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Abstract—A facility for merging equivalent data streams can 
support multiple capabilities in a data stream management system 
(DSMS), such as query-plan switching and high availability. One 
can logically view a data stream as a temporal table of events, 
each associated with a lifetime (time interval) over which the 
event contributes to output. In many applications, the “same” 
logical stream may present itself physically in multiple physical 
forms, for example, due to disorder arising in transmission or 
from combining multiple sources; and modifications of earlier 
events. Merging such streams correctly is challenging when the 
streams may differ physically in timing, order, and composition. 
This paper introduces a new stream operator called Logical 
Merge (LMerge) that takes multiple logically consistent streams 
as input and outputs a single stream that is compatible with all of 
them. LMerge can handle the dynamic attachment and 
detachment of input streams. We present a range of algorithms 
for LMerge that can exploit compile-time stream properties for 
efficiency. Experiments with StreamInsight, a commercial 
DSMS, show that LMerge is sometimes orders-of-magnitude 
more efficient than enforcing determinism on inputs, and that 
there is benefit to using specialized algorithms when stream 
variability is limited. We also show that LMerge and its 
extensions can provide performance benefits in several real-
world applications. 

I. INTRODUCTION 
A data stream management system (DSMS) [6, 11, 12, 13, 

22, 23, 25] supports long-running continuous queries (CQs) in 
real time. Unlike a traditional database, DSMS CQs can last 
for weeks. Tasks such as recovery, re-optimization, and load 
balancing are easier when individual queries are short lived 
(as in a transaction-processing system): re-run a failed query 
from scratch, re-plan it between executions, launch new 
queries on a less-loaded node. However, providing these 
capabilities on CQs while they continue to run is harder. We 
find that adding support in a DSMS for many such features is 
considerably simplified by introducing an operator – called 
LMerge (for logical merge) – to combine compatible versions 
of input event streams into a single equivalent output stream. 
1) High Availability: Consider providing high availability 
(HA) [9, 15] for a CQ that involves a window of, say, 24-hour 
duration. Simply restarting the CQ on failure requires a day 
for it to “spin-up” and start delivering correct answers. 
Avoiding such an outage means having redundant copies of 
the CQ running and being able to obtain results from 
whichever one or ones have not failed (and to connect up a 
new copy of the query once it has spun up). We can achieve 
transparent resilience against 𝑛 − 1 simultaneous failures by 
instantiating 𝑛 copies of a CQ (or CQ fragment) on different 
machines, feeding into an LMerge operator located at the 
consumer. LMerge provides a continuous stream of output 

events as long as at least one copy of the CQ is active, and 
allows input streams to be attached or detached as necessary.  
2) Fast Availability: There is a need for “fast availability” for 
queries – obtaining output results with minimum latency. 
Using a carefully designed LMerge to combine (1) identical 
copies of a CQ running on machines with independent 
processor or network resources; or (2) different but 
semantically identical plans that respond differently to shifts 
in data distributions, allows us to report answers from 
whichever copy is performing better at a given instant. 
LMerge can also hide burstiness, temporary performance 
degradations, and variability (e.g., due to network or CPU 
contention) in individual streams. Interestingly, if we need to 
run multiple copies of a CQ anyway for HA, we may choose 
to run different plans to get faster availability for “free”. 
3) Query Jumpstart: Another use of LMerge is to aid the 
process of “jumpstarting” query execution. Stream queries 
often hold long-lived events as part of their internal states. For 
example, a join operator might hold events for the current 
window (of days or weeks). If we spin up such a query using 
only current events in the real-time stream, it may take an 
extended period for the query to rebuild its state (or even be 
impossible to do so). We may instead wish to “seed” query 
state using, for example, checkpoint information stored on 
disk or provided by a running copy of the query. LMerge can 
be used to seamlessly merge such state with real-time streams 
in order to get the new query operational sooner. 
4) Query Cutover: LMerge is also useful in “cutting over” 
from one query instance to a newly instantiated one with a 
possibly different plan, without the user or application being 
explicitly aware of such a switch. This capability can aid 
dynamic query optimization [14] and is particularly attractive 
in Cloud-based multi-tenant execution, where we may wish to 
move CQs frequently based on SLAs and current workload 
conditions. We can place an LMerge operator (that allows us 
to attach and detach input streams dynamically) between the 
CQ and the user; making migration transparent to users as we 
attach a new CQ and later detach the old CQ from LMerge. 

A. Challenges 
LMerge is trivial if all the input streams present the same 
events in exactly the same order – just keep a count on each 
input, and let the output follow the stream with the largest 
count. In real DSMSs, however, the problem is not so simple. 
   Example 1 (DHCP Leases): Consider an example 
application for an ISP that tracks and reports DHCP leases of 
IP addresses to end users. Assume that DHCP allocations are 
tracked by two independent CQs on separate nodes, based on 
logs received from multiple distributed servers, either 



periodically or in real time. Based on the actual query plan, 
and the content and timing of data received, the two CQ 
outputs may appear physically different. Table I depicts leases 
for users A and B, as tracked by two streams Phy1 and Phy2. 
Here, alloc(userId, start, end) allocates a new lease to userId, 
for a duration from start to end, and modify(userId, start, 
newEnd) modifies – due to renewal or early termination – a 
current DHCP lease for userId to have an end time of newEnd. 
Rows of this table represent increasing instants of system time. 

TABLE I 
TRACKING DHCP LEASES 

 
Phy1 and Phy2 are logically equivalent, i.e., they report the 
same effective or eventual lease summary for users A and B, 
which is shown to the right in Table I. However, the streams 
are physically different, due to several reasons: 
   1) Disorder: Phy1 reports a lease for user B followed by 
user A, whereas Phy2 first reports a lease for user A. Disorder 
is common in real streams [4, 6, 7, 28]; it may occur at the 
source, due to network congestion, transient router failures, or 
when combining events from multiple (possibly in-order) 
sources into a single output. For example, data for users A and 
B may have been collected at different servers before being 
sent to the two nodes hosting CQs for Phy1 and Phy2. 
   2) Revisions: Phy1 directly reports the exact lease [6, 12) 
for A, whereas Phy2 reports a lease [6, 7) that it later revises 
to [6, 12). This situation can arise because the logs for user A 
may have been merged (or batched) before being sent to Phy1, 
whereas Phy2 happened to receive the individual allocations 
for user A. Revisions are common in practice due to noise, 
data-entry errors, and when improving accuracy during online 
aggregation [24]. Further, some CQs may not wish to incur 
the latency of waiting for a DHCP lease to end before 
reporting it, and may instead separately report the start (as I-
streams [13], positive tuples [11], or inserts [4, 12, 22]), and 
later revise the report to include the correct end (as D-streams 
[13], negative tuples [11], or revisions/retractions [4, 10, 22]). 
  3) Processing Variations: If the sources are equivalent CQs 
with different physical plans (e.g., using different operators or 
join orderings), they may produce different outputs streams 
that eventually arrive at the same DHCP lease summary. 
Phy1 and Phy2 show that a simple duplicate-eliminating set 
union cannot be used to merge equivalent streams. LMerge 
needs to be physically independent, i.e., unaffected by streams 
being physically different, as long as they are logically 
equivalent. Further, simply choosing to follow one of the 
input streams can prevent the timely output of events that 
another input stream has already produced, and can affect 
correctness if the chosen input fails. In order to be useful for 
our applications, LMerge should address additional challenges: 

1) Avoiding Redundant Work: The presence of LMerge 
usually involves the execution of redundant CQs at its inputs. 
One input might lag behind the others during periods when it 
is suboptimal or when its node suffers resource contention. If 
such redundant work can be avoided, then slower plan can 
catch up with the others. 
2) Handling Failures: Individual input streams can detach or 
re-attach to LMerge during runtime, e.g., due to machine 
failures or query-plan migration. The addition and removal of 
streams must be carried out carefully to avoid repeating or 
omitting events. Interestingly, the trivial counting merge 
outlined earlier does not work correctly when failures exist. 
3) Other Challenges: Progress markers (such as heartbeats [6] 
and punctuation [1, 2, 22]) complicate the merging problem – 
we cannot propagate them without careful checks. Further, the 
volume of events output by LMerge needs to be carefully 
controlled. (Section II discusses both these issues in detail.) 
Given the non-triviality of merging equivalent streams, one 
might consider enforcing order or applying revisions before 
feeding streams to LMerge. Unfortunately, this solution can 
affect throughput, memory and latency, sometimes by orders-
of-magnitude. That said, a fully general LMerge can be 
demanding of CPU and memory. Hence, we wish to leverage 
compile-time stream properties of CQs to allow optimized 
LMerge algorithms. For example, a data source might 
guarantee in-order events. If a stream with non-decreasing 
timestamps passes through an aggregate (e.g., counting DHCP 
leases), we can infer that the output has strictly increasing 
timestamps. If the aggregation is grouped (e.g., performed for 
each user), we can infer that (userId, timestamp) is unique in 
the output stream. Static inference of such properties can 
significantly reduce the complexity and overhead of LMerge.  

