
Kinected Browser: Depth Camera Interaction for the Web

Daniel J. Liebling, Meredith Ringel Morris

Microsoft Research, Redmond, Washington, USA

{ danl, merrie }@microsoft.com

ABSTRACT

Interest in and development of gesture interfaces has

recently exploded, fueled in part by the release of Microsoft

Corporation’s Kinect, a low-cost, consumer-packaged depth

camera with integrated skeleton tracking. Depth-camera-

based gestures can facilitate interaction with the Web on

keyboard-and-mouse-free and/or multi-user technologies,

such as large display walls or TV sets. We present a toolkit

for bringing such gesture affordances into modern Web

browsers using existing Web programming methods. Our

framework is designed to enable Web programmers to

incrementally add this capability with minimum effort by

leveraging Web standard DOM structures and event

models. We describe our framework’s design and

architecture, and illustrate its usability and versatility.

Author Keywords

Kinect, depth cameras, JavaScript, HTML, toolkits.

ACM Classification Keywords

H.5.m. Information interfaces and presentation: Misc.

INTRODUCTION AND RELATED WORK

Interest in input methods beyond the mouse and keyboard

has recently accelerated as new, inexpensive sensing

hardware has become widely available. Such input is

particularly suitable to emerging form-factors, such as large

display walls, which lack mice and keyboards.

In 2010, Microsoft launched the Kinect sensor for its Xbox

360 gaming platform [kinect.com], followed by Kinect for

Windows in early 2012 [kinectforwindows.org]. The wide

availability and affordability of these devices ($150 USD)

make them a popular platform for experimentation among

researchers, practitioners, students, and hobbyists. The

Kinect device and accompanying SDK provide access to

color and infrared (depth) cameras at 640 × 480 pixel

resolution, 18-point skeleton tracking for multiple

simultaneous skeletons, and a microphone array. The SDK

provides programming APIs in both C++ and C#.

Researchers have quickly appropriated depth cameras such

as Kinect for a variety of scenarios including 3D scene

reconstruction [3], simulated touch sensing [7], facilitating

interaction with multi-display environments [9], and

enabling on-body sensing [2].

In this note, we describe a toolkit that enables developers to

easily augment any Web page with gesture or speech input.

Recent standards such as HTML5 and CSS3 enable richly

interactive Web applications. Despite these recent updates,

the browser interaction model is still based on keyboard,

mouse, and simple multi-touch interactions (the latter due

largely to the recent surge in adoption of touch-enabled

smartphones and tablets).

We anticipate that in a few years, PCs, laptops, tablets, and

perhaps even smartphones will include depth cameras as

standard peripherals (much like webcams today). By

supporting depth camera browser interactions in addition to

standard mouse, keyboard, and touchscreen inputs, we

envision that a user could choose the most natural and

appropriate modality for a given task. Our toolkit also

supports easily augmenting web pages with speech input

via the Kinect’s microphone array, but the main focus is on

incorporating gesture input.

Using gestures to interact with the Web may be appropriate

for a variety of reasons, such as for a collaborative web

search where the users outnumber the traditional input

devices [1]; for ergonomic reasons (to enable productivity

during typing breaks) [5]; for situations where traditional

input devices are not available such as for interactions with

large display walls [6] or TVs; or for casual web-based

experiences such as browser-based games or the use of the

web for other casual or whimsical tasks (e.g., “lean-back

internet” [4]).

There have been a few recent forays into using Kinects with

Web browsers. In June 2012, Microsoft announced a

version of Internet Explorer for Xbox, which is a

customized browser that uses voice commands for

navigation; in contrast, we present a framework applicable

to standard web browsers, which includes gesture support.

SwimBrowser [swimbrowser.tumblr.com] is a whimsical

application that allows a user to navigate the Web via

“swimming” gestures, recognized by a Kinect. It shows

how a depth camera and browser might be used together,

but does not expose control over the development of such

interactions to page authors. DepthJS

[depthjs.media.mit.edu] is an early Kinect–Web browser

integration for the Safari and Chrome browsers. DepthJS

provides some high level affordances such as gesture-based

tab switching, list item selection, and button presses;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
ITS’12, November 11–14, 2012, Cambridge, Massachusetts, USA.

Copyright 2012 ACM 978-1-4503-1209-7/12/11...$15.00.

developers use JavaScript to access this functionality.

DepthJS focuses on providing reusable code for particular

hand movement and gesture patterns; in contrast, our toolkit

focuses on providing a more general integration of the

depth camera and browser in order to provide more

flexibility in interaction design. Additionally, our contri-

bution in this paper goes beyond the features of the toolkit

itself to encompass a reflection on the design rationale

behind the architecture of Kinected Browser and an

evaluation of its usability and versatility.

