
Emulating Low-priority Transport at the Application Layer:
A Background Transfer Service

Peter Key
Microsoft Research

Roger Needham Building
7 J J Thomson Avenure

Cambridge, CB3 0FB, U.K.

peterkey@microsoft.com

Laurent Massoulié
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ABSTRACT
Low priority data transfer across the wide area is useful in several
contexts, for example for the dissemination of large files such as
OS updates, content distribution or prefetching. Although the de-
sign of such a service is reasonably easy when the underlying net-
work supports service differentiation, it becomes more challenging
without such network support. We describe an application level ap-
proach to designing a low priority service — one that is ‘lower than
best-effort’ in the context of the current Internet. We require neither
network support nor changes to TCP. Instead, we use a receive win-
dow control to limit the transfer rate of the application, and the op-
timal rate is determined by detecting a change-point. We motivate
this joint control-estimation problem by considering a fluid-based
optimisation framework, and describe practical solutions, based on
stochastic approximation and binary search techniques. Simulation
results demonstrate the effectiveness of the approach.

Keywords
Background transfer, Low priority, Stochastic Approximation, Bi-
nary Search, Application Reaction

General Terms
Performance, Algorithms

Categories and Subject Descriptors
[C.4 Performance of Systems; C.2.2 Network Protocols]

1. INTRODUCTION
We define background transfers of data or information to be trans-

fers across a network whose aim is to transfer the data as quickly
as possible, but without impairing the performance of foreground
transfers. In other words, background transfers are lower-priority
than foreground flows, but seek to fully utilize spare capacity. In
the context of the current Internet, we are looking for a ‘lower
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than best effort’ quality of service, i.e. lower than the current
base-line quality offered. Examples of background transfer in-
clude large file backup, transferring updates to the current operating
system (e.g., Microsoft’s Background Intelligent Transfer Service,
(BITS)), contents prefetching [1] and distribution, storage manage-
ment and caching in peer-to-peer systems [2].

One way to achieve low-priority background transfer is to use
priority queues at routers. However, this is not currently practical
due to lack of both consensus and router support. Two alterna-
tive approaches, TCP Nice [3] and TCP-LP [4] require no support
from the routers but instead modify the congestion detection and
avoidance in TCP to achieve a low-priority transfer. They react
both earlier and more aggressively than standard loss-based TCP
(Reno). End-to-end delays are used to trigger a congestion signal
before loss occurs, a TCP Vegas style approach, while more ag-
gressive back-off mechanisms than those of standard TCP are used
to give a lower share of network resources. Although only sender-
side modification is required, this modification of TCP stack may
still be difficult to deploy widely.

In this paper, we design an application-level approach for back-
ground transfers that uses TCP as the underlying transport proto-
col. Two components are needed: to infer the available capacity
and to adjust the sending rate of the background transfer accord-
ingly. There is a large literature on available capacity inference,
e.g. [6, 7, 8]. However, most current work relies on probing the
end-to-end path, which requires coordination between sender and
receiver. Furthermore, UDP probes can be blocked by firewalls and
also impose extra load on the network. Using TCP directly to infer
the available capacity, on the other hand, tends to cause overesti-
mation [8].

In our application-level approach, we tightly couple the available
capacity inference and rate adjustment: the rate of the background
transfer is controlled by adjusting the receiver-advertised window
size, which enforces a limitation on the rate used by the applica-
tion. In turn, the rate obtained for a given receiver window is used
to infer whether that rate is above or below the available capac-
ity, which in turn triggers an adaptation of the receiver window.
This is based on the fact that the actual TCP sending window is the
minimum of the receiver window and the congestion window. By
controlling the receiver window size, we also avoid overestimating
the available capacity as observed in [8].

Receiver based capacity sharing is studied in [9, 10] to achieve
service differentiation in the access links. In [11], receive window
limitation is used as a rate control to mitigate the network effects of
prefetching. In [12], the receiver advertised window is adjusted at
a web cache to achieve proportional fairness among flows. In [13],



the authors use the receiver advertised window to limit the rate of
the TCP video traffic on a VPN link between a video server and a
proxy. Receiver window adjustment is also leveraged to increase
TCP throughput [14, 15]. However, all the above are in contexts
different from background transfer. Furthermore, none of the above
studies couple the receiver window adjustment together with the
available capacity estimation in order to fully utilize the available
capacity.

The outline of this paper is as follows. We identify the relation-
ship between receiver window and achieved rate in Section 2, using
fluid-flow models and an optimisation framework to show how the
goodput of the background flow can be used to detect the change
point at which the background flow starts to interfere with the fore-
ground flow. In other words, we can identify a critical value of the
receiver window which we wish to target. We also give some em-
pirical validation of this approach. In section 3 we discuss control
objectives, and show how target relationships between foreground
and background flows can be expressed in a utility maximisation
framework, and discuss fairness among background flows. In Sec-
tion 4, we propose two practical application-level approaches for
background transfer: one is based on binary search and the other
is based on stochastic approximation [16]. We evaluate the per-
formance of the two approaches using ns simulation in Section 5,
where we also show the performance of TCP-LP [4].

2. RELATIONSHIP BETWEEN RECEIVER
WINDOW AND ACHIEVED RATE

In this section, we investigate the relationship between the achieved
rate and the receiver window advertised by the receiver. The find-
ings of this section motivate the objectives discussed in the next
section and underpin the method to be described in section 4. We
investigate this relationship under two different assumptions: first,
in Section 2.1, we assume buffer space at all links is large enough
to prevent any packet losses. Secondly, in Section 2.2, we then con-
sider the case where buffering is minimal and flows may experience
loss.

We consider a general network comprising a collection L of
links, each link � having an associated nominal capacity C�. There
is a set R of flows, each flow r ∈ R identifies a subset of L, the
links it uses. This set of flows is divided into two subsets, namely
the set F of foreground flows and the set B of background flows.
Each foreground flow implements TCP’s congestion control. Fi-
nally, when there is only one background flow, we denote it by b.

We also make use of the following notations for each flow r,
whether foreground or background. We let wr denote the receiver
window, and cwndr the (time-average of the) TCP congestion win-
dow. It is assumed to be a function of the corresponding loss rate
pr only, i.e. cwndr = ϕ(pr) for a given function ϕ. The round-trip
propagation delay is denoted by τr , and the queueing delay by dr,
hence the total round-trip delay reads rttr = τr + dr. As the ef-
fective window is the minimum of the congestion window and the
receiver window, these parameters combine to provide the through-
put formula:

xr =
min (wr, cwndr)

τr + dr
· (1)

Finally, the goodput is the throughput, reduced by the losses, hence
the goodput formula

yr = (1− pr)
min (wr, cwndr)

τr + dr
· (2)

In the remainder of this section, we focus on the case of a sin-
gle background flow b, and investigate the relationship between its

goodput yb and its receiver window, wb. For the sake of tractabil-
ity, we treat the case where all flows are constrained by delays and
there are no losses (Section 2.1), and the case where there are no
queueing delays and the flows are constrained by losses (Section
2.2). The behaviour as predicted by the analysis in these sections is
confirmed by simulations in Section 2.3.

