefully to define the optimization criterion
- Reduce the number of dimensions as much as possible
- Choose the method, especially if there are too many papers and no definite answer

Questions?

Contact: ivantash@microsoft.com See: http://research.microsoft.com/users/ivantash/