B. Contributions of this Paper 
• We characterize LMerge in a general way that applies to 

many DSMSs, dealing with variations in stream 
semantics and representation. We formalize the 
requirements for correct LMerge, and propose output 
policies that meet those requirements (Secs. II & III). 

• We present and analyze efficient algorithms for LMerge 
under different input-stream properties, and discuss how 
such properties may be derived from CQ plans. We also 
discuss policy choices for LMerge, handling missing 
events, and attaching or detaching streams (Secs. IV & V). 

• We implemented our LMerge algorithms in Microsoft 
StreamInsight [22] and measured their performance 
relative to different stream characteristics. We further 
show that a more general LMerge algorithm can have 
orders-of-magnitude better memory, latency, and 
throughput features than the strategy of enforcing input 
stream properties and using a simpler LMerge (Sec. VI). 

• LMerge can easily support DSMS capabilities such as 
high availability, fast availability, query jumpstart, and 
query cutover. We show how LMerge can smoothly 
switch between streams that experience temporary 
congestion, to provide nearly steady throughput. We also 
show how LMerge can hide stream-rate variability, which 

Phy1 Phy2 
 alloc(A, 6, 7) 
 alloc(B, 8, 15) 

alloc(B, 8, ∞) modify(A,6,12) 
alloc(A, 6, 12)  

modify(B, 8, 10) modify(B, 8, 10) 
Two Streams Tracking DHCP Leases 

UserId Lease 
A [6, 12) 
B [8, 10) 

Effective DHCP 
Lease Summary 



may arise due to load fluctuations, scheduling differences, 
and queuing delays (Sec. VI). 

• We introduce feedback signals into LMerge, and show 
how LMerge can leverage such signals to “fast-forward” 
slower inputs and avoid unneeded work. We find that 
fast-forward with feedback can provide several times 
higher throughput than either LMerge without feedback, 
or running just a single CQ plan (Secs. V & VI). 

II. STREAM FORMALISM 
We view a stream as a representation of a (potentially 

unbounded) temporal database (TDB) that is presented 
incrementally. The TDB may take different forms in different 
stream systems. One example is a sequence of snapshots of a 
relational table; a second is a collection of 〈tuple, timestamp〉 
pairs. For our algorithms, the TDB is a multiset of events, 
each of which consists of relational tuple 𝑝 (which we term 
the payload), along with an associated validity interval 
denoted by a validity start time 𝑉𝑠 and a validity end time 𝑉𝑒, 
which define a half-open interval [𝑉𝑠,𝑉𝑒). 𝑉𝑒 is permitted to be 
+∞. One can think of 𝑉𝑠 as representing the event’s timestamp, 
while the validity interval is the period of time over which the 
event is active and contributes to output. 

A stream is a potentially unbounded sequence of elements 
(some of which may resemble TDB events). While the kinds 
of elements and their ordering constraints can vary between 
stream systems, we assume that any finite prefix of a stream 
can be reconstituted into a TDB instance [5]. Let 𝑆 = 𝑒1, 𝑒2, … 
be a stream, with 𝑆[𝑖] being the prefix 𝑒1, … , 𝑒𝑖 . We posit a 
reconstitution function 𝑡𝑑𝑏(𝑆, 𝑖)  that produces the TDB 
instance corresponding to 𝑆[𝑖]0F

1. 
It would be useful to have a version 𝑡𝑑𝑏(𝑆)  of the 

reconstitution function that interprets the whole of 𝑆 . One 
approach to defining 𝑡𝑑𝑏(𝑆)  is as the limit of 𝑡𝑑𝑏(𝑆, 1),
𝑡𝑑𝑏(𝑆, 2), …. If 𝑆 behaves well – say it satisfies the mono-
tonicity property 𝑡𝑑𝑏(𝑆, 𝑖) ⊆ 𝑡𝑑𝑏(𝑆, 𝑖 + 1) – then this limit is 
well defined. But there can be pathological cases where 𝑆 
does not converge to a particular TDB instance. For example, 
if 𝑆  can contain a stream element that cancels a previous 
stream element (in the sense of removing it from the TDB 
rather than curtailing its lifetime), then a stream such as 
      e, cancel(e), e, cancel(e), e, cancel(e), e, cancel(e), …     
has no definite limit. For the specific cases we consider later, 
𝑡𝑑𝑏(𝑆) is guaranteed to exist, though sometimes via stream 
properties that are weaker than monotonicity. 

In most DSMSs, there are multiple stream instances that 
represent the same TDB (just as there can be many physical 
structures that represent a given logical table in a database). 
For example, if each stream element carries an explicit 
timestamp, then it can happen that 𝑡𝑑𝑏(𝑆, 𝑖) = 𝑡𝑑𝑏(𝑈, 𝑖) even 
though 𝑆[𝑖] and 𝑈[𝑖] are distinct prefixes, because of different 
orderings. If 𝑡𝑑𝑏() removes duplicates, then it is possible that 
𝑡𝑑𝑏(𝑆, 𝑖) = 𝑡𝑑𝑏(𝑈, 𝑗) for 𝑖 ≠ 𝑗. We say that prefixes 𝑆[𝑖] and 
𝑈[𝑗]  are equivalent if 𝑡𝑑𝑏(𝑆, 𝑖) = 𝑡𝑑𝑏(𝑈, 𝑗) , written 𝑆[𝑖] ≡

                                                 
1 In some DSMSs, events are assumed to arrive in batches [17], so it may 
only make sense to apply 𝑡𝑑𝑏() to selected prefixes of 𝑆. 

𝑈[𝑗] . Streams 𝑆  and 𝑈  are equivalent, written 𝑆 ≡ 𝑈,  if 
𝑡𝑑𝑏(𝑆) and 𝑡𝑑𝑏(𝑈) are well defined and equal. The range of 
possible descriptions of the same TDB in a given DSMS 
depends both on what kinds of elements are permitted in a 
stream and on the constraints (or lack thereof) on the order of 
elements. For example, there can be stream elements that 
serve to “adjust” a previously seen event, such as by altering 
its lifetime. As an example of an ordering constraint, most 
stream systems support some form of punctuations that limit 
stream elements that can appear later. We next give examples 
of two DSMS models in terms of elements supported. 

Example 2 (Open and Close Elements): Consider a 
stream with two kinds of stream elements, open(𝑝,𝑉𝑠) and 
close(𝑝,𝑉𝑒), where open() indicates the start time of an event 
with payload 𝑝 and close() indicates the end of the event. (We 
assume here that there can only be one event with payload 𝑝 
active at a time.) Open and close elements roughly correspond 
to I-Streams and D-Streams in Oracle CEP [25], or positive 
and negative tuples in Nile [11]. The following stream 
prefixes are equivalent, each representing the TDB: 

p  Vs  Ve 
A   1   4 
B   2   5 
C   3   ∞ 

S[5]: open(A, 1), open(B, 2), open(C, 3), 
      close(A, 4), close(B, 5) 
U[5]: open(A, 1), close(A, 4), open(B, 2), 
      close(B, 5), open(C, 3) 
W[6]: open(B, 2), close(B, 6), open(A, 1), 
      open(C, 3), close(A, 4), close(B, 5) 

Note that close(B, 5) in stream prefix W[6] serves to 
revise the previous close(B, 6). 

Example 3 (StreamInsight): Microsoft StreamInsight, the 
basis for our detailed algorithms (Section IV) and imple-
mentation (Section VI), has three kinds of elements: 
• insert(𝑝,𝑉𝑠,𝑉𝑒): Adds an event to the TDB with payload 𝑝 

whose lifetime is the interval [𝑉𝑠,𝑉𝑒). 𝑉𝑒 can be +∞. 
• adjust(𝑝,𝑉𝑠,𝑉𝑜𝑙𝑑 ,𝑉𝑒): Change the event 〈𝑝,𝑉𝑠,𝑉𝑜𝑙𝑑〉 to be 

〈𝑝,𝑉𝑠,𝑉𝑒〉 . If 𝑉𝑒 = 𝑉𝑠 , the event 〈𝑝,𝑉𝑠,𝑉𝑜𝑙𝑑〉  is removed. 
For example, the sequence of elements: insert(A, 6, 
20), adjust(A, 6, 20, 30), adjust(A, 6, 30, 25) is 
equivalent to the single element: insert(A, 6, 25). 

