
Learning the 2-D Topology of Images

Nicolas Le Roux
University of Montreal

nicolas.le.roux@umontreal.ca

Yoshua Bengio
University of Montreal

yoshua.bengio@umontreal.ca

Pascal Lamblin
University of Montreal

lamblinp@umontreal.ca

Marc Joliveau
École Centrale Paris

marc.joliveau@ecp.fr

Balázs Kégl
LAL/LRI, University of Paris-Sud, CNRS

91898 Orsay, France
kegl@lal.in2p3.fr

Abstract

We study the following question: is the two-dimensional structure of images a
very strong prior or is it something that can be learned with a few examples of
natural images? If someone gave us a learning task involving images for which
the two-dimensional topology of pixels was not known, could we discover it auto-
matically and exploit it? For example suppose that the pixels had been permuted
in a fixed but unknown way, could we recover the relative two-dimensional loca-
tion of pixels on images? The surprising result presented here is that not only the
answer is yes but that about as few as a thousand images are enough to approxi-
mately recover the relative locations of about a thousand pixels. This is achieved
using a manifold learning algorithm applied to pixels associated with a measure of
distributional similarity between pixel intensities. We compare different topology-
extraction approaches and show how having the two-dimensional topology can be
exploited.

1 Introduction

Machine learning has been applied to a number of tasks involving an input domain with a spe-
cial topology: one-dimensional for sequences, two-dimensional for images, three-dimensional for
videos and for 3D capture. Some learning algorithms are generic, e.g., working on arbitrary un-
structured vectors in R

d, such as ordinary SVMs, decision trees, neural networks, and boosting
applied to generic learning algorithms. On the other hand, other learning algorithms successfully
exploit the specific topology of their input, e.g., SIFT-based machine vision [8], convolutional neural
networks [4, 5], time-delay neural networks [3, 14].
It has been conjectured [6, 1] that the two-dimensional structure of natural images is a very strong
prior that would require a huge number of bits to specify, if starting from the completely uniform
prior over all possible permutations.
The question studied here is the following: is the two-dimensional structure of natural images a
very strong prior or is it something that can be learned with a few examples? If a small number of
examples is enough to discover that structure, then the conjecture in [6] about the image topology
was probably incorrect. To answer that question we consider a hypothetical learning task involv-
ing images whose pixels have been permuted in a fixed but unknown way. Could we recover the

1

two-dimensional relations between pixels automatically? Could we exploit it to obtain better gener-
alization?
The basic idea of the paper is that the two-dimensional topology of pixels can be recovered by
looking for a two-dimensional manifold embedding pixels (each pixel is a point in that space), such
that nearby pixels have similar distributions of intensity (and possibly color) values.
We explore a number of manifold techniques with this goal in mind, and explain how we have
adapted these techniques in order to obtain the positive and surprising result: the two-dimensional
structure of pixels can be recovered from a rather small number of training images. On images we
find that the first 2 dimensions are dominant, meaning that even the knowledge that 2 dimensions
are most appropriate could probably be inferred from the data.

2 Manifold Learning Techniques Used

In this paper we have explored the question raised in the introduction for the particular case of
images, i.e. with 2-dimensional structures, and our experiments have been performed with images
of size 28 × 28 or 32 × 32, i.e., with about a thousand pixels. It means that we have to look
for the embedding of about a thousand points (the pixels) on a two-dimensional manifold. Metric
Multi-Dimensional Scaling MDS is a linear embedding technique (analogous to PCA but starting
from distances and yielding coordinates on the principal directions, of maximum variance). Non-
parametric techniques such as Isomap [11], Local Linear Embedding (LLE) [10], or Semidefinite
Embedding (SDE, also known as MVU for Maximum Variance Unfolding) [15] have computation
time that scale polynomially in the number of examples n. With n around a thousand, all of these
are feasible, and we experimented with Isomap, LLE, and MVU.
Since we found Isomap to work best to recover the pixel topology even on small sets of images,
we review the basic elements of Isomap. It applies the metric multidimensional scaling (MDS)
algorithm to geodesic distances in the neighborhood graph. The neighborhood graph is obtained
by connecting the k nearest neighbors of each point. Each arc of the graph is associated with a
distance (the user-provided distance between points), and is used to compute an approximation of
the geodesic distance on the manifold with the length of the shortest path between two points. The
metric MDS algorithm then transforms these distances into d-dimensional coordinates as follows.
It first computes the dot-product (or Gram) n× n matrix M using the “double-centering” formula,
yielding entries Mij = − 1