2.1 The delay constrained case
When all links have sufficiently large buffers, there are no losses

and flow rates are controlled by their receiver window only, not by
their congestion window. The throughputs and goodputs coincide,
and the throughput formula (1) simplifies to

xr =
wr

τr + dr
· (3)

Under FIFO scheduling at all links, Massoulié and Roberts [17]
showed that the achieved rates x = (xr) solve the optimisation
problem

Maximise
∑
r∈R

wr log xr − xrτr

subject to
∑

r:�∈r

xr ≤ C�, � ∈ L over (xr) ∈ R
R
+ .

(4)

The Lagrangean of the latter optimisation problem reads

L =
∑
r∈R

wr log xr − xrτr +
∑
�∈L

µ�

(
C� −

∑
r:�∈r

xr

)
, (5)

where µ� is the Lagrange multiplier associated with the capacity
constraint C�. This identification made in [17] follows by inter-
preting the queueing delay at link � as the Lagrange multiplier µ�,
and viewing the queueing delay dr in the formula (3) as the sum
of the multipliers associated with the capacity constraints along the
path of flow r.

Let xr(wb) denote the corresponding unique optimal solution,
where we have emphasised its dependence on the parameter of in-
terest, wb, that is the receiver window of the unique background
flow. The rates xr(0) correspond to the allocations achieved when
the background flow is absent. Hence the spare capacity available
to flow b can be written

x∗
b = min

�∈b

(
C� −

∑
r:�∈r

xr(0)

)
.

We assume that x∗b < min�∈b(C�), so that foreground and back-
ground flows may interact. We then have the following result:

THEOREM 1. Let w∗
b := x∗

bτb. In the present setting, fore-
ground flows are affected by the background flow if and only if
wb > w∗

b . In addition, the functionxb(wb) is linear on [0, w∗
b ]

with slope1/τb, such thatxb(wb) < wb/τb on (w∗
b ,+∞) and the

functionxb(wb)/wb is non-increasing onR+.

PROOF. By considering the Lagrangean (5), it is easily seen that
for wb ∈ [0, w∗

b ], the problem (4) is solved by taking xr(wb) =
xr(0), r ∈ F , and xb(wb) = wb/τb. Thus, when wb is in the
range [0, w∗

b ], the background flow does not interfere with any other
flows. When wb > w∗

b , necessarily the Lagrange multiplier µ� as-
sociated with the capacity constraint C� for some � ∈ b needs to be
strictly positive, hence xb(wb), which equals wb/(τb +

∑
�∈b µ�),

is indeed strictly less than wb/τb. The last statement is established
by noticing that, if we perform the optimisation in (4) first on the
xr, r ∈ F , and then on xb, the solution xb(wb) is identified with
the solution of the maximisation problem:

Maximise wb log xb − τbxb + ψ(xb) over xb ≥ 0,



where the function ψ is defined as

ψ(xb) = max
(xr)∈S(xb)

{∑
r∈F

wr log xr − xrτr

}

where S(xb) =
{
(xr) ∈ R

F
+ :
∑

r:�∈r xr ≤ C� − xb1�∈b

}
is the

set of achievable foreground flows given the background flow rate
xb. It is easy to see that ψ is non-increasing and concave. As-
suming for simplicity that ψ is differentiable1, the function xb(wb)
also reads f−1(wb), where f(x) = x(τb − ψ′(x)). The function
f−1(wb)/wb is non-increasing if and only if the function f(x)/x
is non-decreasing, that is if and only if −ψ′(x) is non-decreasing.
The latter property is implied by concavity of ψ. Finally, observing
that f and hence f−1 are non-decreasing, it can be seen that neces-
sarily, for any wb > w∗

b , one has xb(wb) > x∗
b . It then follows that

for wb > w∗
b , there must exist some foreground flow r such that

xr(wb) < xr(0).

2.2 The loss constrained case
We now assume that buffers are small, so that queueing delays

can be neglected, and congestion control relies on losses rather than
on buffering. The throughput formula (1) then simplifies to

xr =
min (wr, ϕ(pr))

τr
· (6)

Many studies have shown that in such a context, the rates achieved
by TCP flows may be interpreted as solving an implicit optimisa-
tion problem; see e.g. [19, 20, 21].

We follow this approach, and assume that the rates (xr)r∈R are
the solution to the problem:

Maximise
∑
r∈R

Ur(xr)−
∑

�

Γ�

(∑
r:�∈r

xr

)

subject to 0 ≤ xr ≤ wr

τr
over (xr) ∈ R

R
+ .

(7)

The constraint captures the impact of the receiver window size wr .
In the above, the so-called utility functions Ur are assumed to be
strictly concave and increasing. It has been suggested (see [22],
[19]) that adequate choices for modelling TCP capacity sharing
could be Ur(x) = −1/(τ 2

r x), or Ur(x) = τ−1
r arctan(τrx). The

correspondence between the solution to the optimisation problem
(7) and the throughput formula (6) can be formally established by
identifying the functions τ−1

r ϕ(·) in (6) withU ′−1
r (·) (for instance,

the latter arctangentutility function corresponds to the choice ϕ(p) =√
(1− p)/p), and by assuming that loss rates pr are the sums of

link loss rates p� at links along the path of flow r. The formal iden-
tification is then valid when the penalty function Γ� in (7) is related
to the loss probability p�(x) at link � when it carries data at rate x
via the equation

Γ�(x) =

∫ x

0

p�(y)dy.

A special choice advocated in [19] consists in setting p�(y) = (y−
C�)

+/y. The results below rely solely on the assumption that the
utility functions Ur are strictly convex increasing, and that the loss
rate functions p� are non-decreasing and continuous. As before,
let (xr(wb))r∈R denote the rates achieving the maximum in the

1This is actually not the case; however a rigorous argument can
be constructed along the same lines, based on sub-differentials of
convex functions (see Rockafellar [18], Chapter 23) rather than or-
dinary differentials.

optimisation problem (7) when the receiver window of background
flow b is wb. We also make use of the notation

π�(wb) := p�

( ∑
r∈R:�∈r

xr(wb)

)
.

The function π� is naturally interpreted as the loss probability along
link �. We shall also denote the goodput obtained by the back-
ground flow as

yb(wb) := xb(wb)

(
1−

∑
�∈b

π�(wb)

)
.

Again, xr(0) is the rate obtained by foreground flow r in the ab-
sence of background flows. We define the spare capacity available
to flow b as

x∗
b := min

�∈b
sup

{
x > 0 : p�(x+

∑
r∈F:�∈r

xr(0)) = 0

}
.

