
Distributed Non-Stochastic Experts

Varun Kanade∗

UC Berkeley
vkanade@eecs.berkeley.edu

Zhenming Liu†

Princeton University
zhenming@cs.princeton.edu

Božidar Radunović
Microsoft Research

bozidar@microsoft.com

November 9, 2012

Abstract

We consider the online distributed non-stochastic experts problem, where the distributed
system consists of one coordinator node that is connected to k sites, and the sites are required
to communicate with each other via the coordinator. At each time-step t, one of the k site
nodes has to pick an expert from the set {1, . . . , n}, and the same site receives information
about payoffs of all experts for that round. The goal of the distributed system is to minimize
regret at time horizon T , while simultaneously keeping communication to a minimum. The
two extreme solutions to this problem are: (i) Full communication: This essentially simulates
the non-distributed setting to obtain the optimal O(

√
log(n)T) regret bound at the cost of

T communication. (ii) No communication: Each site runs an independent copy – the regret
is O(

√
log(n)kT) and the communication is 0. This paper shows the difficulty of simultane-

ously achieving regret asymptotically better than
√
kT and communication better than T . We

give a novel algorithm that for an oblivious adversary achieves a non-trivial trade-off: regret
O(
√
k5(1+ε)/6T) and communication O(T/kε), for any value of ε ∈ (0, 1/5). We also consider

a variant of the model, where the coordinator picks the expert. In this model, we show that
the label-efficient forecaster of Cesa-Bianchi et al. (2005) already gives us strategy that is near
optimal in regret vs communication trade-off.

1 Introduction

In this paper, we consider the well-studied non-stochastic expert problem in a distributed setting.
In the standard (non-distributed) setting, there are a total of n experts available for the decision-
maker to consult, and at each round t = 1, . . . , T , she must choose to follow the advice of one of
the experts, say at, from the set [n] = {1, . . . , n}. At the end of the round, she observes a payoff
vector pt ∈ [0, 1]n, where pt[a] denotes the payoff that would have been received by following the
advice of expert a. The payoff received by the decision-maker is pt[at]. In the non-stochastic
setting, an adversary decides the payoff vectors at any time step. At the end of the T rounds,
the regret of the decision maker is the difference in the payoff that she would have received using

∗This research was carried out while the author was at Harvard University supported in part by grant NSF-CCF-
09-64401
†This research was carried out while the author was at Harvard University supported in part by grants NSF-IIS-

0964473 and NSF-CCF-0915922

1

the single best expert at all times in hindsight, and the payoff that she actually received, i.e.
R = maxa∈[n]

∑T
t=1 pt[a] −

∑T
t=1 pt[at]. The goal here is to minimize her regret; this general

problem in the non-stochastic setting captures several applications of interest, such as experiment
design, online ad-selection, portfolio optimization, etc. (See [1, 2, 3, 4, 5] and references therein.)

Tight bounds on regret for the non-stochastic expert problem are obtained by the so-called
follow the regularized leader approaches; at time t, the decision-maker chooses a distribution, xt,
over the n experts. Here xt minimizes the quantity

∑t−1
s=1 pt · x + r(x), where r is a regularizer.

Common regularizers are the entropy function, which results in Hedge [1] or the exponentially
weighted forecaster (see chap. 2 in [2]), or as we consider in this paper r(x) = η̄ · x, where
η̄ ∈R [0, η]n is a random vector, which gives the follow the perturbed leader (FPL) algorithm [6].

We consider the setting when the decision maker is a distributed system, where several different
nodes may select experts and/or observe payoffs at different time-steps. Such settings are common,
e.g. internet search companies, such as Google or Bing, may use several nodes to answer search
queries and the performance is revealed by user clicks. From the point of view of making better
predictions, it is useful to pool all available data. However, this may involve significant communica-
tion which may be quite costly. Thus, there is an obvious trade-off between cost of communication
and cost of inaccuracy (because of not pooling together all data), which leads to the question:

What is the explicit trade-off between the total amount of communication needed and the regret of
the expert problem under worst case input?

2 Models and Summary of Results

We consider a distributed computation model consisting of one central coordinator node connected
to k site nodes. The site nodes must communicate with each other using the coordinator node.
At each time step, the distributed system receives a query1, which indicates that it must choose
an expert to follow. At the end of the round, the distributed system observes the payoff vector.
We consider two different models described in detail below: the site prediction model where one
of the k sites receives a query at any given time-step, and the coordinator prediction model where
the query is always received at the coordinator node. In both these models, the payoff vector, pt,
is always observed at one of the k site nodes. Thus, some communication is required to share the
information about the payoff vectors among nodes. As we shall see, these two models yield different
algorithms and performance bounds.

Goal: The algorithm implemented on the distributed system may use randomness, both to decide
which expert to pick and to decide when to communicate with other nodes. We focus on simulta-
neously minimizing the expected regret and the expected communication used by the (distributed)
algorithm. Recall, that the expected regret is:

E[R] = E

[
max
a∈[n]

T∑
t=1

pt[a]−
T∑
t=1

pt[at],

]
(1)

where the expectation is over the random choices made by the algorithm. The expected commu-
nication is simply the expected number (over the random choices) of messages sent in the system.

1We do not use the word query in the sense of explicitly giving some information or context, but merely as
indication of occurrence of an event that forces some site or coordinator to choose an expert. In particular, if any
context is provided in the query the algorithms considered in this paper ignore all context – thus we are in the
non-contextual expert setting.

2

As we show in this paper, this is a challenging problem and to keep the analysis simple we focus
on bounds in terms of the number of sites k and the time horizon T , which are often the most im-
portant scaling parameters. In particular, our algorithms are variants of follow the perturbed leader
(FPL) and hence our bounds are not optimal in terms of the number of experts n. We believe that
the dependence on the number of experts in our algorithms (upper bounds) can be strengthened
using a different regularizer. Also, all our lower bounds are shown in terms of T and k, for n = 2.
For larger n, using techniques similar to Theorem 3.6 in [2] should give the appropriate dependence
on n.

Adversaries: In the non-stochastic setting, we assume that an adversary may decide the payoff
vectors, pt, at each time-step and also the site, st, that receives the payoff vector (and also the
query in the site-prediction model). An oblivious adversary cannot see any of the actions of the
distributed system, i.e. selection of expert, communication patterns or any random bits used. How-
ever, the oblivious adversary may know the description of the algorithm. In addition to knowing
the description of the algorithm, an adaptive adversary is stronger and can record all of the past
actions of the algorithm, and use these arbitrarily to decide the future payoff vectors and site allo-
cations.

Communication: We do not explicitly account for message sizes. However, since we are interested
in scaling with T and k, we do require that message size should not depend on the number of sites k
or the number of time-steps T , but only on the number of experts n. In other words, we assume that
n is substantially smaller than T and k. All the messages used in our algorithms contain at most n
real numbers. As is standard in the distributed systems literature, we assume that communication
delay is 0, i.e. the updates sent by any node are received by the recipients before any future query
arrives. All our results still hold under the weaker assumption that the number of queries received
by the distributed system in the duration required to complete a broadcast is negligible compared
to k. 2

We now describe the two models in greater detail, state our main results and discuss related
work:

1. Site Prediction Model: At each time step t = 1, . . . , T , one of the k sites, say st, receives a
query and has to pick an expert, at, from the set, [n] = {1, . . . , n}. The payoff vector pt ∈ [0, 1]n,
where pt[i] is the payoff of the ith expert is revealed only to the site st and the decision-maker
(distributed system) receives payoff pt[at], corresponding to the expert actually chosen. The site
prediction model is commonly studied in distributed machine learning settings (see [7, 8, 9]). The
payoff vectors, p1, . . . ,pT , and also the choice of sites that receive the query, s1, . . . , sT , are decided
by an adversary. There are two very simple algorithms in this model:

(i) Full communication: The coordinator always maintains the current cumulative payoff vector,∑t−1
τ=1 pτ . At time step t, st receives the current cumulative payoff vector

∑t−1
τ=1 pτ from the

coordinator, chooses an expert at ∈ [n] using FPL, receives payoff vector pt and sends pt to the
coordinator, which updates its cumulative payoff vector. Note that the total communication is 2T
and the system simulates (non-distributed) FPL to achieve (optimal) regret guarantee O(

√
nT).