• stable(𝑉𝑐): A statement that the portion of the TDB before 
time 𝑉𝑐 is stable: There can be no future insert(𝑝,𝑉𝑠,𝑉𝑒) 
element with 𝑉𝑠 < 𝑉𝑐, nor can there be an adjust element 
with 𝑉𝑜𝑙𝑑 < 𝑉𝑐 or 𝑉𝑒 < 𝑉𝑐.  

The TDB model for StreamInsight is a collection of events 
of the form 〈𝑝,𝑉𝑠,𝑉𝑒〉. 

TABLE II 
PHYSICAL AND LOGICAL STREAMS IN STREAMINSIGHT 

 

Phy1 Phy2 
 ins(A, 6, 7) 
 ins(B, 8, 15) 

ins(B, 8, ∞) adj(A,6,7, 12) 
ins(A, 6, 12)  

adj(B, 8, ∞, 10) adj(B, 8, 15, 10) 
stable(11)  
stable(∞) stable(∞) 

Two Physical Streams 

     𝒑 
Payload 

[𝑽𝒔,𝑽𝒆) 
Interval 

A [6, 12) 
B [8, 10) 

Equivalent Logical TDB 

Abbreviations Used 
  ins  insert 
  adj  adjust 



Table II above shows the two physical streams from Example 
1 (DHCP leases), and the corresponding TDB. As before, the 
rows of this table represent increasing instants of system time. 

Additional Challenges with LMerge 
1) Punctuation: LMerge algorithms must be careful when 
propagating progress markers (punctuation), so that they can 
stay consistent with future updates on the input streams. We 
use Table II to illustrate that this problem is non-trivial. 
Assume that LMerge has chosen to only propagate elements 
insert(A, 6, 7) and insert(B, 8, 15) from Phy2 to its output. 
When it later sees stable(11) from stream Phy1, this element 
cannot immediately be propagated to the output because: (1) it 
would “freeze” payload A to have lifetime of [6, 7)  which 
cannot later be adjusted to end at 12; (2) it would freeze all 
end times earlier than 11, which would prevent later 
adjustment of the end time of payload B down to 10. 
2) Stream Chattiness: LMerge needs to select output policies 
that balance responsiveness against “chattiness” – the need to 
issue additional output elements to modify previous elements.  

Example 4 (Stream Chattiness):   Table III shows two 
input streams, In1 and In2, and three alternative output 
streams for LMerge. Out1 is the most aggressive, propagating 
every change from the inputs as it is seen. Out2 is more 
conservative, delaying elements until it knows they are stable. 
It thus produces fewer elements than Out1, but produces them 
later, in general. Out3 is between the two. It outputs the first 
element it sees with a given payload and start, but saves any 
modifications until they are known to be stable. 

TABLE III 
CHATTINESS: INPUT AND OUTPUT STREAMS 

In1 In2 Out1 Out2 Out3 
ins(A, 6, 10)  ins(A, 6, 10)  ins(A, 6, 10) 

 ins(A, 6, 12) adj(A,6,10,12)   
 ins(B, 7, 14) ins(B, 7, 14)  ins(B, 7, 14) 

adj(A,6,10,15)  adj(A,6,12,15)   
 adj(A,6,12,15)    
 stable(16) stable(16) ins(A, 6, 15) 

ins(B, 7, 14) 
stable(16) 

adj(A,6,10,15) 
stable(16) 

III. THEORY OF LOGICAL MERGE 

A. Definition of Logical Merge 
If input streams never fail, the definition of Logical Merge 

is straightforward. It takes a set of equivalent input streams 
𝐼1, … , 𝐼𝑛 and produces an equivalent output stream 𝑂. That is, 
𝐼1  ≡ ⋯ ≡ 𝐼𝑛 ≡ 𝑂. In practice, however, input streams can fail 
(or detach), so different inputs will not be equivalent. We 
adopt the weaker notion of mutual consistency for input 
streams, which intuitively means there is some complete 
“reference stream” of which each input represents a portion. 
We want to express this condition in terms of stream prefixes, 
since that is all we have to work with at any finite point in 
time. Formally, stream prefixes {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]}  are 
mutually consistent if there exist finite sequences 𝐸𝑖  and 𝐹𝑖 , 
1 ≤  𝑖 ≤ 𝑛 such that 𝐸1: 𝐼1[𝑘1]:𝐹1 ≡ ⋯ ≡ 𝐸𝑖: 𝐼𝑖[𝑘𝑖]:𝐹𝑖 ≡ ⋯ ≡
𝐸𝑛: 𝐼𝑛[𝑘𝑛]:𝐹𝑛. Here, 𝐴:𝐵 denotes the concatenation of 𝐴 with 

𝐵.  We say {𝐼1, … , 𝐼𝑛}  are mutually consistent if all finite 
prefixes of them are mutually consistent. Stream 𝑂 represents 
the Logical Merge (LMerge) of mutually consistent streams 
{𝐼1, … , 𝐼𝑛}  if {𝐼1, , … , 𝐼𝑛,𝑂}  are mutually consistent without 
extending 𝑂, and that 𝑂 is minimal. In other words, there is no 
other mutually consistent 𝑂′  with 𝑡𝑑𝑏(𝑂′) ⊂ 𝑡𝑑𝑏(𝑂).  For 
simplicity in the sequel, we assume that all inputs start at the 
same point (the 𝐸𝑖’s are empty). While this assumption may 
not hold in practice, we can treat an input stream that starts 
late as having a consistent prefix that was skipped over. 

The LMerge definition above is abstract – in terms of 
mutual consistency of entire streams, not prefixes. However, 
while we usually wish to propagate inputs to the output 
eagerly, we need to also ensure that, at any given point in time, 
the output is able to follow future additions to the inputs. Thus, 
we need to ensure that the output can “track” any additional 
elements that show up on the inputs. We say that output-
stream prefix 𝑂[𝑗] is compatible with input-stream prefix 𝐼[𝑘] 
if, for any extension 𝐼[𝑘]:𝐸 of the input prefix, there exists an 
extension 𝑂[𝑗]:𝐹 of the output sequence that is equivalent to 
it. Stream prefix 𝑂[𝑗]  is compatible with the mutually 
consistent set of input stream prefixes 𝑰 = {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]} 
if for any set of extensions 𝐸1, … ,𝐸𝑛  that makes 
𝐼1[𝑘1]:𝐸1, … , 𝐼𝑛[𝑘𝑛]:𝐸𝑛  equivalent, there is an extension 
𝑂[𝑗]:𝐹 of the output sequence that is equivalent to them all. 

The specific criteria for guaranteeing compatibility between 
inputs and the output of LMerge depends on the kinds of 
stream elements allowed and any stream properties guaranteed 
on the inputs (or enforced on the output). We assume that the 
element kinds and the properties are the same for all inputs 
and output, although one could obviously relax this constraint. 

A. Stream Properties and Logical Merge 
We are interested in properties that a given stream S might 

satisfy in terms of element sequences it allows and the state of 
its TDB. Such properties will affect how the TDB can evolve, 
and may lead to simpler or less space-intensive methods for 
LMerge. Examples: 
• Stream elements are ordered on some time attribute: In 

Example 2, S[5] has this property, but neither U[5] nor 
W[6] does. With this property, once time has advanced to 
point 𝑡, we know we have seen all payloads with 𝑉𝑠 ≤ 𝑡. 
Further, no TDB event with a finite 𝑉𝑒 can get shorter. 

• There can be at most one close() element for any open() 
element: S[5] and U[5] satisfy this condition, but not 
W[6]. With this condition, we know that once we see a 
close()  element, the corresponding TDB event will be 
present forever. 

• The pair 〈𝑝,𝑉𝑠〉 is a key for every instance of the TDB: 
This property might arise if 𝑝 consisted of a sensor id and 
a reading, where no sensor reports more than once per 
time period. Such a constraint can simplify matching up 
corresponding events across inputs to an LMerge operator. 

While such properties might be stipulated by input sources, 
they usually are detected through compile-time analysis of CQ 
plans (Section IV-D has more details). For example, the last 
condition above holds on the output of any aggregate operator, 



since the subset of 𝑝 corresponding to the grouping attributes 
are in fact a key at any point in time. The formulation of 
input-output compatibility for a given situation depends on 
what properties hold, as the following example shows. 

