
Congestion Control for Large-Scale RDMA
Deployments

Yibo Zhu1,3 Haggai Eran2 Daniel Firestone1 Chuanxiong Guo1 Marina Lipshteyn1

Yehonatan Liron2 Jitendra Padhye1 Shachar Raindel2 Mohamad Haj Yahia2 Ming Zhang1

1Microsoft 2Mellanox 3U. C. Santa Barbara

ABSTRACT
Modern datacenter applications demand high throughput
(40Gbps) and ultra-low latency (< 10 µs per hop) from the
network, with low CPU overhead. Standard TCP/IP stacks
cannot meet these requirements, but Remote Direct Mem-
ory Access (RDMA) can. On IP-routed datacenter networks,
RDMA is deployed using RoCEv2 protocol, which relies on
Priority-based Flow Control (PFC) to enable a drop-free net-
work. However, PFC can lead to poor application perfor-
mance due to problems like head-of-line blocking and un-
fairness. To alleviates these problems, we introduce DC-
QCN, an end-to-end congestion control scheme for RoCEv2.
To optimize DCQCN performance, we build a fluid model,
and provide guidelines for tuning switch buffer thresholds,
and other protocol parameters. Using a 3-tier Clos network
testbed, we show that DCQCN dramatically improves through-
put and fairness of RoCEv2 RDMA traffic. DCQCN is im-
plemented in Mellanox NICs, and is being deployed in Mi-
crosoft’s datacenters.

CCS Concepts
•Networks→ Transport protocols;

Keywords
Datacenter transport, RDMA, PFC, ECN, congestion control

1. INTRODUCTION
Datacenter applications like cloud storage [16] need high

bandwidth (40Gbps or more) to meet rising customer de-
mand. Traditional TCP/IP stacks cannot be used at such
speeds, since they have very high CPU overhead [29]. The
brutal economics of cloud services business dictates that CPU

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17–21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787484

usage that cannot be monetized should be minimized: a core
spent on supporting high TCP throughput is a core that can-
not be sold as a VM. Other applications such as distributed
memory caches [10, 30] and large-scale machine learning
demand ultra-low latency (less than 10 µs per hop) mes-
sage transfers. Traditional TCP/IP stacks have far higher
latency [10].

We are deploying Remote Direct Memory Access (RDMA)
technology in Microsoft’s datacenters to provide ultra-low
latency and high throughput to applications, with very low
CPU overhead. With RDMA, network interface cards (NICs)
transfer data in and out of pre-registered memory buffers at
both end hosts. The networking protocol is implemented en-
tirely on the NICs, bypassing the host networking stack. The
bypass significantly reduces CPU overhead and overall la-
tency. To simplify design and implementation, the protocol
assumes a lossless networking fabric.

While the HPC community has long used RDMA in special-
purpose clusters [11, 24, 26, 32, 38], deploying RDMA on a
large scale in modern, IP-routed datacenter networks presents
a number of challenges. One key challenge is the need for
a congestion control protocol that can operate efficiently in
a high-speed, lossless environment, and that can be imple-
mented on the NIC.

We have developed a protocol, called Datacenter QCN
(DCQCN) for this purpose. DCQCN builds upon the con-
gestion control components defined in the RoCEv2 standard.
DCQCN is implemented in Mellanox NICs, and is currently
being deployed in Microsoft’s datacenters.

To understand the need for DCQCN, it is useful to point
out that historically, RDMA was deployed using InfiniBand
(IB) [19, 21] technology. IB uses a custom networking stack,
and purpose-built hardware. The IB link layer (L2) uses hop-
by-hop, credit-based flow control to prevent packet drops
due to buffer overflow. The lossless L2 allows the IB trans-
port protocol (L4) to be simple and highly efficient. Much of
the IB protocol stack is implemented on the NIC. IB supports
RDMA with so-called single-sided operations, in which a
server registers a memory buffer with its NIC, and clients
read (write) from (to) it, without further involvement of the
server’s CPU.

However, the IB networking stack cannot be easily de-
ployed in modern datacenters. Modern datacenters are built

with IP and Ethernet technologies, and the IB stack is incom-
patible with these. DC operators are reluctant to deploy and
manage two separate networks within the same datacenter.
Thus, to enable RDMA over Ethernet and IP networks, the
RDMA over Converged Ethernet (RoCE) [20] standard, and
its successor RoCEv2 [22] have been defined. RoCEv2 re-
tains the IB transport layer, but replaces IB networking layer
(L3) with IP and UDP encapsulation, and replaces IB L2
with Ethernet. The IP header is needed for routing, while
the UDP header is needed for ECMP [15].

To enable efficient operation, like IB, RoCEv2 must also
be deployed over a lossless L2. To this end, RoCE is de-
ployed using Priority-based Flow Control (PFC) [18]. PFC
allows an Ethernet switch to avoid buffer overflow by forc-
ing the immediate upstream entity (either another switch or
a host NIC) to pause data transmission. However, PFC is
a coarse-grained mechanism. It operates at port (or, port
plus priority) level, and does not distinguish between flows.
This can cause congestion-spreading, leading to poor perfor-
mance [1, 37].

The fundamental solution to PFC’s limitations is a flow-
level congestion control protocol. In our environment, the
protocol must meet the following requirements: (i) func-
tion over lossless, L3 routed, datacenter networks, (ii) incur
low CPU overhead on end hosts, and (iii) provide hyper-fast
start in the common case of no congestion. Current propos-
als for congestion control in DC networks do not meet all
our requirements. For example, QCN [17] does not support
L3 networks. DCTCP [2], TCP-Bolt [37] and iWarp [35]
include a slow start phase, which can result in poor perfor-
mance for bursty storage workloads. DCTCP and TCP-Bolt
are implemented in software, and can have high CPU over-
head.

Since none of the current proposals meet all our require-
ments, we have designed DCQCN. DCQCN is an end-to-
end congestion control protocol for RoCEv2, to enable de-
ployment of RDMA in large, IP-routed datacenter networks.
DCQCN requires only the standard RED [13] and ECN [34]
support from the datacenter switches. The rest of the proto-
col functionality is implemented on the end host NICs. DC-
QCN provides fast convergence to fairness, achieves high
link utilization, ensures low queue buildup, and low queue
oscillations.

The paper is organized as follows. In §2 we present ev-
idence to justify the need for DCQCN. The detailed design
of DCQCN is presented in §3, along with a brief summary
of hardware implementation. In §4 we show how to set the
PFC and ECN buffer thresholds to ensure correct operation
of DCQCN. In §5 we describe a fluid model of DCQCN,
and use it to tune protocol parameters. In §6, we evaluate
the performance of DCQCN using a 3-tier testbed and traces
from our datacenters. Our evaluation shows that DCQCN
dramatically improves throughput and fairness of RoCEv2
RDMA traffic. In some scenarios, it allows us to handle as
much as 16x more user traffic. Finally, in §7, we discuss
practical issues such as non-congestion packet losses.

2. THE NEED FOR DCQCN

To justify the need for DCQCN, we will show that TCP
stacks cannot provide high bandwidth with low CPU over-
head and ultra-low latency, while RDMA over RoCEv2 can.
Next, we will show that PFC can hurt performance of RoCEv2.
Finally, we will argue that existing solutions to cure PFC’s
ills are not suitable for our needs.

2.1 Conventional TCP stacks perform poorly
We now compare throughput, CPU overhead and latency

of RoCEv2 and conventional TCP stacks. These experi-
ments use two machines (Intel Xeon E5-2660 2.2GHz, 16
core, 128GB RAM, 40Gbps NICs, Windows Server 2012R2)
connected via a 40Gbps switch.

Throughput and CPU utilization: To measure TCP through-
put, we use Iperf [46] customized for our environment. Specif-
ically, we enable LSO [47], RSS [49], and zero-copy opera-
tions and use 16 threads. To measure RDMA throughput, we
use a custom tool that uses IB READ operation to transfer
data. With RDMA, a single thread saturates the link.

Figure 1(a) shows that TCP has high CPU overhead. For
example, with 4MB message size, to drive full throughput,
TCP consumes, on average, over 20% CPU cycles across
all cores. At smaller message sizes, TCP cannot saturate
the link as CPU becomes the bottleneck. Marinos et.al. [29]
have reported similarly poor TCP performance for Linux and
FreeBSD. Even the user-level stack they propose consumes
over 20% CPU cycles. In contrast, the CPU utilization of
the RDMA client is under 3%, even for small message sizes.
The RDMA server, as expected, consumes almost no CPU
cycles.