2 (D2
ij − 1

n

∑

i D2
ij − 1

n

∑

j D2
ij + 1

n2

∑

i,j D2
ij). The d principal eigen-

vectors vk and eigenvalues λk (k = 1, . . . , d) of M are then computed. This yields the coordinates:
xik = vki

√
λk is the k-th embedding coordinate of point i.

3 Topology-Discovery Algorithms

In order to apply a manifold learning algorithm we must generally have a notion of similarity or
distance between the points to embed. Here each point corresponds to a pixel, and the data we
have about the pixel provide an empirical distribution of intensities for that pixel. Therefore we
want to compare two densities, associated with two pixels, in order to determine if they should be
“neighbors” on the manifold. A simple and natural dependency statistic is the correlation between
pixel intensities, and it works very well.
The empirical correlation ρij between the intensity of pixel i and pixel j is in the interval [−1, 1].
However, two pixels highly anti-correlated are much more likely to be close than pixels not corre-
lated (think of edges in an image). We should thus consider the absolute value of the correlations. If
we assume them to be the value of a Gaussian kernel

|ρij | = K(xi, xj) = e−
1

2
‖xi−xj‖

2

,

then by defining Dij = ‖xi − xj‖ and solving the above for Dij we obtain a “distance” formula
that can be used with the manifold learning algorithms:

Dij =
√

− log |ρij | . (1)

Note that scaling the distances in the Gaussian kernel by a variance parameter would only scale the
resulting embedding, so it is unnecessary.

2

Many other measures of distance would probably work as well. However, we found the absolute
correlation to be simple and easy to understand while yielding nice embeddings.

3.1 Dealing With Low-Variance Pixels

A difficulty we observed in experimenting with different manifold learning algorithms on data sets
such as MNIST is the influence of low-variance pixels. On MNIST digit images the border pixels
may have 0 or very small variance. This makes them all want to be close to each other, which tends
to fold the manifold on itself. To handle this problem we have simply ignored pixels with very low
variance. When these represent a fixed background (as in MNIST images), this strategy works fine.
In the experiments with MNIST we removed pixels with standard deviation less than 15% of the
maximum standard deviation (maximum over all pixels). On the NORB dataset, which has varied
backgrounds, this step does not remove any of the pixels (so it is unnecessary).

4 Converting Back to a Grid Image

Once we have obtained an embedding for the pixels, the next thing we would like to do is to trans-
form the data vectors back into images. For this purpose we have performed the following two
steps:

1. Choosing horizontal and vertical axes (since the coordinates on the manifold can be arbi-
trarily rotated), and rotating and scaling the embedding coordinates accordingly, and

2. Transforming the input vector of intensity values (along with the pixel coordinates) into an
ordinary discrete image on a grid. This should be done so that the resulting intensity at
position (i, j) is close to the intensity values associated with input pixels whose embedding
coordinates are (i, j).

4.1 Choosing Horizontal and Vertical Axes

Let pk (k = 1 . . .N) be the embedding coordinates found by the dimensionality reduction algorithm
for the k-th input variable. We first select the major axis of the points by taking the pair of points
(i, j) = argmaxi,j ||pi − pj ||1, where ||x||1 =

∑

i |xi|. In a rectangular image, this is likely to be
a diagonal of the rectangle. We then project every coordinate along the direction pi − pj and its
orthogonal direction. The resulting coordinates are then scaled to lie in [0, 1] in each dimension.
The coordinates are then rotated by 45 ˚ and rescaled into [0, L]2 and [0, W] in the first and second
dimension (where L and W are respectively the length and width of the desired output image in
pixels, by default L = W =

√
N).