(ii) No communication: Each site maintains cumulative payoff vectors corresponding to the queries
received by them, thus implementing k independent versions of FPL. Suppose that the ith site

2This is because in regularized leader like approaches, if the cumulative payoff vector changes by a small amount
the distribution over experts does not change much because of the regularization effect.

3

receives a total of Ti queries (
∑k

i=1 Ti = T), the regret is bounded by
∑k

i=1O(
√
nTi) = O(

√
nkT)

and the total communication is 0. This upper bound is actually tight, as shown in Lemma 3
(Appendix C.2.1), in the event that there is 0 communication.

Simultaneously achieving regret that is asymptotically lower than
√
knT using communication

asymptotically lower than T turns out to be a significantly challenging question. Our main positive
result is the first distributed expert algorithm in the oblivious adversarial (non-stochastic) setting,
using sub-linear communication. Finding such an algorithm in the case of an adaptive adversary
is an interesting open problem.

Theorem 1. When T ≥ 2k2.3, there exists an algorithm for the distributed experts problem
that against an oblivious adversary achieves regret O(log(n)

√
k5(1+ε)/6T) and uses communication

O(T/kε), giving non-trivial guarantees in the range ε ∈ (0, 1/5).

2. Coordinator Prediction Model: At every time step, the query is received by the coordinator
node, which chooses an expert at ∈ [n]. However, at the end of the round, one of the site nodes,
say st, observes the payoff vector pt. The payoff vectors pt and choice of sites st are decided by
an adversary. This model is also a natural one and is explored in the distributed systems and
streaming literature (see [10, 11, 12] and references therein).

The full communication protocol is equally applicable here getting optimal regret bound,
O(
√
nT) at the cost of substantial (essentially T) communication. But here, we do not have

any straightforward algorithms that achieve non-trivial regret without using any communication.
This model is closely related to the label-efficient prediction problem (see Chapter 6.1-3 in [2]),
where the decision-maker has a limited budget and has to spend part of its budget to observe any
payoff information. The optimal strategy is to request payoff information randomly with probabil-
ity C/T at each time-step, if C is the communication budget. We refer to this algorithm as LEF
(label-efficient forecaster) [13].

Theorem 2. [13] (Informal) The LEF algorithms using FPL with communication budget C achieves
regret O(T

√
n/C) against both an adaptive and an oblivious adversary.

One of the crucial differences between this model and that of the label-efficient setting is that
when communication does occur, the site can send cumulative payoff vectors comprising all previ-
ous updates to the coordinator rather than just the latest one. The other difference is that, unlike
in the label-efficient case, the sites have the knowledge of their local regrets and can use it to decide
when to communicate. However, our lower bounds for natural types of algorithms show that these
advantages probably do not help to get better guarantees.

Lower Bound Results: In the case of an adaptive adversary, we have an unconditional (for any
type of algorithm) lower bound in both the models:

Theorem 3. Let n = 2 be the number of experts. Then any (distributed) algorithm that achieves
expected regret o(

√
kT) must use communication (T/k)(1− o(1)).

The proof appears in Appendix A. Notice that in the coordinator prediction model, when
C = T/k, this lower bound is matched by the upper bound of LEF.

In the case of an oblivious adversary, our results are weaker, but we can show that certain
natural types of algorithms are not applicable directly in this setting. The so called regularized
leader algorithms, maintain a cumulative payoff vector, Pt, and use only this and a regularizer to
select an expert at time t. We consider two variants in the distributed setting:

(i) Distributed Counter Algorithms: Here the forecaster only uses P̃t, which is an (approximate)

4

version of the cumulative payoff vector Pt. But we make no assumptions on how the forecaster will
use P̃t. P̃t can be maintained while using sub-linear communication by applying techniques from
distributed systems literature [11].

(ii) Delayed Regularized Leader: Here the regularized leaders don’t try to explicitly maintain an
approximate version of the cumulative payoff vector. Instead, they may use an arbitrary commu-
nication protocol, but make prediction using the cumulative payoff vector (using any past payoff
vectors that they could have received) and some regularizer.

We show in Section 3.2 that the distributed counter approach does not yield any non-trivial
guarantee in the site-prediction model even against an oblivious adversary. It is possible to show a
similar lower bound the in the coordinator prediction model, but is omitted since it follows easily
from the idea in the site-prediction model combined with an explicit communication lower bound
given in [11].

Section 4 shows that the delayed regularized leader approach does not yield non-trivial guar-
antees even against an oblivious adversary in the coordinator prediction model, suggesting LEF
algorithm is near optimal.

Related Work: Recently there has been significant interest in distributed online learning questions
(see for example [7, 8, 9]). However, these works have focused mainly on stochastic optimization
problems. Thus, the techniques used, such as reducing variance through mini-batching, are not
applicable to our setting. Questions such as network structure [8] and network delays [9] are inter-
esting in our setting as well, however, at present our work focuses on establishing some non-trivial
regret guarantees in the distributed online non-stochastic experts setting. Study of communication
as a resource in distributed learning is also considered in [14, 15, 16]; however, this body of work
seems only applicable to offline learning.

The other related work is that of distributed functional monitoring [10] and in particular
distributed counting[11, 12], and sketching [17]. Some of these techniques have been success-
fully applied in offline machine learning problems [18]. However, we are the first to analyze the
performance-communication trade-off of an online learning algorithm in the standard distributed
functional monitoring framework [10]. An application of a distributed counter to an online Bayesian
regression was proposed in Liu et al. [12]. Our lower bounds discussed below, show that approximate
distributed counter techniques do not directly yield non-trivial algorithms.

3 Site-prediction model

3.1 Upper Bounds

We describe our algorithm that simultaneously achieves non-trivial bounds on expected regret and
expected communication. We begin by making two assumptions that simplify the exposition. First,
we assume that there are only 2 experts. The generalization from 2 experts to n is easy, as discussed
in the Remark 1 at the end of this section. Second, we assume that there exists a global query
counter, that is available to all sites and the co-ordinator, which keeps track of the total number
of queries received across the k sites. We discuss this assumption in Remark 2 at the end of the
section. As is often the case in online algorithms, we assume that the time horizon T is known.
Otherwise, the standard doubling trick may be employed. The notation used in this Section is
defined in Table 1.
Algorithm Description: Our algorithm DFPL is described in Figure 1(a). We make use of FPL
algorithm, described in Figure 1(b), which takes as a parameter the amount of added noise η.

5

Symbol Definition

pt Payoff vector at time-step t, pt ∈ [0, 1]2

` The length of block into which inputs are divided
b Number of input blocks b = T/`

Pi Cumulative payoff vector within block i, Pi =
∑i`

t=(i−1)`+1 pt

Qi Cumulative payoff vector until end of block (i− 1), Qi =
∑i−1

j=1 Pj

M(v) For vector v ∈ R2, M(v) = 1 if v1 > v2; M(v) = 2 otherwise
FPi(η) Random variable denoting the payoff obtained by playing FPL(η) on block i
FRi

a(η) Random variable denoting the regret with respect to action a of playing FPL(η) on block i
FRi

a(η) = Pi[a]− FPi(η)
FRi(η) Random variable denoting the regret of playing FPL(η) on payoff vectors in block i

FRi(η) = maxa=1,2 Pi[a]− FPi(η) = maxa=1,2 FRi
a(η)

Table 1: Notation used in Algorithm DFPL (Fig. 1) and in Section 3.1.