Latency: Latency is the key metric for small transfers. We
now compare the average user-level latency of transferring
a 2K message, using TCP and RDMA. To minimize TCP
latency, the connections were pre-established and warmed,
and Nagle was disabled. Latency was measured using a high
resolution (≤ 1 µs) timer [48]. There was no other traffic on
the network.

Figure 1(c) shows that TCP latency (25.4 µs) is signifi-
cantly higher than RDMA (1.7 µs for Read/Write and 2.8
µs for Send). Similar TCP latency has reported in [10] for
Windows, and in [27] for Linux.

2.2 PFC has limitations
RoCEv2 needs PFC to enable a drop-free Ethernet fab-

ric. PFC prevents buffer overflow on Ethernet switches and
NICs. The switches and NICs track ingress queues. When
the queue exceeds a certain threshold, a PAUSE message
is sent to the upstream entity. The uplink entity then stops
sending on that link till it gets an RESUME message. PFC
specifies upto eight priority classes. PAUSE/RESUME mes-
sages specify the priority class they apply to.

The problem is that the PAUSE mechanism operates on
a per port (and priority) basis – not on a per-flow basis.
This can lead to head-of-line blocking problems; resulting
in poor performance for individual flows. We now illustrate
the problems using a 3-tier testbed (Figure 2) representative

 0
 5

 10
 15
 20
 25
 30
 35
 40

4KB 16KB 64KB 256KB 1MB 4MB

T
hr

ou
gh

pu
t (

G
bp

s)

Message size

RDMA
TCP

(a) Mean Throughput

 0

 20

 40

 60

 80

 100

4KB 16KB 64KB 256KB 1MB 4MB

C
P

U
 u

til
iz

at
io

n
(%

)

Message size

TCP server
RDMA server
RDMA client

(b) Mean CPU Utilization

 0

 10

 20

 30

TCP RDMA
(read/write)

RDMA
(send)

T
im

e
to

 tr
an

sf
er

 2
K

B
 (

µs
)

(c) Mean Latency

Figure 1: Throughput, CPU consumption and latency of TCP and RDMA

T1 T2

L1 L2

S1

T3 T4

L3 L4

S2

H11 H21 H31 H41

Figure 2: Testbed topology. All links
are 40Gbps. All switches are Arista
7050QX32. There are four ToRs (T1-T4),
four leaves (L1-L4) and two spines (S1-
S2). Each ToR represents a different IP
subnet. Routing and ECMP is done via
BGP. Servers have multiple cores, large
RAMs, and 40Gbps NICs.

T1 T2

L1 L2

S1

T3 T4

L3 L4

S2

H1 RH2 H3 H4

P1P2

P3 P4

(a) Topology

 0

 5

 10

 15

 20

H1 H2 H3 H4

T
hr

ou
gh

pu
t (

G
bp

s)

Host

(b) Throughput of individual senders

Figure 3: PFC Unfairness

T1 T2

L1 L2

S1

T3 T4

L3 L4

S2

H11 H14 VRVS RH31 H32

(a) Topology

 0

 5

 10

 15

 20

 25

0 1 2

T
hr

ou
gh

pu
t (

G
bp

s)
Number of senders under T3

(b) Median throughput of victim flow
Figure 4: Victim flow problem

of modern datacenter networks.

Unfairness: Consider Figure 3(a). Four senders (H1-H4)
send data to the single receiver (R) using RDMA WRITE
operation. All senders use the same priority class. Ideally,
the four senders should equally share bottleneck link (T4 to
R). However, with PFC, there is unfairness. When queue
starts building up on T4, it pauses incoming links (ports P2-
P4). However, P2 carries just one flow (from H4), while
P3 and P4 may carry multiple flows since H1, H2 and H3
must share these two ports, depending on how ECMP maps
the flows. Thus, H4 receives higher throughput than H1-H3.
This is known as the parking lot problem [14].

This is shown in Figure 3(b), which shows the min, me-
dian and max throughput achieved by H1-H4, measured over
1000 4MB data transfers. H4 gets as much as 20Gbps through-
put, e.g. when ECMP maps all of H1-H3 to either P3 or
P4. H4’s minimum throughput is higher than the maximum
throughput of H1-H3.

Victim flow: Because PAUSE frames can have a cascading
effect, a flow can be hurt by congestion that is not even on
its path. Consider Figure 4(a). Four senders (H11-H14),
send data to R. In addition, we have a “victim flow” – VS

sending to VR. Figure 4(b) shows the median throughput
(250 transfers of 250MB each) of the victim flow.

When there are no senders under T3, in the median case
(two of H11-H14 map to T1-L1, others to T1-L2. Each of
H11-H14 gets 10Gbps throughput. VS maps to one of T1’s
uplinks), one might expect VS to get 20Gbps throughput.
However, we see that it only gets 10Gbps. This is due to
cascading PAUSEs. As T4 is the bottleneck of H11-H14
incast, it ends up PAUSEing its incoming links. This in turn
leads to L3 and L4 to pause their incoming links, and so
forth. Eventually, L1 and L2 end up pausing T1’s uplinks
to them, and T1 is forced to PAUSE the senders. The flows
on T1 that use these uplinks are equally affected by these
PAUSEs, regardless of their destinations – this is also known
as the head-of-the-line blocking problem.

The problem gets worse as we start senders H31 and H32
that also send to R. We see that the median throughput fur-
ther falls from 10Gbps to 4.5Gbps, even though no path from
H31 and H32 to R has any links in common with the path
between VS and VR. This happens because H31 and H32
compete with H11-H14 on L3 and L4, make them PAUSE
S1 and S2 longer, and eventually make T1 PAUSE senders

longer.

Summary: These experiments show that flows in RoCEv2
deployments may see lower throughput and/or high variabil-
ity due to PFC’s congestion-spreading characteristics.

2.3 Existing proposals are inadequate
A number of proposals have tried to address PFC’s lim-

itations. Some have argued that ECMP can mitigate the
problem by spreading traffic on multiple links. Experiments
in previous section show that this is not always the case.
The PFC standard itself includes a notion of priorities to ad-
dress the head-of-the-line blocking problem. However, the
standard supports only 8 priority classes, and both scenarios
shown above can be made arbitrarily worse by expanding the
topology and adding more senders. Moreover, flows within
the same class will still suffer from PFC’s limitations.

The fundamental solution to the PFC’s problems is to use
flow-level congestion control. If appropriate congestion con-
trol is applied on a per-flow basis, PFC will be rarely trig-
gered, and thus the problems described earlier in this section
will be avoided.

The Quantized Congestion Notification (QCN) [17] stan-
dard was defined for this purpose. QCN enables flow-level
congestion control within an L2 domain. Flows are defined
using source/destination MAC address and a flow id field.
A switch computes a congestion metric upon each packet
arrival. Its value depends on the difference between the in-
stantaneous queue size and the desired equilibrium queue
size, along with other factors. The switch then probabilisti-
cally (probability depends on the severity of the congestion)
sends the quantized value of the congestion metric as feed-
back to the source of the arriving packet. The source reduces
its sending rate in response to congestion feedback. Since
no feedback is sent if there is no congestion, the sender in-
creases its sending rate using internal timers and counters.

QCN cannot be used in IP-routed networks because the
definition of a flow is based entirely on L2 addresses. In IP-
routed networks the original Ethernet header is not preserved
as the packet travels through the network. Thus a congested
switch cannot determine the target to send the congestion
feedback to.

We considered extending the QCN protocol to IP-routed
networks. However, this is not trivial to implement. At min-
imum, extending QCN to IP-routed networks requires us-
ing the IP five-tuple as flow identifier, and adding IP and
UDP headers to the congestion notification packet to enable
it to reach the right destination. Implementing this requires
hardware changes to both the NICs and the switches. Mak-
ing changes to the switches is especially problematic, as the
QCN functionality is deeply integrated into the ASICs. It
usually takes months, if not years for ASIC vendors to im-
plement, validate and release a new switch ASIC. Thus, up-
dating the chip design was not an option for us.

In §8 we will discuss why other proposals such as TCP-
Bolt [37] and iWarp [35] do not meet our needs. Since the
existing proposals are not adequate, for our purpose, we pro-
pose DCQCN.

