
Physically Independent Stream Merging
Badrish Chandramouli† David Maier‡ Jonathan Goldstein*

†Microsoft Research, Redmond, USA ‡Portland State University, Portland, USA *Microsoft Corporation, Redmond, USA
badrishc@microsoft.com, maier@cs.pdx.edu, jongold@microsoft.com

Abstract—A facility for merging equivalent data streams can
support multiple capabilities in a data stream management system
(DSMS), such as query-plan switching and high availability. One
can logically view a data stream as a temporal table of events,
each associated with a lifetime (time interval) over which the
event contributes to output. In many applications, the “same”
logical stream may present itself physically in multiple physical
forms, for example, due to disorder arising in transmission or
from combining multiple sources; and modifications of earlier
events. Merging such streams correctly is challenging when the
streams may differ physically in timing, order, and composition.
This paper introduces a new stream operator called Logical
Merge (LMerge) that takes multiple logically consistent streams
as input and outputs a single stream that is compatible with all of
them. LMerge can handle the dynamic attachment and
detachment of input streams. We present a range of algorithms
for LMerge that can exploit compile-time stream properties for
efficiency. Experiments with StreamInsight, a commercial
DSMS, show that LMerge is sometimes orders-of-magnitude
more efficient than enforcing determinism on inputs, and that
there is benefit to using specialized algorithms when stream
variability is limited. We also show that LMerge and its
extensions can provide performance benefits in several real-
world applications.

I. INTRODUCTION
A data stream management system (DSMS) [6, 11, 12, 13,

22, 23, 25] supports long-running continuous queries (CQs) in
real time. Unlike a traditional database, DSMS CQs can last
for weeks. Tasks such as recovery, re-optimization, and load
balancing are easier when individual queries are short lived
(as in a transaction-processing system): re-run a failed query
from scratch, re-plan it between executions, launch new
queries on a less-loaded node. However, providing these
capabilities on CQs while they continue to run is harder. We
find that adding support in a DSMS for many such features is
considerably simplified by introducing an operator – called
LMerge (for logical merge) – to combine compatible versions
of input event streams into a single equivalent output stream.
1) High Availability: Consider providing high availability
(HA) [9, 15] for a CQ that involves a window of, say, 24-hour
duration. Simply restarting the CQ on failure requires a day
for it to “spin-up” and start delivering correct answers.
Avoiding such an outage means having redundant copies of
the CQ running and being able to obtain results from
whichever one or ones have not failed (and to connect up a
new copy of the query once it has spun up). We can achieve
transparent resilience against 𝑛 − 1 simultaneous failures by
instantiating 𝑛 copies of a CQ (or CQ fragment) on different
machines, feeding into an LMerge operator located at the
consumer. LMerge provides a continuous stream of output

events as long as at least one copy of the CQ is active, and
allows input streams to be attached or detached as necessary.
2) Fast Availability: There is a need for “fast availability” for
queries – obtaining output results with minimum latency.
Using a carefully designed LMerge to combine (1) identical
copies of a CQ running on machines with independent
processor or network resources; or (2) different but
semantically identical plans that respond differently to shifts
in data distributions, allows us to report answers from
whichever copy is performing better at a given instant.
LMerge can also hide burstiness, temporary performance
degradations, and variability (e.g., due to network or CPU
contention) in individual streams. Interestingly, if we need to
run multiple copies of a CQ anyway for HA, we may choose
to run different plans to get faster availability for “free”.
3) Query Jumpstart: Another use of LMerge is to aid the
process of “jumpstarting” query execution. Stream queries
often hold long-lived events as part of their internal states. For
example, a join operator might hold events for the current
window (of days or weeks). If we spin up such a query using
only current events in the real-time stream, it may take an
extended period for the query to rebuild its state (or even be
impossible to do so). We may instead wish to “seed” query
state using, for example, checkpoint information stored on
disk or provided by a running copy of the query. LMerge can
be used to seamlessly merge such state with real-time streams
in order to get the new query operational sooner.
4) Query Cutover: LMerge is also useful in “cutting over”
from one query instance to a newly instantiated one with a
possibly different plan, without the user or application being
explicitly aware of such a switch. This capability can aid
dynamic query optimization [14] and is particularly attractive
in Cloud-based multi-tenant execution, where we may wish to
move CQs frequently based on SLAs and current workload
conditions. We can place an LMerge operator (that allows us
to attach and detach input streams dynamically) between the
CQ and the user; making migration transparent to users as we
attach a new CQ and later detach the old CQ from LMerge.

A. Challenges
LMerge is trivial if all the input streams present the same
events in exactly the same order – just keep a count on each
input, and let the output follow the stream with the largest
count. In real DSMSs, however, the problem is not so simple.
 Example 1 (DHCP Leases): Consider an example
application for an ISP that tracks and reports DHCP leases of
IP addresses to end users. Assume that DHCP allocations are
tracked by two independent CQs on separate nodes, based on
logs received from multiple distributed servers, either

periodically or in real time. Based on the actual query plan,
and the content and timing of data received, the two CQ
outputs may appear physically different. Table I depicts leases
for users A and B, as tracked by two streams Phy1 and Phy2.
Here, alloc(userId, start, end) allocates a new lease to userId,
for a duration from start to end, and modify(userId, start,
newEnd) modifies – due to renewal or early termination – a
current DHCP lease for userId to have an end time of newEnd.
Rows of this table represent increasing instants of system time.

TABLE I
TRACKING DHCP LEASES

Phy1 and Phy2 are logically equivalent, i.e., they report the
same effective or eventual lease summary for users A and B,
which is shown to the right in Table I. However, the streams
are physically different, due to several reasons:
 1) Disorder: Phy1 reports a lease for user B followed by
user A, whereas Phy2 first reports a lease for user A. Disorder
is common in real streams [4, 6, 7, 28]; it may occur at the
source, due to network congestion, transient router failures, or
when combining events from multiple (possibly in-order)
sources into a single output. For example, data for users A and
B may have been collected at different servers before being
sent to the two nodes hosting CQs for Phy1 and Phy2.
 2) Revisions: Phy1 directly reports the exact lease [6, 12)
for A, whereas Phy2 reports a lease [6, 7) that it later revises
to [6, 12). This situation can arise because the logs for user A
may have been merged (or batched) before being sent to Phy1,
whereas Phy2 happened to receive the individual allocations
for user A. Revisions are common in practice due to noise,
data-entry errors, and when improving accuracy during online
aggregation [24]. Further, some CQs may not wish to incur
the latency of waiting for a DHCP lease to end before
reporting it, and may instead separately report the start (as I-
streams [13], positive tuples [11], or inserts [4, 12, 22]), and
later revise the report to include the correct end (as D-streams
[13], negative tuples [11], or revisions/retractions [4, 10, 22]).
 3) Processing Variations: If the sources are equivalent CQs
with different physical plans (e.g., using different operators or
join orderings), they may produce different outputs streams
that eventually arrive at the same DHCP lease summary.
Phy1 and Phy2 show that a simple duplicate-eliminating set
union cannot be used to merge equivalent streams. LMerge
needs to be physically independent, i.e., unaffected by streams
being physically different, as long as they are logically
equivalent. Further, simply choosing to follow one of the
input streams can prevent the timely output of events that
another input stream has already produced, and can affect
correctness if the chosen input fails. In order to be useful for
our applications, LMerge should address additional challenges:

1) Avoiding Redundant Work: The presence of LMerge
usually involves the execution of redundant CQs at its inputs.
One input might lag behind the others during periods when it
is suboptimal or when its node suffers resource contention. If
such redundant work can be avoided, then slower plan can
catch up with the others.
2) Handling Failures: Individual input streams can detach or
re-attach to LMerge during runtime, e.g., due to machine
failures or query-plan migration. The addition and removal of
streams must be carried out carefully to avoid repeating or
omitting events. Interestingly, the trivial counting merge
outlined earlier does not work correctly when failures exist.
3) Other Challenges: Progress markers (such as heartbeats [6]
and punctuation [1, 2, 22]) complicate the merging problem –
we cannot propagate them without careful checks. Further, the
volume of events output by LMerge needs to be carefully
controlled. (Section II discusses both these issues in detail.)
Given the non-triviality of merging equivalent streams, one
might consider enforcing order or applying revisions before
feeding streams to LMerge. Unfortunately, this solution can
affect throughput, memory and latency, sometimes by orders-
of-magnitude. That said, a fully general LMerge can be
demanding of CPU and memory. Hence, we wish to leverage
compile-time stream properties of CQs to allow optimized
LMerge algorithms. For example, a data source might
guarantee in-order events. If a stream with non-decreasing
timestamps passes through an aggregate (e.g., counting DHCP
leases), we can infer that the output has strictly increasing
timestamps. If the aggregation is grouped (e.g., performed for
each user), we can infer that (userId, timestamp) is unique in
the output stream. Static inference of such properties can
significantly reduce the complexity and overhead of LMerge.