DFPL(T , `, η)

set b = T/`; η′ =
√
`; q = 2`3T 2/η5

for i = 1 . . . , b
let Yi = Bernoulli(q)
if Yi = 1 then #step phase

play FPL(η′) for time-steps (i− 1)`+ 1, . . . , i`
else #block phase

ai = M(Qi + r) where r ∈R [0, η]2

play ai for time-steps (i− 1)`+ 1, . . . , i`

Pi =
∑i`
t=(i−1)`+1 pt

Qi+1 = Qi + Pi

FPL(T, n = 2, η)

for t = 1, . . . , T

at = M(
∑t−1
τ=1 pτ + r) where r ∈R [0, η]2

follow expert at at time-step t
observe payoff vector pt

(a) (b)

Figure 1: (a) DFPL: Distributed Follow the Perturbed Leader, (b) FPL: Follow the Perturbed Leader with

parameter η for 2 experts (M(·) is defined in Table 1, r is a random vector)

DFPL algorithm treats the T time steps as b(= T/`) blocks, each of length `. At a high level, with
probability q on any given block the algorithm is in the step phase, running a copy of FPL (with
noise parameter η′) across all time steps of the block, synchronizing after each time step. Otherwise
it is in a block phase, running a copy of FPL (with noise parameter η) across blocks with the same
expert being followed for the entire block and synchronizing after each block. This effectively makes
Pi, the cumulative payoff over block i, the payoff vector for the block FPL. The block FPL has on
average (1− q)T/` total time steps. We begin by stating a (slightly stronger) guarantee for FPL.

Lemma 1. Consider the case n = 2. Let p1, . . . ,pT ∈ [0, 1]2 be a sequence of payoff vectors such
that maxt |pt|∞ ≤ B and let the number of experts be 2. Then FPL(η) has the following guarantee
on expected regret, E[R] ≤ B

η

∑T
t=1 |pt[1]− pt[2]|+ η.

The proof is a simple modification to the proof of the standard analysis [6] and is given in
Appendix B for completeness. The rest of this section is devoted to the proof of Lemma 2

Lemma 2. Consider the case n = 2. If T > 2k2.3, Algorithm DFPL (Fig. 1) when run with

parameters `, T , η = `5/12T 1/2 and b, η′, q as defined in Fig 1, has expected regret O(
√
`5/6T)

6

and expected communication O(Tk/`). In particular for ` = k1+ε for 0 < ε < 1/5, the algorithm
simultaneously achieves regret that is asymptotically lower than

√
kT and communication that is

asymptotically lower3 than T .

Since we are in the case of an oblivious adversary, we may assume that the payoff vectors
p1, . . . ,pT are fixed ahead of time. Without loss of generality let expert 1 (out of {1, 2}) be the
one that has greater payoff in hindsight. Recall that FRi

1(η
′) denotes the random variable that

is the regret of playing FPL(η′) in a step phase on block i with respect to the first expert. In
particular, this will be negative if expert 2 is the best expert on block i, even though globally
expert 1 is better. In fact, this is exactly what our algorithm exploits: it gains on regret in the
communication-expensive, step phase while saving on communication in the block phase.

The regret can be written as

R =

b∑
i=1

(
Yi · FRi

1(η
′) + (1− Yi)(Pi[1]−Pi[ai]

)
.

Note that the random variables Yi are independent of the random variables FRi
1(η
′) and the random

variables ai. As E[Yi] = q, we can bound the expression for expected regret as follows:

E[R] ≤ q
b∑
i=1

E[FRi
1(η
′)] + (1− q)

b∑
i=1

E[Pi[1]−Pi[ai]] (2)

We first analyze the second term of the above equation. This is just the regret corresponding
to running FPL(η) at the block level, with T/` time steps. Using the fact that maxi |Pi|∞ ≤
`maxt |pt|∞ ≤ `, Lemma 1 allows us to conclude that:

b∑
i=1

E[Pi[1]−Pi[ai]] ≤ `

η

b∑
i=1

|Pi[1]−Pi[2]|+ η (3)

Next, we also analyse the first term of the inequality (2). We chose η′ =
√
` (see Fig. 1)

and the analysis of FPL guarantees that E[FRi(η′)] ≤ 2
√
`, where FRi(η′) denotes the random

variable that is the actual regret of FPL(η′), not the regret with respect to expert 1 (which is
FRi

1(η
′)). Now either FRi(η′) = FRi

1(η
′) (i.e. expert 1 was the better one on block i), in which case

E[FRi
1(η
′)] ≤ 2

√
`; otherwise FRi(η′) = FRi

2(η
′) (i.e. expert 2 was the better one on block i), in

which case E[FRi
1(η
′)] ≤ 2

√
`+ Pi[1]−Pi[2]. Note that in this expression Pi[1]−Pi[2] is negative.

Putting everything together we can write that E[FRi
1(η
′)] ≤ 2

√
`−(Pi[2]−Pi[1])+, where (x)+ = x

if x ≥ 0 and 0 otherwise. Thus, we get the main equation for regret.

E[R] ≤ 2qb
√
`− q

b∑
i=1

(Pi[2]−Pi[1])+︸ ︷︷ ︸
term 1

+
`

η

b∑
i=1

|Pi[1]−Pi[2]|︸ ︷︷ ︸
term 2

+η (4)

Note that the first (i.e. 2qb
√
`) and last (i.e. η) terms of inequality (4) are O(

√
`5/6T) for the

setting of the parameters as in Lemma 2. The strategy is to show that when “term 2” becomes
large, then “term 1” is also large in magnitude, but negative, compensating the effect of “term 1”.

3Note that here asymptotics is in terms of both parameters k and T . Getting communication of the form T 1−δf(k)
for regret bound better than

√
kT , seems to be a fairly difficult and interesting problem

7

We consider a few cases:

Case 1: When the best expert is identified quickly and not changed thereafter. Let ζ denote the
maximum index, i, such that Qi[1] − Qi[2] ≤ η. Note that after the block ζ is processed, the
algorithm in the block phase will never follow expert 2.

Suppose that ζ ≤ (η/`)2. We note that the correct bound for “term 2” is now actually

(`/η)
∑ζ

i=1 |Pi[1]−Pi[2]| ≤ (`2ζ/η) ≤ η since |Pi[1]−Pi[2]| ≤ ` for all i.

Case 2 The best expert may not be identified quickly, furthermore |Pi[1]−Pi[2]| is large often. In
this case, although “term 2” may be large (when (Pi[1] − Pi[2]) is large), this is compensated by
the negative regret in “term 1” in expression (4). This is because if |Pi[1] − Pi[2]| is large often,
but the best expert is not identified quickly, there must be enough blocks on which (Pi[2]−Pi[1])
is positive and large.

Notice that ζ ≥ (η/`)2. Define λ = η2/T and let S = {i ≤ ζ | |Pi[1] − Pi[2]| ≥ λ}.
Let α = |S|/ζ. We show that

∑ζ
i=1(P

i[2] − Pi[1])+ ≥ (αζλ)/2 − η. To see this consider
S1 = {i ∈ S | Pi[1] > Pi[2]} and S2 = S \S1. First, observe that

∑
i∈S |Pi[1]−Pi[2]| ≥ αζλ. Then,

if
∑

i∈S2
(Pi[2]−Pi[1]) ≥ (αζλ)/2, we are done. If not

∑
i∈S1

(Pi[1]−Pi[2]) ≥ (αζλ)/2. Now notice

that
∑ζ

i=1 Pi[1] −Pi[2] ≤ η, hence it must be the case that
∑ζ

i=1(P
i[2] −Pi[1])+ ≥ (αζλ)/2 − η.

Now for the value of q = 2`3T 2/η5 and if α ≥ η2/(T`), the negative contribution of “term 1” is at
least qαζλ/2 which greater than the maximum possible positive contribution of “term 2” which is
`2ζ/η. It is easy to see that these quantities are equal and hence the total contribution of “term
1” and “term 2” together is at most η.

Case 3 When |Pi[1]−Pi[2]| is “small” most of the time. In this case the parameter η is actually
well-tuned (which was not the case when |Pi[1] − Pi[2]| ≈ `) and gives us a small overall regret.
(See Lemma 1.) We have α < η2/(T`). Note that α` ≤ λ = η2/T and that ζ ≤ T/`. In this case

“term 2” can be bounded easily as follows: `
η

∑ζ
i=1 |Pi[1]−Pi[2]| ≤ `

η (αζ`+ (1− α)ζλ) ≤ 2η

The above three cases exhaust all possibilities and hence no matter what the nature of the payoff
sequence, the expected regret of DFPL is bounded by O(η) as required. The expected total commu-
nication is easily seen to be O(qT +Tk/`) – the q(T/`) blocks on which step FPL is used contribute
O(`) communication each, and the (1 − q)(T/`) blocks where block FPL is used contributed O(k)
communication each.

