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Abstract. The desired behavior of a program can be described using an abstract
model. Compiling such a model into executable code requires advanced com-
pilation techniques known as synthesis. This paper presents a language, called
Jennisys, where programming is done by introducing an abstract model, defin-
ing a concrete data representation for the model, and then being aided by auto-
matic synthesis to produce executable code. The paper also presents a synthesis
technique for the language. The technique is built on an automatic program veri-
fier that, via an underlying SMT solver, is capable of providing concrete models
to failed verifications. The technique proceeds by obtaining sample input/output
values from concrete models and then extrapolating programs from the sample
points. The synthesis aims to produce code with assignments, branching struc-
ture, and possibly recursive calls. A prototype of the language and synthesis tech-
nique has been implemented.

0 Introduction

One important approach to ensuring program correctness is to raise the level of abstrac-
tion provided by programming languages. If a language lends itself to clean descrip-
tions of solutions in the problem domain, then a programmer may be more likely to
get programs correct. Two desiderata in this approach, which may seem to be at odds
with each other, are (D0) allowing higher-level descriptions of programs in a general-
purpose programming language and (D1) allowing efficient run-time representations of
programs [19]. In this paper, we present a language framework that combines these two.
The language is called Jennisys, and because it allows program designs to be recorded
ahead of their concrete implementations, the language slogan is “This is where pro-
grams begin”.

Most programming languages provide some delineation between the public spec-
ification of a procedure, type, or module and the private implementation thereof. In
some cases, a public specification consists of just a type signature; in other cases, it
may include a behavioral contract [4, 15]. Jennisys takes the delineation a step further,
dividing every program component (or class, if you will) into three parts, which allows
a separation between data structure definitions and code.

The first part of a Jennisys component is the public interface (cf. Fig. 0, the interface
declaration).



interface IntSet { datamodel IntSet {
var elems: set[int] var data: int
var left, right: IntSet
constructor Dupleton(x, y: int)
requires x # y frame left * right
elems := {x v}

invariant
constructor Singleton(x: int) elems = {data} +
elems := {x} (left # null ? left.elems : {3}) +
(right # null ? right.elems : {})
method Find(x: int) left # null —
returns (ret: bool) Ve o e ¢ left.elems —> e < data
ret := x € elems right # null —
} V e e e € right.elems —> data < e
}

Fig. 0. A Jennisys public interface IntSet that defines an integer set, and a concrete data struc-
ture, namely a binary tree. Model variable elems is used to describe the behavior of the opera-
tions, but is itself not compiled into executable code.

It defines an abstract model of the component, given in terms of variables whose
types are often mathematical structures, like sets and sequences. The public interface
also defines the component’s operations and the behavioral effects of these, typically
given in terms of simple code snippets that act on the model variables. The model
variables and the code acting on these describe the component, but are not compiled as
part of the run-time manifestation of the program.

The second part describes the data structure used to represent the component at
run time (cf. Fig. 0, the datamodel declaration). More specifically, it declares concrete
variables (object fields, if you will) that are part of each instance of the component,
gives an account of which other component instances are part of the representation (this
is called the frame), and specifies an invariant that both constrains the concrete variables
and frame and couples these with the model variables in the public interface.

The third part of a Jennisys component is responsible for the executable code that
will implement the component operations (e.g. code IntSet{}). The vision is for the
language to provide the programmer with a variety of ways to produce the code, includ-
ing automatic code synthesis (which is our focus in this paper), code-generation hints,
program sketches [25], and, as a last resort, old-fashioned manual coding.

Jennisys is general purpose, addressing (DO0). Its public interfaces let programmers
write clean descriptions whose correctness can more easily be ascertained by human
scrutiny. The variety of ways to obtain code aims to speed up code production and
maintainance. The data-structure description addresses (D1) by letting programmers
use their insights into defining good data structures.

Jennisys is still a prototype. In this paper, we focus on the automatic code synthe-
sis. In particular, we contribute a technique that from abstract variables, abstract code,
concrete variables, and a coupling invariant (in other words, from the interface and
datamodel of a component) synthesizes loop-less structured programs, where each “if”
branch contains assignments to modifiable fields (one assignment per field) and possibly



some method calls. The synthesis technique is most readily applicable to constructors,
but its class of applications extends beyond that; for example, we show we can syn-
thesize code for some recursive methods for traversing or computing something about
complex data structures.