Example 5 (Stream Properties and Compatibility): 
Consider streams with open() and close() elements and the 
simple property that each open ()  has at most one corre-
sponding close(). Then, output 𝑂[𝑗] is compatible with input 
𝐼[𝑘] if 𝑂[𝑗] ⊆ 𝐼[𝑘]. In that case, there exists an extension 𝐹 
such that 𝑂[𝑗]:𝐹 ≡ 𝐼[𝑘] . So, 𝑂[𝑗]: (𝐹:𝐸) ≡ 𝐼[𝑘]:𝐸  for any 
extension 𝐸  of the input. Furthermore, the condition 𝑂[𝑗] ⊆
𝐼[𝑘]  is necessary for compatibility. Suppose 𝑂[𝑗]  contains 
open(𝑝,𝑉𝑠) ∉ 𝐼[𝑘]. Then, there is no way to extend 𝑂[𝑗] to be 
equivalent with 𝐼[𝑘]:∅. So, all the open events in 𝑂[𝑗] must 
be in 𝐼[𝑘]. If 𝑂[𝑗] contains close(𝑝,𝑉𝑒) ∉ 𝐼[𝑘], there is no way 
to extend 𝑂[𝑗]  to be equivalent with 𝐼[𝑘]: close (𝑝,𝑉𝑒 + 1), 
since 𝑂[𝑗] already contains a close element for 𝑝. In the case 
of a set of mutually consistent inputs 𝑰 = {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]}, 
𝑂[𝑗] is compatible with 𝑰 exactly when 𝑂[𝑗] ⊆ (∪ 𝑰). 

B. Property-Based Restrictions and Compatibility 
For our prototypes of LMerge, we consider the following 

range of restrictions that can be used to improve performance 
if they hold. In Section IV, we present algorithms for each 
point in this spectrum, and discuss how stream properties can 
be derived and used to choose an appropriate algorithm. 

R0. There are only insert ()  and stable ()  elements with 
strictly increasing 𝑉𝑠 times. Thus, the stream has deterministic 
order with no duplicate events. 

R1. The input steams consist only of insert() and stable() 
elements, 𝑉𝑠 is non-decreasing, and the order among elements 
with equal 𝑉𝑠 is deterministic. 

R2. Same as R1, except order for elements with the same 𝑉𝑠 
can differ across inputs. Further, for any stream prefix 𝑆[𝑖], 
〈𝑝,𝑉𝑠〉 forms a key for 𝑡𝑑𝑏(𝑆, 𝑖). 

R3. All element kinds are permitted and there is no 
constraint on time order, except as imposed by stable() ele-
ments. As with R2, for any stream prefix 𝑆[𝑖], 〈𝑝,𝑉𝑠〉 forms a 
key for 𝑡𝑑𝑏(𝑆, 𝑖).  

R4. R4 is the “no restrictions” case where all three element 
kinds are permitted, elements need not be in timestamp order, 
and the TDB is a multi-set (hence there can be multiple events 
with the same payload and lifetime). 

In order to understand the correctness of our algorithms, we 
find it useful to think of a stable(𝑉𝑐) element as “freezing” 
certain parts of the TDB. A TDB event 〈𝑝,𝑉𝑠,𝑉𝑐〉 is half frozen 
(HF) if 𝑉𝑠 < 𝑉𝑐 ≤ 𝑉𝑒  and fully frozen (FF) if 𝑉𝑒 < 𝑉𝑐.  If 
〈𝑝,𝑉𝑠,𝑉𝑒〉 is half frozen, we know there will be some event 
〈𝑝,𝑉𝑠,𝑉〉 in the TDB henceforth. If 〈𝑝,𝑉𝑠,𝑉𝑒〉 is fully frozen, 
no future adjust() event can alter it, and so it will be in all 
future version of the TDB. Any TDB event that is neither half 
frozen nor fully frozen is unfrozen (UF). 

Compatibility for the R3 Case 
Before presenting the precise conditions for input-output 

compatibility for R3, we provide examples of possible outputs 
for given inputs to LMerge. Both input and output streams are 

described by their TDBs; our discussion applies to any input 
stream that reconstitutes to a given input TDB, and allows the 
output of any stream that reconstitutes to a given output TDB. 
For each of the TDBs below, last is the latest value 𝑉 such 
that a stable(𝑉) element has been seen. The annotation to the 
right of each event indicates its “freeze” status. 

I1 (last:14) 
p     Vs       Ve 
A      2       16 HF 
B      3       10 FF 
C      4       18 HF 
D     15       20 UF 

I2 (last:11) 
p     Vs       Ve 
A      2       12 HF 
B      3       10 FF 
C      4       18 HF 
E     17      21 UF 

O1 (last:11) 
p  Vs  Ve 
A   2   ∞ HF 
B    3  10 FF 
C   4   ∞ HF 

O2 (last:14) 
p   Vs    Ve 
A    2    16 HF 
B    3    10 FF 
C    4    18 HF 
D   15  20 UF 
E   17   21 UF 

O3 (last:13) 
p    Vs   Ve 
A     2   12 FF 
C     4   18 HF 
D    15  20 UF 
 

Consider LMerge of streams corresponding to I1 and I2. 
O1 is compatible with I1 and I2.  It has a TDB that might 

result from a conservative tracking policy that outputs only 
information that must be in the output eventually. O1 will only 
require adjustments to end times. 

O2 represents a more aggressive policy, but it is still 
compatible with I1 and I2. It contains events corresponding 
to all input events seen, even if those events are unfrozen. O2 
may have to issue later elements to completely remove some 
events. 

O3 is not compatible with I1 and I2 for two reasons. First, 
although <A, 2, 12> matches an event in I2, it contradicts 
the contents of I1, from which we can tell the end time will be 
no less than 14. As this event is fully frozen in O3, there is no 
subsequent stream element that can correct it. Second, O3 
lacks the event <B, 3, 10>, which is fully frozen in the input 
streams but cannot be added to O3 given its stable point. 

We now describe (and justify) the exact conditions for 
compatibility in the R3 case. 

Assume {𝐼1, … , 𝐼𝑛}  are mutually consistent input streams 
and 𝑂 is the output stream. Suppose at some instant we have 
seen prefixes {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]}  of the input streams and 
emitted prefix 𝑂[𝑗]  on the output stream. Let TDB𝑚 =
𝑡𝑑𝑏(𝐼𝑚, 𝑘𝑚) and TDB𝑂 = 𝑡𝑑𝑏(𝑂, 𝑗). Assume that stable(𝐿𝑚) 
was the most recent stable() event on 𝐼𝑚, and stable(𝐿) was 
the most recent stable event on 𝑂. We must have the following 
conditions. 

C1. 𝐿 is no greater than the maximum of the 𝐿𝑚. (If it were, 
then it is possible for an event to appear in one of the inputs 
and be fully frozen there without being able to add it to 𝑂.) 

The other two conditions concern what events may be in 
TDB𝑂  (Condition C2) and what events must be in TDB𝑂 
(Condition C3) for given combination of 𝑝 and 𝑉𝑠. 

C2. TDB𝑂 may have at most one event for a given 𝑝 and 𝑉𝑠. 
• If that event is UF, there is no constraint on it (as it can be 

completely removed). 
• If TDB𝑂 contains 〈𝑝,𝑉𝑠,𝑉𝑒〉 that is HF, then there must be 

some TDB𝑚 containing 〈𝑝,𝑉𝑠,𝑉𝑚〉 where either the event 
is HF and 𝐿𝑚 ≤ 𝐿 (so the output event can be adjusted to 
match any changes in TDB𝑚 ) or the event is FF and 



𝐿 ≤ 𝑉𝑚  (so it is still possible to adjust TDB𝑂  to match 
TDB𝑚). 

• If TDB𝑂 contains 〈𝑝,𝑉𝑠,𝑉𝑒〉 that is FF, then there must be 
some TDB𝑚 containing 〈𝑝,𝑉𝑠,𝑉𝑒〉 that is FF (so we know 
that event is definitely in the output). 

C3. TDB𝑂 must have an event for 𝑝 and 𝑉𝑠 when either: 
1) There is a FF event 〈𝑝,𝑉𝑠,𝑉𝑒〉 in some TDB𝑚 and either 

• 𝐿 ≤ 𝑉𝑠 (thus, the event can still be added to TDB𝑂), or 
• 𝑉𝑠 < 𝐿 ≤ 𝑉𝑒  and TDB𝑂  has 〈𝑝,𝑉𝑠,𝑉𝑂〉  that is HF (since 

𝐿 ≤ 𝑉𝑒, this event can be adjusted to 〈𝑝,𝑉𝑠,𝑉𝑒〉), or 
• 𝑉𝑒 < 𝐿 and TDB𝑂 contains 〈𝑝,𝑉𝑠,𝑉𝑒〉. 

