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ABSTRACT
One of the key distinctive requirements of white-space networks
is the power asymmetry. Static nodes are allowed to transmit with
15dB-20dB higher power than mobile nodes. This poses significant
coexistence problems, as high-power nodes can easily starve low-
power nodes. In this paper, we propose Weeble, a novel distributed
and state-less MAC protocol that solves the coexistence problem.
One of the key building blocks is an adaptive preamble support, an
add-on to the PHY layer that allows high-power nodes to detect a
low-power transmission even when the difference in transmit power
is as high as 20dB. The other key building block is a MAC protocol
that exploits the adaptive preambles functionality. It implements a
virtual carrier-sensing and automatically adapts the preamble size
to optimize network performance. We extensively evaluate our sys-
tem in a test-bed and in simulations. We show that we can prevent
starvation of low-power nodes in almost all existing scenarios and
improve the data rates of low-power links several-fold over existing
MACs, and as a trade-off we decrease the throughput of the rest of
the system by 20%-40%.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion

General Terms
Design

Keywords
Coexistence, White-spaces

1. INTRODUCTION
There is recent interest in using the TV white spaces (unoccu-

pied TV channels) for unlicensed communication. The FCC issued
an official approval for the US [6]; the UK [28], Canada [2], Brazil
and Singapore have made significant progress towards similar de-
cisions. The industry is moving quickly with the development of
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the white space database [7] and hardware [34]. The IEEE is even
developing standards for different applications over this spectrum.

This excitement stems primarily from the excellent propagation
characteristics of the TV spectrum – it not only extends the reach
of a transmission, it also enables faster transmissions at short dis-
tances because of higher SNR. Both these benefits lead to differ-
ent applications. The former is useful in regional area networks
(WRANs) as is enabled by the IEEE 802.22 standard [16]. The
latter is useful for in-home media distribution applications, which
have been proposed by Dell, Philips, and other companies, and will
be enabled by the 802.11af standard [3]. This has led to an im-
portant question – can these low power (in-home) and high power
(regional-area applications) coexist on the same spectrum?

The FCC has defined the operational parameters of the low and
high power nodes. The high power nodes, such as base-stations or
regional network back-haul nodes, can transmit with a power of up
to 4W. Per the rules, these nodes have to be static and query the
spectrum database [7] so that they do not create interference on the
existing TV channels1. The low power nodes are limited to 40mW
or 100mW of transmit power (depending whether they are adjacent
to an active TV channel) and can be mobile. Note that both high and
low power nodes are unregulated, except for the spectral mask and
the requirements mentioned above. In principle, even consumer
devices could use high-power transmissions in any available white-
space channel to boost the quality of home network. However, this
is unlikely to happen as it would increase the power consumption,
heat dissipation, the form factor and the cost of the devices.
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Figure 1: Starvation of a mobile low-power (LP) link in presence of
high-power (HP) link.

This large power asymmetry poses a significant challenge to net-
work design. A high-power node might not sense the transmission
of a low-power node, and hence, can easily overwhelm the low-
power node with interference and interrupt communication (hid-
den terminal). We observe the starvation in Figure 1, which shows
the throughput of a low power and high power node in our white
space test-bed (described in Section 5) when using the Wi-Fi MAC.

1The database is not used to allocate spectrum to (low or high
power) white-space nodes, but only to prevent them from interfer-
ing with the incumbents.



The IEEE has recognized this problem as well and formed the
IEEE 802.19 working group [14] that also addresses this coexis-
tence problem.

A strawman approach to deal with the coexistence problem is
to assign disjoint frequencies to high-power and low-power nodes
(or frequency division multiplexing, FDM). However, determining
the frequency separation is non-trivial because of varying white
space availability, different population densities, and mobility of
low-power nodes. Moreover, any such frequency assignment needs
to be dynamic and global. This makes it extremely difficult to man-
age. Furthermore, as we show in Section 6, such a technique can
also be very inefficient.

In this paper we present Weeble, a novel, fully distributed MAC
design for coexistence among high-power and low-power nodes.
The main idea behind Weeble is to repair the carrier sense mech-
anism in a power asymmetric setting and then build a CSMA-like
distributed reservation protocol on top of it. We note that our prob-
lem is different from the problem of coexistence with legacy de-
vices, i.e. those that cannot be modified [13, 8, 27, 12]. In this
paper, our goal is to design a mechanism that can be adapted by
both the high and low-power nodes.

A key component of designing Weeble is to define coexistence
among low and high-power nodes. In this paper we define coexis-
tence as avoiding starvation of low-power nodes due to high power
interference and, more generally, to run the network efficiently and
fairly. However, fairness and efficiency are fundamentally conflict-
ing goals [30] and there is no commonly accepted definition of fair-
ness in white-space networks. One can argue that high-power links
(such as base-stations and back-haul links) are more important than
the low-power links. Thus, our design goals are, in the follow-
ing order: (a) to avoid starvation of any link, (b) avoid significant
performance deterioration of high-power links and (c) increase the
total throughput as much as possible.