3. THE DCQCN ALGORITHM
DCQCN is a rate-based, end-to-end congestion protocol,

that builds upon QCN [17] and DCTCP [2]. Most of the
DCQCN functionality is implemented in the NICs.

As mentioned earlier, we had three core requirements for
DCQCN: (i) ability to function over lossless, L3 routed, dat-
acenter networks, (ii) low CPU overhead and (iii) hyper-
fast start in the common case of no congestion. In addi-
tion, we also want DCQCN to provide fast convergence to
fair bandwidth allocation, avoid oscillations around the sta-
ble point, maintain low queue length, and ensure high link
utilization.

There were also some practical concerns: we could not
demand any custom functionality from the switches, and
since the protocol is implemented in NIC, we had to be mind-
ful of implementation overhead and complexity.

The DCQCN algorithm consists of the sender (reaction
point (RP)), the switch (congestion point (CP)), and the re-
ceiver, (notification point (NP)).

3.1 Algorithm
CP Algorithm: The CP algorithm is same as DCTCP. At
an egress queue, an arriving packet is ECN [34]-marked if
the queue length exceeds a threshold. This is accomplished
using RED [13] functionality (Figure 5) supported on all
modern switches. To mimic DCTCP, we can set Kmin =
Kmax = K, and Pmax = 1. Later, we will see that this is
not the optimal setting.

NP Algorithm: ECN-marked packets arriving at NP indi-
cate congestion in the network. NP conveys this information
back to the sender. The RoCEv2 standard defines explicit
Congestion Notification Packets (CNP) [19] for this purpose.
The NP algorithm specifies how and when CNPs should be
generated.

The algorithm follows the state machine in Figure 6 for
each flow. If a marked packet arrives for a flow, and no
CNP has been sent for the flow in last N microseconds, a
CNP is sent immediately. Then, the NIC generates at most
one CNP packet every N microseconds for the flow, if any
packet that arrives within that time window was marked. We
use N = 50µs in our deployment. Processing a marked
packet, and generating the CNP are expensive operations, so
we minimize the activity for each marked packet. We dis-
cuss the implications in §5.

RP Algorithm: When an RP (i.e. the flow sender) gets a
CNP, it reduces its current rate (RC) and updates the value
of the rate reduction factor, α, like DCTCP, and remembers
current rate as target rate (RT) for later recovery. The values
are updated as follows:1

RT = RC ,

RC = RC(1− α/2),

α = (1− g)α+ g,

(1)

The NP generates no feedback if it does not get any marked
packets. Thus, if RP gets no feedback for K time units, it
1Initial value of α is 1.

Marking
Probability

1

0
Kmin Kmax

Pmax

Egress
Queue Size

Figure 5: Switch packet marking al-
gorithm

First time of a flow, receive a
packet with CE bits set

Send CNP to this
flow’s source

Any packets for this flow
with CE bits set in 50μs?

Yes

No

Figure 6: NP state machine

Wait_For_Rate_Increase_Event();

Timer
expires

Reset(Timer);
T++;

CutRate();
Reset(Timer, ByteCounter, T,

BC, AlphaTimer);

Reset(ByteCounter);
BC++;

ByteCounter
expires

Max(T, BC) < F?

Min(T, BC) > F?

FastRecovery();

HyperIncrease();

AdditiveIncrease();

Yes

Yes

No

No

Received a CNP

Wait_For_Alpha_Timer();

UpdateAlpha();

AlphaTimer
expires

Figure 7: Pseudocode of the RP algorithm

updates α, as shown in Equation (2). Note that K must be
larger than the CNP generation timer. Our implementation
uses K = 55µs. See §5 for further discussion.

α = (1− g)α, (2)

Furthermore, RP increases its sending rate using a timer and
a byte counter, in a manner identical to QCN [17]. The byte
counter increases rate for every B bytes, while the timer in-
creases rate every T time units. The timer ensures that the
flow can recover quickly even when its rate has dropped to
a low value. The two parameters can be tuned to achieve
the desired aggressiveness. The rate increase has two main
phases: fast recovery, where the rate is rapidly increased to-
wards fixed target rate for F = 5 successive iterations:

RC = (RT +RC)/2, (3)

Fast recovery is followed by an additive increase, where the
current rate slowly approaches the target rate, and target rate
is increased in fixed steps RAI :

RT = RT +RAI ,

RC = (RT +RC)/2,
(4)

There is also a hyper increase phase for fast ramp up. Fig-
ure 7 shows the state machine. See [17] for more details.

Note that there is no slow start phase. When a flow starts,
it sends at full line rate, if there are no other active flows
from the host.2 This design decision optimizes the common
case where flows transfer a relatively small amount of data,
and the network is not congested [25].

3.2 Benefits
By providing per-flow congestion control, DCQCN alle-

viates PFC’s limitations. To illustrate this, we repeat the ex-
periments in §2.2, with DCQCN enabled (parameters set ac-
cording to guidelines in §4 and §5.
2Otherwise, starting rate is defined by local QoS policies.

Figure 8 shows that DCQCN solves the unfairness prob-
lem depicted in Figure 3. All four flows get equal share of
the bottleneck bandwidth, and there is little variance. Fig-
ure 9 shows that DCQCN solves the victim flow problem
depicted in Figure 4. With DCQCN, the throughput of VS-
VR flow does not change as we add senders under T3.

3.3 Discussion
CNP generation: DCQCN is not particularly sensitive to
congestion on the reverse path, as the send rate does not de-
pend on accurate RTT estimation like TIMELY [31]. Still,
we send CNPs with high priority, to avoid missing the CNP
deadline, and to enable faster convergence. Note that no
CNPs are generated in the common case of no congestion.

Rate based congestion control: DCQCN is a rate-based
congestion control scheme. We adopted a rate-based ap-
proach because it was simple to implement than the window
based approach, and allowed for finer-grained control.

Parameters: DCQCN is based on DCTCP and QCN, but
it differs from each in key respects. For example, unlike
QCN, there is no quantized feedback, and unlike DCTCP
there is no “per-ack” feedback. Thus, the parameter settings
recommended for DCTCP and QCN cannot be blindly used
with DCQCN. In §5, we use a fluid model of the DCQCN to
establish the optimal parameter settings.

The need for PFC: DCQCN does not obviate the need for
PFC. With DCQCN, flows start at line rate. Without PFC,
this can lead to packet loss and poor performance (§6).

Hardware implementation: The NP and RP state ma-
chines are implemented on the NIC. The RP state machine
requires keeping one timer and one counter for each flow
that is being rate limited, apart from a small amount of other
state such as the current value of alpha. This state is main-
tained on the NIC die. The rate limiting is on a per-packet

 0

 5

 10

 15

 20

H1 H2 H3 H4

T
hr

ou
gh

pu
t (

G
bp

s)

Host

Figure 8: Throughput of individual
senders with DCQCN. Compare to Fig-
ure 3(b).

 0

 5

 10

 15

 20

 25

0 1 2

T
hr

ou
gh

pu
t (

G
bp

s)

Number of senders under T3

Figure 9: Median throughput of “vic-
tim” flow with DCQCN. Compare to
Figure 4(b).

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 0.02 0.04 0.06 0.08 0.1

T
hr

ou
gh

pu
t (

G
bp

s)

Time (second)

Implementation
Fluid Model

Figure 10: Fluid model closely matches
implementation.

granularity. The implementation of NP state machine in
ConnectX-3 Pro can generate CNPs at the rate of one per
1-5 microseconds. At link rate of 40Gbps, the receiver can
receive about 166 full-sized (1500 byte MTU) packets ev-
ery 50 microseconds. Thus, the NP can typically support
CNP generation at required rate for 10-20 congested flows.
The current version(ConnectX-4) can generate CNPs at the
required rate for over 200 flows.

4. BUFFER SETTINGS
Correct operation of DCQCN requires balancing two con-

flicting requirements: (i) PFC is not triggered too early –
i.e. before giving ECN a chance to send congestion feed-
back, and (ii) PFC is not triggered too late – thereby causing
packet loss due to buffer overflow.

We now calculate the values of three key switch param-
eters: tflight, tPFC and tECN , to ensure that these two re-
quirements are met even in the worst case. Note that differ-
ent switch vendors use different terms for these settings; we
use generic names. The discussion is relevant to any shared-
buffer switch, but the calculations are specific to switches
like Arista 7050QX32, that use the Broadcom Trident II chipset.
These switches have 32 full duplex 40Gbps ports, 12MB of
shared buffer and support 8 PFC priorities.