Remark 1. Our algorithm can be generalized to n experts by recursively dividing the set of experts
in two and applying our algorithm to two meta-experts, as shown in Section C.1 in the Appendix.
However, the bound obtained in Section C.1 is not optimal in terms of the number of experts, n.
This observation and Lemma 2 imply Theorem 1.

Remark 2. The assumption that there is a global counter is necessary because our algorithm divides
the input into blocks of size `. However, it is not an impediment because it is sufficient that the block
sizes are in the range [0.99`, 1.01`]. Assuming that the coordinator always signals the beginning and
end of the block (by a broadcast which only adds 2k messages to any block), we can use a distributed
counter that guarantees a very tight approximation to the number of queries received in each block
with at most O(k log(`)) messages communicated (see [11]).

3.2 Lower Bounds

In this section we give a lower bound on distributed counter algorithms in the site prediction model.
Distributed counters allow tight approximation guarantees, i.e. for factor β additive approximation,
the communication required is only O(T log(T)

√
k/β) [11]. We observe that the noise used by FPL

is quite large, O(
√
T), and so it is tempting to find a suitable β and run FPL using approximate

8

cumulative payoffs. We consider the class of algorithms such that:

(i) Whenever each site receives a query, it has an (approximate) cumulative payoff of each expert
to additive accuracy β. Furthermore, any communication is only used to maintain such a counter.
(ii) Any site only uses the (approximate) cumulative payoffs and any local information it may have

to choose an expert when queried.

However, our negative result shows that even with a highly accurate counter β = O(k), the non-
stochasticity of the payoff sequence may cause any such algorithm to have Ω(

√
kT) regret. Further-

more, we show that any distributed algorithm that implements (approximate) counters to additive
error k/10 on all sites4 is at least Ω(T).

Theorem 4. At any time step t, suppose each site has an (approximate) cumulative payoff count,
P̃t[a], for every expert such that |Pt[a]− P̃t[a]| ≤ β. Then we have the following:

1. If β ≤ k, any algorithm that uses the approximate counts P̃t[a] and any local information at the
site making the decision, cannot achieve expected regret asymptotically better than

√
βT .

2. Any protocol on the distributed system that guarantees that at each time step, each site has a
β = k/10 approximate cumulative payoff with probability ≥ 1/2, uses Ω(T) communication.

4 Coordinator-prediction model

In the co-ordinator prediction model, as mentioned earlier it is possible to use the label-efficient
forecaster, LEF (Chap. 6 [2, 13]). Let C be an upper bound on the total amount of communication
we are allowed to use. The label-efficient predictor translates into the following simple protocol:
Whenever a site receives a payoff vector, it will forward that particular payoff to the coordina-
tor with probability p ≈ C/T . The coordinator will always execute the exponentially weighted
forecaster over the sampled subset of payoffs to make new decisions. Here, the expected regret is
O(T

√
log(n)/C). In other words, if our regret needs to be O(

√
T), the communication needs to be

linear in T .
We observe that in principle there is a possibility of better algorithms in this setting for mainly

two reasons: (i) when the sites send payoff vectors to the co-ordinator, they can send cumulative
payoffs rather than the latest ones, thus giving more information, and (ii) the sites may decided
when to communicate as a function of the payoff vectors instead of just randomly. However, we
present a lower-bound that shows that for a natural family of algorithms achieving regret O(

√
T)

requires at least Ω(T 1−ε) for every ε > 0, even when k = 1. The type of algorithms we consider
may have an arbitrary communication protocol, but it satisfies the following: (i) Whenever a site
communicates with the coordinator, the site will report its local cumulative payoff vector. (ii) When
the coordinator makes a decision, it will execute, FPL(

√
T), (follow the perturbed leader with noise√

T) using the latest cumulative payoff vector. The proof of Theorem 5 appears in Appendix D
and the results could be generalized to other regularizers.

Theorem 5. Consider the distributed non-stochastic expert problem in coordinator prediction
model. Any algorithm of the kind described above that achieves regret O(

√
T) must use Ω(T 1−ε)

communication against an oblivious adversary for every constant ε.

9

0 0.5 1 1.5 2

x 10
4

−100

0

100

200

300

400

500

λ

C
um

ul
at

iv
e

re
gr

et

 No−communication
Mini−batch, p=4.64e−002
All−communication
HYZ, p=2.24e−001
DFPL, ε=0.00e+000
DFPL, ε=1.48e−001

0 500 1000 1500 2000
0

2

4

6

8

x 10
4

Worst−case regret

W
or

st
−

ca
se

 c
om

m
un

ic
at

io
n

DFPL
Mini−batches
HYZ

(a) (b)

Figure 2: (a) - Cumulative regret for the MC sequences as a function of correlation λ, (b) - Worst-case
cumulative regret vs. communication cost for the MC and zig-zag sequences.

5 Simulations

In this section, we describe some simulation results comparing the efficacy of our algorithm DFPL
with some other techniques. We compare DFPL against simple algorithms – full communication
and no communication, and two other algorithms which we refer to as mini-batch and HYZ. In the
mini-batch algorithm, the coordinator requests randomly, with some probability p at any time step,
all cumulative payoff vectors at all sites. It then broadcasts the sum (across all of the sites) back to
the sites, so that all sites have the latest cumulative payoff vector. Whenever such a communication
does occur, the cost is 2k. We refer to this as mini-batch because it is similar in spirit to the mini-
batch algorithms used in the stochastic optimization problems. In the HYZ algorithm, we use the
distributed counter technique of Huang et al. [11] to maintain the (approximate) cumulative payoff
for each expert. Whenever a counter update occurs, the coordinator must broadcast to all nodes
to make sure they have the most current update.

We consider two types of synthetic sequences. The first is a zig-zag sequence, with µ being the
length of one increase/decrease. For the first µ time steps the payoff vector is always (1, 0) (expert
1 being better), then for the next 2µ time steps, the payoff vector is (0, 1) (expert 2 is better), and
then again for the next 2µ time-steps, payoff vector is (1, 0) and so on. The zig-zag sequence is
also the sequence used in the proof of the lower bound in Theorem 5. The second is a two-state
Markov chain (MC) with states 1, 2 and Pr[1→ 2] = Pr[2→ 1] = 1

2λ . While in state 1, the payoff
vector is (1, 0) and when in state 2 it is (0, 1).

In our simulations we use T = 20000 predictions, and k = 20 sites. Fig. 2 (a) shows the
performance of the above algorithms for the MC sequences, the results are averaged across 100
runs, over both the randomness of the MC and the algorithms. Fig. 2 (b) shows the worst-
case cumulative communication vs the worst-case cumulative regret trade-off for three algorithms:
DFPL, mini-batch and HYZ, over all the described sequences. While in general it is hard to compare
algorithms on non-stochastic inputs, our results confirm that for non-stochastic sequences inspired
by the lower-bounds in the paper, our algorithm DFPL outperforms other related techniques.

References

[1] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learnign and an
application to boosting. In EuroCOLT, 1995.

[2] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University
Press, 2006.

4The approximation guarantee is only required when a site receives a query and has to make a prediction.

10

[3] T. Cover. Universal portfolios. Mathematical Finance, 1:1–19, 1991.

[4] E. Hazan and S. Kale. On stochastic and worst-case models for investing. In NIPS, 2009.

[5] E. Hazan. The convex optimization approach to regret minimization. Optimization for Machine
Learning, 2012.

[6] A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal of Com-
puter and System Sciences, 71:291–307, 2005.

[7] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction.
In ICML, 2011.

[8] J. Duchi, A. Agarwal, and M. Wainright. Distributed dual averaging in networks. In NIPS,
2010.