Weeble achieves the above goals by leveraging two key innova-
tions:
Technique for detecting transmissions at low SNR : First, we
design an adaptive preamble detector that allows low power nodes
to signal their presence to nodes that receive the signal at very low
SNR (even lower than -15 dB). Our design uses two types of pream-
bles to significantly decrease the false positives and it does not re-
quire any prior synchronization between the nodes (unlike [12, 9,
33]). By tunning the length of the preamble, one can control the sig-
nalling range and the preamble overhead. We build our preamble
detector in FPGA as an add-on to an existing OFDM PHY design,
and we also show that our implementation is much more efficient
than conventional preamble detector designs.
MAC that allows low power and high power nodes to coexist:
Second, we design a distributed reservation mechanism for low-
power nodes that is based on adaptive preamble signalling (Sec-
tion 4). In the absence of carrier sense it is not possible to detect the
end of a packet transmission. Instead, our low-power reservations
are of fixed duration. To make an efficient use of each reservation
period, all low-power nodes are allowed to contend and transmit
multiple packets when possible during the period. We balance the
traffic between the high-power and low-power nodes by prioritizing
the access of high-power nodes in between low-power reservation
periods (Section 4.1). Finally, we propose an algorithm to adapt the
preamble size to maximize the spatial reuse and limit the protocol
overhead (Section 4.2).

We have implemented our system on the Lyrtech SDR platform.
Using a set of micro-benchmarks we first demonstrate that our
adaptive signalling works with 90% accuracy at SNRs below -15dB
(Section 6.1). We then evaluate the full Weeble MAC design in a

small scale test-bed on several topologies (Section 6.2). In con-
trast to the recent software-defined radio deployments [33, 36, 9,
8, 12] that do not implement MAC protocols but rely on offline
processing of channel traces, we implement and run both PHY and
MAC on the deployed nodes. We show that we avoid starvation
of low-power flows and we achieve 50% median increase in rates
of low-power flows over 802.11 MAC, at the expense of less than
6% median decrease of rates of high-power flows. We further eval-
uate Weeble on larger topologies using Qualnet simulations with
PHY layer parameters as measured in the test-bed (Section 6). We
observe up to 10-fold rate improvement of low-power flows over
802.11 MAC and FDM (frequency division multiplexing MAC),
with an inevitable trade-off being a 20%-40% rate decrease of high-
power flows.

2. WEEBLE OVERVIEW
Carrier sense is a simple and very efficient signaling primitive

for sharing the medium in unlicensed wireless networks, such as
Wi-Fi. Weeble attempts to provide a similar functionality in white
space networks even though not all nodes are in carrier sensing
range of each other, for example in networks where different nodes
transmit at different transmission powers. To ensure that low power
nodes get time to communicate without interference from high power
nodes we enhance carrier sense with a new technique called low-
power reservations.
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Figure 2: Illustration of the low-power reservation period (HP -
high-power transmissions, LP - low-power transmissions, L - adaptive
preamble): (a) network topology, (b) sample packet exchange

To signal a start of a low-power reservation to a high power node,
we introduce a special preamble. Since this preamble might not al-
ways be needed (for example, when the interference does not affect
packet reception), a low-power node may decide to prepend this
special preamble to its packets only if it experiences interference.
All nodes that detect the preamble will refrain from sending for the
duration of the reservation (that will be defined later).

To ensure that low-power reservations do not block out a large re-
gion, we design a preamble of adaptive size. The longer the pream-
ble, the lower the SNR is at which it can be detected. We choose
the preamble size of a low-power link such that it can be detected
only by those high-power nodes whose concurrent transmission can
cause a packet loss on the respective low-power link. If the pream-
ble is too short, this will lead to packet losses at the low-power



link. If it is too long, it will hamper spatial reuse. We describe the
algorithm to determine the preamble length in Section 4.2.

For simplicity, we set the duration of a low-power reservation to
be a constant. To efficiently use the reservation period, it is shared
by all low-power nodes in the vicinity. The low-power nodes use
the conventional carrier sense among themselves and the node that
initializes the reservation period (by sending an adaptive preamble)
transmits the first packet. It will be followed by other low-power
nodes until the reservation expires. Once the reservation has ex-
pired, the high-power nodes will resume contending for the access
among themselves and the other low-power nodes.

We illustrate the functionality of Weeble MAC in Figure 2. We
consider a network depicted in Figure 2 (a) with one high-power
and two low-power links. We assume that LP1 and LP2 are suffi-
ciently far from LP3 and LP4 so that they cannot hear each other.
Everyone can hear HP1 and HP2 because HP1 and HP2 use much
higher transmit power.

One sample execution of Weeble MAC is given in Figure 2 (b).
In this example, node LP1 first sends the low-power preamble and
starts the low-power reservation period. This causes HP1 and HP2
to back off for the duration of the period. LP3 is not aware of all
this, but as it does not sense any transmission it keeps on counting
down and eventually starts transmitting during the same low-power
reservation period. As LP3 is not aware of LP1, it also includes the
low-power preamble in its transmission. Since it is received dur-
ing an ongoing low-power reservation period, HP1 and HP2 will
ignore it. Also note that all low-power nodes are allowed to keep
on transmitting once the low-power reservation period has expired,
but they are not guaranteed that these transmissions will not be cor-
rupted by a concurrent high-power transmission. We explain the
Weeble MAC in more detail in Section 4.1.

3. ADAPTIVE PREAMBLES
Weeble is built upon a new preamble design that (a) allows pream-

ble detection at SNRs below -15dB, (b) has an adaptive detection
range, (c) works well, i.e. has few false positives and false nega-
tives, in the presence of interference, and (d) is simple and cheap
to implement (in terms of silicon area, and hence also power con-
sumption). We describe our design corresponding to the first three
goals in this section – using repetitive preambles for detection at
low SNRs, support for adaptive preamble lengths, and a detection
mechanism that works in the presence of interference. Although
the design of our detector is for an OFDM PHY, which is used in
most of the relevant white space standards (802.22, 802.11af), our
idea can easily generalize to other PHYs.