In a nutshell, our technique uses a program verifier to obtain sample input/output
values that satisfy the given specifications. The sample values are then extrapolated
into code for all input values. Frequently, the synthesized code will contain neces-
sary branching structure, will allocate new instances of other components, and will call
methods on those components in order to change their state.

1 Examples

In this section, we give examples that illustrate the use of Jennisys and the code it
synthesizes.

Figure 0 showsa Jennisys component that we will use as a running example, IntSet.”
Abstractly, an IntSet is an integer set, which we define by model variable elems. The
constructors create a set of size 1 or 2, respectively, and method Find returns whether or
not a given integer is part of the set. An operation can define a precondition (keyword
requires), which obligates callers to invoke the operation only when the condition is
met. The effect of an operation is given by assignments or (as the second example will
show) relations (constraints) on the pre- and post-states.

A concrete data structure for IntSet is described using the datamodel declaration.

The variable declarations (e.g. var data: int) introduce the familiar fields of a
binary-tree node. Unlike the model variables in the public interface, these concrete vari-
ables will be present in the run-time representation of IntSet components.

The frame declaration says that the memory locations used to represent an IntSet
include not just the IntSet object itself, but also those those memory locations that
are used to represent the IntSet components left and right. The star, inspired by
the notation of separation logic [18], says that the sets of memory locations used by
left and right are disjoint. The frame declaration is necessary for the verification
of candidate synthesized programs and tells the synthesis engine which parts of the
underlying state a method may mutate.

The invariant declaration defines a relation between the model variables and the
concrete variables, as in a coupling invariant (aka an abstraction invariant or retrieve
relation, see, e.g., [0, 1,11]). It also constrains the values of the concrete representation,
as in a class invariant [15].

From Fig. 0, Jennisys automatically synthesizes code for the three operations. We
give an excerpt of that code in Fig. 1. The target language is Dafny [13], which for us
has the advantage that we can use the Dafny verifier to double check the correctness
of the synthesized code. We also use Dafny during the synthesis itself. Dafny compiles

% In this paper, we sometimes stray from the concrete syntax of our Jennisys prototype in order
to make programs easier to read. Most notably, we replace the ASCII syntax of some operators
by common mathematical notation. The actual Jennisys programs are available online in the
Jennisys distribution.



to the .NET virtual machine, so there is in principle no reason why Jennisys could not
compile to any Java-like language.

Some interesting things to note about the synthesized code are the if statements in
Dupleton and Find. Also, note the dynamic allocation of objects on line 50, the call
of another constructor on line 51 (to respect the abstraction boundary of the non-this
object gensym85), the use of ghost variables on lines 2, 46, ... (these are needed only
during verification), and the recursive calls to Find on lines 83, 84, 88, and 92.

Note, although the operations in the public IntSet interface can only construct sets
with cardinality 1 or 2 (because our Jennisys prototype is currently not up to the task of
synthesizing code for a Union method), this data representation allows arbitrarily large
sets. Indeed, the synthesized code for Find will work for any concrete IntSet .

2 Dynamic Synthesis

This section focuses on the algorithm for program synthesis behind Jennisys. We call
the algorithm dynamic synthesis, because it combines ideas from both concrete and
symbolic execution, in a way that is similar to what concolic testing [22, 28] does.
In contrast to concolic testing, however, declarative specifications are being executed,
rather than traditional imperative code.

We first describe how Dafny [13], a program verifier for functional correctness,
can be used to execute first-order declarative specifications of Jennisys. Dafny is im-
plemented on top of Boogie [3], an intermediate verification language, which uses an
SMT solver, namely Z3 [5], to automatically discharge verification conditions.