B. Contributions of this Paper
• We characterize LMerge in a general way that applies to

many DSMSs, dealing with variations in stream
semantics and representation. We formalize the
requirements for correct LMerge, and propose output
policies that meet those requirements (Secs. II & III).

• We present and analyze efficient algorithms for LMerge
under different input-stream properties, and discuss how
such properties may be derived from CQ plans. We also
discuss policy choices for LMerge, handling missing
events, and attaching or detaching streams (Secs. IV & V).

• We implemented our LMerge algorithms in Microsoft
StreamInsight [22] and measured their performance
relative to different stream characteristics. We further
show that a more general LMerge algorithm can have
orders-of-magnitude better memory, latency, and
throughput features than the strategy of enforcing input
stream properties and using a simpler LMerge (Sec. VI).

• LMerge can easily support DSMS capabilities such as
high availability, fast availability, query jumpstart, and
query cutover. We show how LMerge can smoothly
switch between streams that experience temporary
congestion, to provide nearly steady throughput. We also
show how LMerge can hide stream-rate variability, which

Phy1 Phy2
 alloc(A, 6, 7)
 alloc(B, 8, 15)

alloc(B, 8, ∞) modify(A,6,12)
alloc(A, 6, 12)

modify(B, 8, 10) modify(B, 8, 10)
Two Streams Tracking DHCP Leases

UserId Lease
A [6, 12)
B [8, 10)

Effective DHCP
Lease Summary

may arise due to load fluctuations, scheduling differences,
and queuing delays (Sec. VI).

• We introduce feedback signals into LMerge, and show
how LMerge can leverage such signals to “fast-forward”
slower inputs and avoid unneeded work. We find that
fast-forward with feedback can provide several times
higher throughput than either LMerge without feedback,
or running just a single CQ plan (Secs. V & VI).

II. STREAM FORMALISM
We view a stream as a representation of a (potentially

unbounded) temporal database (TDB) that is presented
incrementally. The TDB may take different forms in different
stream systems. One example is a sequence of snapshots of a
relational table; a second is a collection of 〈tuple, timestamp〉
pairs. For our algorithms, the TDB is a multiset of events,
each of which consists of relational tuple 𝑝 (which we term
the payload), along with an associated validity interval
denoted by a validity start time 𝑉𝑠 and a validity end time 𝑉𝑒,
which define a half-open interval [𝑉𝑠,𝑉𝑒). 𝑉𝑒 is permitted to be
+∞. One can think of 𝑉𝑠 as representing the event’s timestamp,
while the validity interval is the period of time over which the
event is active and contributes to output.

A stream is a potentially unbounded sequence of elements
(some of which may resemble TDB events). While the kinds
of elements and their ordering constraints can vary between
stream systems, we assume that any finite prefix of a stream
can be reconstituted into a TDB instance [5]. Let 𝑆 = 𝑒1, 𝑒2, …
be a stream, with 𝑆[𝑖] being the prefix 𝑒1, … , 𝑒𝑖 . We posit a
reconstitution function 𝑡𝑑𝑏(𝑆, 𝑖) that produces the TDB
instance corresponding to 𝑆[𝑖]0F

1.
It would be useful to have a version 𝑡𝑑𝑏(𝑆) of the

reconstitution function that interprets the whole of 𝑆 . One
approach to defining 𝑡𝑑𝑏(𝑆) is as the limit of 𝑡𝑑𝑏(𝑆, 1),
𝑡𝑑𝑏(𝑆, 2), …. If 𝑆 behaves well – say it satisfies the mono-
tonicity property 𝑡𝑑𝑏(𝑆, 𝑖) ⊆ 𝑡𝑑𝑏(𝑆, 𝑖 + 1) – then this limit is
well defined. But there can be pathological cases where 𝑆
does not converge to a particular TDB instance. For example,
if 𝑆 can contain a stream element that cancels a previous
stream element (in the sense of removing it from the TDB
rather than curtailing its lifetime), then a stream such as
 e, cancel(e), e, cancel(e), e, cancel(e), e, cancel(e), …
has no definite limit. For the specific cases we consider later,
𝑡𝑑𝑏(𝑆) is guaranteed to exist, though sometimes via stream
properties that are weaker than monotonicity.

In most DSMSs, there are multiple stream instances that
represent the same TDB (just as there can be many physical
structures that represent a given logical table in a database).
For example, if each stream element carries an explicit
timestamp, then it can happen that 𝑡𝑑𝑏(𝑆, 𝑖) = 𝑡𝑑𝑏(𝑈, 𝑖) even
though 𝑆[𝑖] and 𝑈[𝑖] are distinct prefixes, because of different
orderings. If 𝑡𝑑𝑏() removes duplicates, then it is possible that
𝑡𝑑𝑏(𝑆, 𝑖) = 𝑡𝑑𝑏(𝑈, 𝑗) for 𝑖 ≠ 𝑗. We say that prefixes 𝑆[𝑖] and
𝑈[𝑗] are equivalent if 𝑡𝑑𝑏(𝑆, 𝑖) = 𝑡𝑑𝑏(𝑈, 𝑗) , written 𝑆[𝑖] ≡

1 In some DSMSs, events are assumed to arrive in batches [17], so it may
only make sense to apply 𝑡𝑑𝑏() to selected prefixes of 𝑆.

𝑈[𝑗] . Streams 𝑆 and 𝑈 are equivalent, written 𝑆 ≡ 𝑈, if
𝑡𝑑𝑏(𝑆) and 𝑡𝑑𝑏(𝑈) are well defined and equal. The range of
possible descriptions of the same TDB in a given DSMS
depends both on what kinds of elements are permitted in a
stream and on the constraints (or lack thereof) on the order of
elements. For example, there can be stream elements that
serve to “adjust” a previously seen event, such as by altering
its lifetime. As an example of an ordering constraint, most
stream systems support some form of punctuations that limit
stream elements that can appear later. We next give examples
of two DSMS models in terms of elements supported.

Example 2 (Open and Close Elements): Consider a
stream with two kinds of stream elements, open(𝑝,𝑉𝑠) and
close(𝑝,𝑉𝑒), where open() indicates the start time of an event
with payload 𝑝 and close() indicates the end of the event. (We
assume here that there can only be one event with payload 𝑝
active at a time.) Open and close elements roughly correspond
to I-Streams and D-Streams in Oracle CEP [25], or positive
and negative tuples in Nile [11]. The following stream
prefixes are equivalent, each representing the TDB:

p Vs Ve
A 1 4
B 2 5
C 3 ∞

S[5]: open(A, 1), open(B, 2), open(C, 3),
 close(A, 4), close(B, 5)
U[5]: open(A, 1), close(A, 4), open(B, 2),
 close(B, 5), open(C, 3)
W[6]: open(B, 2), close(B, 6), open(A, 1),
 open(C, 3), close(A, 4), close(B, 5)

Note that close(B, 5) in stream prefix W[6] serves to
revise the previous close(B, 6).

Example 3 (StreamInsight): Microsoft StreamInsight, the
basis for our detailed algorithms (Section IV) and imple-
mentation (Section VI), has three kinds of elements:
• insert(𝑝,𝑉𝑠,𝑉𝑒): Adds an event to the TDB with payload 𝑝

whose lifetime is the interval [𝑉𝑠,𝑉𝑒). 𝑉𝑒 can be +∞.
• adjust(𝑝,𝑉𝑠,𝑉𝑜𝑙𝑑 ,𝑉𝑒): Change the event 〈𝑝,𝑉𝑠,𝑉𝑜𝑙𝑑〉 to be

〈𝑝,𝑉𝑠,𝑉𝑒〉 . If 𝑉𝑒 = 𝑉𝑠 , the event 〈𝑝,𝑉𝑠,𝑉𝑜𝑙𝑑〉 is removed.
For example, the sequence of elements: insert(A, 6,
20), adjust(A, 6, 20, 30), adjust(A, 6, 30, 25) is
equivalent to the single element: insert(A, 6, 25).

• stable(𝑉𝑐): A statement that the portion of the TDB before
time 𝑉𝑐 is stable: There can be no future insert(𝑝,𝑉𝑠,𝑉𝑒)
element with 𝑉𝑠 < 𝑉𝑐, nor can there be an adjust element
with 𝑉𝑜𝑙𝑑 < 𝑉𝑐 or 𝑉𝑒 < 𝑉𝑐.

The TDB model for StreamInsight is a collection of events
of the form 〈𝑝,𝑉𝑠,𝑉𝑒〉.