[9] A. Agarwal and J. Duchi. Distributed delayed stochastic optimization. In NIPS, 2011.

[10] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed functional monitoring.
ACM Transactions on Algorithms, 7, 2011.

[11] Z. Huang, K. Yi, and Q. Zhang. Randomized algorithms for tracking distributed count,
frequencies and ranks. In PODS, 2012.

[12] Z. Liu, B. Radunović, and M. Vojnović. Continuous distributed counting for non-monotone
streams. In PODS, 2012.

[13] N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Minimizing regret with label efficient prediction.
In ISIT, 2005.

[14] M-F. Balcan, A. Blum, S. Fine, and Y. Mansour. Distributed learning, communication com-
plexity and privacy. In COLT (to appear), 2012.

[15] H. Daumé III, J. M. Phillips, A. Saha, and S. Venkatasubramanian. Protocols for learning
classifiers on distributed data. In AISTATS, 2012.

[16] H. Daumé III, J. M. Phillips, A. Saha, and S. Venkatasubramanian. Efficients protocols for
distributed classification and optimization. In arXiv:1204.3523v1, 2012.

[17] G. Cormode, M. Garofalakis, P. Haas, and C. Jermaine. Synopses for Massive Data - Samples,
Histograms, Wavelets, Sketches. Foundations and Trends in Databases, 2012.

[18] K. Clarkson, E. Hazan, and D. Woodruff. Sublinear optimization for machine learning. In
FOCS, 2010.

11

A Adaptive Adversary

This section contains a proof of Theorem 3. The proof makes use of Khinchine’s inequality (see
Appendix A.1.14 in [2]).

Khinchine’s Inequality. Let σ1, . . . , σn be Rademacher random variables, i.e. Pr[σi = 1] =
Pr[σi = −1] = 1/2. Then for any real numbers a1, . . . , an,

E

[
|
n∑
i=1

aiσi|

]
≥ 1√

2

√√√√ n∑
i=1

a2i =
1√
2

√√√√√E

(n∑
i=1

aiσi

)2

Proof of Theorem 3. The adaptive adversary divides the total T time steps into T/k time blocks,
each consisting of k time-steps. During each block of k time-steps, each of the k sites receives
exactly 1 query. At time t = 1, k + 1, 2k + 1, . . ., the adversary tosses an unbiased coin. Let pH
denote the payoff vector corresponding to heads, where pH [1] = 1 and pH [2] = 0. Similarly let pT
(corresponding to tails) be such that pT [1] = 0 and pT [2] = 1. For i = 1, . . . , T/k and j = 1, . . . , k,
the adaptive adversary does the following: At time (i− 1)k + j, if there was no communication on
part of the decision maker (distributed system) between time steps (i− 1)k+ 1, . . . , (i− 1)k+ j− 1
– then if the coin toss at time (i − 1)k + 1 was heads the payoff vector is pH , otherwise it is pT .
On the other hand if there was any communication, then the adaptive adversary tosses a random
coin and sets the payoff vector accordingly.

Consider the expected payoff of the algorithm: At time t = (i − 1)k + j, if there was commu-
nication between time steps (i − 1)k + 1 to (i − 1)k + j − 1, then the adversary has chosen the
payoff vector uniformly at random between pH and pT and hence the expected reward at time
step t is exactly 1/2. On the other hand if there was no communication between these time steps,
then the site j making the decision has no information about the coin toss of the adversary at time
(i − 1)j + 1, and hence the expected reward is still 1/2. Thus, the total expected reward of the
algorithm (by linearity of expectation) is T/2.

Note that,

E

[
max
i=1,2

T∑
t=1

pt[i]

]
=

1

2

(
E

[
T∑
t=1

pt[1] + pt[2]

]
+ E

[
|
T∑
t=1

(pt[1]− pt[2])|

])

=
T

2
+

1

2
E

[
|
T∑
t=1

(pt[1]− pt[2])|

]
(5)

Let I ⊆ [T/k] be the indices of the blocks for which there was some communication. Consider
blocks in I and those outside of I. Suppose the block (i − 1)k + 1, . . . , ik is such that i 6∈ I, then
|
∑t=ik

t=(i−1)k+1 pt[1]−pt[2]| = k. Note that all such block sums (as random variables) are independent
of all other block sums. For some block (i− 1)k+ 1, . . . , ik such that i ∈ I, let c(i) be such the first

such that communication occurs at block (i− 1)k+ c(i). Then |
∑t=(i−1)k+c(i)

t=(i−1)k+1 pt[1]−pt[2]| = c(i),

also note that pt for t = (i− 1)k + c(i) + 1, . . . , ik are all based on independent coin tosses. Then
note that,

T∑
t=1

pt[1]− pt[2] =
∑
i 6∈I

kσi, 1 +
∑
i∈I

(c(i)σi, 1 +

k∑
j=c(i)+1

σi,j), (6)

12

where σi, j are the Rademacher variables corresponding to the coin tosses of the adversary at time
step (i− 1)k + j. Also note that,

E

(T∑
t=1

pt[1]− pt[2]

)2
 ≥ (T

k
− |I|

)
k2

Then, Khinchine’s inequality and (5) gives us that

E[max
i=1,2

T∑
t=1

pt[i]] ≥ T

2
+

1

2
√

2

√√√√√E

(T∑
t=1

pt[1]− pt[2]

)2

≥ T

2
+

1

2
√

2

√(
T

k
− |I|

)
k2

Now, unless |I| = (T/k)(1−o(1)), it must be the case that E[maxi=1,2
∑T

t=1 pt[i]] ≥ T/2 + Ω(
√
kT)

leading to total expected regret Ω(
√
kT). Hence, any algorithm that achieves regret o(

√
kT) must

have communication (1− o(1))T/k.

B Follow the Perturbed Leader

Proof of Lemma 1. We first note that using the given notation, the regret guarantee of FPL(η) (see
Fig. 1(b)) is

E[R] ≤ B

η

T∑
t=1

|pt|1 + η

The above appears in the analysis of Kalai and Vempala [6]. Note that although |pt|1 = pt[1]+pt[2]
(pt[a] ≥ 0 in our setting), we can use the following trick. We first observe that since FPL(η) only
depends on the difference between the cumulative payoffs of the two experts, we may replace the
payoff vectors pt by p̃t, where

(i) if pt[1] ≥ pt[2], p̃t[1] = pt[1] − pt[2] and p̃t[2] = 0 (ii) if pt[1] < pt[2], p̃t[1] = 0 and p̃t[2] =
pt[2]− pt[1]

Next, we observe that the regret of FPL(η) with payoff sequence pt and p̃t is identically dis-
tributed, since the random choices only depend on the difference between the cumulative payoffs
at any time. Lastly, we note that |p̃t|1 = |pt[1]− pt[2]|, which completes the proof.

C Site Prediction : Missing Proofs

C.1 Generalizing DFPL to n experts

In this section, we generalize our DFPL algorithm for two experts to handle n experts. Lemma 2
showed that algorithm DFPL, in the setting of two experts, guarantees that the expected regret is
at most c0

√
`5/6T , where c0 is a universal constant.

Our generalization follows a recursive approach. Suppose that some algorithm A can achieve
expected regret, c0 log(n)

√
`5/6T with n experts, we show that we can construct algorithm A′ that

13

achieves expected regret, c0(log(n) + 1) with 2n experts as follows: We run 2 independent copies of
A (say A1 and A2) such that A1 only deals with the first n experts a1, a2, ..., an and A2 with the
rest of the experts an+1, ..., a2n. Then our algorithm A′ treats A1 and A2 as 2 experts and runs the
DFPL algorithm (Section 3.1) over these two experts. The analysis for regret is straightforward:

Let the regret for A1 be R1 and the regret for A2 be R2. We have

E[Payoff(A1)] ≥ max
i∈[n]

∑
t≤T

pt[i]− E[R1] and E[Payoff(A2)] ≥ max
i∈{n+1,...,2n}

∑
t≤T

pt[i]− E[R2].