Executing a specification gives only a single valid input/output (or pre-state/post-
state) pair, that is, a concrete instance of the program heap for which the specification
holds. In order to synthesize a program that is correct for all possible cases (i.e. all pos-
sible pre-states) this is clearly not enough. To this end, we next present an algorithm for
systematic state exploration and program extrapolation from concrete instances. Since
the problem of synthesis is undecidable, the algorithm does not always succeed, but
when it does, the synthesized program is provably correct (Dafny can verify it against
the original specification).

2.0 Concrete Specification Execution with Dafny

By “executing a method specification” we mean “finding some pre- and post-states that
satisfy that specification”. This is different from some previous work where executing
specifications is part of the runtime system (e.g. [16,20]); in those systems, the pre-state
is always explicitly known (it is the state of the running program before the specification
is executed), so the goal there is to find a valid post-state for a given pre-state.

Dafny, even though designed for program verification, can be facilitated for this
task. The basic idea is to tell Dafny to assume (using the assume keyword in Dafny)
both the pre-condition and the post-condition, and then ask it to derive false from there
(see Fig. 2 for an example). If Dafny succeeds, the pre- and post-conditions are mutually
inconsistent, so any attempt to synthesize code for such a specification must be futile.
Otherwise, a counterexample where all the assumed constraints hold is returned, so
concrete values for a pre- and post-state can be directly extracted from it.



1 class IntSet {

2 ghost var Repr: set<object>, elems: set<int>;
3 var data: int, left: IntSet, right: IntSet;
27 function Valid(): bool

(omitted, is defined to return true when the invariants of all reachable objects hold)

45 method Dupleton(x: int, y: int)

44 modifies this;

45 requires x # y;

46 ensures Valid() A fresh(Repr - {this});
47 ensures elems = {x, Vv};

48 {

49 if (x <vy) {

50 var gensym85 := new IntSet;

51 gensym85.Singleton(y);

52 this.data = x;

53 this.elems = {x, v};

54 this.left := null;

55 this.right := gensym85;

56 this.Repr := {this} + this.right.Repr;
57 assert gensym85.Valid();

58 } else {

(the other case is symmetric)

74 }}

75

76 method Find(x: int) returns (ret: bool)
7 requires Valid();

78 ensures Valid() A fresh(Repr - old(Repr));
79 ensures ret = (x € elems);

80 decreases Repr;

81 {

82 if (this.left # null A this.right # null) {
83 var x_27 := this.left.Find(x);

84 var x_28 := this.right.Find(x);

85 ret := (x = this.data V x_27) V x_28;
86 } else {

87 if (this.left # null) {

88 var x_29 := this.left.Find(x);

89 ret := x = this.data V x_29;

90 } else {

01 if (this.right # null) {

9”2 var x_30 := this.right.Find(x);
93 ret := x = this.data V x_30;

94 } else {

95 ret := x — this.data;

% + 1} 1}

120 }

Fig. 1. Excerpts of the Dafny code that Jennisys synthesizes for the IntSet example. For brevity,
some lines have been combined in the figure. Dafny’s ghost variables are not present during the
run-time execution of Dafny programs, but are needed to verify the correctness of the synthesized
program.



class IntSet {
ghost var elems: set<int>; var data: int; var left, right: SetNode;
method Dupleton() modifies this; {
var x, y: int;
assume a # b A elems = {a, b} A Invariant();
assert false;}}

Fig. 2. Translation of IntSet.Dupleton into Dafny for specification execution. Since Jennisys
and Dafny share the same language (modulo the exact syntax), this translation is straightforward.

2.1 Symbolic and Concrete Execution Combined

Assigning concrete values (constants) obtained by executing a specification to output
variables is unlikely to result in a correct program. The goal is, therefore, to try and gen-
eralize from a concrete instance and find symbolic assignments instead. Furthermore,
even though more general than constants, such symbolic assignments might be correct
only for certain program scenarios represented by the concrete instance used. When that
is the case, a logical condition (guard) must be inferred to characterize these particular
scenarios. If it can be verified that the symbolic assignments are correct given the in-
ferred guard, one branch of the target program is successfully synthesized. To discover
the rest of the program, a new program specification is created by adding a negation of
the inferred guard as a fresh pre-condition, and the synthesis process is then recursively
repeated for the new program specification.