TABLE II
PHYSICAL AND LOGICAL STREAMS IN STREAMINSIGHT

Phy1 Phy2
 ins(A, 6, 7)
 ins(B, 8, 15)

ins(B, 8, ∞) adj(A,6,7, 12)
ins(A, 6, 12)

adj(B, 8, ∞, 10) adj(B, 8, 15, 10)
stable(11)
stable(∞) stable(∞)

Two Physical Streams

 𝒑
Payload

[𝑽𝒔,𝑽𝒆)
Interval

A [6, 12)
B [8, 10)

Equivalent Logical TDB

Abbreviations Used
 ins insert
 adj adjust

Table II above shows the two physical streams from Example
1 (DHCP leases), and the corresponding TDB. As before, the
rows of this table represent increasing instants of system time.

Additional Challenges with LMerge
1) Punctuation: LMerge algorithms must be careful when
propagating progress markers (punctuation), so that they can
stay consistent with future updates on the input streams. We
use Table II to illustrate that this problem is non-trivial.
Assume that LMerge has chosen to only propagate elements
insert(A, 6, 7) and insert(B, 8, 15) from Phy2 to its output.
When it later sees stable(11) from stream Phy1, this element
cannot immediately be propagated to the output because: (1) it
would “freeze” payload A to have lifetime of [6, 7) which
cannot later be adjusted to end at 12; (2) it would freeze all
end times earlier than 11, which would prevent later
adjustment of the end time of payload B down to 10.
2) Stream Chattiness: LMerge needs to select output policies
that balance responsiveness against “chattiness” – the need to
issue additional output elements to modify previous elements.

Example 4 (Stream Chattiness): Table III shows two
input streams, In1 and In2, and three alternative output
streams for LMerge. Out1 is the most aggressive, propagating
every change from the inputs as it is seen. Out2 is more
conservative, delaying elements until it knows they are stable.
It thus produces fewer elements than Out1, but produces them
later, in general. Out3 is between the two. It outputs the first
element it sees with a given payload and start, but saves any
modifications until they are known to be stable.

TABLE III
CHATTINESS: INPUT AND OUTPUT STREAMS

In1 In2 Out1 Out2 Out3
ins(A, 6, 10) ins(A, 6, 10) ins(A, 6, 10)

 ins(A, 6, 12) adj(A,6,10,12)
 ins(B, 7, 14) ins(B, 7, 14) ins(B, 7, 14)

adj(A,6,10,15) adj(A,6,12,15)
 adj(A,6,12,15)
 stable(16) stable(16) ins(A, 6, 15)

ins(B, 7, 14)
stable(16)

adj(A,6,10,15)
stable(16)

III. THEORY OF LOGICAL MERGE

A. Definition of Logical Merge
If input streams never fail, the definition of Logical Merge

is straightforward. It takes a set of equivalent input streams
𝐼1, … , 𝐼𝑛 and produces an equivalent output stream 𝑂. That is,
𝐼1 ≡ ⋯ ≡ 𝐼𝑛 ≡ 𝑂. In practice, however, input streams can fail
(or detach), so different inputs will not be equivalent. We
adopt the weaker notion of mutual consistency for input
streams, which intuitively means there is some complete
“reference stream” of which each input represents a portion.
We want to express this condition in terms of stream prefixes,
since that is all we have to work with at any finite point in
time. Formally, stream prefixes {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]} are
mutually consistent if there exist finite sequences 𝐸𝑖 and 𝐹𝑖 ,
1 ≤ 𝑖 ≤ 𝑛 such that 𝐸1: 𝐼1[𝑘1]:𝐹1 ≡ ⋯ ≡ 𝐸𝑖: 𝐼𝑖[𝑘𝑖]:𝐹𝑖 ≡ ⋯ ≡
𝐸𝑛: 𝐼𝑛[𝑘𝑛]:𝐹𝑛. Here, 𝐴:𝐵 denotes the concatenation of 𝐴 with

𝐵. We say {𝐼1, … , 𝐼𝑛} are mutually consistent if all finite
prefixes of them are mutually consistent. Stream 𝑂 represents
the Logical Merge (LMerge) of mutually consistent streams
{𝐼1, … , 𝐼𝑛} if {𝐼1, , … , 𝐼𝑛,𝑂} are mutually consistent without
extending 𝑂, and that 𝑂 is minimal. In other words, there is no
other mutually consistent 𝑂′ with 𝑡𝑑𝑏(𝑂′) ⊂ 𝑡𝑑𝑏(𝑂). For
simplicity in the sequel, we assume that all inputs start at the
same point (the 𝐸𝑖’s are empty). While this assumption may
not hold in practice, we can treat an input stream that starts
late as having a consistent prefix that was skipped over.

The LMerge definition above is abstract – in terms of
mutual consistency of entire streams, not prefixes. However,
while we usually wish to propagate inputs to the output
eagerly, we need to also ensure that, at any given point in time,
the output is able to follow future additions to the inputs. Thus,
we need to ensure that the output can “track” any additional
elements that show up on the inputs. We say that output-
stream prefix 𝑂[𝑗] is compatible with input-stream prefix 𝐼[𝑘]
if, for any extension 𝐼[𝑘]:𝐸 of the input prefix, there exists an
extension 𝑂[𝑗]:𝐹 of the output sequence that is equivalent to
it. Stream prefix 𝑂[𝑗] is compatible with the mutually
consistent set of input stream prefixes 𝑰 = {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]}
if for any set of extensions 𝐸1, … ,𝐸𝑛 that makes
𝐼1[𝑘1]:𝐸1, … , 𝐼𝑛[𝑘𝑛]:𝐸𝑛 equivalent, there is an extension
𝑂[𝑗]:𝐹 of the output sequence that is equivalent to them all.

The specific criteria for guaranteeing compatibility between
inputs and the output of LMerge depends on the kinds of
stream elements allowed and any stream properties guaranteed
on the inputs (or enforced on the output). We assume that the
element kinds and the properties are the same for all inputs
and output, although one could obviously relax this constraint.

A. Stream Properties and Logical Merge
We are interested in properties that a given stream S might

satisfy in terms of element sequences it allows and the state of
its TDB. Such properties will affect how the TDB can evolve,
and may lead to simpler or less space-intensive methods for
LMerge. Examples:
• Stream elements are ordered on some time attribute: In

Example 2, S[5] has this property, but neither U[5] nor
W[6] does. With this property, once time has advanced to
point 𝑡, we know we have seen all payloads with 𝑉𝑠 ≤ 𝑡.
Further, no TDB event with a finite 𝑉𝑒 can get shorter.

• There can be at most one close() element for any open()
element: S[5] and U[5] satisfy this condition, but not
W[6]. With this condition, we know that once we see a
close() element, the corresponding TDB event will be
present forever.

• The pair 〈𝑝,𝑉𝑠〉 is a key for every instance of the TDB:
This property might arise if 𝑝 consisted of a sensor id and
a reading, where no sensor reports more than once per
time period. Such a constraint can simplify matching up
corresponding events across inputs to an LMerge operator.

While such properties might be stipulated by input sources,
they usually are detected through compile-time analysis of CQ
plans (Section IV-D has more details). For example, the last
condition above holds on the output of any aggregate operator,

since the subset of 𝑝 corresponding to the grouping attributes
are in fact a key at any point in time. The formulation of
input-output compatibility for a given situation depends on
what properties hold, as the following example shows.

Example 5 (Stream Properties and Compatibility):
Consider streams with open() and close() elements and the
simple property that each open () has at most one corre-
sponding close(). Then, output 𝑂[𝑗] is compatible with input
𝐼[𝑘] if 𝑂[𝑗] ⊆ 𝐼[𝑘]. In that case, there exists an extension 𝐹
such that 𝑂[𝑗]:𝐹 ≡ 𝐼[𝑘] . So, 𝑂[𝑗]: (𝐹:𝐸) ≡ 𝐼[𝑘]:𝐸 for any
extension 𝐸 of the input. Furthermore, the condition 𝑂[𝑗] ⊆
𝐼[𝑘] is necessary for compatibility. Suppose 𝑂[𝑗] contains
open(𝑝,𝑉𝑠) ∉ 𝐼[𝑘]. Then, there is no way to extend 𝑂[𝑗] to be
equivalent with 𝐼[𝑘]:∅. So, all the open events in 𝑂[𝑗] must
be in 𝐼[𝑘]. If 𝑂[𝑗] contains close(𝑝,𝑉𝑒) ∉ 𝐼[𝑘], there is no way
to extend 𝑂[𝑗] to be equivalent with 𝐼[𝑘]: close (𝑝,𝑉𝑒 + 1),
since 𝑂[𝑗] already contains a close element for 𝑝. In the case
of a set of mutually consistent inputs 𝑰 = {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]},
𝑂[𝑗] is compatible with 𝑰 exactly when 𝑂[𝑗] ⊆ (∪ 𝑰).