A key challenge in the design of our preamble detector is syn-
chronization. State-of-the art implementations of preamble detec-
tion [9, 33], are able to detect preambles of size of 1 OFDM symbol
at SNRs of down to -15dB, but require synchronization between
the nodes [12]. Synchronization is difficult to achieve in our sce-
nario since low-power nodes might never be able to communicate
with interfering high-power nodes. We thus decided to use longer
preambles, which increases the detector’s complexity. We show
how our design can be implemented without consuming signifi-
cantly more silicon.

3.1 Detecting preambles at low SNR
We use the well-known phenomenon that the detection accuracy

increases with the length of the preamble [20]. A key question then
is how to design such a preamble without increasing the complexity
of the detector [35].

The preamble in OFDM is used to synchronize with the start of a
packet transmission. Hence the preamble sequence P is a pseudo-

Q’ Q’ Q’ Q’ A P

Q Q

Adaptive preamble
(K OFDM symbols)

OFDM preamble
(2 OFDM symbols)

Figure 3: The structure of the PHY header, comprising an adaptive
preamble and a standard OFDM preamble (A,P ).

random sequence with as little auto-correlation as possible. In our
application, in which the high power node only needs to detect (and
not decode) low-power packet transmissions, we are not interested
in the detection with such an accurate timing. It is sufficient to de-
tect the packet transmission with a timing precision even as high as
a few tens of micro-seconds. We leverage this lee-way to simplify
the receiver design by using repetitive instead of purely pseudo-
random preambles.

We use a symmetric preamble Q = (Q′,Q′) as the main build-
ing block where sequence Q′ = (Q0, · · · , QS/2−1) is a pseudo-
random sequence. The size of Q is one OFDM symbol and S is the
number of samples per OFDM symbol (typically S = 64 or more).
Note that this is the same type of preamble used in the state-of-the-
art detectors [32, 35]. The key difference in our design is that when
we increase the size of the preamble, we do not increase the size of
Q′, but we repeat the same basic preamble. Our repetitive pream-
ble L = (Q, · · · ,Q) consists of K repetitions of Q and lasts K
OFDM symbols. The preamble is illustrated in Figure 3.

Let CS
n =

∑S/2−1
i=0 (Q′i)

∗Yn+i be the correlation (multiplica-
tion) of the complex input base-band samples Yn with a complex
conjugate of one half preamble Q′. We then calculate the preamble
correlation Cn at time n as

Cn =

(
K−1∑
k=0

CS
n+kS

)(
K−1∑
k=0

CS
n+S/2+kS

)∗
. (1)

The signal is detected at time n if the correlation Cn is higher than
a threshold. We give a schematic representation of our FPGA im-
plementation of the detector in Figure 4.
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Figure 4: Adaptive detector for different preamble repetitions K =

{2, 6, 10, 14}. Symbol zn denotes a delay element of n cycles.

In other words, we take the first halves of each of the K repeti-
tions of the preamble (lightly shaded squares in Figure 3), and sum
them. We sum the second halves as well (darker shaded squares in
Figure 3), we conjugate the sum of the second halves and multi-
ply with the first ones. Intuitively, with (1) we have achieved two
important goals: firstly, both factors in (1) grow with K, which
allows us to detect the preamble at low SNR; secondly, by multi-
plying with the complex conjugate of the second, identical copy we
get rid of the unknown phase bias, as explained in [35].

Complexity of the detector: We compare the complexity of our
detector against the conventional detector [35]. To correlate a pream-
ble of size K OFDM symbols, we do not need to run the full,
sample-by-sample correlation of K OFDM symbols (KS/2 sam-



ples). Our detector needs S/2 complex multipliers and S/2 com-
plex adders to calculate CS

n , and we need one complex multiplier
and 2K complex adders to calculate Cn. The conventional detec-
tor [35] (that does not use a repetitive but a long pseudo-random
preamble) performs the same operation, but with K′ = 1 (no rep-
etitions) and S′ = KS (to achieve the same preamble length). For
example, for S = 64,K = 14 our design requires 416 fewer com-
plex multipliers (93% less) and 388 fewer complex adders (87%
less). We evaluate the complexity of our implementation Section 5.

3.2 Adaptive preamble length detector
By choosing the number of the repetitions K, a transmitter can

effectively control how far the preamble can be heard. For practical
reasons, we limit K ∈ {2, 6, 10, 14}. It is the responsibility of the
transmitter to choose the appropriate K (we present an adaptive
algorithm for choosing K in Section 4.2), and we require that the
detector at a receiver does not need to know a priori the number
of repetitions K a transmitter has decided to use in the preamble.
To that end, we implement four detectors (1) in parallel, for each
K ∈ {2, 6, 10, 14}. A preamble is detected if any of the four
detectors exceeds its corresponding threshold.

To illustrate that the detector does not need to know which value
of K the transmitter has choosen, consider an example where the
transmitter chooses K = 10 repetitions. If the correlator K = 10
misses the preamble, then it is very likely that the correlator K =
14 will also miss the preamble. This is because, in addition to 10
repetitions of the preamble Q, correlator K = 14 also correlates 4
other arbitrary OFDM symbols, and the correlation level is lower
then expected for a preamble of length 14. Similarly, the correla-
tors K = 2 and K = 6 are also likely to miss the preamble if
K = 10 misses it, because the detection accuracy increases with
the preamble size. Hence, the performance of the correlation is as
good as when only the correlator K = 10 is used.

