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ABSTRACT 

Interest in and development of gesture interfaces has 

recently exploded, fueled in part by the release of Microsoft 

Corporation’s Kinect, a low-cost, consumer-packaged depth 

camera with integrated skeleton tracking. Depth-camera-

based gestures can facilitate interaction with the Web on 

keyboard-and-mouse-free and/or multi-user technologies, 

such as large display walls or TV sets. We present a toolkit 

for bringing such gesture affordances into modern Web 

browsers using existing Web programming methods. Our 

framework is designed to enable Web programmers to 

incrementally add this capability with minimum effort by 

leveraging Web standard DOM structures and event 

models. We describe our framework’s design and 

architecture, and illustrate its usability and versatility.  
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INTRODUCTION AND RELATED WORK 

Interest in input methods beyond the mouse and keyboard 

has recently accelerated as new, inexpensive sensing 

hardware has become widely available. Such input is 

particularly suitable to emerging form-factors, such as large 

display walls, which lack mice and keyboards. 

In 2010, Microsoft launched the Kinect sensor for its Xbox 

360 gaming platform [kinect.com], followed by Kinect for 

Windows in early 2012 [kinectforwindows.org]. The wide 

availability and affordability of these devices ($150 USD) 

make them a popular platform for experimentation among 

researchers, practitioners, students, and hobbyists. The 

Kinect device and accompanying SDK provide access to 

color and infrared (depth) cameras at 640 × 480 pixel 

resolution, 18-point skeleton tracking for multiple 

simultaneous skeletons, and a microphone array. The SDK 

provides programming APIs in both C++ and C#. 

Researchers have quickly appropriated depth cameras such 

as Kinect for a variety of scenarios including 3D scene 

reconstruction [3], simulated touch sensing [7], facilitating 

interaction with multi-display environments [9], and 

enabling on-body sensing [2]. 

In this note, we describe a toolkit that enables developers to 

easily augment any Web page with gesture or speech input. 

Recent standards such as HTML5 and CSS3 enable richly 

interactive Web applications.  Despite these recent updates, 

the browser interaction model is still based on keyboard, 

mouse, and simple multi-touch interactions (the latter due 

largely to the recent surge in adoption of touch-enabled 

smartphones and tablets).  

We anticipate that in a few years, PCs, laptops, tablets, and 

perhaps even smartphones will include depth cameras as 

standard peripherals (much like webcams today). By 

supporting depth camera browser interactions in addition to 

standard mouse, keyboard, and touchscreen inputs, we 

envision that a user could choose the most natural and 

appropriate modality for a given task. Our toolkit also 

supports easily augmenting web pages with speech input 

via the Kinect’s microphone array, but the main focus is on 

incorporating gesture input.  

Using gestures to interact with the Web may be appropriate 

for a variety of reasons, such as for a collaborative web 

search where the users outnumber the traditional input 

devices [1]; for ergonomic reasons (to enable productivity 

during typing breaks) [5]; for situations where traditional 

input devices are not available such as for interactions with 

large display walls [6] or TVs; or for casual web-based 

experiences such as browser-based games or the use of the 

web for other casual or whimsical tasks (e.g., “lean-back 

internet” [4]).  

There have been a few recent forays into using Kinects with 

Web browsers. In June 2012, Microsoft announced a 

version of Internet Explorer for Xbox, which is a 

customized browser that uses voice commands for 

navigation; in contrast, we present a framework applicable 

to standard web browsers, which includes gesture support. 

SwimBrowser [swimbrowser.tumblr.com] is a whimsical 

application that allows a user to navigate the Web via 

“swimming” gestures, recognized by a Kinect. It shows 

how a depth camera and browser might be used together, 

but does not expose control over the development of such 

interactions to page authors. DepthJS 

[depthjs.media.mit.edu] is an early Kinect–Web browser 

integration for the Safari and Chrome browsers. DepthJS 

provides some high level affordances such as gesture-based 

tab switching, list item selection, and button presses; 
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developers use JavaScript to access this functionality. 