B. Property-Based Restrictions and Compatibility
For our prototypes of LMerge, we consider the following

range of restrictions that can be used to improve performance
if they hold. In Section IV, we present algorithms for each
point in this spectrum, and discuss how stream properties can
be derived and used to choose an appropriate algorithm.

R0. There are only insert () and stable () elements with
strictly increasing 𝑉𝑠 times. Thus, the stream has deterministic
order with no duplicate events.

R1. The input steams consist only of insert() and stable()
elements, 𝑉𝑠 is non-decreasing, and the order among elements
with equal 𝑉𝑠 is deterministic.

R2. Same as R1, except order for elements with the same 𝑉𝑠
can differ across inputs. Further, for any stream prefix 𝑆[𝑖],
〈𝑝,𝑉𝑠〉 forms a key for 𝑡𝑑𝑏(𝑆, 𝑖).

R3. All element kinds are permitted and there is no
constraint on time order, except as imposed by stable() ele-
ments. As with R2, for any stream prefix 𝑆[𝑖], 〈𝑝,𝑉𝑠〉 forms a
key for 𝑡𝑑𝑏(𝑆, 𝑖).

R4. R4 is the “no restrictions” case where all three element
kinds are permitted, elements need not be in timestamp order,
and the TDB is a multi-set (hence there can be multiple events
with the same payload and lifetime).

In order to understand the correctness of our algorithms, we
find it useful to think of a stable(𝑉𝑐) element as “freezing”
certain parts of the TDB. A TDB event 〈𝑝,𝑉𝑠,𝑉𝑐〉 is half frozen
(HF) if 𝑉𝑠 < 𝑉𝑐 ≤ 𝑉𝑒 and fully frozen (FF) if 𝑉𝑒 < 𝑉𝑐. If
〈𝑝,𝑉𝑠,𝑉𝑒〉 is half frozen, we know there will be some event
〈𝑝,𝑉𝑠,𝑉〉 in the TDB henceforth. If 〈𝑝,𝑉𝑠,𝑉𝑒〉 is fully frozen,
no future adjust() event can alter it, and so it will be in all
future version of the TDB. Any TDB event that is neither half
frozen nor fully frozen is unfrozen (UF).

Compatibility for the R3 Case
Before presenting the precise conditions for input-output

compatibility for R3, we provide examples of possible outputs
for given inputs to LMerge. Both input and output streams are

described by their TDBs; our discussion applies to any input
stream that reconstitutes to a given input TDB, and allows the
output of any stream that reconstitutes to a given output TDB.
For each of the TDBs below, last is the latest value 𝑉 such
that a stable(𝑉) element has been seen. The annotation to the
right of each event indicates its “freeze” status.

I1 (last:14)
p Vs Ve
A 2 16 HF
B 3 10 FF
C 4 18 HF
D 15 20 UF

I2 (last:11)
p Vs Ve
A 2 12 HF
B 3 10 FF
C 4 18 HF
E 17 21 UF

O1 (last:11)
p Vs Ve
A 2 ∞ HF
B 3 10 FF
C 4 ∞ HF

O2 (last:14)
p Vs Ve
A 2 16 HF
B 3 10 FF
C 4 18 HF
D 15 20 UF
E 17 21 UF

O3 (last:13)
p Vs Ve
A 2 12 FF
C 4 18 HF
D 15 20 UF

Consider LMerge of streams corresponding to I1 and I2.
O1 is compatible with I1 and I2. It has a TDB that might

result from a conservative tracking policy that outputs only
information that must be in the output eventually. O1 will only
require adjustments to end times.

O2 represents a more aggressive policy, but it is still
compatible with I1 and I2. It contains events corresponding
to all input events seen, even if those events are unfrozen. O2
may have to issue later elements to completely remove some
events.

O3 is not compatible with I1 and I2 for two reasons. First,
although <A, 2, 12> matches an event in I2, it contradicts
the contents of I1, from which we can tell the end time will be
no less than 14. As this event is fully frozen in O3, there is no
subsequent stream element that can correct it. Second, O3
lacks the event <B, 3, 10>, which is fully frozen in the input
streams but cannot be added to O3 given its stable point.

We now describe (and justify) the exact conditions for
compatibility in the R3 case.

Assume {𝐼1, … , 𝐼𝑛} are mutually consistent input streams
and 𝑂 is the output stream. Suppose at some instant we have
seen prefixes {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]} of the input streams and
emitted prefix 𝑂[𝑗] on the output stream. Let TDB𝑚 =
𝑡𝑑𝑏(𝐼𝑚, 𝑘𝑚) and TDB𝑂 = 𝑡𝑑𝑏(𝑂, 𝑗). Assume that stable(𝐿𝑚)
was the most recent stable() event on 𝐼𝑚, and stable(𝐿) was
the most recent stable event on 𝑂. We must have the following
conditions.

C1. 𝐿 is no greater than the maximum of the 𝐿𝑚. (If it were,
then it is possible for an event to appear in one of the inputs
and be fully frozen there without being able to add it to 𝑂.)

The other two conditions concern what events may be in
TDB𝑂 (Condition C2) and what events must be in TDB𝑂
(Condition C3) for given combination of 𝑝 and 𝑉𝑠.

C2. TDB𝑂 may have at most one event for a given 𝑝 and 𝑉𝑠.
• If that event is UF, there is no constraint on it (as it can be

completely removed).
• If TDB𝑂 contains 〈𝑝,𝑉𝑠,𝑉𝑒〉 that is HF, then there must be

some TDB𝑚 containing 〈𝑝,𝑉𝑠,𝑉𝑚〉 where either the event
is HF and 𝐿𝑚 ≤ 𝐿 (so the output event can be adjusted to
match any changes in TDB𝑚) or the event is FF and

𝐿 ≤ 𝑉𝑚 (so it is still possible to adjust TDB𝑂 to match
TDB𝑚).

• If TDB𝑂 contains 〈𝑝,𝑉𝑠,𝑉𝑒〉 that is FF, then there must be
some TDB𝑚 containing 〈𝑝,𝑉𝑠,𝑉𝑒〉 that is FF (so we know
that event is definitely in the output).

C3. TDB𝑂 must have an event for 𝑝 and 𝑉𝑠 when either:
1) There is a FF event 〈𝑝,𝑉𝑠,𝑉𝑒〉 in some TDB𝑚 and either

• 𝐿 ≤ 𝑉𝑠 (thus, the event can still be added to TDB𝑂), or
• 𝑉𝑠 < 𝐿 ≤ 𝑉𝑒 and TDB𝑂 has 〈𝑝,𝑉𝑠,𝑉𝑂〉 that is HF (since

𝐿 ≤ 𝑉𝑒, this event can be adjusted to 〈𝑝,𝑉𝑠,𝑉𝑒〉), or
• 𝑉𝑒 < 𝐿 and TDB𝑂 contains 〈𝑝,𝑉𝑠,𝑉𝑒〉.

2) No input contains a FF event for 𝑝 and 𝑉𝑠 , but one or
more inputs contain a HF event of the form 〈𝑝,𝑉𝑠, _〉. Let 𝐼𝑚 be
the input with such an event with the largest 𝐿𝑚. Then either:
• 𝐿 ≤ 𝑉𝑠 (so an appropriate event can still be added to

TDB𝑂), or
• 𝑉𝑠 < 𝐿 ≤ 𝐿𝑚 and TDB𝑂 has 〈𝑝,𝑉𝑠,𝑉𝑂〉 that is HF (which

can be adjusted to match future changes to the event in
the input).

(Note that an UF event 〈𝑝,𝑉𝑠,𝑉𝑒〉 in any input places no
constraint on TDB𝑂.)

These conditions are simplified if 𝐿 tracks the input with
the largest 𝐿𝑚. In that case, the requirement is that TDB𝑂 and
TDB𝑚 have the same set of FF events, and that their sets of
HF events match on 𝑝 and 𝑉𝑠.

Compatibility in the R3 case leaves room for a wide range
of policies on how loosely or tightly the output of LMerge
tracks the input. A very liberal policy would allow arbitrary
UF events in the output, even if there is no support among the
inputs for such events. This policy is likely unwise, since such
events would almost surely be adjusted, absent a robust model
for predicting future inputs. A more reasonable policy is to
output only HF and FF events that have support in the TDBs
of the inputs. That support might take the form of an exactly
matching event, or, for HF events in the output TDB, a HF
event in some input TDB with the same payload and valid
start values. A conservative policy might only allow an
element in the output if it is supported by a FF event in some
input TDB. These different policies tend to trade latency for
“chattiness” of the output: how many adjust() elements might
be needed to align the output with adjustments on the inputs.
A second aspect of output policy is when to issue a stable()
element on the output. Our experience suggests keeping the
output at the maximum stable point of all the inputs to
minimize the memory requirements of LMerge, though

lagging a bit behind the maximum can avoid some adjust()
elements in the output.