Headroom buffer tflight: A PAUSE message sent to an
upstream device takes some time to arrive and take effect. To
avoid packet drops, the PAUSE sender must reserve enough
buffer to process any packets it may receive during this time.
This includes packets that were in flight when the PAUSE
was sent, and the packets sent by the upstream device while
it is processing the PAUSE message. The worst-case calcula-
tions must consider several additional factors (e.g., a switch
cannot abandon a packet transmission it has begun) [8]. Fol-
lowing guidelines in [8], and assuming a 1500 byte MTU,
we get tflight = 22.4KB per port, per priority.

PFC Threshold tPFC: This is the maximum size an ingress
queue can grow to, before a PAUSE message is sent to the
upstream device. Each PFC priority gets its own queue at
each ingress port. Thus, if the total switch buffer is B, and
there are n ports, it follows that tPFC ≤ (B−8ntflight)/(8n).
For our switches, we get tPFC ≤ 24.47KB. The switch
sends RESUME message when the queue falls below tPFC

by two MTU.

ECN Threshold tECN : Once an egress queue exceeds this
threshold, the switch starts marking packets on that queue
(Kmin in Figure 5). For DCQCN to be effective, this thresh-
old must be such that PFC threshold is not reached before
the switch has a chance to mark packets with ECN.

Note however, that ECN marking is done on egress queue
while PAUSE messages are sent based on ingress queue.
Thus, tECN is an egress queue threshold, while tPFC is an
ingress queue threshold.

The worst case scenario is that packets pending on all
egress queues come from a single ingress queue. To guar-
antee that PFC is not triggered on this ingress queue be-
fore ECN is triggered on any of the egress queues, we need:
tPFC > n ∗ tECN Using the upper bound on the value of
tPFC , we get tECN < 0.85KB. This is less than one MTU
and hence infeasible.

However, not only we do not have to use the upper bound
on tPFC , we do not even have to use a fixed value for tPFC .
Since the switch buffer is shared among all ports, tPFC should
depend on how much of the shared buffer is free. Intu-
itively, if the buffer is largely empty, we can afford to wait
longer to trigger PAUSE. The Trident II chipset in our switch
allows us to configure a parameter β such that: tPFC =
β(B − 8ntflight − s)/8, where s is the amount of buffer
that is currently occupied. A higher β triggers PFC less
often, while a lower value triggers PFC more aggressively.
Note that s is equal to the sum of packets pending on all
egress queues. Thus, just before ECN is triggered on any
egress port, we have: s ≤ n ∗ tECN . Hence, to ensure
that ECN is always triggered before PFC, we set: tECN <
β(B − 8ntflight)/(8n(β + 1)). Obviously, larger β leaves
more room for tECN . In our testbed, we use β = 8, which
leads to tECN < 21.75KB.

Discussion: The above analysis is conservative, and en-
sures that PFC is not triggered on our switches before ECN
even in the worst case and when all 8 PFC priorities are
used. With fewer priorities, or with larger switch buffers,
the threshold values will be different.

The analysis does not imply that PFC will never be trig-
gered. All we ensure is that at any switch, PFC is not trig-
gered before ECN. It takes some time for the senders to re-
ceive the ECN feedback and reduce their sending rate. Dur-
ing this time, PFC may be triggered. As discussed before,
we rely on PFC to allow senders to start at line rate.

Variable Description
Rc Current Rate
Rt Target Rate
α See Equation (1)
q Queue Size
t Time

Table 1: Fluid model variables

Parameter Description
Kmin,Kmax, Pmax See Figure 5

g See Equation (1)
N Number of flows at bottleneck
C Bandwidth of bottleneck link
F Fast recovery steps (fixed at 5)
B Byte counter for rate increase
T Timer for rate increase
RAI Rate increase step (fixed at 40Mbps)
τ∗ Control loop delay
τ ′ Interval of Equation (2)

Table 2: Fluid model parameters

5. ANALYSIS OF DCQCN
We use a fluid model of DCQCN to determine the right

parameter settings for good performance.

5.1 Fluid model
Variables and parameters used in the fluid model are listed

in Tables 1 and 2, respectively. The model is described in
Equations (5)-(9). Like [3, 4], we modelN greedy flows at a
single bottleneck with capacity C. We assume that DCQCN
is triggered well before PFC – and thus ignore PFC in the
following analysis.

Equation (5) models the probability of a packet getting
marked at the bottleneck. Setting Kmin == Kmax, gives
DCTCP-like “cut-off”behavior. We model the more general
behavior for reasons discussed later. Equation (6) models
the evolution of queue at the bottleneck. We have assumed
that all flows have equal rate. We will relax this assumption
later. Equation (7) models the evolution of α at the RP.

Equations (8) and (9) model the evolution of current and
target sending rate at RP, according to the algorithm shown
in Figure 7, and QCN specification [17]. We model the rate
decrease, as well as the rate increase due to byte counter
and timer, but like [4], ignore the hyper additive increase
phase. τ∗ models the delay of the control loop. It includes
the RTT and NP’s CNP generation interval. For simplicity,
we use τ∗ = 50µs (the maximum possible delay of CNP
generation).

By setting the LHS of Equations (6)-(9) to zero, we see
that the fluid model has an unique fixed point when satisfy-
ing Equation (10).

RC(t) =
C

N
(10)

This fixed point represents the state of all flows getting fair
bandwidth share C/N . The rest of the fluid model becomes
three equations with three variables, RT , α and p. We solve
the equations numerically to determine the ECN marking
probability p at the fixed point. The solution of p is unique.

p(t) =

0, q(t) ≤ Kmin
q(t)−Kmin
Kmax−Kmin

pmax, Kmin < q(t) ≤ Kmax

1, q(t) > Kmax

(5)

dq

dt
= NRC(t)− C (6)

dα

dt
=

g

τ ′

((
1− (1− p(t− τ∗))τ

′RC(t−τ∗)
)
− α(t)

)
(7)

dRT
dt

=− RT (t)−RC(t)

τ

(
1− (1− p(t− τ∗))τRC(t−τ∗)

)
+RAIRC(t− τ∗) (1− p(t− τ∗))FBp(t− τ∗)

(1− p(t− τ∗))−B − 1

+RAIRC(t− τ∗) (1− p(t− τ∗))FTRC(t−τ∗)p(t− τ∗)
(1− p(t− τ∗))−TRC(t−τ∗) − 1

(8)

dRC
dt

=− RC(t)α(t)

2τ

(
1− (1− p(t− τ∗))τRC(t−τ∗)

)
+
RT (t)−RC(t)

2

RC(t− τ∗)p(t− τ∗)
(1− p(t− τ∗))−B − 1

+
RT (t)−RC(t)

2

RC(t− τ∗)p(t− τ∗)
(1− p(t− τ∗))−TRC(t−τ∗) − 1

(9)

Fluid Model of DCQCN

We omit the proof for brevity. We verified that for reason-
able settings, p is less than 1%. According to equation (5),
when RED-ECN is enabled, there exists a fixed queue length
point close toKmin since p is close to 0. The value of g plays
an important role in determining the stability of the queue,
as we shall later see.

To analyze convergence properties of DCQCN protocol, it
is necessary to extend the fluid model to flows with different
rates. Take two flows as an example. We model the evolution
of each flow’s current and target sending rates, as well as
their α separately – i.e. we write Equations (7)-(9) for each
flow. The flows are coupled by their impact on the queue:

dq

dt
= RC1(t) +RC2(t)− C (11)

We solve this model numerically to understand the impact
of various parameters (Table 2) on DCQCN’s behavior; par-
ticularly convergence and queue buildup.

Experiments show that the fluid model matches the imple-
mentation quite well. We show one example in Figure 10.
We defer discussion to §6.

5.2 Parameter selection
We focus on a two-flow system, where one flow starts at

40Gbps, and the other starts at 0Gbps. For each parameter
setting, we use numerical analysis to solve the first 200 mil-
liseconds. The results are shown in Figure 11. The Z-axis
shows difference in throughput of the two flows. For read-
ability, we omit the first 10ms.

We start with recommended parameters from QCN and
DCTCP specifications. Specifically, B = 150KB,T =
1.5ms,Kmin = Kmax = 40KB,Pmax = 1, and g = 1/16.