4.2 Convolving into a Regular Grid Image

Once we have a coordinate system that assigns a 2-dimensional position pk to the k-th input pixel,
placed at irregular locations inside a rectangular grid, we can map the input intensities xk into
intensities Mi,j , so as to obtain a regular image that can be processed by standard image-processing
and machine vision learning algorithms. The output image pixel intensity Mi,j at coordinates (i, j)
is obtained through a convex average

Mi,j =
∑

k

wi,j,kxk (2)

where the weights are non-negative and sum to one, and are chosen as follows.
wi,j,k =

vi,j,k
∑

k vi,j,k

with an exponential of the L1 distance to give less weight to farther points:
vi,j,k = exp (γ‖(i, j)− pk‖1) 1N(i,j,k) (3)

where N(i, j, k) is true if ‖(i, j)− pk‖1 < 2 (or inferior to a larger radius to make sure that at least
one input pixel k is associated with output grid position (i, j)). We used γ = 3 in the experiments,
after trying only 1, 3 and 10. Large values of γ correspond to using only the nearest neighbor of
(i, j) among the pks. Smaller values smooth the intensities and make the output look better if the
embedding is not perfect. Too small values result in a loss of effective resolution.

3

Algorithm 1 Pseudo-code of the topology-learning learning that recovers the 2-D structure of inputs
provided in an arbitrary but fixed order.
Input: X {Raw input n × N data matrix, one row per example, with elements in fixed but

arbitrary order}
Input: δ = 0.15 (default value){Minimum relative standard deviation threshold, to remove too

low-variance pixels}
Input: k = 4 (default value){Number of neighbors used to build Isomap neighborhood graph}
Input: L =

√
N, W =

√
N (default values) {Dimensions (length L, width W of output image)}

Input: γ = 3 (default value) {Smoothing coefficient to recover images}
Output: p {N × 2 matrix of embedding coordinates (one per row) for each input variable}
Output: w {Convolution weights to recover an image from a raw input vector}

n = number of examples (rows of X)
for all column X.i do

µi ← 1
n

∑

t Xti {Compute means}
σ2

i ← 1
n

∑

t(Xti − µi)
2 {Compute variances}

end for
Remove columns of X for which σi

maxj σj
< δ

for all column X.i do
for all column X.j do

empirical correlation ρij =
(X.i−µi)

′(X.j−µj)
σiσj

{Compute all pair-wise empirical correla-
tions}
pseudo-distances Dij =

√

− log |ρij |
end for

end for
{Compute the 2-D embeddings (pk1, pk2) of each input variable k through Isomap}
p = Isomap(D, k, 2)
{Rotate the coordinates p to try to align them to a vertical-horizontal grid (see text)}
{Compute the convolution weights that will map raw values to output image pixel intensities}
for all grid position (i, j) in output image (i in 1 . . . L, j in 1 . . .W) do

r = 1
repeat

neighbors← {k : ||pk − (i, j)||1 < r}
r ← r + 1

until neighbors not empty
for all k in neighbors do

vk ← eγ||pk−(i,j)||1

end for
wi,j,. ← 0
for all k in neighbors do

wi,j,k =
vi,j,k

P

k
vi,j,k

{Compute convolution weights}
end for

end for

Algorithm 2 Convolve a raw input vector into a regular grid image, using the already discovered
embedding for each input variable.
Input: x {Raw input N -vector (in same format as a row of X above)}
Input: p {N × 2 matrix of embedding coordinates (one per row) for each input variable}
Input: w {Convolution weights to recover an image from a raw input vector}
Output: Y {L×W output image}

for all grid position (i, j) in output image (i in 1 . . . L, j in 1 . . .W) do
Yi,j ←