Compatibility in the R4 case, where there can be multiple
events with the same 𝑝 and 𝑉𝑠, has more complicated
conformance conditions. If 𝐿, the maximum stable point of the
output 𝑂, tracks the maximum 𝐿𝑚 , then TDB𝑂 must contain
all the FF events from TDB𝑚 , and an equal number of HF
events, for that 𝑝 and 𝑉𝑠.

IV. ALGORITHMS FOR LOGICAL MERGE
This section provides algorithms for different variants of

LMerge optimized for stream properties R0-R4 described in
Section III-B. Section IV-D shows how to use stream
properties to decide which algorithm to use for a given CQ.

A. LMerge Algorithms for Cases R0, R1, and R2
For space reasons, we describe briefly the simpler cases of

R0, R1, and R2 (our technical report [27] has the detailed
algorithms for these cases).

In case R0, input streams have elements with strictly
increasing Vs values. It turns out that we need only two pieces
of information: the maximum Vs (MaxVs) and the maximum
stable() timestamp (MaxStable) seen across all input streams.
When we see an insert() element, we can discard the element
if it does not increase MaxVs, and output it otherwise. A stable()
element is output if it increases MaxStable.

Recall R1 is the insert-only case with non-decreasing Vs.
Here, we may have duplicate Vs timestamps, but such
elements are presented in deterministic order (e.g., sorted on a
field in the payload). This condition holds in scenarios such as
Top-k aggregation, where elements with the same Vs are
presented in rank order. Here, we just need to maintain (in
addition to MaxStable and MaxVs) an array with one counter
for each input stream, which counts the number of elements
on that stream with Vs = MaxVs. On an insert element that
increases MaxVs, we reset this array to zeros. If the insert on
stream r increases the counter for r beyond the old maximum
counter value across all streams, the insert is sent as output. A
stable() element is handled as before.

Case R2 resembles R1, except elements with the same Vs
may be in different orders in different inputs. We assume that
(Vs, Payload) is a key of the TDB for any stream prefix. (The
relaxation to handle duplicates is straightforward and omitted.)
Here, we use a hash table in addition to MaxStable and MaxVs.
The hash table indexes (using Payload as key) all elements
with Vs = MaxVs. When we receive an insert element, we
check the hash table – if the corresponding payload exists, we
are done. Otherwise, we update the hash table and output the
element. An element that increases Vs beyond MaxVs clears
the hash table so that it can track elements with the new MaxVs.

B. LMerge Algorithm for Case R3
We now tackle case R3, where inserts, adjusts, and stable

elements may be presented in any order, and (Vs, Payload) is
a key in the TDB for any stream prefix. (See Algorithm R3.)
We propose a new index structure called in2t (for index-2-tier)
depicted in Figure 1 (left). The top tier of in2t is a red-black-

Key: (Ve)

in2t
Red-Black

Tree

Key: (Vs, P)

StreamId Ve
0 100
… …
∞ 100

Event

Hash Table

in3t
Red-Black

Tree

Key: (Vs, P)

Event
Hash
Table

StreamId Root
0
…

Count

Fig. 1. Data structures for cases R3 (in2t) and R4 (in3t) of LMerge

tree keyed by (Vs, Payload), where each node consists of an
event and points to a second-tier index implemented as a hash
table. The hash table contains, for each input stream r, the
current corresponding Ve value for that stream indexed by key
r. An additional hash table entry with special key ∞ is also
maintained for the output.
On an insert() element in stream r, we lookup in2t for a node
with the same (Vs, Payload). If such a node does not exist
(Lines 5-10), we add the node and produce output. In the hash
table, we add an entry for stream r as well as for the output.
An exception is when Vs is less than MaxStable (Line 6),
which indicates that the corresponding entry previously
existed and has been removed from in2t. Otherwise (Line 12),
we simply add an entry to the hash table and return. An
adjust() element is handled similarly (Lines 14-16), except
that output is not produced as a result of an adjust.
Finally, consider the processing of a stable() element y. We
only need to handle stable() elements that increase
MaxStable. We first find each node that is going to become
half frozen in in2t; i.e., a node whose Vs is less than y’s
timestamp. For each such node, we check if there is a
mismatch between the output and the input, where a
compatibility violation is going to occur as a result of
outputting y. There are three cases of compatibility violations:

• There is no input event for (Vs, Payload) in stream r, but
there is an output event (due to some other input stream).

• The currently output event will become fully frozen due
to e, but the corresponding input is not fully frozen.

• The input event will become fully frozen, but the current
output is not fully frozen.

In all cases, we adjust the output so that it matches the input
(Lines 24-27). This choice – of correcting output only to avoid
irrecoverable divergence between output and input –
represents one out of several policies discussed in Section V-
A. Finally, if the input becomes fully frozen, we delete the
corresponding node from in2t (Lines 28-29), update
MaxStable, and output a stable() element (Lines 30-31).
C. LMerge Algorithm for Case R4
The main challenge with case R4 is that many elements in a
stream can have the same (Vs, Payload), with different Ve
values. Further, there could be duplicates in the stream.
Hence, we propose a new index structure – shown in Figure 1
(right) – called in3t (for index-3-tier), where we replace the
single Ve value in each entry of the lower-level hash table of
in2t with a small index (red-black-tree) on Ve, where each Ve
is associated with its count (to handle duplicates). (See
Algorithm R4.) During insert and adjust, the output is updated
lazily as before. When processing a stable() element, we
ensure future compatibility before producing a stable()
element as output. Our invariants for case R4 are more subtle:
• (Lines 9-11) The output TDB contains no more events for

a particular (Vs, Payload) than the maximum number of
events in any input TDB, for that (Vs, Payload). While
not necessary, this condition helps limit output chattiness.

• (Lines 20-22) When an incoming stable() element has a
timestamp greater than some Vs (i.e., that Vs becomes
half frozen), we ensure that, for a (Vs, Payload) that is
getting half frozen, the “total count” of output elements
with a value of (Vs, Payload) equals the count in the
input. This invariant must be met before propagating the
stable() element, to guarantee future convergence. The

Algorithm R3: Logical Merge for Case R3
 1 MaxStable = −∞;
 2 index = new in2t();
 3 Insert(element y, stream r)
 4 node f = index.SameVsPayload(y);
 5 if (!exists(f))
 6 if (y.Vs < MaxStable) return;
 7 f = index.AddNode(y);
 8 OutputInsert(y);
 9 f.AddHashEntry(∞, y.Ve); // hash entry for o/p
10 f.AddHashEntry(r, y.Ve); // hash entry for i/p
11 Adjust(element y, stream r)
12 node f = index.SameVsPayload(y);
13 if (!exists(f)) return;
14 f.UpdateHashEntry(r, y.Ve);
15 Stable(timestamp t, stream r)
16 if (t <= MaxStable) return;
17 iterator it = index.FindHalfFrozen(t);
18 while (node f = it.Next())
19 InVe = f.GetHashEntry(r);
20 if (!exists(InVe)) InVe = f.GetEvent().Vs;
21 OutVe = f.GetHashEntry(∞);
22 if (InVe != OutVe and
23 (InVe < t or OutVe < t))
24 OutputAdjust(f.GetEvent(), Ve: InVe);
25 f.UpdateHashEntry(∞, InVe);
26 if (InVe < t) // fully frozen
27 index.DeleteNode(f);
28 // update MaxStable and output a stable() element
29 MaxStable = t;
30 OutputStable(t);

2

1

Algorithm R4: Logical Merge for Case R4
 1 MaxStable = −∞;
 2 index = new in3t();
 3 Insert(element y, stream r)
 4 node f = index.SameVsPayload(y);
 5 if (!exists(f))
 6 if (y.Vs < MaxStable) return;
 7 f = index.AddNode(y);
 8 f.IncrementCount(r, y.Ve);
 9 if ((y.Vs>=MaxStable) and (f.GetCount(r)>f.GetCount(∞)))
10 OutputInsert(y);
11 f.IncrementCount(∞, y.Ve);
12 Adjust(element y, stream r)
13 node f = index.SameVsPayload(y);
14 if (!exists(f)) return;
15 f.IncrementCount(r, y.Ve); f.DecrementCount(r, y.Vold);
16 Stable(timestamp t, stream r)
17 if (t <= MaxStable) return;
18 iterator it = index.FindHalfFrozen(t);
19 while (node f = it.Next())
20 if (f.Vs >= MaxStable) // element getting half frozen
21 // ensure #o/p events=#i/p events for that (Vs, P)
22 AdjustOutputCount(f);
23 iterator itIn = f.FindAllVe(r);
24 iterator itOut = f.FindAllVe(∞);
25 // Make o/p reflect i/p for all FF (Ve < t) nodes
26 AdjustOutput(f, t, itIn, itOut);
27 if (f.GetMaxVe(r) < t) // Done processing that (Vs, P)
28 index.Delete(f);
29 MaxStable = t;
30 OutputStable(t);

method AdjustOutputCount() determines the exact pro-
cedure for meeting this invariant (see [27] for details);
briefly, it involves producing new output elements or
“canceling” prior output elements for that (Vs, Payload).