(a) Sweep Byte Counter with strawman
parameters

(b) Sweep Timer with 10MB Byte
Counter

(c) Sweep Kmax with strawman parame-
ters

(d) Sweep Pmax with Kmax = 200KB

Figure 11: Parameter sweeping for best convergence. Lower throughput dif-
ference (z-axis) means better convergence.

 0

 10

 20

 30

 40

 50

 60

 0 0.05 0.1 0.15 0.2

Q
ue

ue
 L

en
gt

h
(K

B
)

Time (second)

g=1/16
g=1/256

(a) 2:1 Incast

 0

 50

 100

 150

 200

 250

 300

 0 0.05 0.1 0.15 0.2

Q
ue

ue
 L

en
gt

h
(K

B
)

Time (second)

g=1/16
g=1/256

(b) 16:1 Incast

Figure 12: Testing different g for best
queue length and queue stability.

Unfortunately we find that with these parameter values,
the flows cannot converge (innermost edge of Figure 11(a)).
With these settings, QCN byte counter dominates rate in-
crease, and the faster flow grows faster. QCN compensates
for this using probabilistic feedback, which DCQCN does
not have. Instead, the solution is to either slow down the byte
counter, or speed up the rate increase timer. Figure 11(a)
shows that slowing down byte counter helps, but it reduces
convergence speed. Speeding up the timer (Figure 11(b))
is better. Note that the timer cannot be smaller than 50µs,
which is NP’s CNP generation interval. As the timer is
set aggressively, the byte counter should be set large, e.g.,
10MB, to avoid triggering the hyper increase phase too fast,
which may harm convergence.

Another solution is to use a RED-like probabilistic packet
marking scheme with a small Pmax, instead of the cut-off
(mark all packets once queue length exceeds certain limit)
behavior used in DCTCP. The intuition is that DCQCN CNP
generation is driven by a timer, and by using RED-like mark-
ing scheme with a small Pmax, we increase the likelihood
that the larger flow will get more CNPs, and hence back off
faster. Figures 11(c) and 11(d) confirm this intuition.

In conclusion, to achieve fast convergence to fairness, we
configure RED-ECN on switches withKmax = 200KB and
Pmax = 1%. We set Kmin = 5KB since we found it suf-
ficient to maintain 100% throughput. Though a 5KB Kmin

seems shallow, the marking probability around Kmin is very
little. Fluid model predicts that the stable queue length is
usually one order of magnitude larger than 5KB Kmin. Our
deployment experience and experiments (see §6) confirm
this. We also set rate increase timer as 55us, and byte counter
to 10MB. If the feedback delay is significantly different from
the value we assumed (e.g. if RTT is high), parameter values

will be different.
The queue length at the bottleneck depends on the value

of g. We tested different g from 2:1 incast to 16:1 incast
(Figure 12) and found smaller g leads to lower queue length
and lower variation. Lower g leads to slightly slower conver-
gence, but it is a price worth paying for lower oscillations.

We now briefly discuss the remaining parameters. Re-
call that CNP generation interval is fixed at 50µs, due to
hardware limitations. We have assumed that feedback de-
lay (τ∗) is equal to this value. We have verified that flows
converge fast and stably even when an additional 50µs la-
tency is added. We have chosen the α update interval τ ′

and minimum timer value to be 55µs. These values need
to be larger than CNP generation interval to prevent unwar-
ranted rate increases between reception of successive CNPs.
We believe that the 5µs margin is sufficient for current hard-
ware. DCQCN is generally insensitive to τ ′ value: 110µs
(twice as default) barely slows down convergence. We also
analyzed impact ofRAI and F . They both offer trade-off be-
tween convergence speed and throughput oscillations. In ad-
dition, RAI , working with g, influences DCQCN scalability.
For example, in current settings, there is no buffer starvation
with 16:1 incast (Figure 12). Halving RAI reduces the con-
vergence speed, but it ensures no buffer starvation with 32:1
incast. The current values are an acceptable compromise.

Discussion The DCQCN model is based on QCN model
presented in [4], with two differences. First, the rate reduc-
tion in DCQCN is significantly different. Our model also
addresses both byte counter and timer mechanisms for rate
increase, while [4] only models the byte counter. In future,
we plan to analyze the stability of DCQCN following tech-
niques in [4].

 0

 10

 20

 30

 40

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

G
bp

s)

Time (second)

Flow 1
Flow 2

(a) Strawman parameters

 0

 10

 20

 30

 40

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

G
bp

s)

Time (second)

Flow 1
Flow 2

(b) Timer dominates rate increase

 0

 10

 20

 30

 40

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

G
bp

s)

Time (second)

Flow 1
Flow 2

(c) Enable RED-ECN

 0

 10

 20

 30

 40

 0 2 4 6 8 10
T

hr
ou

gh
pu

t (
G

bp
s)

Time (second)

Flow 1
Flow 2

(d) RED-ECN plus timer solution

Figure 13: Validating parameter values with testbed microbenchmarks

Parameter Value
Timer 55µs

Byte Counter 10MB
Kmax 200KB
Kmin 5KB
Pmax 1%
g 1/256

Figure 14: DCQCN Parameters used in
our datacenters

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Without DCQCN With DCQCN

N
um

be
r

of
 P

A
U

S
E

 M
sg

.

Figure 15: Total number of PAUSE
messages received at S1 and S2, with
and without DCQCN

.

6. RESULTS
We now evaluate the performance of DCQCN in a vari-

ety of settings, using Mellanox ConnectX-3 Pro NICs. The
results are divided in two parts. First, we validate the find-
ings of the fluid model from §5 using microbenchmarks in
a small testbed. This step is essential before we can use the
parameter settings derived from the model in actual deploy-
ment. Next, we evaluate DCQCN using benchmark traffic
derived from traffic traces that roughly model the ongoing
DCQCN deployment in our datacenters.

6.1 Microbenchmarks
Validating fluid model: The first step is to show that the
fluid model is a good representation of the implementation.
We use a simple setup consisting of three machines, con-
nected via an Arista 7050QX32 switch. One of the three
machines act as a receiver, while the other two act as greedy
senders. The first sender starts at time 0, while the second
starts after 10 milliseconds. DCQCN parameters are set ac-
cording to the discussion in §5, and the switch is configured
as per the discussion in §4. Figure 10 shows the evolution
of the sending rate of the second sender for the first 100
milliseconds. We see that the model closely matches the
firmware implementation.

Validating parameter settings: While we have shown that
the fluid model is a good representation of our implementa-
tion, we still need to validate the individual parameter values
predicted by the model with real hardware. We conduct sev-
eral tests for this purpose, using the same 3-machine setup
as before. In each test, the first sender starts at time 0, and
the second sender starts 500 milliseconds later.

We first test the strawman parameter values. Figure 13(a)
confirms that as the model predicts, there is unfairness be-
tween the two competing flows.

Next we verify that speeding up the rate increase timer al-

leviates the unfairness. Figure 13(b) shows that this is indeed
the case (timer value = 55µs). Note that we used DCTCP-
like cut-off ECN for this experiment.

We also test the second solution – i.e. RED-like marking
alleviates the unfairness problem, even without changing the
timer. To test, we configure the switch with Kmin = 5KB,
Kmax = 200KB and Pmax = 1%. Figure 13(c) shows
that the two flows, on average get similar throughput. How-
ever, we see a drawback that isn’t shown by fluid model: the
throughput is unstable due to the randomness in marking.

These results would imply that in our deployment, we
should mark packets like DCTCP, and rely on faster rate in-
crease timer to achieve fairness. However, we have found
that in multi-bottleneck scenario (§7), a combination of faster
timer and RED-like marking achieves better performance.
Figure 13(d) shows the behavior of the combined solution
for the simple two-flow scenario.

We have also verified that the value of g = 1/256 works
well in this scenario, as predicted by the fluid model. Finally,
using 20 machines connected via a single switch, we verified
that with 55 µs timer, RED-ECN and g = 1/256, the total
throughput is always more than 39Gbps for K:1 incast, K =
1 . . . 19. The switch counter shows that the queue length
never exceeds 100KB (translates to 20µs at 40Gbps).

In summary, we use the parameters shown in Table 14 in
our deployment, and also for the rest of the evaluation.