We know that E[R1] ≤ c0 log(n)
√
`5/6T and E[R2] ≤ c0 log(n)

√
`5/6T .

Next, we can see that

E[Payoff(A′) | Payoff(A1),Payoff(A2)] ≥ max{Payoff(A1),Payoff(A2)} − c0
√
`5/6T

We can use the above expression to conclude (taking expectations) that

E[Payoff(A′)] ≥ E[Payoff(A1)]− c0
√
`5/6T

E[Payoff(A′)] ≥ E[Payoff(A2)]− c0
√
`5/6T

But using the above two inequalities we can conclude that

E[Payoff(A′)] ≤ max
i∈[2n]

∑
t≤T

pt[i]− c0(log(n) + 1)
√
l5/6T

This immediately implies that for n experts (starting from base case of n = 2 where DFPL

works), this recursive approach results in an algorithm for n experts achieves regretO(log(n)
√
`5/6T).

In order to analyze the communication, we observe that in order to implement the algorithm cor-
rectly, when algorithm (which is DFPL at some depth in the recursion) decides to communicate
at each time step on a block, the communication on that block is `. There are at most n copies
of DFPL running (depth of the recursion is log(n) − 1). However, the corresponding term in the
communication bound O(nqT`) is lower than the term arising from blocks where communication
occurs only at the beginning and end of block, O((1−qn)Tk/`). Thus, the expected communication
(in terms of number of messages) is asymptotically the same as in the case of 2 experts. If we count
communication complexity as the cost of sending 1 real number, instead of one message, then the
total communication cost is O(nTk/`).

C.2 Lower Bounds

C.2.1 No Communication Protocol

In the site-prediction setting, we show that any algorithm that uses no communication must achieve
regret Ω(

√
kT) on some sequence. The proof is quite simple, but does not follow directly from the

Ω(
√
T) lower-bound of the non-distributed case, because although the k sites each run a copy of

some FPL-like algorithm, the best expert might be different across the sites. We only consider the
case when n = 2, since we are more interested in dependence on T and k.

Lemma 3. If no-communication protocol is used in the site-prediction model expected regret achieved
by any algorithm is at least Ω(

√
kT).

14

Proof. The oblivious adversary does the following: Divide T time steps into T/k blocks of size k. For
each block, toss a random coin and set the payoff vector to be pH = (1, 0) for heads or pT = (0, 1)
for tails. And each query in a block is assigned to one site (say in a cyclic fashion). Note that the
expected reward of any algorithm that does not use any communication is T/2. Because, no site at
any time can perform better than random guessing. But the standard analysis shows that for the
sequence as constructed above E[maxa=1,2

∑T
t=1 pt[a]] ≥ T/2 + Ω(k

√
T/k) = T/2 + Ω(

√
kT).

C.2.2 Lower Bound using Distributed Counter

This section contains proof of Theorem 4.

Proof of Theorem 4.

Part 1: The oblivious adversary decides to only use β out of the k sites. The adversary divides
the input sequence into T/β blocks, each block of size β. For each block, the adversary tosses an
unbiased coin and sets the payoff vector pH = (1, 0) or pT = (0, 1) according to whether the coin
toss resulted in heads or tails. Let P̃t[a] = Pt∗ [a], where t∗ is largest such that t∗ < t and t∗ = βi
for some integer i (i.e. t∗ is the time at the end of the block). Note that |P̃t[a] − Pt[a]| ≤ β, so
P̃t[a] is a valid (approximate) value of the cumulative payoff of action a. However, since the payoff
vectors across the blocks are completely uncorrelated and each site makes a decision only once in
each block, the expected reward at any time step t is 1/2, and overall expected reward is T/2.

Note, that it is easy to show that E[maxi=1,2
∑T

t=1 pt[i]] ≥ T/2 + Ω(
√
βT) using standard tech-

niques. Thus the expected regret is at least Ω(
√
βT).

Part 2: Let β = k/10. Now consider the input sequence that is all 1. But that this is divided
into T/k blocks of size k. For each block, the oblivious adversary chooses a random permutation
of {1, . . . , k} and allocates the 1 to the site in that order. Note that when the site receives a 1, it is
required to have an β-approximate value to the current count. Suppose there was no communication
since this site last received a query, then at that time the estimate at this site was at most ik + β.
Now, depending on where in the permutation the site is it may be required to have a value in any
of the intervals [ik− β, ik+ β], [ik, ik+ 2β], [ik+ β, ik+ 3β], . . . , [(i+ 1)k− β, (i+ 1)k+ 2β]. There
are at least 5 disjoint intervals in this state and each of them are equally probable. Thus with
probability at least 4/5, in the absence of any communication, this site fails to have the correct
approximate estimate.

If on the other hand, every site does communicate at least once every time it receives a query.
The total communication is at least T .

D Proof of Theorem 5

Proof of Theorem 5. To prove Theorem 5, we construct a set of reward sequences pt0,p
t
1, ...,, and

show that any FPL-like algorithm (as described in Section 4), will have regret Ω(
√
T) on least one

of these sequences unless the communication is essentially linear in T .
Before we start the actual analysis, we need to introduce some more notation. First, recall

that C is an upper bound on the amount of communication allowed in the protocol. We shall
focus reward sequences where at any time-step exactly one of the experts receives payoff 1 and the
other expert receives payoff 0, i.e. pt ∈ {(0, 1), (1, 0)} for any t. Let gp(t) = pt[1] − pt[2], and let

15

Gp(t) =
∑t

i=1 g
p(t). Thus, we note that the payoff vectors p, the function gp, and the function

Gp all encode equivalent information regarding payoffs as a function of time.
Suppose, A is an algorithm that achieves optimal regret under the communication bound C.

Let r denote the random coin tosses used by, A. Thus we may think of r as being a string of length
poly(n, k)T fixed ahead of time. Let p1, ..., pT be a specific input sequence. Let T1, T2, . . . , TC
denote the time-steps when communication occurs. We note that Ti may depend on ri which is
a prefix of the (random) string r, which the algorithm observes until time-step Ti and may also
depend on the payoff vectors p1, . . . ,pTi .

Next, we describe the set of reward sequences to “fool” the algorithm. Let λ be a parameter
that will be fixed later. We construct up to (T/(2λ)) + 1 possible payoff sequences. We denote this
payoff sequences as p(0),p(1), . . . ,p(T/(2λ))+1. These sequences are constructed as follows:

• p(0): Let g+ denote a sequence of λ consecutive 1’s and g− denote a sequence of λ consecutive
−1’s. Then the sequence 〈gp(0)(t)〉t≤T is defined to be the sequence g−, g+, g+, g−, g−, ..., i.e.
gp(0)(t) = −1 if d(t − 1)/λe is even and gp(0)(t) = 1 if d(t − 1)/λe is odd. Furthermore,
we assume that T = (4m1 + 3)λ for some integer m1. This means that Gp(0)(T) = λ, i.e.
eventually expert 1 will be the better expert.

• p(i) for i > 0 and i even: In this payoff sequence, the payoff vectors for the first (2i − 1)λ
time-steps will be identical to those in p0. For the rest of the time-steps the payoff vector will
always be {(1, 0)}, i.e. the first expert always receives a unit payoff for t > (2i − 1)λ. Thus,
for sequences of this form, where i is even, expert 1 will be the better expert.

• p(i) for i > 0 and i odd: In this payoff sequence, the payoff vectors for the first (2i − 1)λ
time-steps will be identical to p(0). For the rest of the time-steps, the payoff vector will always
be {(0, 1)}, i.e. the second expert always receives a unit payoff after t > (2i− 1)λ. Thus, for
sequences of this form, where i is odd, expert 2 will be the better expert.

Furthermore, in what follows, we assume that there is only one site node. (This is not a problem,
since worst adversary could send all the payoff vectors to just one of the site nodes.) We shall refer
to the i-th cycle of the input in the above sequences as the input between time steps (4i + 2)λ −
(
√
T/2) + 1 and (4i + 4)λ + (

√
T/2). Let F i be an indicator random variable (depending on the

randomness r of the algorithm), such that F i = 0, if there is some communication between the
time steps 2iλ+

√
T/2 and (2i+ 2)λ−

√
t/2. If there is no communication, we will set F i = 1.