3.3 High-power and low-power preambles
We next discuss the effect of false positives from high-power

interferers, which we illustrate using a simple experiment in our
test-bed (described in Section 6.1). We place two nodes close to
each other, and we put a variable attenuator at the transmit antenna
of the transmitting node. In one experiment, the transmitter trans-
mits adaptive preambles L. In the second experiment the transmit-
ter transmits regular OFDM packets without adaptive preambles L
(mimicking high-power nodes’ packets). In the third experiment
the transmitter is switched off and we only receive the background
noise. In all three experiments we measure the maximum corre-
lation value Cn observed in a fixed time interval. We plot each
observed Cn against the SNR at the receiver (calculated from the
corresponding attenuation values) in Figure 52. False positives have
more negative impact on the system performance (as they can po-
tentially starve high-power nodes), hence we plot 90% for confi-
dence intervals for the signal and 99% confidence intervals for the
noise.

We see that the correlation against the background noise, when
the transmitter is idle, is very low. It visually seems that the signal
can be reliably detected versus the background noise for all mea-
sured SNRs. However, we also see that the correlation with the
OFDM interference can be much higher3. For example, the inter-
fering packets at 0dB (the noise level) have 5dB higher correlation
than the background noise. It seems from visually inspecting Fig-
2The signal correlation stops the increase at high SNRs due to the
saturation of the receiver’s dynamic range
3This is because the background noise and the interfering packets
have different statistical properties.

Figure 5: Correlation as a function of SNR for the loopback link and
preamble length 10 OFDM symbols (K = 10).

ure 5 that if we set a correlation threshold of 55dB to reliably detect
low-power packets at an SNR of -10dB, we will have a large num-
ber of false positives from high-power packets at 0dB and below,
which we cannot otherwise detect using energy-based carrier sens-
ing.

To address the problem of false positives, we define a unique
short preamble H for high-power nodes, which is a repetition of
K = 2 OFDM symbols, different from the ones in the L preamble.
We then use the following detection algorithm

Adaptive detection algorithm

if for any K, CL(K)
n ≥ TL(K) and CH

n < TH

and RSSI < CS threshold
declare preamble detected

where CL(K)
n is the correlation with the preamble L of length K

OFDM symbols and CH
n is the correlation with the preamble H at

time n, RSSI is the received signal strength indication, and TL(K), TH

and CS Threshold are the corresponding thresholds4.
The main intuition for this algorithm is as follows. The variance

in correlation value comes from random attenuation in the system
(channel, noise, etc). False positive from high-power interference is
more likely at times when the random attenuation is low, hence the
interfering signal is high. But at the same time, the correlation with
the H is also likely to be high. So the idea is that, if we detect both
preambles L and H during a short time interval, we can conclude
that it is an interfering packet and ignore it. Furthermore, we also
ignore correlation if energy is sensed (this implies a regular back-
off instead of a low-power reservation).

4. WEEBLE MAC DESIGN
In this section we discuss the Weeble MAC design in detail.

4.1 Low-power Reservations
One of the key challenges in our design, described in Section 2,

is how to determine the length of the reservation period. A sim-
ple idea would be to use another preamble to signal the end of the
period. However, this is unwise for two reasons. Firstly, if the
preamble for the end of the period is missed by a high-power node,
this node might get starved5. Secondly, sending another preamble

4We set the threshold levels to the minimal values that are not ex-
ceeded when correlating with the white noise. These thresholds are
similar in nature to the CS Threshold, and can be calibrated in the
same way in practice.
5whereas if the start of the period preamble is missed, this will
cause a loss of a single low-power packet.



increases the protocol overhead and the complexity (as we need to
detect two different types of preambles).

Instead, we opt to use a reservation period of a fixed duration
and we rely on contending low-power nodes to make an efficient
use of it. Any node can signal a start of a low-power reservation
period. Once a period has started, all high-power nodes that heard
the preamble will refrain from transmitting for the fixed period of
time. All low-power nodes may contend for the access for the fixed
duration of the period using CSMA. Once the packet that initiated
the reservation period has ended, other nodes may start transmit-
ting. Also, other low-power nodes in other collision domains will
likely transmit in parallel (as already observed in [5] in the context
of multi-hop networks). They will not hear the L preamble that
initiated the reservation period, but they will find the medium idle
from high-power transmission and use the opportunity to access it.
Both cases are illustrated in Figure 2 in Section 2.

Once a low-power reservation period expires, both high-power
and low-power nodes contend for transmission. If a low-power
node wins the contention, it sends an adaptive preamble. Then an-
other low-power reservation period starts, and all high-power nodes
back off. Otherwise, a high-power transmission will start.

Another challenge is how to prevent performance impairment
and potential starvation of the high-power nodes. As illustrated in
Figure 2 in Section 2, several low-power nodes that do not hear
each other may enchain the reservations and starve a possible mul-
titude of high-power nodes. To avoid this scenario, a high-power
node ignores any L preambles it detects during a ongoing low-
power reservation period.

Another effect, illustrated in Figure 2, gives priority to high-
power nodes. If many low-power nodes contend for access, it is
very likely that someone will be transmitting at the very end of
the a low-power reservation period. However, at this point, high
power nodes start contending again, and decreasing the back-off
counter. Thus it is more likely that a high-power link will gain
access right after a low-power reservation period. Note that the
winning high-power transmission (HP in Figure 2) may destroy the
last low-power transmission extending beyond the reservation pe-
riod (the second LP in Figure 2). However, this does not affect the
high-power transmission because its SNR is sufficiently high, and
hence does not reflect on the efficiency of the network.