To solve the problem of finding a guard and symbolic assignments for output vari-
ables, the specification is first partially evaluated with respect to the previously ob-
tained concrete instance. This process yields a specification that is simpler and more
specific to the current instance. This simplified specification is then symbolically exe-
cuted to arrive at a set of symbolic expressions that can be used, depending on the type,
as potential guards or variable assignments.

3 Synthesis Algorithm in Depth

3.0 Partial Specification Evaluation

Let us assume throughout this section that executing the specification of the Dupleton
method yielded the instance shown in Fig. 3(a).

this x=0
ret = false
@ Ieft
(a) Dupleton (b) Find

Fig. 3. Concrete instances obtained for methods Dupleton and Find.



The original specification of a method can be unfolded for a given particular in-
stance by means of unrolling the quantifiers that assert the invariant for all objects on
the heap. Unfolding the specification of Dupleton for the instance from Fig. 3(a) gives:

x #y A nl.elems = {x vy}

nl.elems = {nl.data} + (nl.left # null ? nl.left.elems : {}) +

(nl.right 75 null ? nl.right.elems : {})
nl.left #null = V e e e in nl.left.elems —> e < nl.data
nl.right # null = V e e e in nl.right.elems =—> nl.data < e

n2.elems = {n2.data} + (n2.left # null ? n2.left.elems : {}) +

(n2.right ;é null ? n2.right.elems : {})
n2.left #null =V e e e in n2.left.elems = e < n2.data
n2.right # null = V e e e in n2.right.elems —> n2.data < e

This expression as a whole must evaluate to true, because the instance was generated so
that the specification holds for it. However, the insight is that some subexpressions of the
specification need not be relevant for the particular instance at hand (e.g. a consequent
of an implication whose antecedent is false). For example, in our concrete instance,
nl.right, n2.left, and n2.right are all null, so with that in mind, the previous con-
straint can easily be simplified to arrive at what we will refer to as a heap expression:

x #y A nl.elems = {x y} A n2.elems = {n2.data}
nl.elems = {nl.data} + nl.left.elems
V e o e in nl.left.elems —> e < nl.data

We call this notion of simplification partial evaluation and define it formally in Fig. 4'.
The basic idea is to drop all disjunction terms that when fully evaluated (using the eval’
function) give false, since they are likely to be irrelevant for the current instance.

The apply function is used to reconstruct symbolic expressions along the way. Its
significance is that it additionally performs some well-known simplifications. Beside
short-circuiting boolean expressions, it implements several rules specifically designed
for the task of synthesis. The most interesting example would be the simplification
rules for operations over sequences, as depicted in Fig. 5; in particular, they enable
decomposition of specifications involving sequences into smaller bits which are often
simpler to synthesize code from.

3.1 Symbolic Specification Execution

After obtaining a heap expression for the current instance (by computing &(e) for the
unfolded version of the original specification e), a database of premises is created. The
initial set of premises includes the conjuncts of the heap expression (first column in the
listing below), as well as v = eval(v) mappings for all variables (last two columns). In
our running example, the initial database contains the following premises:

! For brevity, the instance parameter is not explicitly used in the definition in Fig. 4; it is instead
assumed to be the “current” instance.

% The eval function, given a concrete instance evaluates an expression to a constant. This is a
well-known notion of evaluation, so we do not give a formal definition here.



& : Expr — Expr

simple rewriting

E(Const) = Const
E(Var) = Var
E(lel) = apply(|l, E(e))
E(leo, €1y -, en—1]) = Listmap & [e,e1,...,en—1]
E({eo,e1,...,en—1}) = Set.map & {eo,e1,...,en—1}
E(lst[idx]) = apply([], E(lst), E(idz))
E(er pe2) = apply(p, E(er), E(e2))

p — relational operator: =, #, <, <, >, > €, ¢
E(er aer) = apply(a, E(er), E(e2))

o — arithmetic operator: +, —, *, /, %
E(Vvee) = Yvee

simplification of logic expressions

E(c?t:e) = if eval(c) then £(t) else E(e)
5(61 /\62) = apply(/\y 5(61)7 5(62))
E(e1Vesz) = match eval(e1), eval(ez) with

| true, true — apply(Vv, E(e1), E(e2))
| true, false — E(e1)

| false, true — &£(e2)

| false, false — False

5("61 Vv 62)