We assume that there exists a link � ∈ b and a flow r′, � ∈ r′ such
that xr′(0) > 0 and p�(x

∗
b +

∑
r∈F:�∈r xr(0) + z) > 0 for all

z > 0, so that background and foreground flows could interact. In
this context, similarly to Theorem 1, we have the following.

THEOREM 2. Let w∗
b := x∗

bτb. In the present setting, fore-
ground flows are affected by the background flow if and only if
wb > w∗

b . Moreover, the goodputyb(wb) received by the back-
ground flow is linear inwb on the interval[0, wb], with slope1/τb,
is such thatyb(wb)/wb < τ−1

b whenwb > w∗
b , and the function

yb(wb)/wb is non-increasing inwb.

PROOF. (sketched). We only provide those steps that differ sig-
nificantly from those in the proof of Theorem 1. It is readily seen
that, for wb ∈ [0, w∗

b ], the optimisation problem (7) is solved by
setting xr(wb) = xr(0), r ∈ F , and xb(wb) = wb/τb. The case
where wb > w∗

b can be further divided into two sub-cases, ac-
cording to whether the constraint imposed by wb is binding or not.
Denote by ŵb the critical value for wb where the receiver window
constraint ceases to be binding. In the interval (w∗

b , ŵb), one has
xb(wb) ≡ wb/τb. Similarly to the proof of Theorem 1, define

ψ(xb) := max
(xr)∈RF

+

{∑
r∈F

Ur(xr)−
∑

�

Γ�

(∑
r:�∈r

xr

)}
.

This function is non-increasing and concave. The interval (w∗
b , ŵb)

may then be alternatively characterised as the one for which

U ′
b(wb/τb) + ψ′(wb/τb) > 0.

In addition, it can be shown that the derivative −ψ′(wb/τb) coin-
cides with the loss rate

∑
�∈b π�(wb) over the range (w∗

b , ŵb). By
concavity of ψ, −ψ′ is non-decreasing. As a result, the normalised
goodput function yb(wb)/wb, which reads τ−1

b (1−∑�∈b π�(wb)),
is indeed non-increasing. Finally, in the range wb > ŵb, one has
yb(wb) ≡ yb(ŵb), and hence the normalised goodput is decreasing
there as well.

As in the context of delay–constrained flows, we observe that good-
put normalised by receiver window is constant over a range [0, w∗

b ],
and decreasing over (w∗

b ,+∞), where the critical window w∗
b is

precisely the one we should use to maximise background goodput
while not interfering with foreground flows.
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Figure 1: Topology in ns: the link between node node n0 and
n1 forms a bottleneck link.
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Figure 2: The goodput of the background flow versus the win-
dow size with 8 foreground flows, when C = 2000 packets per
second, B = 40 packets.

2.3 Experimental validation
Although we have analysed only two extreme cases, namely large

buffers (no loss), and no buffering but losses, we expect the same
qualitative behaviour to hold in mixed situations where there is both
significant buffering and loss. We now confirm this expectation us-
ing ns simulations [23].

The topology used in ns is shown in Figure 1. The link be-
tween nodes n0 and n1 forms a bottleneck link with capacity C.
The buffer size of node n0 is B. Here we have a number N of
foreground flows, each a long-lived TCP connection, with a round
trip propagation delay τf and a maximum window size of wf .
The generic network optimisation problem (4), specialised to the
present situation, reads

Maximise N(wf log xf − τfxf ) + wb log xb − τbxb (8)

subject to Nxf + xb ≤ C. We would expect its solution to predict
accurately the actual achieved rates in the absence of losses, that is
when the buffer size B is large.

We now report experiments for N = 8 foreground flows, each
with characteristics wf = 20 packets and τf = 100 ms, a capac-
ity C of 2000 packets per second. τb is set to 10 ms. The packet
size is fixed to 500 bytes. The maximum aggregate bandwidth us-
age of the foreground TCP flows is then 1600 packets per second.
The foreground TCP flows are started at time 0 and the background
flow is started at the 10th second. The window size of the back-
ground flow is initially 1 packet, and increases by 1 packet every
40 seconds. For each background flow window size, we obtain the
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Figure 3: The goodput of the background flow versus the win-
dow size with 8 foreground flows, when C = 2000 packets per
second, B = 20 packets.

average background flow goodput every second with a total of 40
samples. We then obtain the mean and the 95% confidence inter-
vals from the 40 samples.

The solid line in Figure 2 shows the background flow goodput
as a function of the window size, with 95% confidence intervals,
when B = 40 packets. The result from solving the simple opti-
mization problem (8) is also shown in the figure, which indicates
that the optimal window size for the background flow is 4 pack-
ets. From the simulation, the optimal value is lower (3 packets).
Packet losses start to occur when wb = 16 packets. Figure 3 shows
the background flow goodput versus the window size for a smaller
buffer size at node n0 (B = 20 packets). Packet losses start to
occur when wb = 8 packets. Note that at this point, when the
background flow is too aggressive, loss occurs and the variance in
the background flow goodput increases dramatically; furthermore,
the goodput is not necessarily an increasing function of the window
size.

3. CONTROL OBJECTIVES
The previous results suggest that, when only one background

flow b is present, one could adapt its receiver window wb, based
on its achieved goodput, so as to tune it to the critical value w∗

b at
which interference with foreground flows would start occurring.

In the more general situation where there are several background
flows b ∈ B, we still aim at efficiently utilising the spare capacity
left by foreground flows f ∈ F without interfering significantly
with those flows. However, we have the additional objective of en-
suring that competing background flows b ∈ B share the available
bandwidth fairly.

Assuming that for each background flow b ∈ B we can identify
the corresponding round-trip propagation delay τb efficiently, then
we can design adaptation rules which tune the receiver window wb

so as to enforce the identity

yb

wb
=

1

τb
− εb(yb), (9)

where yb is the corresponding goodput, and εb(·) is a function of
our choice. Specifically, we shall consider the special case

εb(y) =
αb

1 + βby
, (10)



where αb and βb are two non-negative parameters to be specified.
Of particular interest is the case where βb = 0 and hence the func-
tion εb(·) is constant. Note that it is natural to require αb to scale
as 1/τb, and hence we can write αb = α∗

b/τb where = α∗
b is some

constant, independent of the value of τb. For the relationship (9) to
be meaningful we require

α <
1

τb
implying α∗

b < 1.

It is important to understand what is the impact of enforcing re-
lation (9) rather than setting wb to its ideal value, w∗

b , since now
background flows may interfere with foreground flows as a result
of this relaxed control objective.