To avoid starvation of the low-power nodes, each low-power
node contends separately for a low-power reservation period. A
low-power period will start whenever any of the low-power nodes
wins the medium and sends an adaptive preamble. Hence, the more
low-power nodes there are, the more likely they are to gain the ac-
cess. Clearly, the more low-power nodes there are, the lesser are
the chances that a high-power node will get an access, but this is in
accordance to the principle of fair medium access.

The duration of the low-power reservation should not be too
large, to avoid over-booking the air if there are not too many low-
power nodes. It should also not be too small, because each reser-
vation period is preceded by an adaptive preamble, hence short pe-
riods incur high overhead. For a network with 802.11a/g PHY, we
choose a standard low-power reservation duration of 600 µs. As
we illustrate in Section 6.3, this is a good compromise between
fairness and efficiency.

Finally, we mention the issue of the hidden terminal problem in
our setting. As we have seen in the example from Figure 2, the L
preamble of node LP3 is ignored by HP1 and HP2 because it was
transmitted during an ongoing reservation period. However, that
same preamble could have been respected by some other HP node
(say HP3, not shown in Figure 2) who cannot detect LP1 and hence
it missed its L preamble, but can detect LP3. Since the two reserva-

tion periods are not in sync, node LP3 cannot fully utilize the newly
acquired reservation period at HP3. The key thing to observe here is
that while LP3 started the reservation period, the same reservation
period will be used by other LP nodes obstructed by HP3, hence
the efficiency of the network should still be high. This is confirmed
by our simulation results, presented in Section 6.3.

We give the pseudo-code of the MAC algorithm below, extend-
ing WiFi MAC (HP - true if the node is high-power, LP - true if the
node is low-power, L - low-power preamble).

Medium access protocol

if L detected and reservation timer > reservation length then
start reservation timer

if HP and reservation timer ≤ reservation length then
freeze cw counter

if carrier sense start then freeze cw counter
if carrier sense end then count DIFS
if DIFS count end then unfreeze cw counter
if cw = 0 then

if LP and reservation timer > reservation length then
transmit preamble of preamble_size
start reservation timer

transmit packet
if no ACK received then

increase CW = min(2CW,CWmax)

else CW = CWmin

cw = rand[0, CW ]

4.2 Adaptation Algorithm
Sending an adaptive preamble incurs overhead. It also prevents

any high-power node that detects it from transmitting concurrently.
It is thus important to carefully decide when to send adaptive pream-
bles, and how long should they be. We want to use packet losses as
a feedback whether to increase or decrease (or switch off) adaptive
preambles. However, we need to be able to distinguish losses due
to a high-power interferer from other types of losses.

There are three primary reasons why a low-power wireless link
will lose packets. The first one is due to interference from con-
current high-power transmissions. The second reason is a MAC
level contention. In DCF, as the number of nodes contending for
medium access increases, so does the number of collisions that are
due to two or more links starting transmitting at the exact same slot
(and thus not having enough time to detect each other and avoid
collision). If packets are lost due to contention, we do not want to
use this as a signal to start using adaptive preambles or increase the
preamble length. In fact, longer preambles can only make things
worse by introducing additional overhead to an already congested
medium. The third reason for wireless losses is the link loss, due
to wireless channel changes. We do not want to switch on adaptive
preambles or increase the preamble size due to these losses either.

We start by observing that in case of the second and third type
of losses, we are not very likely to see many consecutive losses.
For example, we measure that the average number of consecutive
losses with 16 contending nodes is 2.5. Similarly, most modern rate
adaptation algorithms are able to adapt the rate with minimal chan-
nel losses (less than 10%-15%), hence wireless losses are unlikely
to occur consecutively.

On the contrary, losses due to interference are very likely to oc-
cur in a sequence. Namely, if a high-power node has data to send,
and if it does not hear a low-power node, it will continuously trans-
mit and kill several subsequent low-power transmissions. Also,



consecutive packet losses are particularly bad for the link perfor-
mance, as they will exponentially increase the back-off counter,
and cause link starvation. If the high-power nodes interfere only
sporadically, we will not activate the preamble protection, as this
will not create starvation of low-power nodes.

We propose an adaptive preamble tunning algorithm based on
the additive-increase, multiplicative-decrease (AIMD) principles.
We use the number of consecutive packet losses as a measure of
interference. We choose AIMD form of adaptation to be more con-
servative in blocking HP nodes. The pseudo-code of the algorithm
is given below.

Preamble adaptation algorithm

Initialization:
consecutive← 0;
counter ← 0;
if consecutive loss then consecutive++;

After every packet transmission:
if consecutive loss then consecutive++;
else consecutive← 0;
if consecutive = 6 then counter++; consecutive++;
else counter ← counter × 0.9;
if counter ≤ 2 then preamble_size← 0;
else K ← (2, 6, 10, 14);

preamble_size← K[bcounterc − 2];

Due to the scale of the power difference between the low-power
and the high-power nodes, low-power nodes that contend among
themselves are likely to see the same high-power interferers. Al-
though each of them runs the adaptive algorithm on its own, it is
very likely that they will use a similar level of protection, regard-
less of who started a low-power reservation period.

5. IMPLEMENTATION
We have prototyped the MAC and physical layer protocols on

the Lyrtech Software Defined Radio SFF-SDR platform [25].

Adaptive preamble detector: We implement the adaptive pream-
bles and the corresponding detection algorithm described in Sec-
tion 3.2, on the top of an OFDM transceiver in FPGA (Xilinx
Virtex-4 SX35). We compare the complexity of our adaptive de-
tector with the complexity of a conventional implementation [35],
as described in Section 3.1. The FPGA die consumption for the
two implementations is given in Figure 6 (b).