5((61 N 62) \Y (“61 A —\62))

apply(~, E(e))

5(61 —— 62)
5(61 — 62)
E(—e)

helper functions:
eval : FExpr — Const — evaluates an expression to a constant wrt the
current instance
apply : Op — Expr list — Expr — applies a given operator to given operands

Fig. 4. Partial Expression Evaluation Function: partially evaluates a given expression with respect
to a concrete instance, making it simpler and more specific to that instance.

apply : Op — Ezxprlist — Expr

Simplifications for the Il operator

apply(ll, ) + apply(|], 12)

apply(|], L1 +12)
I

apply(ll; [eo, ---, en—1]) n

Simplifications for the [] operator
apply([], [eo, ---, €iy -y €n—1], 7) = e;
apply([], leo, --., ex—1]+1, i) = if i < k then e; else apply([], I, i —k)

Fig. 5. Simplifications of the sequence length and sequence select expressions performed by the
apply function.



inference rules for €

z €] - False o)
x € [e] F r=e )
z € [eo,€1,...,en—1] = x € [eo] + [e1y .-y €n—1] @3)
z € {} - False )
x € {e} H x=e )
z € {eo,e1,...,n-1} = xz€{eo} +{e1,...,en-1} ©6)
T Eer+e2

when eval(x € e1) A eval(z ¢ e2) + T E€er %)

when eval(z ¢ e1) A eval(z € e3) F T € ez ®)

else + rEe VI E e ©)

inference rules for V

Vz € [eo, ..., €n_1]®p F o plx~ e A... Aplz ~ en—1] (10)
Ve € {eo, ..., en_1}®p - plx ~ eo] A ... Ap[x ~ en—1] (1D
Vrce +exep H (Vzeerep)AN(Vz Eezop) (12)

Fig. 6. Inference rules for symbolic execution.

XF£y x =1 y = -2

nl.elems = {x v} nl.data = 1 n2.data = -2
nl.elems = {nl.data} + nl.left.elems nl.left = n2 n2.left = null
V e e e in nl.left.elems =— e < nl.data nl.right = null n2.right = null
n2.elems = {n2.data} this = nl

Using a set of inference rules (defined in Fig. 6), new premises are derived from
existing ones and they are added to the database. This process is repeated until either a
fixpoint or a predefined maximum number of iterations is reached.

The main purpose of the inference rules from Fig. 6 is to decompose and simplify
expressions over the built-in data structures. For example, from a specification like = €
e1 + es, and a concrete instance in which x is not in the sequence ez, € €1 can be
safely derived. These rules derive expressions specific to the current instance, and thus
help infer appropriate guards and symbolic assignments. Some rules are independent of
the concrete instance, e.g. « € [eg, €1, -+, en_1] F @ € [eg] + [e1, -+, en—1]; their
purpose is mainly to enable rules of the previous kind to get instantiated more often.

3.2 Choosing Correct Assignments for Output Variables

At the end of the previous step, the database might (and typically does) contain multiple
assignments for each variable. Jennisys automatically rules some of them out, and uses
a heuristic to rank the remaining ones. For instance, Jennisys prefers those that contain
symbolic, rather than constant values.

From the initial database for the Dupleton example, just by applying transitivity
of equality, the following candidate solution is quickly discovered (other assignments
exists in the database, but they all contain constant values):

nl.elems := {x y}; nl.data := x; nl.left := n2; nl.right := null;



n2.elems := {v}; n2.data := y; n2.left := null; n2.right := null;

As expected, this solution does not verify against the original specification of the
Dupleton method. Knowing the properties of binary search trees, we can easily con-
clude that the solution we just discovered is valid if it is known that y < x holds. In the
next subsection we show how Jennisys automatically infers this condition (guard).

3.3 Inference of Guards

The main insight for successful guard inference is that an appropriate guard is likely to
be a logical property of the current instance. Therefore, a guard is likely to consist of
one or more premises from the database.