• (Lines 23-26) For a particular (Vs, Payload), if some Ve
becomes fully frozen as a result of an incoming stable()
element, we need to ensure that the output TDB contains
the same number of (Vs, Payload, Ve) events as the
input, before propagating the stable() element. The
AdjustOutput() method (covered in our technical report
[27]) achieves this invariant; briefly, it involves adjusting
the Ve of events previously output with the same (Vs,
Payload). Note that the “total count” invariant mentioned
earlier ensures that such an adjustment is always possible.

When the stable() timestamp moves beyond the largest Ve
for a particular (Vs, Payload), the corresponding node can be
deleted from the top tier of in3t (Lines 27-28).

D. Choosing the Right LMerge Algorithm
Given a range of LMerge algorithms, how do we choose

the right version of LMerge for a given set of input streams
and query plan? We derive and reason about compile-time
stream properties to answer this question. We do not give a
detailed formalism of stream properties here, but provide
several examples of how they are used for this purpose:
1) Every input stream publishes properties that indicate
whether the stream is ordered, has adjust() elements, or has
duplicate timestamps. If we are merging such input streams
directly, we can use such properties to choose an algorithm.
2) The DSMS may have operators to enforce particular
properties. For example, many systems have a reordering or
cleansing operator that accepts disordered input, buffers it and
outputs an in-order stream. Such a stream can be annotated at
compile-time in order to choose an appropriate algorithm.
3) Certain operators or groups of operators produce streams
with a particular property. For example, an in-order stream fed
into a windowed aggregate outputs one event per strictly
increasing timestamp, leading to a choice of algorithm R0.
4) If each input to LMerge results from an in-order stream fed
into a sliding-window multi-valued aggregate such as Top-k,
we would choose algorithm R1, due to duplicate timestamps.
5) If each query under LMerge performs a grouped
aggregation (e.g., a count per user of DHCP leases) over an
ordered stream, we would use algorithm R2 since the order for
elements with the same Vs is non-deterministic.
6) If each query instead performs a grouped aggregation (e.g.,
count) over a disordered stream, we would use algorithm R3.

E. Runtime and Space Complexity of LMerge
We analyze the complexity of the LMerge algorithms on the
basis of runtime stream properties that characterize the nature
of input streams to LMerge. These properties can be measured
as statistics during runtime, although some may be determined
statically based on operators in the plan. Let n denote the
number of input streams to LMerge. Consider the set of events
that are “alive”, i.e., not fully frozen at any given instant. Let
𝑤 denote the number of unique (Vs, Payload) values, and 𝑑

denote the number of elements with the same (Vs, Payload).
Further, let 𝑔 denote the number of events with the same Vs,
and let ℎ represent the number of distinct half-frozen (Vs,
Payload) values. Finally, let 𝑐 be the number of events that
become fully frozen due to a stable() element, and let 𝑝 denote
payload size. Based on these properties, the complexity of the
various LMerge algorithms is shown in Table IV.

TABLE IV
RUNTIME AND SPACE COMPLEXITY OF LMERGE

Case Runtime Complexity Space
Complexity Insert Adjust Stable

R0 O(1) n/a O(1) O(1)
R1 O(𝑛) n/a O(1) O(𝑛)
R2 O(𝑛) n/a O(1) O(𝑔 ⋅ 𝑝)
R3 O(lg𝑤) O(lg𝑤) O(𝑐 ⋅ lg𝑤 + ℎ) O(𝑤(𝑝 + 𝑛))
R4 O(lg𝑤 + lg 𝑑) O(lg𝑤 + lg 𝑑) O(𝑐 ⋅ lg𝑤 + ℎ ⋅ 𝑑) O(𝑤(𝑝 + 𝑛 ⋅ 𝑑))

V. DISCUSSION AND EXTENSIONS
A. LMerge Policy Choices

Under the basic requirement of LMerge maintaining
“compatible” output, we can implement various policies. For
example, Algorithm R3 (Section IV) highlights two locations
where we are free to choose different policies. In location 1,
we choose to never output incoming adjust events, instead
preferring to retain the current output for every unique Vs. We
issue adjust() elements to ensure that output is compatible
with inputs only when we process a stable() element. This
policy limits chattiness of LMerge. Some alternatives include:
• We can reflect every adjust() element at the output. This

choice makes LMerge more “chatty”, but allows a listener
to process such changes earlier if it is interested.

• Force LMerge to “follow” a particular input stream, for
example, the stream with the currently maximum stable()
timestamp (the leading stream). This choice may be
appropriate when one stream leads for long periods.
However, if the leading stream keeps changing, this
policy can incur significant overhead in re-adjusting
output. Even in this case, LMerge must track information
from other inputs to handle the case where the leading
stream detaches.

Another point for choosing a different policy is location 2
in Algorithm R3. When we process the first insert element for
a particular Vs, we reflect it at the output immediately. While
this policy ensures that output is maximally responsive, as
before, we may choose other variants:
• We can output an insert only if it is produced by the

leading stream, or the stream with the highest insert()
timestamp or the maximum number of unfrozen elements.

• We can avoid sending an element as output until it gets
half frozen on some input stream. This policy ensures that
we never fully remove an element that we place on the
output, at the expense of higher latency.

A hybrid choice may be to wait until some fraction of the
input streams have produced an element for each Vs, before
sending it to the output. If input streams are physically
different, this policy may reduce the probability of producing
spurious output that later needs to be fully deleted.

B. Handling Joining and Leaving Input Streams
When a stream leaves LMerge, it is simply marked as

“leaving”. Eventually, our algorithms guarantee that it will no
longer be considered during LMerge. A joining stream
provides a timestamp t such that it is guaranteed to produce
the correct TDB for every point starting from t (i.e., every
event in the TDB with Ve ≥ t). We can mark the stream as
“joined” as soon as MaxStable reaches t, since from this point
forwards, LMerge can tolerate the simultaneous failure or
removal of all the other streams.

C. Handling Missing Elements in Input Streams
If we require that LMerge output contains an element if

some input stream reports it, LMerge is forced to progress
(issue stable() elements) only as fast as the most slowly
progressing input stream. (Consider an element that is missing
from every stream other than the slowest-progressing one.)
This option is highly undesirable in practice.

Instead, Algorithms R0, R1, and R2 output elements
missing in some stream 𝑆 as long as some other stream
delivers the missing elements to LMerge before 𝑆 delivers an
element with higher Vs. These algorithms optimistically track
only the latest Vs across all inputs (MaxVs) in order to
minimize state and achieve high performance. Algorithms R3
and R4 output an element y as long as the stream that
increases MaxStable beyond y.Vs produces element y.

D. Feedback to Signal Progress
An interesting application of LMerge is combining several

alternative, equivalent query plans that behave differently
under different conditions, such as data-value distributions or
arrival rates. Alternatively, we may be executing identical
plans on machines with varying resources such as CPU.
LMerge can select results from whichever plan is producing
output the soonest at a given point in time. Under such
conditions, much of the work of the other plans is wasted, as
LMerge ignores their outputs.

We can modify LMerge to signal its input plans that
elements before a certain time t are no longer of interest. This
modification permits slower plans to avoid sending such
elements. Particular operators may also be able to avoid
performing unnecessary computations and purge state to save
memory, though they must retain enough information to
potentially produce output after time t, if required. We have
implemented feedback signaling for LMerge (cf. Section VI-
E). Operators in the slower plan can exploit feedback signal
locally, and optionally propagate the signal further upstream
in the plan. This capability allows a slower plan to “fast-
forward”, possibly becoming the leading stream. Note that
more general exploitation of such signals is possible, along the
lines of feedback punctuation [8].

VI. EVALUATION
We approach the evaluation of LMerge in three phases:

1) We demonstrate the behavior of LMerge over streams
generated using query fragments over disordered input.
Further, we compare the algorithm variants, if the
requisite stream properties hold.

2) We compare the strategy of enforcing stream properties
and using simpler versions of LMerge, against directly
using a more general version of LMerge.

3) We apply LMerge in several motivating scenarios: fast
availability, network-congestion masking, and dynamic
plan selection with feedback signals.