2) No input contains a FF event for 𝑝 and 𝑉𝑠 , but one or 
more inputs contain a HF event of the form 〈𝑝,𝑉𝑠, _〉. Let 𝐼𝑚 be 
the input with such an event with the largest 𝐿𝑚. Then either: 
• 𝐿 ≤ 𝑉𝑠  (so an appropriate event can still be added to 

TDB𝑂), or 
• 𝑉𝑠 < 𝐿 ≤ 𝐿𝑚  and TDB𝑂  has 〈𝑝,𝑉𝑠,𝑉𝑂〉 that is HF (which 

can be adjusted to match future changes to the event in 
the input). 

(Note that an UF event 〈𝑝,𝑉𝑠,𝑉𝑒〉 in any input places no 
constraint on TDB𝑂.) 

These conditions are simplified if 𝐿 tracks the input with 
the largest 𝐿𝑚. In that case, the requirement is that TDB𝑂 and 
TDB𝑚 have the same set of FF events, and that their sets of 
HF events match on 𝑝 and 𝑉𝑠. 

Compatibility in the R3 case leaves room for a wide range 
of policies on how loosely or tightly the output of LMerge 
tracks the input. A very liberal policy would allow arbitrary 
UF events in the output, even if there is no support among the 
inputs for such events. This policy is likely unwise, since such 
events would almost surely be adjusted, absent a robust model 
for predicting future inputs. A more reasonable policy is to 
output only HF and FF events that have support in the TDBs 
of the inputs. That support might take the form of an exactly 
matching event, or, for HF events in the output TDB, a HF 
event in some input TDB with the same payload and valid 
start values. A conservative policy might only allow an 
element in the output if it is supported by a FF event in some 
input TDB.  These different policies tend to trade latency for 
“chattiness” of the output: how many adjust() elements might 
be needed to align the output with adjustments on the inputs. 
A second aspect of output policy is when to issue a stable() 
element on the output. Our experience suggests keeping the 
output at the maximum stable point of all the inputs to 
minimize the memory requirements of LMerge, though 

lagging a bit behind the maximum can avoid some adjust() 
elements in the output. 

Compatibility in the R4 case, where there can be multiple 
events with the same 𝑝  and 𝑉𝑠,  has more complicated 
conformance conditions. If 𝐿, the maximum stable point of the 
output 𝑂, tracks the maximum 𝐿𝑚 , then TDB𝑂  must contain 
all the FF events from TDB𝑚 , and an equal number of HF 
events, for that 𝑝 and 𝑉𝑠. 

IV. ALGORITHMS FOR LOGICAL MERGE 
This section provides algorithms for different variants of 

LMerge optimized for stream properties R0-R4 described in 
Section III-B. Section IV-D shows how to use stream 
properties to decide which algorithm to use for a given CQ. 

A. LMerge Algorithms for Cases R0, R1, and R2 
For space reasons, we describe briefly the simpler cases of 

R0, R1, and R2 (our technical report [27] has the detailed 
algorithms for these cases). 

In case R0, input streams have elements with strictly 
increasing Vs values. It turns out that we need only two pieces 
of information: the maximum Vs (MaxVs) and the maximum 
stable() timestamp (MaxStable) seen across all input streams. 
When we see an insert() element, we can discard the element 
if it does not increase MaxVs, and output it otherwise. A stable() 
element is output if it increases MaxStable. 

Recall R1 is the insert-only case with non-decreasing Vs. 
Here, we may have duplicate Vs timestamps, but such 
elements are presented in deterministic order (e.g., sorted on a 
field in the payload). This condition holds in scenarios such as 
Top-k aggregation, where elements with the same Vs are 
presented in rank order. Here, we just need to maintain (in 
addition to MaxStable and MaxVs) an array with one counter 
for each input stream, which counts the number of elements 
on that stream with Vs = MaxVs. On an insert element that 
increases MaxVs, we reset this array to zeros. If the insert on 
stream r increases the counter for r beyond the old maximum 
counter value across all streams, the insert is sent as output. A 
stable() element is handled as before. 

Case R2 resembles R1, except elements with the same Vs 
may be in different orders in different inputs. We assume that 
(Vs, Payload) is a key of the TDB for any stream prefix. (The 
relaxation to handle duplicates is straightforward and omitted.) 
Here, we use a hash table in addition to MaxStable and MaxVs. 
The hash table indexes (using Payload as key) all elements 
with Vs = MaxVs. When we receive an insert element, we 
check the hash table – if the corresponding payload exists, we 
are done. Otherwise, we update the hash table and output the 
element. An element that increases Vs beyond MaxVs clears 
the hash table so that it can track elements with the new MaxVs.  

B. LMerge Algorithm for Case R3 
We now tackle case R3, where inserts, adjusts, and stable 

elements may be presented in any order, and (Vs, Payload) is 
a key in the TDB for any stream prefix. (See Algorithm R3.) 
We propose a new index structure called in2t (for index-2-tier) 
depicted in Figure 1 (left). The top tier of in2t is a red-black-

Key: (Ve) 

in2t 
Red-Black 

Tree 

Key: (Vs, P) 

StreamId Ve 
0 100 
… … 
∞ 100 

 

Event 

Hash Table 
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StreamId Root 
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Fig. 1. Data structures for cases R3 (in2t) and R4 (in3t) of LMerge 



tree keyed by (Vs, Payload), where each node consists of an 
event and points to a second-tier index implemented as a hash 
table. The hash table contains, for each input stream r, the 
current corresponding Ve value for that stream indexed by key 
r. An additional hash table entry with special key ∞ is also 
maintained for the output.  
On an insert() element in stream r, we lookup in2t for a node 
with the same (Vs, Payload). If such a node does not exist 
(Lines 5-10), we add the node and produce output. In the hash 
table, we add an entry for stream r as well as for the output. 
An exception is when Vs is less than MaxStable (Line 6), 
which indicates that the corresponding entry previously 
existed and has been removed from in2t. Otherwise (Line 12), 
we simply add an entry to the hash table and return. An 
adjust() element is handled similarly (Lines 14-16), except 
that output is not produced as a result of an adjust.  
Finally, consider the processing of a stable() element y. We 
only need to handle stable() elements that increase 
MaxStable. We first find each node that is going to become 
half frozen in in2t; i.e., a node whose Vs is less than y’s 
timestamp. For each such node, we check if there is a 
mismatch between the output and the input, where a 
compatibility violation is going to occur as a result of 
outputting y. There are three cases of compatibility violations: 

• There is no input event for (Vs, Payload) in stream r, but 
there is an output event (due to some other input stream). 

• The currently output event will become fully frozen due 
to e, but the corresponding input is not fully frozen. 

• The input event will become fully frozen, but the current 
output is not fully frozen. 

In all cases, we adjust the output so that it matches the input 
(Lines 24-27). This choice – of correcting output only to avoid 
irrecoverable divergence between output and input – 
represents one out of several policies discussed in Section V-
A. Finally, if the input becomes fully frozen, we delete the 
corresponding node from in2t (Lines 28-29), update 
MaxStable, and output a stable() element (Lines 30-31). 
C. LMerge Algorithm for Case R4 
The main challenge with case R4 is that many elements in a 
stream can have the same (Vs, Payload), with different Ve 
values. Further, there could be duplicates in the stream. 
Hence, we propose a new index structure – shown in Figure 1 
(right) – called in3t (for index-3-tier), where we replace the 
single Ve value in each entry of the lower-level hash table of 
in2t with a small index (red-black-tree) on Ve, where each Ve 
is associated with its count (to handle duplicates). (See 
Algorithm R4.) During insert and adjust, the output is updated 
lazily as before. When processing a stable() element, we 
ensure future compatibility before producing a stable() 
element as output. Our invariants for case R4 are more subtle: 
• (Lines 9-11) The output TDB contains no more events for 

a particular (Vs, Payload) than the maximum number of 
events in any input TDB, for that (Vs, Payload). While 
not necessary, this condition helps limit output chattiness. 