6.2 Benchmark traffic
One important scenario for large-scale RDMA deploy-

ment is the backend network for cloud storage service. In
such a network, the traffic consists of user requests, as well
as traffic generated by relatively rare events such as disk re-
covery. The disk recovery traffic has incast-like character-
istics, as failed disks are repaired by fetching backups from
several other servers [16]. We now evaluate the performance
of DCQCN in this scenario using the 3-tier testbed shown in

 0

 5

 10

 15

 20

 25

 2 4 6 8 10

T
hr

ou
gh

pu
t (

G
bp

s)

Incast degree

No DCQCN
DCQCN

(a) Median throughput of user flows.

 0

 5

 10

 15

 20

 25

 2 4 6 8 10

T
hr

ou
gh

pu
t (

G
bp

s)

Incast degree

No DCQCN
DCQCN

(b) 10th percentile throughput of user
flows.

 0

 5

 10

 15

 20

 25

 2 4 6 8 10

T
hr

ou
gh

pu
t (

G
bp

s)

Incast degree

No DCQCN
DCQCN

(c) Median throughput of incast flows.

 0

 5

 10

 15

 20

 25

 2 4 6 8 10

T
hr

ou
gh

pu
t (

G
bp

s)

Incast degree

No DCQCN
DCQCN

(d) 10th percentile throughput of incast
flows.

Figure 16: DCQCN performance with Benchmark Traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
D

F

Throughuptut (Gbps)

User Traffic

No DCQCN, 5 pairs
DCQCN, 80 pairs

(a) CDF of User traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F

Throughuptut (Gbps)

Incast (Disk Rebuild) Traffic

No DCQCN, 5 pairs
DCQCN, 80 pairs

(b) CDF of Incast traffic

Figure 17: DCQCN can handle higher
user traffic without hurting perfor-
mance

Figure 2, with five hosts connected to each ToR.
To mimic user request traffic, we use traces collected from

a single cluster in our datacenter. The data was collected
for one day on cluster of 480 machines, and includes traffic
from over 10 million flows. The trace cannot be directly re-
played on our testbed. Instead, like prior work [2, 5, 6], we
extract salient characteristics of the trace data, such as flow
size distribution and generate synthetic traffic to match these
characteristics. We model disk recovery traffic as incast. We
don’t claim that this benchmark models the real traffic ex-
actly - only that it is a reasonable proxy in a testbed setting.

To simulate user traffic, each host communicates with one
or more randomly selected host, and transfers data using dis-
tributions derived from traces. The number of communicat-
ing pairs is fixed at 20 (we will vary this in a later experi-
ment). The traffic also includes a single disk rebuild event
(since these are not very frequent). We vary the degree of
incast from 2 to 10, to model different erasure coding pat-
terns [16]. We repeat the experiment five times, with and
without DCQCN. DCQCN parameters are set according to
Table 14. The communicating pairs as well as the hosts par-
ticipating in the incast are selected randomly for each run.
Each run lasts for two minutes.

The metric of interest is the median as well as the tail
end (10th percentile) of the throughput3. Improved median
means better utilization of the network, while improved tail
performance leads to more predictable application perfor-
mance, which in turn leads to better user experience.

The results are shown in Figure 16. Figure 16(a) and 16(b)
show that without DCQCN, the throughput of user traffic
falls rapidly, as the degree of incast goes up. This result is
surprising, because even though the degree of incast goes up,

390th percentile of response time.

the total traffic generated by incast senders stays the same
(because the bottleneck is always at the receiver). The rea-
son is the “damage” caused by PFC. As the degree of incast
goes up, more PAUSE messages are generated. As these cas-
cade through the network, they wreak havoc on user traffic.
PAUSE messages that affect downlinks from spine switches
can cause extensive damage, as many flows pass through
these switches. For example, in a single run of the exper-
iment with incast degree 10, the two spine switches together
receive over 6 million PAUSE messages. Thus, scenarios
like unfairness and victim flow (§2.2) become more likely
and affect the throughput of user flows. In contrast, when
DCQCN is used, the spine switches see just 3000 PAUSE
messages (Figure 15). As a result, the performance of user
traffic is much better. Indeed, with DCQCN, as the degree
of incast goes up, there is little change in the median and tail
throughput of user traffic – exactly as one would hope for.

The disk rebuild traffic also benefits from DCQCN be-
cause DCQCN helps divides the bandwidth fairly among
competing flows. In the ideal case, the throughput of each
incast flow should be equal to 40Gbps divided by degree
of incast. Figure 16(d) shows that with DCQCN, the 10th
percentile throughput is very close to this value, indicat-
ing a high degree of fairness. In contrast, without DCQCN,
the 10th percentile throughput is much lower. For example,
with incast degree of 10, 10th percentile throughput with-
out DCQCN is less than 1.12Gbps, while with DCQCN it is
3.43Gbps. Note that the median throughput (Figure 16(c))
with DCQCN appears to be lower. This, however, is decep-
tive: without DCQCN the tail end suffers, and other flows
grab more than their “fair share”. Thus, the median seems
higher. With DCQCN, median and 10th percentile values
are nearly identical.

 0

 2

 4

 6

 8

 10

User flows Incast flows

T
hr

ou
gh

pu
t (

G
bp

s)

No DCQCN
DCQCN without PFC

DCQCN (Misconfigured)
DCQCN

Figure 18: 10th percentile throughput of four configura-
tions for 8:1 incast

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
um

ul
at

iv
e

F
ra

ct
io

n

Instantaneous queue length (KB)

DCQCN
DCTCP

Figure 19: Queue length CDF

Higher user load: In Figure 16, we saw that DCQCN con-
tinues to provide good performance to user traffic even as the
degree of incast goes up. Now, we hold the degree of incast
constant at 10, and vary the amount of use traffic by varying
the number of simultaneously communicating pairs from 5
to 80. In Figure 17(a), we see that the performance of user
traffic with 5 communicating pairs when no DCQCN is used,
matches the performance of user traffic with 80 communi-
cating pairs, with DCQCN. In other words, with DCQCN,
we can handle 16x more user traffic, without performance
degradation. Figure 17(b) shows that even the performance
of disk rebuild traffic is more uniform and fair with DCQCN
than without it.

Need for PFC and importance of buffer thresholds: We
now demonstrate the need for PFC, and also the need for
configuring correct buffer thresholds. To do so, we repeat the
experiment of Figure 16 with two other settings. First, we
disable PFC entirely, although we do use DCQCN. Second,
we enable PFC, but deliberately “misconfigure” the buffer
thresholds as follows: instead of using dynamic tPFC , we
use the static upper bound – i.e. tPFC = 24.47KB and
set tECN = 120KB, i.e. five times this value. With these
thresholds, it is no longer guaranteed that ECN will be trig-
gered before PFC.

The results from the experiment are shown in Figure 18
for the 8:1 incast case. In addition to the two configurations
discussed above, we also show the DCQCN and No DCQCN
(i.e. PFC only) bars, which are copied from Figures 16(b)
and 16(d).

Consider the performance when PFC is completely dis-
abled. Recall that DCQCN has no slow start, and hence it re-
lies on PFC to prevent packet loss during congestion. With-
out PFC, packet losses are common, and this leads to poor
performance. In fact, the 10th percentile incast throughput
is zero – indicating that some of the flows are simply unable
to recover from persistent packet losses. This result under-
scores the need to use DCQCN with PFC.

Next, consider the performance when PFC is enabled, but
buffer thresholds are misconfigured. With these thresholds,
PFC may be triggered before ECN – thus preventing the full
benefit of DCQCN. We see that this is indeed the case. The
tail throughput of both user and incast traffic is better than
what it would be without DCQCN (i.e. with PFC only), but
worse than what it would be with DCQCN. This result un-
derscores the need for correct buffer threshold settings.

6.3 Impact on latency
In above benchmarks, we have been focusing on through-

put as the primary metric. However, DCQCN can also re-
duce latency, compared to DCTCP. As a microbenchmark,
we looked at the queue length of the egress queue of the
congested port during 20:1 incast, with both DCTCP and
DCQCN. For DCTCP, we configured 160KB ECN thresh-
old according to the guidelines provided in [2]. DCQCN
was configured as described earlier.

With this setup, the queue length with DCQCN is sig-
nificantly shorter than that with DCTCP (Figure 19). For
example, the 95th-percentile queue length is 76.6KB with
DCQCN and 162.9KB with DCTCP. These numbers align
well with DCQCN fluid model and DCTCP model [2]. The
reason why DCTCP leads to longer queue is that DCTCP
requires a larger ECN threshold to absorb packet burstiness,
which is a result of the interaction between the OS and the
NIC. In contrary, DCQCN does not have this problem and
can work with very shallow Kmin.