As we can see, the conventional implementation consumes sig-
nificantly more FPGA slices than the adaptive implementation. For
example, the 8 OFDM symbols standard implementation consumes
more die than the adaptive implementation that supports correla-
tion across 2, 6, 10 and 14 (repeated) OFDM symbols at the same
time. Moreover, we cannot fit a single standard 14 OFDM symbols
correlator alone on our FPGA. As a comparison, an entire OFDM
transceiver design with a conventional preamble detector fits onto
a single Xilinx Virtex-4 SX35 FPGA. This means that a naive de-
tector implementation would take more die (and most likely power
as well) than the entire OFDM transceiver design.

Weeble MAC: In contrast to the recent software-defined radio de-
ployments [33, 36, 9, 8, 12] that only use SDRs to collect chan-
nel traces and process them offline, we implement the full Wee-
ble MAC in the Lyrtech SDR’s DSP using the Colombo SDK [10]
for rapid SDR MAC prototyping. This allows us to evaluate if
the preambles indeed provide protection from a high-power inter-
ferer in different topologies and channel conditions, if the adap-

Detector length #slices
Std. (1 symbol) 3,164
Std. (2 symbols) 4,834
Std. (4 symbols) 8,105
Std. (8 symbols) 14,617
Adaptive 13,850

Figure 6: (a) A picture of a HP node in the test-bed; (b) FPGA die
consumption for different detectors

tive preamble algorithm correctly chooses preamble sizes to pre-
vent starvations, as well as to assess the effectiveness of Weeble in
the real world in presence of multiple high-power transmitters.

The separation of functionality between the FPGA and the DSP,
imposed by the limited FPGA size, introduces an overhead. Due to
long packet transfer time between the FPGA and the DSP imposed
by board’s architecture, the minimum MAC slot length is approx-
imately 20 times longer than the Wi-Fi MAC slot length. Conse-
quently, to ensure protocol correctness, we proportionally scale the
intra-packet times – SIFS, DIFS and CW. Moreover, to achieve the
same ratio between the packet duration and the inter-packet times
as in WiFi, we scale the packet transmission times proportionally
(our packet transmission lasts 4.5ms, about 20 times longer than it
takes to transmit a 1.5 KB packet at 54Mbps). We compare Weeble
MAC with WiFi MAC in the same implementation, hence we do
not introduce any performance bias.

The only overhead that does not scale is the duration of the adap-
tive preamble. However, this is a relatively small overhead. It
takes 224µs for a 802.11a/g PHY to transmit a 1500B packet at 54
Mbps, which is augmented by a constant MAC overhead of 181µs
[26]. The longest preamble takes 56µs, which is 13.8% of the total
packet transmission time. These extreme preamble lengths will not
be used very often in practice, as illustrated in Figure 9(c), hence
the expected overhead from preambles will be even lower. Thus our
test-bed results represent a close approximation of the real system’s
performance.

HP 2

HP 1

B

A

C

Figure 7: Floorplan of our building with the locations of measure-
ments. Building dimensions are approximately 60m × 45m. The high
power nodes HP 1 and HP 2 are located on the ground floor and second
floor respectively and the nodes on the top wing are located on the first
floor.

Testbed & Simulation Platform: We set the carrier frequency of
the radio transmission to 580 MHz. Our channel bandwidth is 10
MHz. Our indoor test-bed spans both wings and all three floors or
our buildings. Its floorplan is given in Figure 7. High-power nodes
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Figure 8: (a): The average number of missed adaptive preambles as a function of SNR and the preamble length K; (b) CDF of probability of
misdetection across different channel profiles, for SNR = -16.5 dB; (c) False positives with H and L preambles.

(shown in Figure 6 (a)) have a transmit power of 4W, and low-
power nodes transmit at 40mW. To test the scalability of our design
in larger networks, we further implement the full Weeble PHY and
MAC in QualNet. We use measurements from Section 6.1 to tune
the realistic PHY model parameters in QualNet for long preamble
detection.

6. PERFORMANCE EVALUATION
In this section we quantify the performance of Weeble in three

stages. First, we micro-benchmark the core building block of Wee-
ble – the adaptive preamble technique. Second, we evaluate the
benefits of Weeble in our small scale testbed spanning an entire
building. Finally, we study the protocol’s performance in a large
setting using the QualNet simulator.

6.1 Reliability of Adaptive Preambles
We micro-benchmark our adaptive preamble detector in a building-

wide deployment by measuring its reliability when detecting pream-
bles at low SNR. We set up a high-power node (HP1, Figure 7) in
the atrium of the ground floor and we configure it to send packets,
each with a sequence number and the expected length of the pream-
ble to follow. We also set up a low-power node that replies with a
preamble of the corresponding length. We move the low-power
node, walking slowly, throughout the shaded area on the first floor.

We cannot directly measure the receive SNR at the high-power
node because it is below 0dB. Instead, we log the receive (LP) SNR
at the low-power node. In various measurements we observed that
the channel is approximately symmetric (with only a few dBs of
difference) and we record an approximate SNR as the observed LP
SNR at the low-power node minus 20dB of transmit power differ-
ence.
Detection accuracy: We first evaluate the detection accuracy as a
function of the SNR. We divide the range of the recorded SNR into
bins, and calculate the aggregate preamble detection rates for the
entire duration of the experiment for each bin, for different pream-
ble lengths. This is plotted in Figure 8 (a). Note that the curves
are not strictly decreasing in SNR because different channel pro-
files have different performances for the same SNR. We see that
for adaptive preamble lengthsK = 10−14 for SNR> -17 dB, we
can have detection probability of 70-80%. Note that, if the SNR =
-17dB at the high-power receiver, the interference it creates at the
low-power receiver is at most 3 dB (because the power difference
is 15 – 20 dB). This is of the same order as a typical carrier sensing
threshold [23], so we see that our virtual carrier sensing mecha-
nisms can guarantee the same level of interference protection as
the real carrier sense, with 70%-80% success rate even when the
power difference is 20dB.