• (Lines 20-22) When an incoming stable() element has a 
timestamp greater than some Vs (i.e., that Vs becomes 
half frozen), we ensure that, for a (Vs, Payload) that is 
getting half frozen, the “total count” of output elements 
with a value of (Vs, Payload) equals the count in the 
input. This invariant must be met before propagating the 
stable() element, to guarantee future convergence. The 

Algorithm R3: Logical Merge for Case R3 
 1 MaxStable = −∞; 
 2 index = new in2t(); 
 3 Insert(element y, stream r) 
 4   node f = index.SameVsPayload(y); 
 5   if (!exists(f)) 
 6     if (y.Vs < MaxStable) return; 
 7     f = index.AddNode(y); 
 8     OutputInsert(y); 
 9     f.AddHashEntry(∞, y.Ve); // hash entry for o/p 
10   f.AddHashEntry(r, y.Ve); // hash entry for i/p 
11 Adjust(element y, stream r) 
12   node f = index.SameVsPayload(y); 
13   if (!exists(f)) return; 
14   f.UpdateHashEntry(r, y.Ve); 
15 Stable(timestamp t, stream r) 
16   if (t <= MaxStable) return; 
17   iterator it = index.FindHalfFrozen(t); 
18   while (node f = it.Next()) 
19     InVe = f.GetHashEntry(r); 
20     if (!exists(InVe)) InVe = f.GetEvent().Vs; 
21     OutVe = f.GetHashEntry(∞); 
22     if (InVe != OutVe and  
23        (InVe < t or OutVe < t)) 
24       OutputAdjust(f.GetEvent(), Ve: InVe); 
25       f.UpdateHashEntry(∞, InVe); 
26     if (InVe < t) // fully frozen 
27        index.DeleteNode(f);  
28   // update MaxStable and output a stable() element 
29   MaxStable = t; 
30   OutputStable(t); 

2 

1 

Algorithm R4: Logical Merge for Case R4 
 1 MaxStable = −∞; 
 2 index = new in3t(); 
 3 Insert(element y, stream r) 
 4   node f = index.SameVsPayload(y); 
 5   if (!exists(f)) 
 6     if (y.Vs < MaxStable) return; 
 7     f = index.AddNode(y); 
 8   f.IncrementCount(r, y.Ve); 
 9   if ((y.Vs>=MaxStable) and (f.GetCount(r)>f.GetCount(∞))) 
10     OutputInsert(y); 
11     f.IncrementCount(∞, y.Ve); 
12 Adjust(element y, stream r) 
13   node f = index.SameVsPayload(y); 
14   if (!exists(f)) return; 
15   f.IncrementCount(r, y.Ve); f.DecrementCount(r, y.Vold); 
16 Stable(timestamp t, stream r) 
17   if (t <= MaxStable) return; 
18   iterator it = index.FindHalfFrozen(t); 
19   while (node f = it.Next()) 
20     if (f.Vs >= MaxStable) // element getting half frozen 
21        // ensure #o/p events=#i/p events for that (Vs, P) 
22        AdjustOutputCount(f); 
23     iterator itIn = f.FindAllVe(r); 
24     iterator itOut = f.FindAllVe(∞); 
25     // Make o/p reflect i/p for all FF (Ve < t) nodes 
26     AdjustOutput(f, t, itIn, itOut); 
27     if (f.GetMaxVe(r) < t) // Done processing that (Vs, P) 
28        index.Delete(f); 
29   MaxStable = t; 
30   OutputStable(t); 



method AdjustOutputCount() determines the exact pro-
cedure for meeting this invariant (see [27] for details); 
briefly, it involves producing new output elements or 
“canceling” prior output elements for that (Vs, Payload). 

• (Lines 23-26) For a particular (Vs, Payload), if some Ve 
becomes fully frozen as a result of an incoming stable() 
element, we need to ensure that the output TDB contains 
the same number of (Vs, Payload, Ve) events as the 
input, before propagating the stable() element. The 
AdjustOutput() method (covered in our technical report 
[27]) achieves this invariant; briefly, it involves adjusting 
the Ve of events previously output with the same (Vs, 
Payload). Note that the “total count” invariant mentioned 
earlier ensures that such an adjustment is always possible. 

When the stable() timestamp moves beyond the largest Ve 
for a particular (Vs, Payload), the corresponding node can be 
deleted from the top tier of in3t (Lines 27-28). 

D. Choosing the Right LMerge Algorithm 
Given a range of LMerge algorithms, how do we choose 

the right version of LMerge for a given set of input streams 
and query plan? We derive and reason about compile-time 
stream properties to answer this question. We do not give a 
detailed formalism of stream properties here, but provide 
several examples of how they are used for this purpose: 
1) Every input stream publishes properties that indicate 
whether the stream is ordered, has adjust() elements, or has 
duplicate timestamps. If we are merging such input streams 
directly, we can use such properties to choose an algorithm. 
2) The DSMS may have operators to enforce particular 
properties. For example, many systems have a reordering or 
cleansing operator that accepts disordered input, buffers it and 
outputs an in-order stream. Such a stream can be annotated at 
compile-time in order to choose an appropriate algorithm. 
3) Certain operators or groups of operators produce streams 
with a particular property. For example, an in-order stream fed 
into a windowed aggregate outputs one event per strictly 
increasing timestamp, leading to a choice of algorithm R0. 
4) If each input to LMerge results from an in-order stream fed 
into a sliding-window multi-valued aggregate such as Top-k, 
we would choose algorithm R1, due to duplicate timestamps. 
5) If each query under LMerge performs a grouped 
aggregation (e.g., a count per user of DHCP leases) over an 
ordered stream, we would use algorithm R2 since the order for 
elements with the same Vs is non-deterministic. 
6) If each query instead performs a grouped aggregation (e.g., 
count) over a disordered stream, we would use algorithm R3. 

E. Runtime and Space Complexity of LMerge 
We analyze the complexity of the LMerge algorithms on the 
basis of runtime stream properties that characterize the nature 
of input streams to LMerge. These properties can be measured 
as statistics during runtime, although some may be determined 
statically based on operators in the plan. Let n denote the 
number of input streams to LMerge. Consider the set of events 
that are “alive”, i.e., not fully frozen at any given instant. Let 
𝑤 denote the number of unique (Vs, Payload) values, and 𝑑 

denote the number of elements with the same (Vs, Payload). 
Further, let 𝑔 denote the number of events with the same Vs, 
and let ℎ  represent the number of distinct half-frozen (Vs, 
Payload) values. Finally, let 𝑐 be the number of events that 
become fully frozen due to a stable() element, and let 𝑝 denote 
payload size. Based on these properties, the complexity of the 
various LMerge algorithms is shown in Table IV. 

TABLE IV 
RUNTIME AND SPACE COMPLEXITY OF LMERGE 

Case Runtime Complexity Space 
Complexity Insert Adjust Stable 

R0 O(1) n/a O(1) O(1) 
R1 O(𝑛) n/a O(1) O(𝑛) 
R2 O(𝑛) n/a O(1) O(𝑔 ⋅ 𝑝) 
R3 O(lg𝑤) O(lg𝑤) O(𝑐 ⋅ lg𝑤 + ℎ) O(𝑤(𝑝 + 𝑛)) 
R4 O(lg𝑤 + lg 𝑑) O(lg𝑤 + lg 𝑑) O(𝑐 ⋅ lg𝑤 + ℎ ⋅ 𝑑) O(𝑤(𝑝 + 𝑛 ⋅ 𝑑)) 

V. DISCUSSION AND EXTENSIONS 
A. LMerge Policy Choices 

Under the basic requirement of LMerge maintaining 
“compatible” output, we can implement various policies. For 
example, Algorithm R3 (Section IV) highlights two locations 
where we are free to choose different policies. In location 1, 
we choose to never output incoming adjust events, instead 
preferring to retain the current output for every unique Vs. We 
issue adjust() elements to ensure that output is compatible 
with inputs only when we process a stable() element. This 
policy limits chattiness of LMerge. Some alternatives include: 
• We can reflect every adjust() element at the output. This 

choice makes LMerge more “chatty”, but allows a listener 
to process such changes earlier if it is interested. 

• Force LMerge to “follow” a particular input stream, for 
example, the stream with the currently maximum stable() 
timestamp (the leading stream). This choice may be 
appropriate when one stream leads for long periods. 
However, if the leading stream keeps changing, this 
policy can incur significant overhead in re-adjusting 
output. Even in this case, LMerge must track information 
from other inputs to handle the case where the leading 
stream detaches. 

Another point for choosing a different policy is location 2 
in Algorithm R3. When we process the first insert element for 
a particular Vs, we reflect it at the output immediately. While 
this policy ensures that output is maximally responsive, as 
before, we may choose other variants: 
• We can output an insert only if it is produced by the 

leading stream, or the stream with the highest insert() 
timestamp or the maximum number of unfrozen elements. 

• We can avoid sending an element as output until it gets 
half frozen on some input stream. This policy ensures that 
we never fully remove an element that we place on the 
output, at the expense of higher latency. 

A hybrid choice may be to wait until some fraction of the 
input streams have produced an element for each Vs, before 
sending it to the output. If input streams are physically 
different, this policy may reduce the probability of producing 
spurious output that later needs to be fully deleted. 