Now, we prove the main result using a series of claims. First, we show add a few extra com-
munication points, showing that this only increases the payoff of the algorithm (hence decreases
regret). Let I = {i | F 2i = F 2i+1 = F 2i+2 = 0}. Note that I itself is a random variable. For
every i ∈ I, we allow extra communication to the algorithm (for free) at the end of the following
time-steps: (4i+ 2)λ−

√
T/2 (4i+ 2)λ+

√
T/2, (4i+ 4)λ−

√
T/2, and (4i+ 4)

√
T/2. Note, that

this extra communication can only increase the payoff, precisely because F 2i = F 2i+1 = F 2i+2 = 0.
This extra communication is given for free, thus this is favorable to the trade-off of the algorithm.
Despite this we will show that even the regret of this algorithm has to be large. This is done by a
series of claims. Each of which are proved as lemmas subsequently.

Claim A Let R
p(i)

A (1, T) denote the (random variable) regret of playing according to algo-
rithm, A, against payoff sequence, p(i) using randomness r, between time-steps 1 and T .

Then, if E[R
p(i)

A (1, T)] = O(
√
T) for all 1 ≤ i ≤ T/(2λ), then E[|I|] ≥ T

4λ . This fact is proved
in Lemma 4.

Claim B Suppose, i ∈ I, and let C(i) be the communication during the ith cycle. Then we
can state the following regarding the payoff on the rounds with respect to sequence p(0) within

16

the ith cycle. Here c0 is some absolute constant.

Payoff
p(0)

A ((4i+ 2)λ−
√
T/2 + 1, (4i+ 4)λ+

√
T/2) ≤ λ+

√
T/2− c0

√
T

C(i)

This fact is proved in Lemma 5.

Claim C Let t be a point such that communication happened just after time step t. Let τ > t
be a point such that G(τ) = G(t). Then Payoff

p(0)

A (t + 1, τ) ≤ (τ − t)/2. This fact is proved
in Lemma 6.

Now, let us calculate the regret of the algorithm. If the expected regret of the algorithm with
respect to sequence p(i) for i > 0, is at most O(

√
T), then it must be the case that E[|I|] ≥ T/(4λ)

(using Claim A above). Now, we assumed that in the sequence p(0), expert 1 eventually wins. Let
I = {i1, . . . , ik}, where i1 < i2 < · · · < ik and E[k] ≥ T/(4λ). Then, we add up the payoff of the
algorithm as follows. First, (using Claim B above) notice that:

E[Payoff
p(0)

A ((4ij + 2)λ−
√
T/2 + 1, (4ij + 4)λ+

√
T/2)] ≤ λ+

√
T 2 −

c0
√
T

C(i)
(7)

Then let Bj denote the interval, ((4ij + 4)λ+
√
T/2 + 1, (4ij+1 + 2)λ−

√
T/2), i.e. between the ith

and the jth cycle. Also, let B0 denote (
√
T/2 + 1, (4i1 + 2)λ−

√
T/2) be the interval before the first

cycle in I, and let Bk = ((4ik + 4)λ+
√
T/2 + 1, T − λ−

√
T/2) denote the interval after the last

cycle. Now, using Claim C above, we get that the payoff received by algorithms in any interval
Bj is half the length of the interval. Thus, the only time-steps that we have not accounted for is
(1,
√
T/2) and (T − λ−

√
T/2 + 1, T). The total number of time-steps in these two intervals is λ.

Let us give the algorithm payoff λ for free on these time steps. Then, adding up everything and
the payoff of the algorithm, Payoff

p(0)

A is a random variable defined over the space measurable by
{F i}i≥0 and C

Payoff
p(0)

A (1, T) ≤ T

2
+
λ

2
−

k∑
j=1

c0
√
T

C(ij)

Thus, we get

E[R
p(0)

A | {F i}i≥0, C] ≥ E

[∑
i∈I

√
T

C(i)
| {F i}i≥0, C

]
− λ

2
(I is measurable by {F i}i≥1)

≥ E

[
|I|2
√
T

C
| {F i}i≥0, C

]
− λ

2

≥ c0
|I|2
√
T

C
− λ

2
(I is measurable by {F i}i≥0)

We use Jensen’s inequality and the fact that C ≥
∑

i∈I C(i) to get the last inequality. Finally,
using Claim A and by setting λ appropriately, we get

E[R
p(0)

A (1, T)] ≥ c0T 1.5−2ε116C

17

We now prove the Lemmas mentioned in the above proof.

Lemma 4. If E[R
p(i)

A (1, T)] = O(
√
T) for all 1 ≤ i ≤ T

2λ , then E[|I|] ≥ T
4λ .

Proof. Our crucial observation here is that when the random tosses of the algorithm is fixed,
the algorithm will have identical behavior against the reward sequences p(0) and p(m) for any

1 ≤ m ≤ T
2λ up to time 2mλ− λ. Thus, if we couple the process for executing A against p(0) with

the one for executing A against p(m) with the same random tosses in the algorithm, we are able
to relate the random variables {F i}i≥0 with the regrets for other reward sequences. Specifically, it
is not difficult to see that

E[R
p(m)

A (1, 2mλ+ 1) | {F i}i≥0] ≥ c0 max
i odd

(1− F i)Fm−1
 m−2∏
j=i+1

F j

 · λ (8)

when m is odd and

E[R
p(m)

A (1, 2mλ+ 1) | {F i}i≥0] ≥ c0 max
i even

(1− F i)Fm−1
 m−2∏
j=i+1

F j

 · λ (9)

when m is even.
We may then use this observation to prove Lemma 5. Let m be an arbitrary number. We shall

show that Pr[m ∈ I] ≥ 1
2 .

Let us define the event E(s) be the event so that the suffix of {F i}1≤i≤m is s. For example,
E(000) represents the event that Fm−2 = Fm−1 = Fm = 0. Let partition the probability space into
the following events:

E(000), E(001), E(010), E(011), E(0100), E(01100), E(11100), E(101), E(0110), E(1110), and E(111).

Furthermore, we let E0(01100) be the subset of E(01100) such that the last zero in the sequence
F 0, ..., Fm−5 has an even index. And let E1(01100) = E(01100)− E0(01100). Similarly, we let

• E0(1110) be the subset of E(1110) such that the last zero in the sequence F 0, ..., Fm−4 has an
even index; let E1(1110) = E(1110)− E0(1110)

• E0(111) be the subset of E(111) such that the last zero in the sequence F 0, ..., Fm−3 has an
even index; let E1(111) = E(111)− E0(111)

Now the whole probability space can be partitioned into the following events: E(000), E(001),
E(010), E(011), E(0100), E(01100), E0(11100), E1(11100) E(101), E(0110), E0(1110), E1(1110) E0(111), E1(111).

Let ε2 be an arbitrary constant such that 0 < ε2 < ε1. It is not difficult to see that if any of
the events above, except for E(000), happens with probability at least T−ε2 , then one of pi will
have ω(

√
T) regret. We will just examine one event to illustrate the idea. The rest of them can be

verified in a similar way. Suppose Pr[E(001)] ≥ T−ε2 , we have

E[R
pm−1

A (1, T)] ≥ E[R
pm−1

A (1, T) | E(001)] Pr[E(001)]

≥ E[R
pm−1

A (1, T) | E(001)] Pr[E(001)]

= ω(
√
T) (By (8) and (9)).

Thus, we can conclude that Pr[E(000)] ≥ 1− 13T−ε2 ≥ 1
2 for sufficiently large T , which concludes

our proof.

18

Lemma 5. Let i ∈ I, and let C(i) denote the communication in the ith cycle. Then,

E[Payoff
p(0)

A ((4i+ 2)λ−
√
T/2 + 1, (4i+ 4)λ+

√
T/2)] ≤ λ+

√
T/2− c0

√
T

C(i)

Proof. Actually, using Lemma 6 it is easy to see that E[Payoff
p(0)

A ((4i+ 2)λ+
√
T/2 + 1, (4i+ 4)λ−√

T/2)] ≤ λ−
√
T/2. Now, let us consider the interval, ((4i+ 2)λ−

√
T/2 + 1, (4i+ 2)λ+

√
T/2).