DepthJS focuses on providing reusable code for particular 

hand movement and gesture patterns; in contrast, our toolkit 

focuses on providing a more general integration of the 

depth camera and browser in order to provide more 

flexibility in interaction design.  Additionally, our contri-

bution in this paper goes beyond the features of the toolkit 

itself to encompass a reflection on the design rationale 

behind the architecture of Kinected Browser and an 

evaluation of its usability and versatility. 

DESIGN CONSIDERATIONS 

HTML and JavaScript are the common denominators of the 

Web; browsers exist on almost every modern platform and 

form factor. We believe that as depth cameras become 

cheaper, more common, and expand beyond PCs, 

researchers and developers will want to explore gestural 

interfaces that can scale across devices, from phones to wall 

displays. Our toolkit enables such scenarios. 

Gesture integration with a browser can take two forms: 

high-level manipulation that translates specific gestures into 

existing events such as clicks and navigations (the approach 

taken by DepthJS), or mapping depth and skeleton positions 

into lower-level objects from which page authors can 

develop new experiences. The “high-level” approach limits 

the gesture vocabulary in ways that prevent page authors 

from developing novel or customized experiences and 

pushing the boundaries of interactive Web sites. In contrast, 

we aim to support versatility in terms of the range of 

experiences that can be created with Kinected Browser. Our 

“low-level” design approach avoids constraining Web page 

authors with assumptions. Kinected Browser does not 

assume that the entire page is interactive, that there is only 

one user, that the screen has a specific size or aspect ratio, 

that only a small set of element types support interaction, or 

that a specific gesture or speech vocabulary is standard. 

Also, to maximize flexibility, our toolkit allows access to 

raw data from the sensor. Although most page authors are 

unlikely to use raw depth data, one can imagine Web 

applications using depth data, e.g., to scan physical artifacts 

and input them into 3D printing services.  

Existing Web experiences are built around single-user 

interaction paradigms. Multiple users sharing a PC are not 

uncommon, from classrooms in developing nations [7] to 

co-located search [5]. As large interface spaces lend 

themselves to social interaction and the Web becomes more 

pervasive, Web developers will increasingly need multi-

user input support. Our design supports as many users as 

the underlying Kinect system, and every event fired by the 

system includes a user identifier. We explored adding 

uniqueness of user IDs in the toolkit, but leave this up to the 

developer, since “uniqueness” can be defined in different 

ways – a person, a team, a family, etc. Furthermore, with 

increased availability of face recognition systems, 

developers can easily leverage a third party service to 

perform their own identity assignment.  

Despite the wealth of data that systems like Kinect provide, 

the toolkit should be easy to use by programmers. The 

system should leverage existing Web interaction 

programming facilities. Our toolkit maps the skeleton 

information provided by Kinect into scriptable browser 

events, as described in the next section. 

ARCHITECTURE 

Kinected Browser consists of two modules (Figure 2): a 

browser plugin linked to the C++ Kinect SDK, and a 

JavaScript library. The SDK provides low level data 

including the positions of users’ skeletons and the color and 

depth images. SDK consumer applications choose to 

receive data when new frames are ready, or poll for new 

data on their own schedule. Our toolkit reads this data and 

interprets them as higher level events, freeing page authors 

from worrying about frame rates and hit testing. 

The natural point of integration in a Web browser is its 

existing UI event system. Most visible Document Object 

Model (DOM) elements fire events in response to mouse 

and keyboard activity. Adding additional gesture events on 

<html> 

<head> 

    <script type="text/javascript" src="jquery-1.7.min.js"></script> 

    <script type="text/javascript" src="KinectedBrowser.js"></script>  ○1  

<script type="text/javascript"> 

$(document).ready(function () {  

        Kinect.init(); ○2  

        $("#positions").on("rightHandOver.kinect", function (state) { ○3  

            $("#positions").text("Right hand @ " + state.clientX + ", " + state.clientY); 
        }); 

    }); 

</script> 

<body> 

    <div id="positions" style="width:200px;height:200px;border:1px solid black">Wave here!</div> 

</body> 

</html> 

Figure 1. Using HTML and JavaScript with jQuery to react to the right hand moving. Key portions are highlighted in gray.  

(1) including script library; (2) initializing object; (3) attaching event listener on the document.  

 



each object is therefore consistent with the current 

programming model. Furthermore, it allows developers to 

reuse existing code if they simply want to use joints as 

virtual mouse cursors. 