DESIGN CONSIDERATIONS

HTML and JavaScript are the common denominators of the

Web; browsers exist on almost every modern platform and

form factor. We believe that as depth cameras become

cheaper, more common, and expand beyond PCs,

researchers and developers will want to explore gestural

interfaces that can scale across devices, from phones to wall

displays. Our toolkit enables such scenarios.

Gesture integration with a browser can take two forms:

high-level manipulation that translates specific gestures into

existing events such as clicks and navigations (the approach

taken by DepthJS), or mapping depth and skeleton positions

into lower-level objects from which page authors can

develop new experiences. The “high-level” approach limits

the gesture vocabulary in ways that prevent page authors

from developing novel or customized experiences and

pushing the boundaries of interactive Web sites. In contrast,

we aim to support versatility in terms of the range of

experiences that can be created with Kinected Browser. Our

“low-level” design approach avoids constraining Web page

authors with assumptions. Kinected Browser does not

assume that the entire page is interactive, that there is only

one user, that the screen has a specific size or aspect ratio,

that only a small set of element types support interaction, or

that a specific gesture or speech vocabulary is standard.

Also, to maximize flexibility, our toolkit allows access to

raw data from the sensor. Although most page authors are

unlikely to use raw depth data, one can imagine Web

applications using depth data, e.g., to scan physical artifacts

and input them into 3D printing services.

Existing Web experiences are built around single-user

interaction paradigms. Multiple users sharing a PC are not

uncommon, from classrooms in developing nations [7] to

co-located search [5]. As large interface spaces lend

themselves to social interaction and the Web becomes more

pervasive, Web developers will increasingly need multi-

user input support. Our design supports as many users as

the underlying Kinect system, and every event fired by the

system includes a user identifier. We explored adding

uniqueness of user IDs in the toolkit, but leave this up to the

developer, since “uniqueness” can be defined in different

ways – a person, a team, a family, etc. Furthermore, with

increased availability of face recognition systems,

developers can easily leverage a third party service to

perform their own identity assignment.

Despite the wealth of data that systems like Kinect provide,

the toolkit should be easy to use by programmers. The

system should leverage existing Web interaction

programming facilities. Our toolkit maps the skeleton

information provided by Kinect into scriptable browser

events, as described in the next section.

ARCHITECTURE

Kinected Browser consists of two modules (Figure 2): a

browser plugin linked to the C++ Kinect SDK, and a

JavaScript library. The SDK provides low level data

including the positions of users’ skeletons and the color and

depth images. SDK consumer applications choose to

receive data when new frames are ready, or poll for new

data on their own schedule. Our toolkit reads this data and

interprets them as higher level events, freeing page authors

from worrying about frame rates and hit testing.

The natural point of integration in a Web browser is its

existing UI event system. Most visible Document Object

Model (DOM) elements fire events in response to mouse

and keyboard activity. Adding additional gesture events on

<html>

<head>

 <script type="text/javascript" src="jquery-1.7.min.js"></script>

 <script type="text/javascript" src="KinectedBrowser.js"></script> ○1

<script type="text/javascript">

$(document).ready(function () {

 Kinect.init(); ○2

 $("#positions").on("rightHandOver.kinect", function (state) { ○3

 $("#positions").text("Right hand @ " + state.clientX + ", " + state.clientY);
 });

 });

</script>

<body>

 <div id="positions" style="width:200px;height:200px;border:1px solid black">Wave here!</div>

</body>

</html>

Figure 1. Using HTML and JavaScript with jQuery to react to the right hand moving. Key portions are highlighted in gray.

(1) including script library; (2) initializing object; (3) attaching event listener on the document.

each object is therefore consistent with the current

programming model. Furthermore, it allows developers to

reuse existing code if they simply want to use joints as

virtual mouse cursors.

When Kinect data is ready, the browser plugin reads the

raw data and assembles data structures that can also be read

by scripting in the browser, since raw C-style interfaces are

not usable there. We chose to implement most of the

functionality in JavaScript to provide independence from

the hardware and raw data; the browser-based portion of the

code should work for new depth camera packages and new

methods of providing data to the browser. For example,

rather than a browser plugin, the low-level data could be

read using the new WebSocket protocol, or the Kinect

device might be on a remote machine. Furthermore, the

JavaScript library is written to be browser platform neutral.