Going back to the example, the y < x condition was indeed derived during the fix-
point algorithm. Just by applying transitivity of equality, the premise containing a uni-
versal quantifier can be rewritten asV e in {n2.data} e e < nl.data.By applying
rule 11 next, n2.data < nl.data is derived, which immediately leads toy < x.

Jennisys selects a candidate guard by going through the database and looking for
boolean-typed expressions that involve only unmodifiable variables and constants (ex-
pressions without constants are again ranked higher). When multiple such expressions
exist, a conjunction of all of them is used first. If a candidate solution verifies under
the assumption of a selected guard, the guard is minimized by iteratively trying to re-
move one clause at a time. For example, during the synthesis of the Dupleton method,
X £y Ay < xwas selected as a guard first, and was next minimized toy < x.

3.4 Top-level Algorithm

The top-level synthesis function, synth, is given in Fig. 7. At the very beginning, it
invokes synth_branch to find a solution for the current instance only (exactly by fol-
lowing the procedure described so far). If no verified solution is found (line 4), Jennisys
gives up. If both guard and a solution were found (line 6), the guard is negated and
appended to the list of pre-conditions to ensure that all subsequent concrete instances
obtained by executing the method’s specification fall outside this of branch. The whole
process is then repeated to find a solution for the else branch. Finally, if a solution
was found for which a guard was not needed (line 5), a solution for the entire pro-
gram is discovered (not just the current instance!). That is true because a solution is
just proven unconditionally correct for the portion of the program space not covered by
the previously synthesized branches. This solution represents the last else branch of the
if-then-elif-...-else structure that our approach synthesizes.

3.5 Termination

An important question is whether the algorithm is guaranteed always to terminate. The
only way for the synth function not to terminate is if it is possible to forever keep
generating new concrete instances and each time finding a guarded solution. The way
we generate new instances guarantees that at each step the remainder of the search
space is getting smaller, because every new instance is guaranteed to be outside of



let Solution = FlatSol | IfThenElse(Guard, FlatSol, Solution)
let rec synth (m: Method): Solution =
let guardOpt,flatSolOpt = synth_branch m
match flatSolOpt, guardOpt with
| None, _ -> None
| Some(flatSol), None -> Some(flatSol)
| Some(flatSol), Some(guard) -> match synth (AddPrecondition m (not guard)) with
| None -> None
| Some(solElse) -> Some(IfThenElse(guard, flatSol, solElse))

Fig.7. Top level algorithm in pseudo F#

the previously discovered classes of programs (characterized by previously discovered
guards). However, it can happen that at each step the inferred guard is over-constrained
(e.g. it does not allow any instance other than the current one). In that case, if the search
space is unbounded (that is, there are infinitely many different instances for the program
under analysis), the algorithm potentially never terminates. To mitigate this, Jennisys
always prefers solutions/guards with no constants so that at every step the remainder of
the search space is shrunk as much as possible. In practice, this means that the algorithm
is likely to either terminate with a solution or fail quickly.

4 Synthesizing Recursive Methods

The synthesis algorithm described so far was designed to support constructors in the
form of a single (but of arbitrary length) if-then-elseif-...-else structure, where the only
allowed statements are assignments to output variables. In this section, we show how we
extended the algorithm to allow method calls (including recursion) in the assignment
statements. Allowing recursion somewhat makes up for the lack of looping constructs.
Two modifications to the synthesis algorithm are needed: (0) after building the ini-
tial set of premises, parameterized expressions corresponding to method specifica-
tions are added to the database; and (1) the inference engine is modified so that it al-
lows matching with unification. To illustrate this, consider the IntSet.Find method.
After its specification is executed for the first time, let us assume that the instance
from Fig. 3(b) is discovered. The initial set of premises looks almost the same as
before (since the instance is almost the same), with a difference of the first line (the
pre-condition from the previous example) being replaced with the post-condition of
the Find method (ret = x € this.elems) and a parameterized specification for Find
($this.Find($x) = $x € $this.elems). The derivation then goes as follows:

ret = x € this.elems = ({this.data} + this.left.elems)

— ret = x € {this.data} V x € this.left.elems (by rule 9)
— ret = (x = this.data) V x € this.left.elems (by rule 5)
— ret = (x = this.data) V this.left.Find(x) matching with unif.
$this ~~ this.left
$x X

The remainder of the process stays the same. The guard for this instance (this.left

# null) is easily inferred (note that it is okay now to use this.left in the guard,

because this is unmodifiable in this case) and the process continues the same way to
synthesize the rest of the program. The final program is shown in Fig. 1.