A. Setup and Implementation
We implement our algorithms in StreamInsight. We

perform our experiments on an 8-core machine with two
2.33GHz processors and 16GB main memory running
Windows Server 2008 R2. We implemented and evaluated all
our proposed LMerge variants. LMR0, LMR1, LMR2, LMR3+,
and LMR4 correspond to operators that implement the
algorithms for cases R0, R1, R2, R3, and R4 respectively,
from Section IV. We also evaluate a simpler algorithm for
case R3, called LMR3-, in which events from each input stream
are held in a separate index, with another index for output
events. The output index is required: (1) to check whether an
element was previously output; (2) to perform adjustments to
prior output before propagating a stable() element. While
simpler to implement, it duplicates event information across
input streams and requires multiple tree lookups at runtime.

We also evaluated the combination of LMerge with a
Cleanse operator (called C+LM) to enforce stream properties
a priori (see Section VI-D). Finally, we added support in
StreamInsight for feedback signals (Sections I, V, and VI-E).
B. Metrics and Workloads

We track: (1) Throughput, which measures the number of
events produced at the output per second; (2) Memory, which
measures the main memory used by an operator, including
elements, payloads, and index structures; and (3) Output Size,
which measures the number of adjust() elements produced.
This last metric quantifies the chattiness of the stream.

Our evaluation mostly used synthetically generated
datasets 2 from our commercial-grade test-stream generator
[26]. Each event has two fields, an integer in the interval [0,
400] and a random 1000-byte string. The event generator
produces between 200K and 400K elements, based on a set of
supplied parameters (see [27] for more details), including:
• StableFreq: The probability that an element in the stream

is a stable() element. The default value is 1%.
• EventDuration: The lifetime of each event. By default,

lifetime is set so that, on average, around 10K elements
are “active” (contributing to output) at any point in time.

• MaxGap: The maximum application-time gap between
consecutive elements. The gap is chosen randomly from
the range [0, MaxGap]. We set MaxGap to 20 seconds.

• Disorder: The fraction of disordered elements. Disorder
is created by moving 𝑉𝑠 values back by some amount. The
default value for this parameter is 20%.

Our generated streams have disorder but no adjust()
elements. Such elements are naturally produced during query
processing, and hence we use sub-queries over the stream-

2 We also tested LMerge with real stock ticker data mined from Yahoo!
Finance (with no problem). However, the synthetic data generator gave us
finer control over stream properties of interest.

generator output in order to generate them, such as an
aggregate (count) followed by a lifetime modification.

C. Investigating LMerge Behavior
We investigate the performance of the different LMerge
algorithms as we vary different stream characteristics.

1) LMerge over Ordered Streams Using an ordered stream
without adjust() elements, we can compare all the variants of
LMerge. Figure 2 shows the memory usage of LMerge, as we
increase the number of input streams. We see that LMR0 and
LMR1 have negligible memory usage. LMR2 is slightly higher
as it maintains all events with the current highest Vs. (The
lines in Figure 2 for LMR0, LMR1, and LMR2 overlap as they
perform similarly.) LMR3+ incurs slightly more memory than
the simpler versions, but the cost is almost independent of the
number of inputs, as it shares event payloads across inputs. In
contrast, memory usage of LMR3- degrades linearly with the
number of input streams, due to duplication across streams.
We compare the algorithms in terms of throughput in Figure
3. As expected, the simpler algorithms provide higher
throughput. Between LMR3- and LMR3+, we see that LMR3+
does much better than LMR3- due to the optimized data
structure and algorithm.

2) Output Size, Increasing Disorder We introduce disorder
in the input stream, and feed it into a sub-query that generates
many adjust() elements. Figure 4 compares the output of
LMerge to the output without LMerge, as we increase the
percentage of disorder. We see that when disorder increases,
the number of adjusts increases significantly at the output.
However, our specific output policy controls chattiness by
limiting the production of intermediate adjusts that may not be
present in the final TDB.
3) Throughput, Increasing Stream Lag We also
experimented with introducing lag (or delay) in some of the
input streams to LMerge. Our technical report [27] has the
details; briefly, as lag increases, LMerge throughput improves
since it can directly drop tuples and thus hide the lag in the
slower streams (We also experiment further with this
phenomenon in Section VI-E.)
4) Memory and Throughput, Varying StableFreq We
measure the effect of StableFreq on throughput and memory
of LMerge. As we increase StableFreq from 0.001% to 1%,
we see in Figure 5 (left) that memory usage decreases as
expected, due to more frequent cleanup. On the other hand,
the throughput for LMR3+ and LMR4 decreases as shown in
Figure 5 (right), as we need to perform more frequent

compatibility checks. Note that the throughput for simpler
schemes is not affected since they have significantly simpler
algorithms for stable() elements.
D. Enforcing Stream Properties

Since LMerge algorithms are significantly simplified for
special cases where the stream satisfies specific properties, we
investigate enforcing these properties before feeding streams
to the simpler versions of LMerge tailored to such properties.
Timestamp ordering is enforced by a special Cleanse operator,
which accepts a disordered stream and buffers elements until a
stable() element is received, at which point it releases (in
timestamp order) all fully frozen elements. We enforce
ordering by placing a Cleanse at each input to LMR1, which
has constant memory requirement and is very efficient; this
scheme is referred to as C+LMR1. We use an input stream with
50% disorder, and pass it through an aggregate operator. The
output of this query fragment contains 36% adjust() elements,
with a 0.1% chance of seeing a stable() element.

1) Memory Consumption As we increase the number of
inputs to LMerge from 2 to 10, we see from Figure 6 (left)
that our optimized LMR3+ algorithm performs best, and its
memory usage is almost independent of the number of input
streams. However, the Cleanse solution (C+LMR1) suffers
linear degradation due to the overhead of ordering each stream
separately – the overhead is nearly 7X more than LMR3+ for
10 inputs. We also see that LMR3- degrades linearly with
number of inputs due to no sharing of payloads across inputs.
2) Throughput Figure 6 (right) depicts throughput as we
increase the number of input streams. Our solution (LMR3+)
outperforms the Cleanse-based solution (C+LMR1). The
relative improvement increases as we add more inputs because
C+LMR1 suffers from having to execute several Cleanse
operators (one for each input) along with an LMerge operator
(LMR1) for the final merge. As before, LMR3- does not
perform well due to its naïve data structure.
3) Latency With C+LMR1, the Cleanse operator buffers
elements and produces output only when fully frozen. Thus,
the latency of C+LMR1 will grow with event lifetimes and the
amount of potential disorder, since in order to maintain strict
ordering, it needs to hold on to an element until stable()
crosses Ve. Using LM directly, on the other hand, incurs
latency in milliseconds (120ms on average for LMR3+). Even
if event lifetimes and the amount of potential disorder are a
few seconds, the Cleanse solution will incur orders-of-
magnitude higher latency than using LM directly.

Fig. 4. Output size, increasing disorder Fig. 2. Memory, in-order input streams Fig. 3. Throughput, in-order streams

In summary, applying LMerge directly on streams with
disorder or revisions is superior (for memory, latency, and
throughput) to ordering streams and doing a simpler merge.

E. Evaluating LMerge Scenarios
We next report on experiments that reflect different real-world
situations where one might apply LMerge in practice.
1) Handling Bursty Data We generate four bursty streams
with 20% disorder, each having an average event rate of 5000
elements/sec (this rate does not result in CPU overload under
normal conditions). Bursty streams may exist in real
applications because of CPU load and resource variations on
machines, garbage collection, scheduling vagaries, or queue
buildup between operators. We model burstiness by inserting
random delays between tuples in a stream with a small
probability (between 0.3 and 0.5%). The delays are chosen
from a truncated normal distribution with mean 20 and
standard deviation 5. Since elements arrive from sources at a
constant rate, such delays result in temporary event build-up
in queues, and cause subsequent compensating spikes in
throughput. Figure 7 shows one of the input streams, along
with the output of LMerge. Each stream is bursty, but LMerge
smooths out the burstiness because it chooses to follow the
best input at any given instant. Note that with many inputs to
LMerge, the probability of all inputs having a burst at the
same instant is greatly reduced.
2) Masking Network Congestion We use the same streams
as before, presented at a rate of 5000 elements/sec. We model
network congestion at different points in time in each of three
streams, by introducing normally distributed delays between
elements during the congested period. Network congestion
results in temporary low throughput, followed by a spike
when conditions return back to normal. Figure 8 shows the
input streams as well as the output of LMerge. We see that the
output of LMerge is unaffected by such congestion, as it is
able to produce output as long as at least one input is not
lagging. Note that at around 18 seconds, two inputs are

simultaneously congested, but LMerge is unaffected as
expected. Thus, we can mask such congestion using LMerge.
3) Dynamic Plan Switching with Fast-Forward We
investigate the advantage of using LMerge for workload-
based plan switching (see Sections I and V-D). We instantiate
two alternate plans for the same query, both of which perform
a user-defined selection function (UDF) on the data. The first
plan (UDF0) is expensive for small values of X (a payload
field), while the second plan (UDF1) is expensive for large
values of X. We feed a stream with 200K elements, where
alternating sequences (batches) of events have low and high
values of X. The batch size is varied randomly between 10K
and 30K elements, so the “optimal” plan switches 9 times
during execution. We show the performance of these queries
individually (without LMerge) in Figure 9, where UDF0 and
UDF1 finish in 176 and 163 seconds respectively. We next
place LMerge (LMR3+) above the two queries. One may expect
LMerge to benefit from plan switching, but adding LMerge is
not very useful because, while it tracks the faster input at any
point, the total work performed in both queries is identical.
Thus, the total processing time for LMerge is ~163 seconds.