Pages enable use of the Kinected Browser system by

placing a <SCRIPT> tag in the HTML that references the

JavaScript library (Figure 1.1). After just as few as one

lines of initialization code (Figure 1.2), authors can use data

and events from the Kinect device using standard Web

programming concepts.

Mapping Camera Space to Browser Space

In any vision-based application, the developer must choose

how to map the camera coordinates into screen space.

Kinected Browser provides two skeleton-to-screen-space

mapping functions, but allows developers to specify custom

mappers. By default, Kinected Browser maps screen space

to the viewable area of the Web page rather than the entire

scrollable page area. Since the camera space is in landscape

aspect ratio, mapping to the entire page (the length of which

may be several multiples of the width) would lead to severe

vertical distortion. In practice, we find that users’ browser

viewports tend to have aspect ratios that are similar to the

camera’s; for such configurations, even when the horizontal

and vertical multipliers are not precisely the same, the user

experience is not adversely affected.

The system also supports the notion of egocentric mapping.

That is, the centroid of the skeleton is roughly mapped to

the center of the screen space. This allows multiple users to

reach all controls on the page without having to occupy the

same physical space. In egocentric mapping, we also scale

the skeleton such that the user can physically reach any

element in the viewport. To determine the outermost

reachable points, we subtract arm length from the re-

centered uppermost torso point in both the X and Y

dimensions. These points, plus those of the feet, determine

the physical skeleton bounding box. The system then scales

between the physical bounding box and browser viewport.

To aid debugging of skeleton interaction, the system sup-

ports drawing active skeleton mappings to an HTML

canvas. We find this is useful for determining whether

errors are due to camera noise or program bugs.

Controlling the DOM with Skeleton Input

Given the aforementioned camera-to-browser space

mapping, the system uses skeleton points and motion to fire

events on DOM elements. Page authors subscribe to

skeleton movement events in a similar way to mouse

events, adding event listener functions to any visual DOM

element (Figure 1.3). Parallel to the DOM standard

mouseOver and mouseOut events, the system publishes

jointOver and jointOut events where joint is each of

the 18 joints. The system hit tests skeleton points against a

DOM element’s bounding box, firing the appropriate event

if necessary. Similarly, events in the jointMove family

fire when a joint moves within an element’s bounding box.

The system can also map multiple joints into one “virtual

joint” for scenarios where a set of joints is semantically

equivalent. For example, we map leftHand and rightHand

to a virtual hand joint. By using the virtual joint, authors

can allow DOM elements to respond to either hand without

duplicating event handlers; alternatively, developers can

use the individual left and right versions of joints if they

design interactions that make use of such distinctions.

In addition to having DOM elements respond to skeletal

events, developers may also wish to associate input with

geometrically specified regions of a page. For instance, a

developer creating a game using only an HTML5 canvas

might wish to make sprites react to joints moving over

them. To support this scenario, Kinected Browser reuses the

existing image map infrastructure. Web page authors use

image maps to specify polygonal and circular regions of an

image that respond to mouse interaction. Our system

interprets the rectangular, circular, and polygonal areas to

hit test for joint events.

Higher Level Inputs

In addition to over/out and movement events, Kinected

Browser also supports joint hovers. Inspired by the Kinect

for Xbox 360’s hover selection mechanism, if a joint dwells

above a DOM element and the joint’s coordinates are fairly

stable for 100 ms (allowing for noise and human joint

wobble), the browser displays a large circle consisting of

translucent arc segments that fill with a contrasting color as

time progresses. If the hand remains over the target for 2.5

seconds, the system fires a target acquisition event and

plays an audio cue. Target release occurs in the reverse

manner; if a dwell occurs while the system is in an acquired

state, then the target is released and a different audio cue

plays. In one of our sample applications, we use acquisition

and release to implement drag and drop.

Web browserOS
Browser Plugin

(ActiveX)

JavaScript

library

Author’s

JavaScript

COM objects

DOM

events

Kinect for

Windows

driver

Raw

data

Figure 2. Kinected Browser toolkit architecture

Since our toolkit provides access to the underlying joint

movement, developers can also easily incorporate an

existing gesture recognizer such as the $1 Recognizer [10],

which already has a JavaScript implementation.

Color and Depth Stream Data

Our toolkit also provides access to the color and depth

camera image streams. Since the frame rate is up to 30 fps,

the maximum bandwidth required across both streams is

approximately 28.6 MB/sec. To reduce the load on

JavaScript garbage collectors, we only copy data between

the device and the browser on demand. This allows

developers to request only as much data as they need

without burdening the CPU unnecessarily. For convenience,

the image data is available as a CanvasImageData object

which can be drawn directly in the browser using the

HTML5 Canvas API.