IntSet.Find
List.Get
List.Find
DList.Get
Math.Min3
Math.Min4

— | IntSet.Singleton
ro| IntSet.Dupleton
— | List.Singleton

— | DList.Singleton
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Table 0. Synthesis times and number of branches of the synthesized code for several examples.
5 Benchmarks

Table 0 shows synthesis times of the three methods from the IntSet module (Fig. 0),
two constructors and four recursive methods for both singly- (List) and doubly-linked
(DList) lists, and four simple math operations (minimum of two, three, and four in-
tegers, and absolute value of an integer). All experiments were done on an Intel®
Core™2 Duo CPU @ 2.40GHz computer, with 4GB of RAM. Jennisys programs for
the singly-linked list and some of the math operations are given in Fig. 8; the synthe-
sized code for the singly-linked list methods is given in Fig. 9. It is important to note
the declarativeness of the specifications and that no additional input is required from the
user. This idealistic approach is currently the main reason why Jennisys can synthesize
only a limited array of programs, namely constructors and certain read-only recursive
methods. We do envision, however, that this technique can be useful for synthesizing
certain domain-specific applications (e.g. configuration problems) as well as a broader
class of recursive methods (e.g. list insertion); we have yet to explore these possibilities.

interface List[T] { interface Math {
var list: seq[T] method Min3(a, b, c¢: int) returns (ret: int)
invariant |list| > 0 ensures ret in {a b c}
ensures V x @ x in {a b ¢} = ret <x
constructor Singleton(t: T) method Abs(a: int) returns (ret: int)
ensures list = [t] ensures ret in {a (-a)} A ret >0
constructor Dupleton(p: T, q: T) }
ensures list = [p q]
method List() returns (ret: seq[T]) datamodel List[T] {
ensures ret = list var data: T
method Size() returns (ret: int) var next: List[T]
ensures ret = |list]
method Get(idx: int) returns (ret: T) frame next
requires 0 < idx A idx < |list]|
ensures ret = list[idx] invariant
method Find(n: T) returns (ret: bool) next = null —> list = [data]
ensures ret = (n € list) next # null =—> list = [data] + next.list
} }

Fig. 8. Implementation of a singly-linked list and some math operations in Jennisys.

6 Related Work

Automatic synthesis of programs from specifications, or automatic programming, has
been a dream for more than four decades. The idea that software engineering would be
a better place if programmers could spend their time editing specifications, rather than
trying to maintain optimized programs, is argued convincingly in a paper that tried to
predict the future [2].



method Get(idx: int) returns (ret: T) method Find(n: T) returns (ret: bool)

requires Valid(); requires Valid();
requires 0 < idx; ensures fresh(Repr - old(Repr));
requires idx < |list]; ensures Valid();
ensures fresh(Repr - old(Repr)); ensures ret = (n in list);
ensures Valid(); decreases Repr;
ensures ret — list[idx]; {
decreases Repr; if (this.next = null) {
{ ret := n = this.data;
if (this.next = null) { } else {
ret := this.data; var x_5 := this.next.Find(n);
} else { ret := n — this.data V x_5;
if (idx =0) { }
ret := this.data; 3
} else {
var x_6 := this.next.Get(idx - 1);
ret = x_6;
}
}
}
method Elems() returns (ret: seq<T>) method Size() returns (ret: int)
requires Valid(); requires Valid();
ensures fresh(Repr - old(Repr)); ensures fresh(Repr - old(Repr));
ensures Valid(); ensures Valid();
ensures ret — list; ensures ret = |list];
decreases Repr; decreases Repr;
{ {
if (this.next = null) { if (this.next = null) {
ret := [this.data]; ret = 1;
} else { } else {
var x_7 := this.next.Elems(); var x_8 := this.next.Size();
ret := [this.data] + x_7; ret := 1 + x_8;
} }
} }

Fig. 9. Dafny code that Jennisys synthesizes for the List benchmark examples from Table 0.