∑

k wi,j,kxk {Perform the convolution}
end for

4

5 Experimental Results

We performed experiments on two sets of images: MNIST digit images and NORB object classi-
fication images 1. We used the “jittered objects and cluttered background” image set from NORB.
The MNIST images are particular in that they have a white background, whereas the NORB images
have more varying backgrounds. The NORB images are originally of dimension 108 × 108; we
subsampled them by 4 × 4 averaging into 27 × 27 images. The experiments have been performed
with k = 4 neighbors for the Isomap embedding. Smaller values of k often led to unconnected
neighborhood graphs, which Isomap cannot deal with.
Figure 1 show the embeddings obtained on the NORB data using different numbers of examples.
250 examples are enough to get a reasonable embedding, and with 2000 or more a very good em-
bedding is obtained. In Figure 2 we compare four different manifold learning algorithms on the
NORB images: Isomap, LLE, MDS and MVU. The comparison on MNIST images is shown in
Figure 3. Isomap is generally more robust, especially on MNIST (which is more difficult because
of the borders) and on smaller data sets.
We also performed experiments with acoustic spectral data to see if the time-frequency topology can
be recovered. The acoustic data come from the first 100 blues pieces of a publically available genre
classification dataset [12]. The FFT is computed for each frame and there are 86 frames per second.
The first 30 frequency bands are kept, each covering 21.51 Hz. We used examples formed by 30-
frame spectrograms., i.e. just like images of size 30 × 30. Using the first 600,000 audio samples
from each recording yielded 2600 30-frames images, on which we applied our technique. Figure 5
shows the resulting embedding when we removed the 30 coordinates of lowest standard deviation
(δ = .15).
Figure 4 shows the whole process of transforming an original image (with pixels possibly permuted)
into an embedded image and finally into a reconstructed image as per algorithms 1 and 2.

(a) 250 training images (b) 500 training images (c) 2000 training images

Figure 1: Embedding discovered by Isomap on the NORB dataset, with different number of training
images. Each of the original pixel is placed at the location discovered by Isomap. Size of the circle
and gray level indicate the original true location of the pixel. Manifold learning produces coordinates
with an arbitrary rotation.

6 Discussion

Although [6] argue that learning the right permutation of pixels with a flat prior might be too difficult
(either in a lifetime or through evolution), our results suggest otherwise.
How do we interpret that apparent contradiction?
The main element of explanation that we see is that the space of permutations of d numbers is not
such a large class of functions. There are approximately N =

√
2πd

(

d
e

)d permutations (Stirling

1Both can be obtained from Yann Le Cun’s web site: http://yann.lecun.com/.

5

(a) Isomap embedding (b) LLE embedding (c) MDS embedding (d) MVU embedding

Figure 2: Examples of embeddings discovered by Isomap, LLE, MDS and MVU with 250 training
images from NORB. Isomap appears most robust, and MDS the worst method, for this task.

(a) Isomap embedding (b) LLE embedding (c) MDS embedding (d) MVU embedding

Figure 3: Examples of embeddings discovered by Isomap, LLE, MDS and MVU with 750 training
images from MNIST. Isomap appears most robust, and MDS the worst method, for this task. More
examples are necessary than with NORB because of the difficulty with low-variance border pixels.

approximation) of d numbers. Since this is a finite class of functions, its VC-dimension [13] is

h = log N ≈ d log d− d.

Hence if we had a bounded criterion (say taking values in [0, 1]) to compare different permutations
and we used n examples (i.e. n images, here), we would expect the difference between generaliza-

tion error and test error to be bounded [13] by 1

2

√

2 log N/η

n
with probability 1−η. Hence, with n a

multiple of d log d, we would expect that one could approximately learn a good permutation. When
d = 400 (the number of pixels with non-negligible variance in MNIST images), d log d−d ≈ 2000.
This is more than what we have found necessary to recover a “good” representation of the images,
but on the other hand there are equivalent classes within the set of permutations that give as good
results as far as our objective and subjective criteria are concerned: we do not care about image
symmetries, rotations, and small errors in pixel placement.
What is the selection criterion that we have used to recover the image structure? Mainly we have
used an additional prior which gives a preference to an order for which nearby pixels have similar
distributions. How specific to natural images and how strong is that prior? This may be an appli-
cation of a more general principle that could be advantageous to learning algorithms as well as to
brains. When we are trying to compute useful functions from raw data, it is important to discover
dependencies between the input random variables. If we are going to perform computations on sub-
sets of variables at a time (which would seem necessary when the number of inputs is very large,
to reduce the amount of connecting hardware), it would seem wiser that these computations com-
bine variables that have dependencies with each other. That directly gives rise to the notion of local
connectivity between neurons associated to nearby spatial locations, in the case of brains, the same
notion that is exploited in convolutional neural networks.
The fact that nearby pixels are more correlated is true at many scales in natural images. This is well
known and explains why Gabor-like filters often emerge when trying to learn good filters for images,
e.g., by ICA [7] or Products of Experts [2, 9].