We start our analysis of such interference by considering the
same simple situation as in Section 2.3, with one background flow
b and N homogeneous TCP foreground flows sharing a single link
of capacity of the C, with enough buffering to avoid any data loss.
We also assume that βb = 0, that is εb(·) ≡ αb. Let wf denote the
window size of the foreground TCP flows, and wb the equilibrium
window size of the background flow b. The corresponding equilib-
rium rates xf and xb are again characterised as the unique solution
to the optimisation problem (8). It is then straightforward to show

THEOREM 3. In the present setting, when round-trip times are
equal (τf = τb = τ ), the relative reduction in the rate of fore-
ground flows in the presence of the background flow caused by us-
ing a positive thresholdαb is bounded above by

D = αbτ.

PROOF. If the capacity is not fully used after introduction of the
background flow b, there is no reduction in the foreground flow
rates. If it is fully used, when the round trip times are the same,
solving the optimisation (8) gives

xb =
wb

wb +Nwf
C =

(
1

τ
− αb

)
wb

xf =
wf

wb +Nwf
C

and hence

xf =

(
1

τ
− αb

)
wf .

In the absence of the background flow, xf = min(wf/τ, C/N).
With D the reduction in the TCP rate caused by the background
flow, if xf = wf/τ then

D =
wf/τ −

(
1
τ
− αb

)
wf

wf/τ
= αbτ.

On the other hand, if xf = C/N then wf ≥ τC/N . Hence xf ≥
(1/τ−αb)τC

N
and

D ≤ C/N − (1/τ − αb)τC/N

C/N
= αbτ.

Note also that if we put αb = α∗
b/τb, then it follows from equations

(9) and (1) that α∗
b is equivalent to the relative queuing delay

α∗
b =

db

db + τb
.

Hence for this case where βb = 0, setting α∗
b to some fraction both

bounds the relative damage to other stream and bounds the relative
queueing delay the background flow sees.

We now proceed to a more systematic study of the equilibrium
allocations stemming from relation (9), for general network topolo-
gies, both in the delay-constrained and in the loss-constrained cases.

THEOREM 4. Consider the case of delay-constrained flows, with
goodputs as in (3). Assume that foreground flowsf ∈ F have their
receiver window set to a given valuewf , while background flows
b ∈ B have their receiver windowwb adjusted so as to satisfy (9).
Then the corresponding equilibrium achieved ratesxr solve the
maximisation problem

Maximise
∑
r∈R

Ur(xr) (11)

under the link capacity constraints, where the utility functionsUr

are given by

Uf (x) = wf log(x)− τfx, f ∈ F , (12)

Ub(x) =

∫ x

0

τ 2
b εb(y)

1− τbεb(y)
dy, b ∈ B. (13)

In particular, for εb(·) as in (10), this reads

Ub(x) =
τ 2

b αb

βb
log

(
1 +

βb

1− τbαb
x

)
(14)

where the caseβb = 0 is understood as the limit asβ → 0.

PROOF. From equations (3) and (9), one finds that

df = wf/xf − τf , f ∈ F ,
db =

τ2
b ε(yb)

1−τbεb(yb)
, b ∈ B.

The queueing delay µ� at a link � is non-negative, and positive only
when the corresponding capacity C� is saturated. This allows one
to identify the queueing delay dr along the path of a flow r with
the sum

∑
�∈r µ� of Lagrange multipliers associated with the cor-

responding capacity constraints, and thus the latter conditions co-
incide with the stationarity conditions of the Lagrangean of the op-
timisation problem (11). The expression (14) is readily obtained by
replacing εb(·) by its expression and performing the integration in
(13).

By solving the optimisation problem (11), one can predict to what
extent, for the corresponding fluid model of performance, back-
ground flows will interfere with foreground flows at equilibrium.
We can also assess whether capacity is going to be shared fairly
among background flows. For instance, for strictly decreasing εb(·),
the associated utility functions Ub are strictly concave, and we ex-
pect fair allocations among background flows. On the other hand,
when εb(·) ≡ αb, Ub is linear, and thus several allocations may
achieve the maximum in (11): one can construct examples with
two background flows along the same path, and where there is an
allocation maximising (11) for which one of the background flows
is starved and not the other. Fairness is not a priori granted with
constant εb.

We now turn to the case of loss-constrained flows.

THEOREM 5. Consider the case of flows constrained only by
losses, with throughputs as in (6). Assume again that foreground
flowsf ∈ F have given receiver windowswf , while background
flowsb ∈ B have their receiver windowswb adjusted so as to sat-
isfy (9). Assume also that the loss rate along a path is the sum of
the loss rates at the links on the path. Assume that, for allb ∈ B,
the functiongb defined by

gb(p) :=
1

1− pε
−1
b

(
p

τb

)
. (15)



is strictly decreasing. Then the equilibrium throughputsxr, r ∈ R,
solve the optimisation problem

Maximise
∑

r

Ur(xr)−
∑

�

Γ�

(∑
r:�∈r

xr

)
(16)

under the constraintsxf ≤ wf/τf , f ∈ F , where the utility func-
tionsUr are characterised by

Uf (x) =

∫ x

0

ϕ−1(τfz)dz, f ∈ F , (17)

Ub(x) =

∫ x

0

min
(
ϕ−1(τbz), g

−1
b (z)

)
dz, b ∈ B. (18)

PROOF. As the function ϕ is assumed strictly decreasing, the
relation (6) yields, for all f ∈ F ,

U ′
f (xf ) = pf + θf , (19)

where θf is non-negative, and positive only when xf = wf/τf .
Indeed, it holds with θf = 0 when xf < wf/τf , in view of the
expression of U ′

f . When xf = wf/τf , it holds that ϕ(pf ) ≥ wf ,
and hence U ′

f (xf ) ≥ pf , which implies (19). The coefficient θf

may thus be interpreted as the Lagrange multiplier associated with
the constraint xf ≤ wf/τf . Moreover, (6) together with (9) entails
that, for all b ∈ B,

xb = min

(
1

1− pb
ε−1
b (pb/τb),

ϕ(pb)

τb

)
.

Recognising the first term in the minimum as gb(pb), this also reads

U ′
b(xb) = pb. (20)

Finally, the loss rate pr along the path of a flow r also reads, for all
r ∈ R,

pr =
∑
�∈r

Γ′
�

(∑
s:�∈s

xs

)
. (21)

The equations (19), (20) and (21) coincide with the stationarity con-
ditions of the Lagrangean of the optimisation problem (16). Since
this is a strictly concave minimisation problem, it admits a unique
minimum, which is achieved by the equilibrium throughputs xr,
r ∈ R.

For the sake of illustration, when ε(·) is given by (10), tedious
but straighforward calculations yield the following expression for
g−1

b (x):

g−1
b (x) =

1

2


1 +

1

xβb
−
√(

1 +
1

xβb

)2

− 4αbτb

xβb


 . (22)

In the special case where the function εb(·) is constant, which is
obtained by letting βb tend to zero, this expression simplifies to
g−1

b (x) ≡ αbτb. This may then be injected into (17) in order to
determine the utility function Ub associated with background flow
b, and then assess to what extent it would interfere with foreground
flows. We now consider ways of achieving the proposed control
objectives.