Let T0 = (4i+ 2)λ−
√
T/2, T1, . . . , Tc = (4i+ 2)λ+

√
T/2, be the time-steps when communication

occurs. Note that the communication at time-steps T0 and Tc is for free, and that c ≤ C(i). Let
w(x) denote the probability of picking the first expert according to follow the perturbed leader
(FPL), if the x is the difference between the cumulative payoff of the first and second expert so far.
Thus, if x = −

√
T , w(x) = 0 and if x =

√
T , w(x) = 1. We have,

w(x) =

1 x >
√
T

1− 1
2

(
1− x√

T

)2
0 ≤ x ≤

√
T

1
2

(
1 + x√

T

)2
−
√
T ≤ x ≤ 0

0 x < −
√
T

Then, we have

E[Payoff
p(0)

A ((4i+ 2)λ−
√
T/2 + 1, (4i+ 2)λ+

√
T/2)] =

c−1∑
j=0

w(Gp(0)(Tj))(Tj+1 − Tj)

We use the following claim (which is an exercise in simple calculus) to complete the proof.

Claim 1. Let f : [a, b]→ R+ be an increasing function such that f ′(x) ≥ L on [a, b]. Let x0 = a <
x1 < · · ·xc = b, then

c−1∑
j=0

f(xj)(xj+1 − xj) ≤
∫ b

a
f(x)dx− L(b− a)2

c

Now, notice that Gp(0)(T0) = −
√
T/2, Gp(0)

(Tc) =
√
T/2, and

∫ √T/2
−
√
T/2

w(x)dx =
√
T/2. Also,

w′(x) ≥ 1/(2
√
T). Thus, applying the above claim, we get

E[Payoff
p(0)

A ((4i+ 2)λ−
√
T/2 + 1, (4i+ 2)λ+

√
T/2)] =

c−1∑
j=0

w(Gp(0)(Tj))(Tj+1 − Tj) ≤
√
T/2− c0

√
T

C(i)

Similarly, we can prove that.

E[Payoff
p(0)

A ((4i+ 4)λ−
√
T/2 + 1, (4i+ 4)λ+

√
T/2)] =

c−1∑
j=0

w(Gp(0)(Tj))(Tj+1 − Tj) ≤
√
T/2− c0

√
T

C(i)

Adding up across the three intervals, we can complete the proof the lemma.

Finally, we prove the following:

Lemma 6. Let {Ti}i≥1 be point where communication occurs in the algorithm A. Pick some Ti
and let τ > Ti, be such that Gp(0)(τ) = Gp(0)(Ti). Then, Payoff

p(0)

A (Ti + 1, τ) ≤ (Ti − t)/2.

19

original sequence: p0

new sequence: p′.

set p′t = pt0 for all t ≤ Ti
set t = Ti + 1
for j = 1 . . . , `− 1

for ρ = Gp0(Tj + 1) . . . Gp0(Tj+1)

set Gp′(v) = ρ, t = t+ 1
set t(j + 1) = t

for ρ = Gp0(T` + 1) . . . Gp0(τ)

set Gp′(v) = ρ, t = t+ 1,

set τ ′ = t.

Figure 3: Algorithm to construct a sequence in Lemma 6

Proof. We will instead show that E[R
p(0)

A (Ti + 1, τ)] ≥ 0 and observe that both experts have equal

payoffs in the time-steps (Ti + 1, τ) since, G
p(0

A (Ti) = G
p(0

A (τ).
We shall construct a new reward sequence p′ such that

• p′t = pt0 for all t ≤ Ti.
• There exists a τ ′ > Ti such that

p′τ
′

= pτ0 = pTi0 and ERp′

Full(Ti + 1, τ ′) ≤ ERp
A(Ti + 1, τ).

In other words, we first construct a new sequence. Then we argue that the local regret by using
Full over the new sequence is better than the original regret. Here, Full is an implementation
of FPL that communicates at every time step (essentially a non-distributed version). Finally, it is

not difficult to see that ERp′

Full(Ti + 1, τ ′) ≥ 0 because Gp′(Ti + 1) = Gp′(τ ′), which would complete
the proof of the Lemma.

Let T` be the largest communicated time step that is no larger than τ . We use the algorithmic
procedure described in Figure 3 to construct the new sequence. Notice that our construction gives
the function Gp′ , which indirectly gives p′.

Roughly speaking, our new p′ uses the “shortest path” to connect between G(Tj) and G(Tj+1)
for all Tj between Ti and T`. Then p′ is concatenated with another “shortest path” from T` to τ .
For the purpose of our analysis, we also let t(j) be the new time step in p′ that corresponds with
the old Tj in p0. We shall prove the following two statements,

• For any i ≤ j ≤ `− 1,

E[Rp0

A (Tj + 1, Tj+1) | {Ti}i≥1] ≥ ERp′

Full(t(j) + 1, t(j + 1)). (10)

• Also,

E[Rp0

A (T` + 1, τ) | {Ti}i≥1] ≥ ERp′

Full(t(`) + 1, τ ′). (11)

20

One can see that these two statements are sufficient to prove our claim:

E[Rp
A(Ti + 1, τ) | {Ti}i≥1] ≥

`−1∑
j=1

E[Rp′

Full(t(j) + 1, t(j + 1))] + E[Rp′

Full(t(`) + 1, τ ′)]

= E[Rp′

Full(Ti + 1, τ ′)]

≥ 0.

We now move to prove (10) and(11). Specifically, we only demonstrate the proof of (10) and the
proof for (11) would be similar.

Without loss of generality, we may assume that Tj+1 − Tj ≤ 4λ for any i ≤ j ≤ ` − 1 since if
within one whole cycle there is no communication, the expected regret for this cycle is 0.

We consider the following three cases.
Case 1. Tj and Tj+1 are on the same slope of a cycle (i.e. G(t) is monotonic between Tj and Tj+1).
In this case, t(j + 1) − t(j) = Tj−1 − Tj . With straightforward calculation, we can see that Full
is always better on p′.

Case 2. There is only one zig-turn (namely, at time Tz) between Tj and Tj+1. Furthermore, we may
assume |Tz−Tj | ≥ |Tz−Tj+1|. The other case can be proved similarly. Let T ′j+1 = Tz−|Tz−Tj+1|.
The crucial observation here is that Gp(T ′j+1) = Gp(Tj+1). Since there is no communication
between time Tj+1 + 1 and T ′j+1, the expected regret in this region is 0, i.e.

E[Rp
A(T ′j+1, Tj+1) | {Ti}i≥1] = 0.

On the other hand, since T ′j+1 and Tj are on the same slope, running a full communication algorithm

is strictly better between Tj and T ′j+1 Finally, notice that the sub-interval Gp′(t(j)+1), ...Gp′(t(j+
1)) is identical to Gp(Tj + 1), ..., Gp(T ′j+1) by construction, we have

E[Rp′

Full(t(j) + 1, t(j + 1))] ≥ E[Rp
A(Tj + 1, T ′j+1)] = E[Rp

A(Tj + 1, Tj+1)].

Case 3. There are two zig-turns (namely Tz and Tz′) between Tj and Tj+1. Let T ′j = 2Tz − Tj and
T ′j+1 = 2Tz′ −Tj+1. Without loss of generality, let us assume that T ′j < T ′j+1. Our observation here
is that the expected regret between Tj + 1 and T ′j for A is 0. Furthermore, the expected regret
between T ′j+1 + 1 and Tj+1 is also 0. Then we can apply the arguments appeared in Case 2 again
here to show that running Full for the intervals T ′j + 1 and T ′j+1 is strictly better than running A.

Then we can conclude that E[Rp′

Full(t(j) + 1, t(j + 1))] ≥ E[Rp
A(Tj + 1, Tj+1)] for this case as well.

21