When Kinect data is ready, the browser plugin reads the 

raw data and assembles data structures that can also be read 

by scripting in the browser, since raw C-style interfaces are 

not usable there. We chose to implement most of the 

functionality in JavaScript to provide independence from 

the hardware and raw data; the browser-based portion of the 

code should work for new depth camera packages and new 

methods of providing data to the browser. For example, 

rather than a browser plugin, the low-level data could be 

read using the new WebSocket protocol, or the Kinect 

device might be on a remote machine. Furthermore, the 

JavaScript library is written to be browser platform neutral.  

Pages enable use of the Kinected Browser system by 

placing a <SCRIPT> tag in the HTML that references the 

JavaScript library (Figure 1.1). After just as few as one 

lines of initialization code (Figure 1.2), authors can use data 

and events from the Kinect device using standard Web 

programming concepts.  

Mapping Camera Space to Browser Space 

In any vision-based application, the developer must choose 

how to map the camera coordinates into screen space. 

Kinected Browser provides two skeleton-to-screen-space 

mapping functions, but allows developers to specify custom 

mappers. By default, Kinected Browser maps screen space 

to the viewable area of the Web page rather than the entire 

scrollable page area. Since the camera space is in landscape 

aspect ratio, mapping to the entire page (the length of which 

may be several multiples of the width) would lead to severe 

vertical distortion. In practice, we find that users’ browser 

viewports tend to have aspect ratios that are similar to the 

camera’s; for such configurations, even when the horizontal 

and vertical multipliers are not precisely the same, the user 

experience is not adversely affected. 

The system also supports the notion of egocentric mapping. 

That is, the centroid of the skeleton is roughly mapped to 

the center of the screen space. This allows multiple users to 

reach all controls on the page without having to occupy the 

same physical space. In egocentric mapping, we also scale 

the skeleton such that the user can physically reach any 

element in the viewport. To determine the outermost 

reachable points, we subtract arm length from the re-

centered uppermost torso point in both the X and Y 

dimensions. These points, plus those of the feet, determine 

the physical skeleton bounding box. The system then scales 

between the physical bounding box and browser viewport. 

To aid debugging of skeleton interaction, the system sup-

ports drawing active skeleton mappings to an HTML 

canvas. We find this is useful for determining whether 

errors are due to camera noise or program bugs. 

Controlling the DOM with Skeleton Input 

Given the aforementioned camera-to-browser space 

mapping, the system uses skeleton points and motion to fire 

events on DOM elements. Page authors subscribe to 

skeleton movement events in a similar way to mouse 

events, adding event listener functions to any visual DOM 

element (Figure 1.3). Parallel to the DOM standard 

mouseOver and mouseOut events, the system publishes 

jointOver and jointOut events where joint is each of 

the 18 joints. The system hit tests skeleton points against a 

DOM element’s bounding box, firing the appropriate event 

if necessary. Similarly, events in the jointMove family 

fire when a joint moves within an element’s bounding box. 

The system can also map multiple joints into one “virtual 

joint” for scenarios where a set of joints is semantically 

equivalent. For example, we map leftHand and rightHand 

to a virtual hand joint. By using the virtual joint, authors 

can allow DOM elements to respond to either hand without 

duplicating event handlers; alternatively, developers can 

use the individual left and right versions of joints if they 

design interactions that make use of such distinctions.  

In addition to having DOM elements respond to skeletal 

events, developers may also wish to associate input with 

geometrically specified regions of a page. For instance, a 

developer creating a game using only an HTML5 canvas 

might wish to make sprites react to joints moving over 

them. To support this scenario, Kinected Browser reuses the 

existing image map infrastructure. Web page authors use 

image maps to specify polygonal and circular regions of an 

image that respond to mouse interaction. Our system 

interprets the rectangular, circular, and polygonal areas to 

hit test for joint events. 