4. ALGORITHMS
In this section we discuss practical methods for enforcing the

control objectives discussed in the previous section, namely to tune
the receiver window wb of background flow b so as to enforce rela-
tion (9). We assume that time is divided in control intervals, each

of length T . In the nth interval, a receiver window of size wb(n)
is applied to flow b, and an amount Rb(n) of data is received, both
wb(n) andRb(n) being expressed in the same unit, which is a fixed
number of bytes u.

Let ρb(n) := Rb(n)/wb(n). When there is only one back-
ground flow b, in view of the results of Section 2, we postulate
the following model for the observed quantities ρb(n):

ρb(n) = φb (wb(n)) + Zn, (23)

where Zn represents observation noise, assumed to be centred, and
the function φb is the normalised goodput function multiplied by
the control interval length T , which, in view of Theorems 1 and 2,
is assumed to be non-increasing, and such that:

φb(w)

{ ≡ ρb := T/τb, if w ∈ [0, w∗
b ],

< ρb if w > w∗
b .

We would expect such a model to be accurate when the control
interval length T is long compared to the time needed for TCP
to adjust the rates of the competing flows after a change in some
receiver window.

In the sequel, we aim at adjusting the receiver window wb so as
to enforce (9), and choose the function ε(·) to be constant. This can
also be written as

φb(wb) = ρb − ε, (24)

where ε is now a positive constant. In the sequel we denote by w∗

the solution to this equation. Note w∗ ≥ w∗
b since ε is positive.

In the two control methods we propose next, we maintain an
Exponentially Weighted Moving Average (EWMA) estimate ρ̂b(n)
of ρb,

ρ̂b(n) =




(1− δ)ρ̂b(n− 1) + δρb(n)
if ρb(n) ≥ ρ̂b(n− 1)− ε′,
ρ̂b(n− 1) otherwise.

(25)

This features two positive parameters δ ∈ (0, 1) and ε′, and can be
initialised by taking ρ̂b(1) = ρb(1).

We now describe two approaches for enforcing relation (24), one
based on binary search and the other based on stochastic approxi-
mation. In Sections 4.1 and 4.2, the methods are more specifically
motivated in the context of a single background flow. Section 4.3
discusses stability issues specific to the multiple background flows
case.

4.1 The Binary Search Method

wb(n)← wmin

loop {
if (ρb(n)− ρ̂b(n− 1) < −ε) {

wmax ← wb(n)
return wmax

}
wb(n+ 1)← 2wb(n)
n← n+ 1

}

Figure 4: Initialisation of wmax.

In this approach we maintain a search range [wmin, wmax] for
the desired window w∗. The lower limit wmin is initially set to
1, and the upper limit wmax may be set to a system dependent
limit. In practice, we make a preliminary search for a suitable value



of wmax by starting from w1 = 1, and doubling wb(n) in each
subsequent interval, until the condition ρb(n) > ρ̂b(n − 1) − ε
fails, at which point we set wmax = wb(n). This is shown in
Figure 4. A ‘time-out’ is triggered if the number of units received
by the background flow in any control interval is 0, in which case
we set wmin = 1 and start the process to find a new wmax.

At the beginning of a control interval, we set

wb(n) = �(wmin + wmax)/2	 (26)

where �·	 denotes integer part. At the end of the control interval,
if ρb(n) > ρ̂b(n − 1) − ε, we let wmin = wb(n); otherwise we
let wmax = wb(n). Such standard binary search proceeds until the
difference wmax − wmin is 0 or 1. In the absence of noise, and in
a static environment we would then be guaranteed to have reached
the optimal window w∗ satisfying (24), and the search could be
stopped there.

In practice we are in a dynamic environment, with noisy obser-
vations, and we describe how we proceed when the search inter-
val has length at most 1. If ρb(n) > ρ̂b(n − 1) − ε, we make
the change wmax = wmax + 2; otherwise, we make the changes
wmax = wmax − 1 and wmin = 1.

More generally, at each stage we may divide the search interval
for w in the ratio 1 :

√
c rather than in half as in (26), by setting

wb(n) = wmin + max (1, �wmax −wmin

1 +
√
c

	). (27)

In a static environment, Karp et al. [24, Theorems 1 and 2] showed
that such an algorithm is near-optimal when at decision time n we
incur a ‘cost’ of w∗ − wb(n) when wb(n) ≤ w∗, representing an
opportunity cost, and a cost of c(wb(n)−w∗) when wb(n) > w∗.
Here optimality is expressed in terms of either minimum worst-
case total cost, or minimum expected total cost when w∗ is uni-
formly distributed on the integers [1, N ]. For the given algorithm
(using (27)), the worst case cost for interval for w∗ ∈ [1, N ] is√
cN + O(logN), and the expected average cost (under the uni-

form distribution forw∗ in [1, N ]) is (1/2)
√
cN+O(logN); both

are within O(logN) of the optimal cost. Our binary search proce-
dure is equivalent to putting c = 1, when the cost of overestimating
or underestimating w∗ is the same, and is a useful reference point.
Putting c > 1 would reflect the greater damage caused by overes-
timating w∗, since we start taking from other flows. An interesting
issue concerns how the presence of the measurement noise terms
Zn in (23) affects such optimality properties.

4.2 The Stochastic Approximation Method
Stochastic approximation is a general technique for finding solu-

tions to an equation h(x) = 0, given noisy measurements h(x)+Z,
using

Xn = Xn−1 + γnθn,

where θn = h(Xn−1) + Zn is the noisy observation of h(Xn−1).
Such algorithms are also known as Robbins-Monro algorithms [25].
Conditions on the gain sequence γn, and on the noise variables Zn,
under which Xn converges almost surely to a desired solution are
known. In particular, denoting by Fn the filtration of the random
variables involved in the first n stages of the algorithm, under the
conditions

(i)
∑
n>0

γn = +∞ and
∑
n>0

γ2
n < +∞, (28)

(ii)E(Zn+1|Fn) = 0 and E(Z2
n+1|Fn) ≤ σ2;n > 0 (29)

for some constant σ2, it is known that the iterations will converge
to a solution (with probability 1) to a limit set of the ODE (ordinary
differential equation)

ẋ = h(x). (30)

When all solutions to the ODE (30) converge to a unique limiting
point, then Xn converges with probability 1 to it.

The control problem at hand can be cast in this framework. In-
deed, the equation (24) we are trying to solve is precisely of the
form h(w) = 0, with h(w) = φb(w) − ρb + ε, and, ignoring for
now the fact that ρb is unknown, we do have access to noisy esti-
mates of h(wb(n)), namely ρb(n)− ρb + ε. This thus suggests to
use updates of the form:

wb(n) = wb(n− 1) + γn(ε+ ρb(n− 1)− ρ̂b(n− 2)). (31)

In our implementation we also ensure wb(n) > 0 to avoid getting
infeasible solutions or getting stuck at w = 0.