7. DISCUSSION
Multi-bottleneck scenario: We mentioned earlier that in
a multi-bottleneck scenario combination of faster timer and
RED-like marking gives better performance than faster timer
alone. We now illustrate this. The multi-bottleneck prob-
lem is also known as the parking lot scenario. An example
is shown in Figure 20(a). There are three flows: f1: H1-
>R1, f2 : H2->R2, and f3 : H3->R2. Consider the case
when ECMP maps f1 and f2 to the same uplink from T1.
With this mapping, f2 ends up with two bottlenecks (T1 up-
link and T4->R2), while f1 and f3 have only one bottle-
neck each. Max-min fairness requires each flow should get
throughput of 20Gbps. However, with common congestion
control protocols like DCTCP, the flow with two bottleneck
gets lower throughput because it has higher probability of
getting congestion signal. DCQCN, if used with DCTCP-
like "cut-off" marking (Kmin = Kmax, Pmax = 1, see Fig-
ure 5) has the same problem. The problem can be mitigated
(but not completely solved) using a less abrupt, RED-like
marking scheme (see parameters in Table 14).

The intuition is the same as explained before: CNP gener-
ation is driven by a timer, so with RED-like packet marking,
we increase the probability that the faster flow will get more
CNPs. Figure 20(b) shows the performance of the two mark-
ing schemes, and indicates that the intuition is correct. We
plan to extend the fluid model to gain a better understanding
of this scenario and come up with a more concrete solution.

Packet loss: PFC prevents packet loss due to buffer over-

T1 T2

L1 L2

S1

T3 T4

L3 L4

S2

H1 R2H2 H3R1

(a) Multi-bottleneck topology

 0
 5

 10
 15
 20
 25
 30
 35

Cut-off ECN RED-ECN

T
hr

ou
gh

pu
t (

G
bp

s)

DCQCN Configuration

F1 F2 F3

(b) Throughput of the three flows. F2 is the
long flow (H2->R2)

Figure 20: Multi-bottleneck

0

0.25

0.5

0.75

1

 1e-05 0.0001 0.001 0.01

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Packet Loss Rate

Read
Write/Send

Figure 21: Impact of packet loss rate on
throughput

flow. However, packet corruption, intermittent port failures,
or accidental switch or server misconfiguration can induce
packet loss in large networks [41]. Unlike TCP, RoCEv2
transport layer assumes that packet losses are rare. For ex-
ample, when using READ operation [19], the protocol pro-
vides no information to the sender of the data about whether
packets were correctly received. The receiver can detect
packet loss via break in sequence numbers, and must ini-
tiate any loss recovery. The ConnectX-3 Pro implements a
simple go-back-N loss recovery scheme. This is sufficient
for environments where packet loss rate low, as seen in Fig-
ure 21. Throughput degrades rapidly once the packet loss
rate exceeds 0.1%. With go-back-n loss recovery model, the
size of the message matters as well. In our deployment, most
message transfers are expected to be less than 4MB in size.

Deadlock: A commonly expressed concern is that use
of PAUSE can lead to routing deadlocks [37]. Deadlock
formation requires a set of flows that have a cyclic depen-
dency on each other’s buffers, as shown in [37]. In a clos-
structured network servers are only connected to ToRs, and
traffic between a pair of servers never passes through an-
other server, or more than two ToRs. Thus a cyclic buffer
dependency cannot arise, without malfunctioning or miscon-
figured equipment. We omit detailed proof due to lack of
space. We are currently studying how to avoid outages that
may be caused by a malfunctioning card (e.g. port or a NIC
that spews PFCs).

TCP friendliness: TCP-friendliness was not one of the de-
sign goals for DCQCN, so we have not attempted to study in
the interaction between TCP and DCQCN in this paper. It is
easy to isolate TCP and DCQCN traffic from each other at
the switch level using 802.3 priority tags, and enforce differ-
ent transmission priorities, switch buffer utilization limits,
and rate limits for each type of traffic.

Incremental deployment: Incremental deployment is not
a concern in a datacenter environment.

Large-scale evaluation: We have designed DCQCN for
deployment in large datacenter networks. The evaluation in
this paper is based on a small, controlled, testbed environ-
ment. We have also evaluated DCQCN via large scale sim-
ulations (three-tier network of over 800 machines). We omit

simulation results due to lack of space, and also because they
are qualitatively similar to results from testbed evaluation.
A full scale deployment of DCQCN in our datacenters is in
progress.

8. RELATED WORK
There is a vast amount of research literature on conges-

tion control, and datacenter networking technologies. Here,
we only cover a few closely related ideas that we have not
discussed elsewhere in the paper.

Dynamic buffer allocation among output queued switches
is discussed in [7]. A number of papers have discussed var-
ious aspects of QCN’s performance. For example, [9] dis-
cusses performance of a QCN in a TCP incast scenario. RECN-
IQ [32] is a congestion management proposal for input-queued
switches. While related, ideas in these proposals are not di-
rectly applicable to our scenario.

The iWarp standard [35] is an alternative to RoCEv2. It
implements the full TCP stack on the NIC and builds a loss-
less fabric using TCP’s end-to-end loss recovery. RDMA
can be enabled atop such a network. Due to end-to-end loss
recovery, iWarp cannot offer ultra-low latency like RoCEv2.
iWarp is also likely to suffer from well-known TCP prob-
lems in a datacenter environment, including poor incast per-
formance [39]. In general, the iWarp technology has lagged
behind RoCEv2, because of the complexity involved in im-
plementing the full TCP stack in hardware. While 40Gbps
iWarp hardware has only recently become available [43],
RoCE2 vendors have started shipping 100Gbps NICs [44].

TCP Bolt [37] is a solution to overcome PFC’s limitations.
It also relies on flow-level congestion control, enabled by
ECN. TCP Bolt is essentially DCTCP [2] without slow start.
However, TCP-Bolt is implemented in end host stacks, and
thus will have high CPU overhead and high latency. The
protocol also does not consider the interplay between PFC
and ECN buffer thresholds. Since we did not have access to
a TCP-Bolt implementation for Windows, we were unable
to compare the performance of DCQCN and TCP-Bolt.

We also note that DCTCP and iWarp have a slow start
phase, which can result in poor performance for bursty stor-
age workloads. Furthermore, DCTCP, iWarp and TCP-Bolt
are all window-based algorithms. DCQCN is rate-based, and
uses hardware rate limiters. Thus, DCQCN offers a more

fine-grained control over sending rate, resulting in lower queue
lengths, as shown in §6.

TIMELY [31] is a congestion control scheme for data-
center traffic, including RDMA traffic. It uses fine-grained
changes in RTT as a congestion signal, instead of ECN marks.
Compared to DCTCP, TIMELY can significantly reduce queu-
ing delay. Reducing CPU utilization of end hosts is not a
goal for TIMELY. TIMELY was developed at Google in par-
allel with our work on DCQCN. It would be interesting to
compare the performance of DCQCN and TIMELY under
various scenarios.

User-level stacks such as Sandstorm [29] are one way to
reduce TCP’s CPU overhead and latency. While they do
have lower CPU overhead than conventional stacks, their
overhead is significantly higher than RoCEv2. Some of these
stacks also have to be closely integrated with individual ap-
plications to be effective. TCP’s latency can potentially also
be reduced using technologies such as Netmap [28], Intel
Data Direct I/O [45] and mTCP [23].

A number of proposals for reducing latency of TCP flows
in datacenter and other environments have been put forth.
Recent examples include HULL [5], pFabric [6] Detail [42],
Fastpass [33] and RCP [12]. These proposals require signif-
icant changes to switch architectures, and to our knowledge,
are not being deployed on a large scale. Other TCP offload-
ing work optimize TCP performance only for specific sce-
narios, e.g. for VM [26].

Recent proposals consider the possibility in leveraging ma-
chine learning to adapt TCP parameters for better perfor-
mance [36, 40]. The idea may also apply to DCQCN. We
will investigate this in the future.