We then let LMerge send feedback signals as described in
Section V-D, to fast-forward the slower plan. This scheme,
called LM+Feedback, allows LMerge to follow the faster
plan, at the same time fast-forwarding the slower plan so that
it can be immediately tracked by LMerge when it becomes
optimal in the future. Overall, LM+Feedback completes
execution in around 34 seconds, and is nearly 5X faster than
LMR3+ without feedback.

VII. RELATED WORK
Stream and Temporal Models A wide range of stream

and temporal models have been proposed in research and
adopted by industry. The model of STREAM [13], one of the
early DSMSs, is adopted in Oracle CEP [25]. Aurora/Borealis
[12] was commercialized as StreamBase. The CEDR project
[4] proposed an interval-based algebra, motivated by early

Fig. 5. Memory and throughput, increasing StableFreq Fig. 6. Memory and throughput, enforcing stream properties

Fig. 9. Plan switching with fast-forward Fig. 7. Handling bursty streams Fig. 8. Masking network congestion

research on temporal databases [21], and forms the basis of
StreamInsight [22]. NiagaraST [5] uses an interval-based
model for windows, but single timestamps on events. In Nile
[11], positive tuples begin new events while negative tuples
expire older events. In Sections II and III, we presented the
theory of LMerge as a general operator that can be used with
any of these stream models. We discuss open and close
elements (that are similar to I-streams and D-streams or
positive and negative tuples) in Example 2. Our specific
algorithms and implementations in this paper adopt the
interval-based temporal model [4, 5, 21, 22], although other
models can be handled with modifications.

High Availability High-availability in stream processing
systems is a well-studied topic. Most techniques for high
availability assume a primary copy of the query, and a backup
copy that takes over when the primary fails. Hwang et al. [15]
give a good overview of high availability schemes proposed
for streams. Hwang et al. [9] propose a high-availability
solution for wide-area networks that uses a duplicate-
elimination operator for insert-only disordered streams. This
algorithm can be classified as falling between R2 and R3 in
our classification. In contrast, we focus on LMerge as a
general primitive over a broad class of real-world stream
models, propose a suite of algorithms for LMerge, leverage
stream properties and feedback signals for efficiency, and
examine LMerge in scenarios beyond high availability.

Dynamic Plan Switching Yang et al. [18] present an
approach to switching between plans for a running stream
query, which follows up on seminal work by Zhu et al. [20].
Their approach determines a split time, where the old plan
delivers all results before that time and the new plan after.
Such a cut-over involves a certain determinism in streams that
is hard to satisfy under disorder or element modifications.
LMerge, in contrast, can cope with both queries running at
once and producing distinct physical streams. Heinz et al. [19]
use this cut-over technique to switch among plans when input
statistics change significantly. We note that LMerge provides
a similar capability by running the alternative plans together
with feedback signaling to suppress work on slower plans.

Eddies [16] allows the choice of query plan to be chosen on
a fine per-tuple granularity, but does not target temporal
streams. LMerge, on the other hand, is a general operator that
allows plan switching as one of its applications. Feedback
signals sent from LMerge to fast-forward slow plans can be
viewed as a novel application of feedback punctuation [8],
which has been proposed and used in a different context.

VIII. CONCLUSIONS
We introduced the Logical Merge (LMerge) operator to

combine equivalent input streams that are physically divergent
and fallible. Our LMerge definition applies to any DSMS in
which a stream represents (implicitly or explicitly) a temporal
database. We discussed how input stream properties can affect
LMerge, and presented a range of algorithms that deal with
progressively more general cases. We implemented our
LMerge variants as operators in Microsoft StreamInsight and
showed how to leverage stream properties to choose the right

variant for a given query. We proposed a new technique to
fast-forward slower inputs to LMerge using feedback signals.

A detailed evaluation demonstrated the differences between
the LMerge variants in terms of throughput and memory, as
well as their response to various stream characteristics. We
also found that it is beneficial to use a general LMerge instead
of explicitly enforcing the stricter input properties that the
more constrained LMerge variants require. We demonstrated
the utility of LMerge for scenarios with bursty input, where
LMerge can smooth out variability. We also used LMerge for
fast availability and found that using feedback signals to fast-
forward slower plans can significantly improve throughput.

REFERENCES
[1] U. Srivastava, J. Widom: Flexible Time Management in Data Stream

Systems. PODS 2004: 263-274.
[2] P. Tucker et al.: Exploiting Punctuation Semantics in Continuous Data

Streams. IEEE TKDE 15(3): 555-568 (2003).
[3] J. Li et al.: Semantics and Evaluation Techniques for Window

Aggregates in Data Streams. SIGMOD 2005: 311-322.
[4] R. Barga et al.: Consistent Streaming Through Time: A Vision for

Event Stream Processing. CIDR 2007: 363-374.
[5] D. Maier, J. Li, P. Tucker, K. Tufte, V. Papadimos: Semantics of Data

Streams and Operators. ICDT 2005: 37-52.
[6] T. Johnson et al.: A Heartbeat Mechanism and Its Application in

Gigascope. VLDB 2005: 1079-1088.
[7] J. Li et al.: Out-of-order Processing: A New Architecture for High-

Performance Stream Systems. PVLDB 1(1):274-288 (2008).
[8] R. Fernandez-Moctezuma, K. Tufte, J. Li: Inter-Operator Feedback in

Data Stream Management Systems via Punctuation. CIDR 2009.
[9] J. Hwang, U. Cetintemel, S. Zdonik: Fast and Reliable Stream

Processing over Wide Area Networks. ICDE 2007: 604-613.
[10] E. Ryvkina et al.: Revision processing in a stream processing engine:

A high-level design. ICDE 2006: 141.
[11] M. Hammad et al.: Nile: A Query Processing Engine for Data Streams.

ICDE 2004: 851.
[12] D. Abadi et al.: The design of the Borealis stream processing engine.

CIDR 2005.
[13] B. Babcock et al.: Models and issues in data stream systems. PODS

2002: 1-16.
[14] Y. Xing, S. Zdonik, J. Hwang: Dynamic load distribution in the

Borealis stream processor. ICDE 2005: 791-802.
[15] J. Hwang et al.: High-Availability Algorithms for Distributed Stream

Processing. ICDE 2005: 779-790.
[16] S. Madden, M. Shah, J. Hellerstein, V. Raman: Continuously adaptive

continuous queries over streams. SIGMOD 2006: 49-60.
[17] I. Botan et al.: SECRET: A Model for Analysis of the Execution

Semantics of Stream Processing Systems. VLDB 2010: 232-243.
[18] Y. Yang et al.: HybMig: A Hybrid Approach to Dynamic Plan

Migration for Continuous Queries. IEEE TKDE: 398–411 (2007).
[19] C. Heinz et al.: Toward Simulation-Based Optimization in Data Stream

Management Systems. ICDE 2008: 1580-1583.
[20] Y. Zhu et al.: Dynamic Plan Migration for Continuous Queries Over

Data Streams. SIGMOD 2004: 431-442.
[21] C. Jensen, R. Snodgrass: Temporal Specialization. ICDE 1992.
[22] Microsoft StreamInsight. http://tinyurl.com/4awexam.
[23] B. Gedik et al.: SPADE: The System S Declarative Stream Processing

Engine. SIGMOD 2008: 1123-1134.
[24] J. Hellerstein, P. Haas, H. Wang: Online Aggregation. SIGMOD 1997:

171-182.
[25] Oracle CEP. http://tinyurl.com/4gjlrkh.
[26] A. Raizman et al.: An Extensible Test Framework for the Microsoft

StreamInsight Query Processor. DBTest 2010.
[27] B. Chandramouli, D. Maier, J. Goldstein: Physically Independent

Stream Merging. Technical Report, Microsoft Research (MSR-TR-
2011-82). http://research.microsoft.com/apps/pubs/?id=151428.

[28] M. Liu et al.: Sequence pattern query processing over out-of-order
event streams. ICDE, 2009.