Provided the estimates ρ̂b(n) converge to ρb, we would expect
the corresponding sequence wb(n) to converge to w∗ under mild
assumptions on the observation noises Zn. However we have not
pursued this yet, and have instead experimented with the fixed gain
version of the update rule (31), where the γn are held constant to
a common value γ. This is more appropriate in a dynamic envi-
ronment where the target w∗ itself might evolve over time, and is
common in practice, where often γn ↓ γ∞ for some γ∞ > 0 to
prevent the algorithm ‘freezing’ and enable tracking. We are then
able to show stochastic convergence in the sense of Lyapunov - in-
formally we remain close to an invariant distribution. The smaller
γ, the slower the adaptation, but the smaller the divergence from
the associated ODE (informally, the smaller variance).

To see this, first consider the noiseless case (for example, the
situations of Theorems 1 and 2), and assume that φb defined in the
previous section is a continuous function, and hence


h(w) = ε 0 ≤ w ≤ w∗

b

0 ≤ h(w) < ε w∗
b < w ≤ w∗

ε− ρ < h(w) ≤ 0 w∗ < w

(32)

where h(w) is non-increasing for w > w∗ and h(w) → ε − ρ
as w → ∞, the latter following from the assumed finite network
capacity, hence there is someC∗ such that φb(w) ≤ C∗T/w. Thus
provided ε < ρ there is some w∗ such that h(w∗) = 0 and the
above characterisation of h holds. We then have

LEMMA 1. In the case of noiseless observations whereφb(w)
is a continuous function defined as above, the recursion (31) for
fixed γ, i.e. wb(n) = wb(n − 1) + γh(wn−1) whereh(w) =
φb(w)− ρb + ε is stable in the sense of Lyapunov, and all trajecto-
ries converge to the set of pointsQγ(w∗) given by

Qγ = {w : w∗ − γ

2
ε ≤ w ≤ w∗ +

γ

2
(ρ− ε)′}.

PROOF. Consider the function V (w) = (w−w∗)2 forw ∈ R
+,

which is everywhere non-negative. It follows easily that�V (w) <
0 for w /∈ Qγ , since

�V (wb(n)) =V (wb(n+ 1))− V (wb(n))

=2γ(wn −w∗)h(wn) + γ2h(wn)2

and h(w) ≤ ε for w < w∗ and h(w) ≥ ε− ρ for w > w∗.

Now consider the case of additive noise, described earlier. We can
then appeal to [26, Proposition 1.2] to show



PROPOSITION 1. Provided that the conditional second moment
ofZn is bounded byσ2 – condition (29) (ii), thenV (w) is a stochas-
tic Lyapunov function for the stochastic approximation for fixedγ,
and the family of probability distributions ofwb(n), n > 0, is tight.

PROOF. With the given continuous function V , is suffices to
show that there exists A such that

lim
w→∞

−(w − w∗)h(w)− 1

A
E[|h(w) + Z|2]→∞

as w→∞, which is true for finiteA, since h(w) is bounded above
and below and E[Z2] is bounded by σ2.

4.3 Dynamic stability for multiple background
flows

When there are multiple competing background flows, window
adaptation rules should be designed so that the interacting back-
ground flows have a stable dynamic behaviour. Relying on the work
of Mo and Walrand [27], we consider differential equations de-
scribing the evolution of receiver windows, in the delay constrained
case. These should be thought of as modeling the system dynam-
ics under stochastic approximation, when the gain parameters are
small, so that the effects of observation noise disappear and the
ODE approximation is legitimate.

Specifically, consider the dynamics

ẇb = −κbsbybub, b ∈ B, (33)

where κb is a fixed positive gain parameter, and

sb = wb − τbyb − vb(yb),
ub = τb + v′b(yb),

vb(yb) =
τ2

b ybεb(yb)

1−τbεb(yb)
.

(34)

We then have the following:

THEOREM 6. Assume that at any instantt, the goodputsyr are
the solution of (4). Assume also that the functionsvb are such that

0 < ub < τb, yb ∈ R+. (35)

Then, under the dynamics (33), the goodputsyr converge to the
solution of (11,12,13). Moreover, the dynamics admit the Lyapunov
function

V
({wb}b∈B

)
:=

1

2

∑
b∈B

κbs
2
b . (36)

PROOF. The proof is a direct adaptation of that of Theorem 6 of
Mo and Walrand [27].

We note that Condition (35) is not met for functions εb as in (10).
The question of proving stability of dynamics (33), or alternative
dynamics with equilibrium points satisfying (9), in either delay or
loss constrained situations, is still open.

4.4 Tradeoffs between the two approaches
In binary search, when the search interval is of length at most 1

and the receiver window size is too large, it is decreased by half.
This is in the same spirit as the change in congestion window size
in TCP, and ensures that binary search adapts quickly to the dy-
namic available capacity. However, in a stable environment, the
receiver window size may still fluctuate, which leads to less effi-
cient capacity utilization. The stochastic approximation algorithm
can be tuned so that the receiver window size converges in a stable
environment. However, since the increment and decrement in the
receiver window size is linear (see (31)), it reacts more slowly to
changes in the available capacity.

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed

schemes using ns simulation. In each simulation setting, we add
a background transfer controlled by either one of our schemes, or
TCP-LP [4]. Our objective is to investigate how the background
transfer interferes with foreground traffic, and whether the back-
ground transfer utilizes the spare bandwidth efficiently. Each sim-
ulation run lasts for 1000 seconds. In each setting, we compare the
performances of our schemes with TCP-LP. For our schemes, the
data unit u = 100 bytes, ε = 1 unit and ε′ = 1 unit. The EWMA
parameter δ for ρn is set to 0.1, and the control interval T is 0.2
or 0.5 second. For stochastic approximation, the gain parameter
γ = 1. For TCP-LP, we use parameters recommended in [4].

We use settings similar to those in [4]. First, we investigate a
baseline topologywith a single bottleneck. We then explore more
complex settings with multiple bottlenecks. In the baseline topol-
ogy, foreground and background traffic share a single bottleneck
link, as shown in Figure 1. The capacity of the bottleneck link is 1.5
Mbps or 10 Mbps. The capacity of all the other links is 100 Mbps.
The propagation delay of the bottleneck link is 20 ms. The prop-
agation delay of all the other links is 2 ms. The round-trip propa-
gation delay of a background transfer is therefore 44 ms, close to
the median round-trip time of 50 ms between two sites on the same
coast in the US [5]. Unless otherwise specified, the buffer size
of the bottleneck link, B, is set to 2.5 times the bandwidth-delay
product (BDP), corresponding to 0.15 Mb and 1.0 Mb for the link
capacity of 1.5 Mbps and 10 Mbps respectively. The description
of topology with multiple bottlenecks is deferred to later in this
section. In each setting, the foreground traffic can be FTP flows
(long-lived TCP), UDP flows or web traffic (short-lived TCP). We
now describe the simulation results in detail.