EVALUATION

To examine our toolkit’s usability, we conducted a small

informal user study. We recruited four participants from a

Kinect interest mailing list at a large technology company.

All participants were software professionals and had at least

some experience using the Microsoft Kinect SDK as well as

self-rated intermediate or expert experience with JavaScript

and HTML. None were familiar with our toolkit.

We provided subjects with a short document describing the

toolkit and detailing the available events. We then observed

the developers completing two tasks each. In both tasks,

participants were given an HTML file containing

boilerplate code to initialize the framework (similar to Fig.

1, but without the event listener in Fig 1.3). In Task 1, we

instructed them to update two regions of the page (SPAN

tags) to display the X and Y coordinates of the right hand.

All participants successfully completed the task in less than

ten minutes. In Task 2, we created a simulated “scratch off”

lottery ticket. In the HTML given to the participants, four

rectangular DIVs with numbers were occluded by four

opaque rectangular DIVs in front along the z-axis.

Participants had to use the toolkit to make the opaque DIVs

disappear so as to simulate scratching off the removable

surface of a scratch-and-win lottery ticket. All participants

successfully completed the task in 17 minutes or less.

After completing the tasks, subjects completed a post-study

questionnaire. After less than an hour of exposure to the

toolkit and minimal documentation, they expressed either

Agree or Strongly Agree (on a 5-point Likert scale) that

they understood how the toolkit mapped physical space into

the browser and how to use the toolkit to respond to events.

Furthermore, participants felt that expert proficiency was

not required to use the system. We believe this is important

given that Web development skill level varies and we want

the system to be usable by a wide audience.

To illustrate the versatility of our toolkit, the authors and

other members of our lab used Kinected Browser to create

novel Web browser interactions. One team created an

interactive information visualization that a user could

manipulate using a combination of speech (to specify

dimensions to manipulate) and gestures (to adjust the values

of the target dimensions in the graph). Another developer

used the system to build a multi-user search experience, in

which voice queries directed to a search engine were color-

coded based on user identity, and gesture recognition was

used to implement voting to select a search result for

viewing, by ensuring that all users simultaneously hovered

over a common link in order to choose it. A third

demonstration app let users select text on a page by

pointing, then use the selected text to issue a search query

initiated by speech control. These example applications

showcase the flexibility that the Kinected Browser enables.

CONCLUSION

We introduced Kinected Browser, a toolkit that facilitates

augmenting a Web browser with depth camera and gestural

interactions using the familiar DOM-based event model of

JavaScript programming, thus facilitating Web interaction

for new form-factors such as large display walls, which

may lack mice and keyboards or necessitate multi-user

input. We discussed the design rationale and architecture

involved in creating Kinected Browser and presented an

initial evaluation of the toolkit’s usability and versatility.

Our toolkit is available for download at http://aka.ms/kib.

REFERENCES

1. Amershi, S. and Morris, M.R. CoSearch: A System for

Co-located Collaborative Web Search. CHI 2008.

2. Harrison, C., et al. OmniTouch: Wearable Multitouch

Interaction Everywhere. UIST 2011.

3. Izadi, S., et al. KinectFusion: real-time 3D

reconstruction and interaction using a moving depth

camera. UIST 2011.

4. Lindley, S.E., et al. “It’s simply integral to what I do:”

Enquiries into how the web is weaved into everyday

life. WWW 2012.

5. Morris, D., et al. SuperBreak: Using Interactivity to

Enhance Ergonomic Typing Breaks. CHI 2008.

6. Paek, T., et al. Toward Universal Mobile Interaction for

Shared Displays. CSCW 2004.

7. Pawar, U.S., et al. Multiple Mice for Retention Tasks in

Disadvantaged Schools. CHI 2007.

8. Wilson, A.D. Using a Depth Camera as a Touch Sensor.

ITS 2010.

9. Wilson, A.D. and Benko, H. Combining multiple depth

cameras and projectors for interactions on, above, and

between surfaces. UIST 2010.

10. Wobbrock, J., et al. Gestures without libraries, toolkits

or training: a $1 recognizer for user interface prototypes.

UIST 2007.

http://aka.ms/kib

	Kinected Browser: Depth Camera Interaction for the Web
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION and related work
	Design considerations
	ARCHITECTURE
	Controlling the DOM with Skeleton Input
	Higher Level Inputs
	Color and Depth Stream Data

	evaluation
	Conclusion
	REFERENCES