Pioneering efforts in the synthesis area around 1970 used theorem provers to verify
the existence of an output for every input and then synthesized executable programs
from the ingredients of these proofs [6, 14]. More encompassing development systems
with synthesis included the 1970s PSI program synthesis system [7] and the 1980s Pro-
grammer’s Apprentice project [19]. These ambitious systems tried to aid programmers
by engaging in a dialog about the program to be developed, offering advice, keeping
track of details, and synthesizing code. The systems made use of a significant knowl-
edge base of the domains and template scenarios (so-called clichés) of the programs to
be developed, and PSI also included a major natural-language component. In compari-
son, the abstract models one can define in Jennisys look much more like programs.

Developed in the late 1980s, the comprehensive KIDS system provided a number
of tools to support algorithm design and program transformations [24]. Besides major
design decisions like semantically instantiating algorithm templates, the operations per-
fomed with KIDS are correctness-preserving transformations—refinement steps—that
can take an algorithm description into an efficient program.

The Jennisys language is in many ways similar to one step of a refinement process,
where Jennisys offers synthesis as one way of obtaining the refined program. Monahan
has suggested defining components in three parts (spec/abstr/impl) [17], which is also
what Jennisys does. Jennisys also shares in the vision of the language SETL [21], which



sought to provide ways to first describe programs cleanly and then provide them with
efficient data representations.

The construction of programs from examples is a powerful idea that has been ex-
plored from the 1970s. For example, THESYS synthesis system generated LISP pro-
grams [27] and QBE generated SQL queries [29]. Queries by Example became a com-
petitive feature of the Paradox relational database system in the 1980s and 1990s, and
techniques with similar goals are being explored in the context of spreadsheets to-
day [9]. Jennisys also extrapolates programs from examples, but the examples are not
supplied by users but are instead sample points from specifications supplied by users.
An advantage of having specifications is that one can then verify the synthesized pro-
gram, as opposed to just knowing it is correct for the examples provided.

Interest in program synthesis seems to be on the rise again, possibly in part due to
the success of SMT solvers in program verification and other applications. Kuncak et
al. are exploring features like generalized assignments in a mainstream programming
language, backed up by automatic synthesis procedures [12]. The PINS [26] system
takes a program and a template and synthesizes an inversion of the given program.

The technique of program sketching lets programmers supply some ingredients of
a program (i.e. a program sketch) while a tool worries about the details to find a correct
way to combine the ingredients [25]. The notion of correctness is taken from another
correct (but presumably inefficient) implementation of the same program, that has to
be supplied by the user. Storyboard programming [23] improves on that idea by letting
the users draw a series of input/output examples instead of providing an alternative
correct implementation (it still requires a sketch, though). Similarly, instead of a sketch,
the Brahma tool [8, 10] takes a library of components to be used as building blocks
and either an explicit set of input/output pairs or a specification describing the relation
between inputs and outputs, and synthesizes a loop-free program (currently focused on
bit-vector manipulations) from the given components. In comparison, Jennisys does not
require any input from the user other than a specification in the form of pre- and post-
conditions, it targets object-oriented programs with dynamic allocation, but is unable to
synthesize as wide a class of programs as the storyboard programming.

7 Conclusion

In this paper, we have contributed a language design that promotes writing down an ab-
stract model of each component, gives control over the data structure used to implement
a component, and opens the door for synthesis techniques to fill in the code. The paper
also contributes a synthesis technique for the language, which operates in the context
of an infinite state space, dynamic object allocation, and object references. Finally, the
paper contributes a prototype implementation of the language and synthesis technique.

Still, much work lies ahead. We are interested to see how far our idealistic approach
to synthesis can be pushed (e.g. by improving the inference engine to support mutating
methods) and explore different domains of programs that can be automatically synthe-
sized purely from specifications. In the end, we also want to give programmers ways,
like in program sketching [25], to provide hints about how to generate code.
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