5.1 Interaction with FTP traffic
We first consider two simultaneous FTP transfers, one being a

foreground flow using TCP and the other being a background trans-
fer using binary search, stochastic approximation or TCP-LP. The
bandwidth of the bottleneck link is 1.5 Mbps. The packet size in
the TCP flow is 1000 bytes. With no constraint from the receiver
window and traffic on the reverse path, the TCP flow fully utilizes
the bottleneck capacity. After adding a background transfer, the
throughput of the TCP flow is only slightly reduced, as shown in
the first row of Table 1. This indicates that the perturbation imposed
by the background transfer is negligible. The performance when
using TCP-LP, binary search and stochastic approximation for the
background transfer is very close. For binary search and stochastic
approximation, the background transfer uses slightly more band-
width for shorter control interval (e.g., T = 0.2 second) than for
longer control interval (e.g., T = 0.5 second). We now add 10 FTP
flows in the reverse direction, which causes packet losses in the re-
verse path. The throughput of the TCP flow is then reduced to 48%
of the bottleneck capacity. In the presence of background transfer,
the throughput of the TCP flow is again only slightly perturbed, as
shown in the second row of Table 1.

We now examine one scenario where the throughput of the TCP
flow is restricted by the receiver window size. In this case, the TCP
flow does not fully utilize the bottleneck capacity and some spare
bandwidth is available to the background transfer. The capacity
of the bottleneck link is 10 Mbps. In the absence of background
transfer, the TCP flow uses 57% of the bottleneck capacity. When
the background flow is added, the utilisation of the bandwidth is
raised to 97% (binary search) or 100% (stochastic approximation)
for control interval T = 0.5 second. The corresponding reductions
of foreground throughput are only 2% or 6% respectively. This



Scenario TCP TCP v.s. TCP-LP TCP v.s. binary search TCP v.s. stoch. approx.
T = 0.5 sec T = 0.2 sec T = 0.5 sec T = 0.2 sec

no reverse traffic 100 97.1 v.s. 2.9 98.7 v.s. 1.3 97.8 v.s. 2.3 98.7 v.s. 1.1 98.0 v.s. 2.1
reverse traffic 48 47.2 v.s. 1.7 46.0 v.s. 1.3 46.0 v.s. 1.4 47.7 v.s. 0.6 46.1 v.s. 2.2

Table 1: Normalized throughput when a FTP flow and a background transfer share a single bottleneck link.
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Figure 5: Receiver window of the background transfer evolves
with time, T = 0.5 second.
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Figure 6: Average bandwidth usage of the background transfer
versus the on/off duration of the square wave UDP flow, T =
0.2 second.

demonstrates that the background transfer utilizes the spare band-
width while causing only slight perturbations to the foreground
traffic. Figure 5 plots the evolution of the receiver window size
of the background transfer with time. We observe that when using
binary search, the receiver window reaches 275 units in less than
20 seconds and then fluctuates between 130 and 275 units. When
using stochastic approximation, the receiver window exhibits a lin-
ear increase with time and then stabilizes at a window size close
to 275 units. This reflects the trade-off between the speed of reac-
tion and variability of the two approaches discussed in the previous
section.

5.2 Interaction with square-wave UDP traffic
We now investigate the interaction of background transfer with

an on/off UDP flow. The capacity of the bottleneck link is 10 Mbps.
The buffer size of the bottleneck link, B, is 1.0 Mb or 0.4 Mb. The
rate of the UDP flow is 6.7 Mbps and 0 Mbps during the on and
off period respectively. The durations of the on and off period are
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Figure 7: Rates of the background transfer and the UDP flow
(on/off duration of 50 seconds) versus time, T = 0.2 second.

the same, forming a “square wave” of bandwidth usage. Therefore,
the average available bandwidth is (3.3 + 10)/2 ≈ 6.7 Mbps. We
vary the on/off duration of the UDP flow from 1 second to 150 sec-
onds. For each setting, we obtain the average bandwidth usage of
the background transfer and normalize it by the average available
bandwidth. Figure 6 shows the normalized bandwidth usage of the
background transfer versus the duration of the on/off period of the
square-wave UDP flow. In general, the background transfer utilizes
more bandwidth as the on/off duration of the UDP flow increases.
When using binary search or stochastic approximation, the band-
width usage of the background transfer is insensitive to the buffer
size. When using TCP-LP, the bandwidth usage for larger bottle-
neck buffer size (e.g., B = 1 Mb) is higher than for smaller buffer
size (e.g., B = 0.4 Mb). For short on/off duration, our schemes
utilize less available bandwidth than TCP-LP, due to the fact that
our schemes respond at a larger time scale than the round trip time
in TCP-LP. However, as the on/off duration increases, the band-
width usage under our schemes approaches that under TCP-LP. For
short on/off durations, the bandwidth usage with stochastic approx-
imation is higher than that with binary search. This is because the
receiver window size fluctuation in binary search affects its band-
width usage. For long on/off durations, the bandwidth usage by
binary search is higher because of its fast responsiveness.

Figure 7 shows the rates of the UDP flow and background trans-
fer as a function of time. The background transfer is controlled by
binary search or stochastic approximation using T = 0.2 second.
The UDP on/off duration is 50 seconds. When using binary search,
we observe that the background flow reacts well to changes in the
available bandwidth and is indeed able to use around 90% of what
is available. When using stochastic approximation, the reaction of
the background flow is relatively slower, yet still keeping a good
track of the dynamics of the available bandwidth (using 70% of the
available bandwidth).
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Figure 8: Normalized mean response time for web objects in
the baseline topology, T = 0.2 second.

5.3 Interaction with web traffic
We next examine a realistic scenario where web traffic is dom-

inant. The web traffic generated using the same model as in [4].
That is, each web session contains several web pages, and each web
page contains 10 objects. The inter-page and inter-object time dis-
tributions are exponential with means of 1 sec and 1 msec respec-
tively. The object size is distributed according to a Pareto distribu-
tion with shape parameter of 1.2. The capacity of the bottleneck is
1.5 Mbps. In the same direction as the web traffic, we set up one
FTP connection for bulk data transfer, which uses TCP, TCP-LP,
binary search or stochastic approximation. We measure the impact
of the bulk data transfer on the response time of the web objects.
We conduct 30 runs and average the response time for objects of
different sizes over all the runs.