Next, we look at how the probability of detection varies across
links with similar SNR values. We divide all the received packets

in batches of 20. Since the packets are sent back-to-back, we see
that all packets within a batch see the same SNR. For each batch
we record a single probability of detection (out of 20 packets in a
batch). We then aggregate batches with the similar SNR. We plot
the CDF of the probability of misdetection for the lowest SNR of
interest in Figure 8 (b). Clearly, different links will take different
position on these curves. However, we see that except for the 20%
most unfavorable links, we can have more than 70% success de-
tection rates with SNRs as low as -16.5 dB (meaning we are able
to prevent a high-power interference on a low-power node stronger
than 3.5 dB).

The remaining question is whether a high-power interference
will affect the reception of low-power packets in cases when pream-
bles are missed. We defer this discussion to the next section, where
we evaluate Weeble MAC in the test-bed.
Avoiding false positives caused by HP interferers: Finally, we
evaluate our detection algorithm from Section 3.3 that addresses
the problem of false positives. We calculate CL(K) (for K = 10)
andCH for about 50,000 packets transmitted by the HP1 node, and
received by the LP node at various locations in the shaded area in
Figure 7. We present the results in Figure 8 (c). On the x axis we
plot the correlation with the L preamble CL(K) and on the y axis
with the H preambleCH . The lower shaded box is the area of false
positives - a packet that detects the low preamble but fails to detect
the high preamble. The observed probability of false positive is
10−4.

6.2 Performance of Weeble in a Small Testbed
We now show the performance of Weeble in our building-wide

test-bed. We deploy two fixed high power nodes and two mobile
low power nodes in the area depicted in Figure 7. The high power
nodes do not carrier sense each other, and hence transmit simulta-
neously. All nodes are backlogged with UDP traffic6.

Due to the limited size of the FPGAs (a low-end Virtex-4 SX35),
we were unable to fit the entire OFDM transceiver and the adap-
tive detector in the same circuit. Instead, the high-power nodes
comprise of a transmitter, an adaptive detector, and the full MAC
implementation (where we assume that all transmissions are suc-
cessfully acknowledged). Consequently, HP1 and HP2 do not need
paired receivers in the experiments. Note that this does not greatly
affect the experiments, as the nodes always have backlogged pack-
ets to transmit, regardless of the results of their previous transmis-
sion. Low-power nodes do not require an adaptive correlator and
we implement them in full. In this section we compare Weeble’s
performance to the WiFi protocol (since IEEE 802.11af for white
spaces [3] is WiFi-based).

6We cannot run TCP traffic as it times out due to our down-clocked
MAC implementation.
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Figure 9: Example scenario with different number of high-power
nodes: (a) The rates of flows in time, (b) The relative increase of flow
rates when using Weeble MAC instead of WiFi, (c) The evolution of the
L preamble size and (d) The average rates of LP and HP flows when
using different L preamble sizes.

6.2.1 Weeble MAC in action
We first illustrate the dynamics of Weeble in a network where the

two low-power nodes are placed at positions A and B in Figure 7.
Figure 9 (a) depicts how the link rates change in time, as we switch
on and off the interfering HP nodes.

On turning on one HP flow (t = 50s), the rate of the LP flow
drops by about half. The sending rate of the HP flow drops by about
10%. The total throughput is higher because the medium is more
efficiently utilized by two flows than by a single flow. As expected,
the HP flow gets a larger share, and the LP flow is not starved.

When both HP flows are turned on (t = 250s), the LP flow’s
rate drops only slightly. This is because the two HP flows do not
interfere with each other and the MAC converges to the optimal
schedule: simultaneous HP1 and HP2 transmissions alternate with

a single LP transmission. The adaptive preamble detection mech-
anism proves to be successful in presence of two non-coordinated
high-power transmissions.

We compare the performance improvement over the WiFi MAC
protocol in Figure 9 (b). We see that the rate of the LP flow im-
proves by 50%-90% at the expense of a modest (10%-15%) de-
crease of the rates of the HP flows. Note that in this example WiFi
exhibits slightly lower efficiency than Weeble MAC. This is be-
cause the low-power packets in WiFi MAC are frequently lost due
to collisions.

Finally, in Figure 9 (c) we see the dynamics of the preamble
adaptation algorithm (Section 4.2). HP2 can very accurately de-
tect low-power preambles of length K = 6 from the LP node,
which yields very low loss rates on the LP link. After a period of
a low loss, the low-power link will reduce its preamble size to 2,
which will in turn increase the loss and the adaptive algorithm will
force the preamble size back to 6. As we see in Figure 9 (a), the
adaptation process does not reflect substantially on the short-term
flow rates (it does not cause any temporary starvations) because the
preamble length is only decreased, and not entirely switched off.