6

(a) Original image (b) Permuted image (c) Embedded image (d) Reconstructed image

Figure 4: Example of the process of transforming an MNIST image from which pixel order is
unknown (left) into its embedding (middle) and finally reconstructed as an image after rotation and
convolution (right). In the middle figure we show the intensity associated to each original pixel in a
circle located at the pixel coordinates discovered by Isomap.

(a) Blues embedding
1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

4

Eigenvalues
Ratio of consecutive eigenvalues

(b) Spectrum

Figure 5: Embedding and spectrum decay for sequences of blues music.

In addition to the above arguments, there is another important consideration to keep in mind. The
way in which we score permutations is not the way that one would score functions in an ordinary
learning experiment. Indeed, by using the distributional similarity between pairs of pixels, we get
not just a scalar score but d(d−1)/2 scores. Since our “scoring function” is much more informative,
it is not surprising that it allows us to generalize from many fewer examples.

7 Conclusion and Future Work

We proved here that, even with a small number of examples, we are able to recover almost per-
fectly the 2-D topology of images. This allows us to use image-specific learning algorithms without
specifying any prior other than the dimensionnality of the coordinates. We also showed that this
algorithm performed well on sound data, even though the topology might be less obvious in that
case.
However, in this paper, we only considered the simple case where we knew in advance the dimen-
sionnality of the coordinates. One could easily apply this algorithm to data whose intrinsic dimen-
sionality of the coordinates is unknown. In that case, one would not convert the embedding to a grid
image but rather keep it and connect only the inputs associated to close coordinates (performing a k

7

nearest neighbor for instance). It is not known if such an embedding might be useful for other types
of data than the ones discussed above.

Acknowledgements

The authors would like to thank James Bergstra for helping with the audio data. They also want to
acknowledge the support from several funding agencies: NSERC, the Canada Research Chairs, and
the MITACS network.

References
[1] Y. Bengio and Y. Le Cun. Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle,

D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines. MIT Press, 2007.
[2] G. Hinton, M. Welling, Y. Teh, and S. Osindero. A new view of ica. In Proceedings of ICA-

2001, San Diego, CA, 2001.
[3] K. J. Lang and G. E. Hinton. The development of the time-delay neural network architecture for

speech recognition. Technical Report CMU-CS-88-152, Carnegie-Mellon University, 1988.
[4] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Back-

propagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551,
1989.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[6] Y. LeCun and J. S. Denker. Natural versus universal probability complexity, and entropy. In
IEEE Workshop on the Physics of Computation, pages 122–127. IEEE, 1992.

[7] T.-W. Lee and M. S. Lewicki. Unsupervised classification segmentation and enhancement of
images using ica mixture models. IEEE Trans. Image Proc., 11(3):270–279, 2002.

[8] D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

[9] S. Osindero, M. Welling, and G. Hinton. Topographic product models applied to natural scene
statistics. Neural Computation, 18:381–344, 2005.

[10] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Sci-
ence, 290(5500):2323–2326, Dec. 2000.

[11] J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, Dec. 2000.

[12] G. Tzanetakis and P. Cook. Musical genre classification of audio signals. IEEE Transactions
on Speech and Audio Processing, 10(5):293–302, Jul 2002.

[13] V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, Berlin,
1982.

[14] A. Waibel. Modular construction of time-delay neural networks for speech recognition. Neural
Computation, 1:39–46, 1989.

[15] K. Q. Weinberger and L. K. Saul. An introduction to nonlinear dimensionality reduction by
maximum variance unfolding. In Proceedings of the National Conference on Artificial Intelli-
gence (AAAI), Boston, MA, 2006.

8