B. Handling Joining and Leaving Input Streams 
When a stream leaves LMerge, it is simply marked as 

“leaving”. Eventually, our algorithms guarantee that it will no 
longer be considered during LMerge. A joining stream 
provides a timestamp t such that it is guaranteed to produce 
the correct TDB for every point starting from t (i.e., every 
event in the TDB with Ve ≥ t). We can mark the stream as 
“joined” as soon as MaxStable reaches t, since from this point 
forwards, LMerge can tolerate the simultaneous failure or 
removal of all the other streams. 

C. Handling Missing Elements in Input Streams 
If we require that LMerge output contains an element if 

some input stream reports it, LMerge is forced to progress 
(issue stable() elements) only as fast as the most slowly 
progressing input stream. (Consider an element that is missing 
from every stream other than the slowest-progressing one.) 
This option is highly undesirable in practice. 

Instead, Algorithms R0, R1, and R2 output elements 
missing in some stream 𝑆  as long as some other stream 
delivers the missing elements to LMerge before 𝑆 delivers an 
element with higher Vs. These algorithms optimistically track 
only the latest Vs across all inputs (MaxVs) in order to 
minimize state and achieve high performance. Algorithms R3 
and R4 output an element y as long as the stream that 
increases MaxStable beyond y.Vs produces element y. 

D. Feedback to Signal Progress 
An interesting application of LMerge is combining several 

alternative, equivalent query plans that behave differently 
under different conditions, such as data-value distributions or 
arrival rates. Alternatively, we may be executing identical 
plans on machines with varying resources such as CPU. 
LMerge can select results from whichever plan is producing 
output the soonest at a given point in time. Under such 
conditions, much of the work of the other plans is wasted, as 
LMerge ignores their outputs. 

We can modify LMerge to signal its input plans that 
elements before a certain time t are no longer of interest. This 
modification permits slower plans to avoid sending such 
elements. Particular operators may also be able to avoid 
performing unnecessary computations and purge state to save 
memory, though they must retain enough information to 
potentially produce output after time t, if required. We have 
implemented feedback signaling for LMerge (cf. Section VI-
E). Operators in the slower plan can exploit feedback signal 
locally, and optionally propagate the signal further upstream 
in the plan. This capability allows a slower plan to “fast-
forward”, possibly becoming the leading stream. Note that 
more general exploitation of such signals is possible, along the 
lines of feedback punctuation [8]. 

VI. EVALUATION 
We approach the evaluation of LMerge in three phases: 

1) We demonstrate the behavior of LMerge over streams 
generated using query fragments over disordered input. 
Further, we compare the algorithm variants, if the 
requisite stream properties hold. 

2) We compare the strategy of enforcing stream properties 
and using simpler versions of LMerge, against directly 
using a more general version of LMerge. 

3) We apply LMerge in several motivating scenarios: fast 
availability, network-congestion masking, and dynamic 
plan selection with feedback signals. 

A. Setup and Implementation 
We implement our algorithms in StreamInsight. We 

perform our experiments on an 8-core machine with two 
2.33GHz processors and 16GB main memory running 
Windows Server 2008 R2. We implemented and evaluated all 
our proposed LMerge variants. LMR0, LMR1, LMR2, LMR3+, 
and LMR4 correspond to operators that implement the 
algorithms for cases R0, R1, R2, R3, and R4 respectively, 
from Section IV. We also evaluate a simpler algorithm for 
case R3, called LMR3-, in which events from each input stream 
are held in a separate index, with another index for output 
events. The output index is required: (1) to check whether an 
element was previously output; (2) to perform adjustments to 
prior output before propagating a stable() element. While 
simpler to implement, it duplicates event information across 
input streams and requires multiple tree lookups at runtime. 

We also evaluated the combination of LMerge with a 
Cleanse operator (called C+LM) to enforce stream properties 
a priori (see Section VI-D). Finally, we added support in 
StreamInsight for feedback signals (Sections I, V, and VI-E). 
B. Metrics and Workloads 

We track: (1) Throughput, which measures the number of 
events produced at the output per second; (2) Memory, which 
measures the main memory used by an operator, including 
elements, payloads, and index structures; and (3) Output Size, 
which measures the number of adjust() elements produced. 
This last metric quantifies the chattiness of the stream. 

Our evaluation mostly used synthetically generated 
datasets 2  from our commercial-grade test-stream generator 
[26]. Each event has two fields, an integer in the interval [0, 
400] and a random 1000-byte string. The event generator 
produces between 200K and 400K elements, based on a set of 
supplied parameters (see [27] for more details), including: 
• StableFreq: The probability that an element in the stream 

is a stable() element. The default value is 1%. 
• EventDuration: The lifetime of each event. By default, 

lifetime is set so that, on average, around 10K elements 
are “active” (contributing to output) at any point in time. 

• MaxGap: The maximum application-time gap between 
consecutive elements. The gap is chosen randomly from 
the range [0, MaxGap]. We set MaxGap to 20 seconds. 

• Disorder: The fraction of disordered elements. Disorder 
is created by moving 𝑉𝑠 values back by some amount. The 
default value for this parameter is 20%. 

Our generated streams have disorder but no adjust() 
elements. Such elements are naturally produced during query 
processing, and hence we use sub-queries over the stream-
                                                 
2  We also tested LMerge with real stock ticker data mined from Yahoo! 
Finance (with no problem). However, the synthetic data generator gave us 
finer control over stream properties of interest. 



generator output in order to generate them, such as an 
aggregate (count) followed by a lifetime modification. 

C. Investigating LMerge Behavior 
We investigate the performance of the different LMerge 
algorithms as we vary different stream characteristics. 

1) LMerge over Ordered Streams   Using an ordered stream 
without adjust() elements, we can compare all the variants of 
LMerge. Figure 2 shows the memory usage of LMerge, as we 
increase the number of input streams. We see that LMR0 and 
LMR1 have negligible memory usage. LMR2 is slightly higher 
as it maintains all events with the current highest Vs. (The 
lines in Figure 2 for LMR0, LMR1, and LMR2 overlap as they 
perform similarly.) LMR3+ incurs slightly more memory than 
the simpler versions, but the cost is almost independent of the 
number of inputs, as it shares event payloads across inputs. In 
contrast, memory usage of LMR3- degrades linearly with the 
number of input streams, due to duplication across streams. 
We compare the algorithms in terms of throughput in Figure 
3. As expected, the simpler algorithms provide higher 
throughput. Between LMR3- and LMR3+, we see that LMR3+ 
does much better than LMR3- due to the optimized data 
structure and algorithm. 

2) Output Size, Increasing Disorder   We introduce disorder 
in the input stream, and feed it into a sub-query that generates 
many adjust() elements. Figure 4 compares the output of 
LMerge to the output without LMerge, as we increase the 
percentage of disorder. We see that when disorder increases, 
the number of adjusts increases significantly at the output. 
However, our specific output policy controls chattiness by 
limiting the production of intermediate adjusts that may not be 
present in the final TDB. 
3) Throughput, Increasing Stream Lag   We also 
experimented with introducing lag (or delay) in some of the 
input streams to LMerge. Our technical report [27] has the 
details; briefly, as lag increases, LMerge throughput improves 
since it can directly drop tuples and thus hide the lag in the 
slower streams (We also experiment further with this 
phenomenon in Section VI-E.) 
4) Memory and Throughput, Varying StableFreq   We 
measure the effect of StableFreq on throughput and memory 
of LMerge. As we increase StableFreq from 0.001% to 1%, 
we see in Figure 5 (left) that memory usage decreases as 
expected, due to more frequent cleanup. On the other hand, 
the throughput for LMR3+ and LMR4 decreases as shown in 
Figure 5 (right), as we need to perform more frequent 

compatibility checks. Note that the throughput for simpler 
schemes is not affected since they have significantly simpler 
algorithms for stable() elements. 
D. Enforcing Stream Properties 

Since LMerge algorithms are significantly simplified for 
special cases where the stream satisfies specific properties, we 
investigate enforcing these properties before feeding streams 
to the simpler versions of LMerge tailored to such properties. 
Timestamp ordering is enforced by a special Cleanse operator, 
which accepts a disordered stream and buffers elements until a 
stable() element is received, at which point it releases (in 
timestamp order) all fully frozen elements. We enforce 
ordering by placing a Cleanse at each input to LMR1, which 
has constant memory requirement and is very efficient; this 
scheme is referred to as C+LMR1. We use an input stream with 
50% disorder, and pass it through an aggregate operator. The 
output of this query fragment contains 36% adjust() elements, 
with a 0.1% chance of seeing a stable() element. 