Figure 8 plots the average response times of the web objects nor-
malized by the response times when using TCP for the bulk data
transfer. In the figure, the control interval length is T = 0.2 sec-
ond. The normalized response times of the web objects when us-
ing TCP-LP and our schemes are close to those with no bulk data
transfer (marked as “web-only” in the figure) and much lower than
1 for most object sizes, indicating that they are much less intru-
sive than TCP. Furthermore, the impact on the web traffic when
using our schemes is comparable to when using TCP-LP. The av-
erage throughput of the bulk data transfer is 0.69 Mbps and 0.53
Mbps when using TCP and TCP-LP respectively. When using bi-
nary search, the average throughput of the bulk data transfer is
0.46 Mbps, slightly lower than when using TCP-LP. When using
stochastic approximation, the average throughput of the bulk data
transfer is 0.35 Mbps, with correspondingly the least impact on the
responsiveness of the web traffic as shown in Figure 8. Finally, we
observe similar behavior for T = 0.5 second.

5.4 Multiple bottleneck links
We next explore the performance of our schemes in networks

with multiple bottlenecks. The objective is to examine whether a
more complex topology or the existence of multiple bottlenecks
affects the performance of our schemes.

5.4.1 Aggregate TCP throughput constrained
We first look at a topology where a background transfer inter-

acts with multiple TCP flows and the aggregate throughput of the
TCP flows is constrained, as shown in Figure 9. 10 TCP flows tra-
verse links (n0, n1) and (n1, n2). The capacity of link (n0, n1)
and (n1, n2) is 8 Mbps and 10 Mbps respectively. The aggregate
throughput of the TCP flows is therefore no more than 8 Mbps,
limited by the minimum capacity of the two links. The buffer size
of link (n0, n1) and (n1, n2) is the same, set to 1.0 Mb or 0.4
Mb. The background transfer shares link (n1, n2) with the mul-

n0 n1 n2.
.
.

TCP 
flows

background
flow

8Mbps 10Mbps

Figure 9: A group of TCP flows share link (n1, n2) with the
background flow.

Buffer size TCP v.s. TCP-LP TCP v.s. binary search (Mbps)
(Mb) (Mbps) T = 0.5 sec T = 0.2 sec
1.0 8.0 v.s. 2.0 8.0 v.s. 1.9 7.9 v.s. 1.9
0.4 7.7 v.s. 1.7 8.0 v.s. 1.9 7.9 v.s. 1.9

Table 2: Throughput when the aggregate throughput of the
foreground flows is constrained to be no more than 8 Mbps.

tiple TCP flows. Table 2 lists the aggregate TCP throughput ver-
sus the throughput of the background transfer. The results when
using stochastic approximation are similar to those when using bi-
nary search and hence are not listed in the table. When using our
schemes, the TCP flows and the background transfer achieve the
desired bandwidth share, regardless of the buffer size and the length
of the control interval. For TCP-LP, the performance when using
a smaller buffer (e.g., 0.4 Mb) is slightly worse than using a larger
buffer (e.g., 1.0 Mb).

5.4.2 Multi-hop background traffic
We now examine the behavior of the background transfer in a

multiple-hop network as shown in Figure 10. In the figure, links
(n0, n1), (n1, n2) and (n2, n3) are identical and form three con-
secutive bottleneck links. The capacity, propagation delay and buffer
size of a bottleneck link are 1.5 Mbps, 10 ms and 0.15 Mb respec-
tively. Three groups of web traffic each crosses a bottleneck link.
A bulk data transfer traverses all the bottleneck links along the di-
rection of web traffic. In this case, the round trip time of the bulk
data transfer is approximately 3 times longer than that of the web
traffic.

Figure 11 shows the normalized mean response time of differ-
ent object sizes. We observe that the impact of TCP-LP on the
response time of most object sizes is larger than binary search and
stochastic approximation, all three schemes less intrusive than TCP.
Correspondingly, the average throughput of the bulk data transfer
when using TCP-LP (0.08 Mbps) is slightly higher than when us-
ing binary search (0.05 Mbps) and stochastic approximation (0.04
Mbps).

5.4.3 Multi-hop web traffic
We next consider a scenario where web traffic traverses multiple

hops as shown in Figure 12. The topology and the configuration of
the links are the same as in Section 5.4.2. In addition to web traffic,
three FTP sessions each traverse a single hop. The round trip time
of the web traffic is approximately three times higher than that of
the bulk data transfer. The background transfer is hence more likely
to affect the responsiveness of the web traffic in this case.

Figure 13 shows the normalized response time of different ob-
ject sizes. Again we observe that, when using TCP-LP for bulk



www(1) www(2) www(3)
n0 n1 n2 n3

FTP

svr pool(1) svr pool(2) svr pool(3)

clt pool(1) clt pool(2) clt pool(3)

Figure 10: A bulk data transfer (using TCP, TCP-LP, binary
search or stochastic approximation) traverses three consecutive
bottlenecks.
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Figure 11: Normalized mean response time for file downloads
in a multi-hop topology where a bulk data transfer traverses
multiple bottleneck links, T = 0.2 second.

data transfer, the response times of most object sizes are slightly
higher than when using binary search or stochastic approximation,
all three schemes much less intrusive than TCP. The average through-
put of the bulk data transfer is 2.04 Mbps, 1.56 Mbps and 1.41
Mbps when using TCP-LP, binary search and stochastic approxi-
mation respectively.

6. CONCLUDING REMARKS
We have looked at the problem of creating a background trans-

fer service using an application layer reaction, adapting a receiver
window to create a low-priority service. By phrasing the idealized
problem as an optimization problem, we were able to characterize
the solution as a dual control problem, where the aim is to control
the window to a critical value which represents a change point. It
is necessary to relax the ideal operating point to allow for measure-
ment noise, and to enable us to address the problem of fairness be-
tween competing background flows. As a by-product, the relaxed
problem makes the problem of searching for the optimal window
easier. However, the relaxation implies some degradation for fore-
ground flows. We have characterized this relaxation by a function
ε(·) of the measured throughput, and explored a particular parame-
terized form of this function. There is a tension between simplicity
of the chosen parameters, and fairness between flows. The simplest
parameterization just involves setting one parameter to a fraction,
which in the case of delay-constrained networks corresponds to the
fractional degradation that foreground flows see. However, such a
choice of parameters does not guarantee fairness between flows.

We have then given two practical ways of attacking this control
problem, using binary search or stochastic optimization techniques.
The two-techniques have complementary strengths: binary search
is quick to find a good operating point, but has inherent fluctuations,
whereas stochastic optimization can be tuned for stability at the

FTP(1) FTP(2) FTP(3)
n0 n1 n2 n3

Web

svr pool

Figure 12: The web traffic traverses three consecutive bottle-
necks.
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Figure 13: Normalized mean response time for file downloads
in a multi-hop topology where web traffic traverses multiple
bottleneck links, T = 0.2 second.

expense of convergence speed. It may be possible to exploit the
strengths of both approaches by combining them.

Simulations have given credence to our framework and approach,
and initial results on the algorithms are encouraging, especially
since we have not sought to fine-tune parameters. Indeed, the re-
sults suggest that such an application level reaction is able to work
almost as well as a transport layer reaction, such as TCP-LP.
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