9. CONCLUSION AND FUTURE WORK
The history of congestion control algorithms is the his-

tory of struggle between responsiveness and stability. While
we have presented DCQCN as a solution to cure PFC’s ills,
it also represents a new way to address the tussle between
responsiveness and stability, at least in the datacenter envi-
ronment. DCQCN uses the blunt, but fast PFC flow control
to prevent packet losses just in time, and uses a fine-grained
and slower end-to-end congestion control to adjust sending
rate to avoid triggering PFC persistently. The combination
allows DCQCN to be both responsive in short term, and sta-
ble over long term. We believe that this design point war-
rants exploration in a number of different directions. For
example, we are exploring the use of DCQCN in other en-
vironments, with different RTTs and link bandwidths. More
specifically, we are working to model and tune DCQCN and
PFC for 100 and 400Gbps networks. We are also planning to
investigate the stability of the DCQCN algorithm using the
model described in §5.

Acknowledgements
We would like to thank Diego Crupnicoff, Liran Liss, Hillel
Chapman, Marcel Apfelbaum, Dvir Aizenman and Alex Sh-
piner of Mellanox for their help with the design and imple-
mentation of DCQCN. We also like to thank the anonymous

SIGCOMM reviewers and our shepherd, Nandita Dukkipati
for their helpful comments.

10. REFERENCES
[1] M. Alizadeh, B. Atikoglu, A. Kabbani,

A. Lakshmikantha, R. Pan, B. Prabhakar, and
M. Seaman. Data center transport mechanisms:
Congestion control theory and IEEE standardization.
In Allerton, 2008.

[2] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data Center TCP (DCTCP). In SIGCOMM, 2010.

[3] M. Alizadeh, A. Javanmard, and B. Prabhakar.
Analysis of DCTCP: Stability, convergence and
fairness. In SIGMETRICS, 2011.

[4] M. Alizadeh, A. Kabbani, B. Atikoglu, and
B. Prabhakar. Stability analysis of QCN: the averaging
principle. In SIGMETRICS, 2011.

[5] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is more: Trading a
little bandwidth for ultra-low latency in the data
center. In NSDI, 2012.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti,
N. McKeown, B. Prabhakar, and S. Shenker. pFabric:
Minimal near-optimal datacenter transport. In
SIGCOMM, 2013.

[7] A. K. Choudhury and E. L. Hahne. Dynamic queue
length thresholds for shared-memory packet switches.
IEEE/ACM Transactions on Networking, 6(2), 1998.

[8] Cisco. Priority flow control: Build reliable layer 2
infrastructure.
http://www.cisco.com/en/US/prod/collateral/switches/
ps9441/ps9670/white_paper_c11-542809_ns783_
Networking_Solutions_White_Paper.html.

[9] P. Devkota and A. L. N. Reddy. Performance of
quantized congestion notification in TCP incast
scenarios of data centers. In MASCOTS, 2012.

[10] A. Dragojevic, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast remote memory. In NSDI,
2014.

[11] J. Duetto, I. Johnson, J. Flich, F. Naven, P. Garcia, and
T. Nachiondo. A new scalable and cost-effective
congestion management strategy for lossless
multistage interconnection networks. In HPCA, 2005.

[12] N. Dukkipati. Rate control protocol (RCP):
Congestion control to make flows complete quickly. In
PhD diss., Stanford University, 2007.

[13] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1:397–413, 1993.

[14] E. G. Gran, M. Eimot, S.-A. Reinemo, T. Skeie,
O. Lysne, L. P. Huse, and G. Shainer. First experiences
with congestion control in infiniband hardware. In
IPDPS, 2010.

[15] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and

S. Sengupta. VL2: A scalable and flexible data center
network. In SIGCOMM, 2009.

[16] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure coding in
Windows Azure storage. In USENIX ATC, 2012.

[17] IEEE. 802.11Qau. Congestion notification, 2010.
[18] IEEE. 802.11Qbb. Priority based flow control, 2011.
[19] Infiniband Trade Association. InfiniBand architecture

volume 1, general specifications, release 1.2.1, 2008.
[20] Infiniband Trade Association. Supplement to

InfiniBand architecture specification volume 1 release
1.2.2 annex A16: RDMA over converged ethernet
(RoCE), 2010.

[21] Infiniband Trade Association. InfiniBand architecture
volume 2, physical specifications, release 1.3, 2012.

[22] Infiniband Trade Association. Supplement to
InfiniBand architecture specification volume 1 release
1.2.2 annex A17: RoCEv2 (IP routable RoCE), 2014.

[23] E. Jeong, S. Woo, A. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: a highly scalable
user-level TCP stack for multicore systems. In NSDI,
2014.

[24] S. Kamil, L. Oliker, A. Pinar, and J. Shalf.
Communication requirements and interconnect
optimization for high-end scientific applications. IEEE
TPDS, 21:188–202, 2009.

[25] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken. The nature of datacenter traffic:
Measurements and analysis. In IMC, 2009.

[26] A. Kangarlou et al. vSnoop: Improving TCP
throughput in virtualized environments via
acknowledgement offload. In SC, 2010.

[27] S. Larsen, P. Sarangam, and R. Huggahalli.
Architectural breakdown of end-to-end latency in a
TCP/IP network. In SBAC-PAD, 2007.

[28] Luigi Rizzo. netmap: a novel framework for fast
packet I/O. In USENIX ATC, 2012.

[29] I. Marinos, R. N. Watson, and M. Handley. Network
stack specialization for performance. In SIGCOMM,
2014.

[30] C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma
reads to build a fast, cpu-efficient key-value store. In
USENIX ATC, 2013.

[31] R. Mitta, E. Blem, N. Dukkipati, T. Lam, A. Vahdat,
Y. Wang, H. Wassel, D. Wetherall, D. Zats, and
M. Ghobadi. TIMELY: RTT-based congestion control
for the datacenter. In SIGCOMM, 2015.

[32] G. Mora, P. J. Garcia, J. Flich, and J. Duato.
RECN-IQ: A cost-effective input-queued switch
architecture with congestion management. In ICPP,
2007.

[33] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and

H. Fugal. Fastpass: A centralized, zero-queue
datacenter network. In SIGCOMM, 2014.

[34] K. Ramakrishnan, S. Floyd, and D. Black. The
addition of explicit congestion notification (ECN).
RFC 3168.

[35] M. Recio, B. Metzler, P. Culley, J. Hilland, and
D. Garcia. A remote direct memory access protocol
specification. RFC 5040.

[36] A. Sivaraman, K. Winstein, P. Thaker, and
H. Balakrishnan. An experimental study of the
learnability of congestion control. In SIGCOMM,
2014.

[37] B. Stephens, A. Cox, A. Singla, J. Carter, C. Dixon,
and W. Felter. Practical DCB for improved data center
networks. In INFOCOMM, 2014.

[38] H. Subramoni, S. Potluri, K. Kandalla, B. Barth,
J. Vienne, J. Keasler, K. Tomko, K. Schulz, A. Moody,
and D. Panda. Design of a scalable InfiniBand
topology service to enable network-topology-aware
placement of processes. In SC, 2012.

[39] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat,
D. G. Andersen, G. R. Ganger, G. A. Gibson, and
B. Mueller. Safe and effective fine-grained TCP
retransmissions for datacenter communication. In
SIGCOMM, 2009.

[40] K. Winstein and H. Balakrishnan. TCP ex machina:
computer-generated congestion control. In
SIGCOMM, 2013.

[41] X. Wu, D. Turner, G. Chen, D. Maltz, X. Yang,
L. Yuan, and M. Zhang. Netpilot: Automating
datacenter network failure mitigation. In SIGCOMM,
2012.

[42] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz.
Detail: Reducing the flow completion time tail in
datacenter networks. In SIGCOMM, 2012.

[43] Chelsio Terminator 5 ASIC.
http://www.chelsio.com/nic/rdma-iwarp/.

[44] ConnectX-4 single/dual-port adapter supporting
100gb/s. http://www.mellanox.com/.

[45] Intel data direct I/O technology.
http://www.intel.com/content/www/us/en/io/
data-direct-i-o-technology-brief.html.

[46] Iperf - the TCP/UDP bandwidth measurement tool.
http://iperf.fr.

[47] Offloading the segmentation of large TCP packets.
http://msdn.microsoft.com/en-us/library/windows/
hardware/ff568840(v=vs.85).aspx.

[48] QueryPerformanceCounter function.
http://msdn.microsoft.com/en-us/library/windows/
desktop/ms644904(v=vs.85).aspx.

[49] Receive Side Scaling (RSS). http:
//technet.microsoft.com/en-us/library/hh997036.aspx.