1) Memory Consumption   As we increase the number of 
inputs to LMerge from 2 to 10, we see from Figure 6 (left) 
that our optimized LMR3+ algorithm performs best, and its 
memory usage is almost independent of the number of input 
streams. However, the Cleanse solution (C+LMR1) suffers 
linear degradation due to the overhead of ordering each stream 
separately – the overhead is nearly 7X more than LMR3+ for 
10 inputs. We also see that LMR3- degrades linearly with 
number of inputs due to no sharing of payloads across inputs. 
2) Throughput   Figure 6 (right) depicts throughput as we 
increase the number of input streams. Our solution (LMR3+) 
outperforms the Cleanse-based solution (C+LMR1). The 
relative improvement increases as we add more inputs because 
C+LMR1 suffers from having to execute several Cleanse 
operators (one for each input) along with an LMerge operator 
(LMR1) for the final merge. As before, LMR3- does not 
perform well due to its naïve data structure. 
3) Latency   With C+LMR1, the Cleanse operator buffers 
elements and produces output only when fully frozen. Thus, 
the latency of C+LMR1 will grow with event lifetimes and the 
amount of potential disorder, since in order to maintain strict 
ordering, it needs to hold on to an element until stable() 
crosses Ve. Using LM directly, on the other hand, incurs 
latency in milliseconds (120ms on average for LMR3+). Even 
if event lifetimes and the amount of potential disorder are a 
few seconds, the Cleanse solution will incur orders-of-
magnitude higher latency than using LM directly. 

Fig. 4. Output size, increasing disorder Fig. 2. Memory, in-order input streams Fig. 3. Throughput, in-order streams 



In summary, applying LMerge directly on streams with 
disorder or revisions is superior (for memory, latency, and 
throughput) to ordering streams and doing a simpler merge. 

E. Evaluating LMerge Scenarios 
We next report on experiments that reflect different real-world 
situations where one might apply LMerge in practice.  
1) Handling Bursty Data   We generate four bursty streams 
with 20% disorder, each having an average event rate of 5000 
elements/sec (this rate does not result in CPU overload under 
normal conditions). Bursty streams may exist in real 
applications because of CPU load and resource variations on 
machines, garbage collection, scheduling vagaries, or queue 
buildup between operators. We model burstiness by inserting 
random delays between tuples in a stream with a small 
probability (between 0.3 and 0.5%). The delays are chosen 
from a truncated normal distribution with mean 20 and 
standard deviation 5. Since elements arrive from sources at a 
constant rate, such delays result in temporary event build-up 
in queues, and cause subsequent compensating spikes in 
throughput. Figure 7 shows one of the input streams, along 
with the output of LMerge. Each stream is bursty, but LMerge 
smooths out the burstiness because it chooses to follow the 
best input at any given instant. Note that with many inputs to 
LMerge, the probability of all inputs having a burst at the 
same instant is greatly reduced. 
2) Masking Network Congestion   We use the same streams 
as before, presented at a rate of 5000 elements/sec. We model 
network congestion at different points in time in each of three 
streams, by introducing normally distributed delays between 
elements during the congested period. Network congestion 
results in temporary low throughput, followed by a spike 
when conditions return back to normal. Figure 8 shows the 
input streams as well as the output of LMerge. We see that the 
output of LMerge is unaffected by such congestion, as it is 
able to produce output as long as at least one input is not 
lagging. Note that at around 18 seconds, two inputs are 

simultaneously congested, but LMerge is unaffected as 
expected. Thus, we can mask such congestion using LMerge. 
3) Dynamic Plan Switching with Fast-Forward   We 
investigate the advantage of using LMerge for workload-
based plan switching (see Sections I and V-D). We instantiate 
two alternate plans for the same query, both of which perform 
a user-defined selection function (UDF) on the data. The first 
plan (UDF0) is expensive for small values of X (a payload 
field), while the second plan (UDF1) is expensive for large 
values of X. We feed a stream with 200K elements, where 
alternating sequences (batches) of events have low and high 
values of X. The batch size is varied randomly between 10K 
and 30K elements, so the “optimal” plan switches 9 times 
during execution. We show the performance of these queries 
individually (without LMerge) in Figure 9, where UDF0 and 
UDF1 finish in 176 and 163 seconds respectively. We next 
place LMerge (LMR3+) above the two queries. One may expect 
LMerge to benefit from plan switching, but adding LMerge is 
not very useful because, while it tracks the faster input at any 
point, the total work performed in both queries is identical. 
Thus, the total processing time for LMerge is ~163 seconds. 

We then let LMerge send feedback signals as described in 
Section V-D, to fast-forward the slower plan. This scheme, 
called LM+Feedback, allows LMerge to follow the faster 
plan, at the same time fast-forwarding the slower plan so that 
it can be immediately tracked by LMerge when it becomes 
optimal in the future. Overall, LM+Feedback completes 
execution in around 34 seconds, and is nearly 5X faster than 
LMR3+ without feedback. 

VII. RELATED WORK 
Stream and Temporal Models  A wide range of stream 

and temporal models have been proposed in research and 
adopted by industry. The model of STREAM [13], one of the 
early DSMSs, is adopted in Oracle CEP [25]. Aurora/Borealis 
[12] was commercialized as StreamBase. The CEDR project 
[4] proposed an interval-based algebra, motivated by early 

Fig. 5. Memory and throughput, increasing StableFreq Fig. 6. Memory and throughput, enforcing stream properties 

Fig. 9. Plan switching with fast-forward Fig. 7. Handling bursty streams Fig. 8. Masking network congestion 



research on temporal databases [21], and forms the basis of 
StreamInsight [22]. NiagaraST [5] uses an interval-based 
model for windows, but single timestamps on events. In Nile 
[11], positive tuples begin new events while negative tuples 
expire older events. In Sections II and III, we presented the 
theory of LMerge as a general operator that can be used with 
any of these stream models. We discuss open and close 
elements (that are similar to I-streams and D-streams or 
positive and negative tuples) in Example 2. Our specific 
algorithms and implementations in this paper adopt the 
interval-based temporal model [4, 5, 21, 22], although other 
models can be handled with modifications. 

High Availability   High-availability in stream processing 
systems is a well-studied topic. Most techniques for high 
availability assume a primary copy of the query, and a backup 
copy that takes over when the primary fails. Hwang et al. [15] 
give a good overview of high availability schemes proposed 
for streams. Hwang et al. [9] propose a high-availability 
solution for wide-area networks that uses a duplicate-
elimination operator for insert-only disordered streams. This 
algorithm can be classified as falling between R2 and R3 in 
our classification. In contrast, we focus on LMerge as a 
general primitive over a broad class of real-world stream 
models, propose a suite of algorithms for LMerge, leverage 
stream properties and feedback signals for efficiency, and 
examine LMerge in scenarios beyond high availability. 

Dynamic Plan Switching   Yang et al. [18] present an 
approach to switching between plans for a running stream 
query, which follows up on seminal work by Zhu et al. [20]. 
Their approach determines a split time, where the old plan 
delivers all results before that time and the new plan after. 
Such a cut-over involves a certain determinism in streams that 
is hard to satisfy under disorder or element modifications.  
LMerge, in contrast, can cope with both queries running at 
once and producing distinct physical streams. Heinz et al. [19] 
use this cut-over technique to switch among plans when input 
statistics change significantly. We note that LMerge provides 
a similar capability by running the alternative plans together 
with feedback signaling to suppress work on slower plans. 

Eddies [16] allows the choice of query plan to be chosen on 
a fine per-tuple granularity, but does not target temporal 
streams. LMerge, on the other hand, is a general operator that 
allows plan switching as one of its applications. Feedback 
signals sent from LMerge to fast-forward slow plans can be 
viewed as a novel application of feedback punctuation [8], 
which has been proposed and used in a different context. 

VIII. CONCLUSIONS 
We introduced the Logical Merge (LMerge) operator to 

combine equivalent input streams that are physically divergent 
and fallible. Our LMerge definition applies to any DSMS in 
which a stream represents (implicitly or explicitly) a temporal 
database. We discussed how input stream properties can affect 
LMerge, and presented a range of algorithms that deal with 
progressively more general cases. We implemented our 
LMerge variants as operators in Microsoft StreamInsight and 
showed how to leverage stream properties to choose the right 

variant for a given query. We proposed a new technique to 
fast-forward slower inputs to LMerge using feedback signals. 

A detailed evaluation demonstrated the differences between 
the LMerge variants in terms of throughput and memory, as 
well as their response to various stream characteristics. We 
also found that it is beneficial to use a general LMerge instead 
of explicitly enforcing the stricter input properties that the 
more constrained LMerge variants require. We demonstrated 
the utility of LMerge for scenarios with bursty input, where 
LMerge can smooth out variability. We also used LMerge for 
fast availability and found that using feedback signals to fast-
forward slower plans can significantly improve throughput. 
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