Higher Level Inputs 

In addition to over/out and movement events, Kinected 

Browser also supports joint hovers. Inspired by the Kinect 

for Xbox 360’s hover selection mechanism, if a joint dwells 

above a DOM element and the joint’s coordinates are fairly 

stable for 100 ms (allowing for noise and human joint 

wobble), the browser displays a large circle consisting of 

translucent arc segments that fill with a contrasting color as 

time progresses. If the hand remains over the target for 2.5 

seconds, the system fires a target acquisition event and 

plays an audio cue. Target release occurs in the reverse 

manner; if a dwell occurs while the system is in an acquired 

state, then the target is released and a different audio cue 

plays. In one of our sample applications, we use acquisition 

and release to implement drag and drop. 
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Figure 2. Kinected Browser toolkit architecture  

 



Since our toolkit provides access to the underlying joint 

movement, developers can also easily incorporate an 

existing gesture recognizer such as the $1 Recognizer [10], 

which already has a JavaScript implementation.  

Color and Depth Stream Data 

Our toolkit also provides access to the color and depth 

camera image streams. Since the frame rate is up to 30 fps, 

the maximum bandwidth required across both streams is 

approximately 28.6 MB/sec. To reduce the load on 

JavaScript garbage collectors, we only copy data between 

the device and the browser on demand. This allows 

developers to request only as much data as they need 

without burdening the CPU unnecessarily. For convenience, 

the image data is available as a CanvasImageData object 

which can be drawn directly in the browser using the 

HTML5 Canvas API. 

EVALUATION 

To examine our toolkit’s usability, we conducted a small 

informal user study. We recruited four participants from a 

Kinect interest mailing list at a large technology company. 

All participants were software professionals and had at least 

some experience using the Microsoft Kinect SDK as well as 

self-rated intermediate or expert experience with JavaScript 

and HTML. None were familiar with our toolkit. 

We provided subjects with a short document describing the 

toolkit and detailing the available events. We then observed 

the developers completing two tasks each. In both tasks, 

participants were given an HTML file containing 

boilerplate code to initialize the framework (similar to Fig. 

1, but without the event listener in Fig 1.3). In Task 1, we 

instructed them to update two regions of the page (SPAN 

tags) to display the X and Y coordinates of the right hand. 

All participants successfully completed the task in less than 

ten minutes. In Task 2, we created a simulated “scratch off” 

lottery ticket. In the HTML given to the participants, four 

rectangular DIVs with numbers were occluded by four 

opaque rectangular DIVs in front along the z-axis. 

Participants had to use the toolkit to make the opaque DIVs 

disappear so as to simulate scratching off the removable 

surface of a scratch-and-win lottery ticket. All participants 

successfully completed the task in 17 minutes or less.  

After completing the tasks, subjects completed a post-study 

questionnaire. After less than an hour of exposure to the 

toolkit and minimal documentation, they expressed either 

Agree or Strongly Agree (on a 5-point Likert scale) that 

they understood how the toolkit mapped physical space into 

the browser and how to use the toolkit to respond to events. 

Furthermore, participants felt that expert proficiency was 

not required to use the system. We believe this is important 

given that Web development skill level varies and we want 

the system to be usable by a wide audience. 

To illustrate the versatility of our toolkit, the authors and 

other members of our lab used Kinected Browser to create 

novel Web browser interactions. One team created an 

interactive information visualization that a user could 

manipulate using a combination of speech (to specify 

dimensions to manipulate) and gestures (to adjust the values 

of the target dimensions in the graph). Another developer 

used the system to build a multi-user search experience, in 

which voice queries directed to a search engine were color-

coded based on user identity, and gesture recognition was 

used to implement voting to select a search result for 

viewing, by ensuring that all users simultaneously hovered 

over a common link in order to choose it. A third 

demonstration app let users select text on a page by 

pointing, then use the selected text to issue a search query 

initiated by speech control. These example applications 

showcase the flexibility that the Kinected Browser enables.  

CONCLUSION 

We introduced Kinected Browser, a toolkit that facilitates 

augmenting a Web browser with depth camera and gestural 

interactions using the familiar DOM-based event model of 

JavaScript programming, thus facilitating Web interaction 

for new form-factors such as large display walls, which 

may lack mice and keyboards or necessitate multi-user 

input. We discussed the design rationale and architecture 

involved in creating Kinected Browser and presented an 

initial evaluation of the toolkit’s usability and versatility. 

Our toolkit is available for download at http://aka.ms/kib. 
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