In Figure 9 (d) we see the data rates achieved with different
lengths K of low-power preambles. We see that in the first period,
when LP and HP2 are active, both flows have similar flow rates for
K = 2 and K = 6, hence the algorithm oscillates between the two
values. In the second period, when LP, HP1 and HP2 are active, the
LP flow sees a further increase in packet losses and a decrease in
rate, hence its switches to using exclusively K = 6, and achieving
a more fair rate. Finally in the third period, when LP and HP1 are
active, K = 6 has no visible benefits on protecting LP but slightly
decreases both rates due to the overhead. For that reason, the algo-
rithm chooses K = 2.

We also see from Figure 9 (a) that it takes a 10s-20s for the
MAC algorithm to react to an activation/deactivation of a high-
power link. Given that the packet transmission times are ≈ 20x
longer than in a WiFi network (see Section 5 for the discussion), an
implementation of Weeble that uses WiFi data rates would observe
sub-second reaction times.

6.2.2 Performance in different topologies
Setup: We place one LP node either in location B or C, and the
other LP node on a trolley at many different locations, all around
the shaded area in Figure 7. We record the data rates at each lo-
cation pair. We repeat the same set of experiments with different
parameters (running traffic from B to C, C to B or both directions,
and/or having one or two interfering HP nodes), both with Weeble
and WiFi MAC.
Starvation: In Figures 10 (1HP-a) and (2HP-a) we see that Weeble
successfully avoids starvation of the LP flows. Using Weeble, no
flow has recorded a rate below 4 pkts/s in any measured location.
With WiFi, 10% of LP flows had rates of less than 4 pkts/s. Also,
the median rate of the LP flows running Weeble are about 50%
larger than the median rate of the LP flows running WiFi. Both
findings are true when either a single or both HP flows are active.
Total throughput: Figures 10 (1HP-b) and (2HP-b) plot the CDFs
of the sum of the rates of all flows in the network. We see that when
a single HP node is active, the sum of the rates is almost the same
for WiFi and Weeble (and occasionally Weeble achieves a higher
sum of the rates, as discussed in Section 6.2.1). In the presence of
2 HP flows, the sum of the rates are slightly smaller with Weeble
than with WiFi (on average by about 6%). This is because a single
LP transmission competes with two concurrent HP transmissions
and any extra rate allocated to the LP flow decreases the rates of
both HP flows.
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Figure 10: Cumulative distribution functions of the sum of the rates of the LP flows ((1HP-a) and (2HP-a)), the sum of rates of all flows ((1HP-b)
and (2HP-b)) and the fairness indices ((1HP-c) and (2HP-c)) for Weeble MAC and WiFi for networks with one and two high-power (HP) nodes.

Fairness: Finally, in Figure 10 (1HP-c) and (2HP-c) we plot the
Jain’s fairness index [17]. In the design requirements we ask that
HP flows get more rate than the LP flows, hence the fairness index
is far from one in both cases (and it is smaller when 2 HP flows are
active). However, we see that Weeble achieves a median fairness
index by 10%-20% higher than WiFi.

Overall, we see that Weeble MAC improves fairness and avoids
starvation of low-power flows with a minimal impact on the per-
formance of high-power flows. These observations are consistent
through a large number of topologies we evaluated and with one
and two active high-power links.

6.3 Detailed Evaluation in Simulations
We now evaluate Weeble in QualNet. There are three main goals

of the evaluation in simulations. Firstly, we want to verify that our
approach scales to larger networks. Secondly, we want to evaluate
the performance with more realistic network parameters, such as
TCP traffic and variable data rates. Finally, we want to quantify the
overhead of the long preambles with respect to various WiFi data
rates.
Setup: We developed a performance model of the preamble detec-
tion algorithm from the measurement results obtained in our testbed
(Section 6.1), and plugged it into the QualNet simulator. We use
autorate as the rate adaptation protocol. In Weeble we select the
low-power reservation duration (Section 2) to be 600us.

We compare Weeble to two alternative approaches: WiFi and
Frequency Division Multiplexing (FDM) where HP and LP links
are allocated different frequencies. In our WiFi implementation,
all nodes use the standard WiFi MAC, regardless of the transmit
power. In our FDM implementation we divide the available channel
into two sub-bands and assign one of the sub-bands to low-power
and the other to high-power nodes. The key question when ana-
lyzing the FDM’s performance is how to split the available band-
width between the two sub-bands. Clearly, if one knew the exact
number of nodes in each band and split the bandwidth proportion-
ally between them, FDM would be the optimal approach. How-
ever, this is precisely the difficulty of the problem we are study-
ing, as the network is dynamic, some geographic areas may have
more high-power and others more low-power nodes, and there is
no centralized coordinator available. We thus assume a topology-
oblivious approach in which we assign half the bandwidth to each
band. Within each sub-band, nodes compete using WiFi MAC. We

double the DCF time-slot in the FDM implementation to keep the
overhead proportional to the packet size.

We note that Jain’s fairness index is only meaningful for com-
paring fairness in systems with similar overall rates [17]. In the
test-bed evaluation (Section 6.2) we observe that the sum of rates
of all the flows are similar in all cases, and we use the Jain’s fair-
ness index. This is not the case in the larger networks considered
in this section, so instead we use the number of starved flows as
the fairness metrics7. We also study the rates of the LP flows as a
fairness metric, and the sum of the rates of all flows as an efficiency
metric.

We evaluate the performance of our MAC on a set of random
topologies. We consider a 1km × 1km square area and a single
channel. We randomly place 20 low-power nodes (10 low-power
links) and 4 high-power nodes (2 high-power links) in the area and
on the same channel. For example, this case could correspond to a
real-world scenario with 200 low power links and 40 high power
links uniformly spread across 10 available TV channels. High-
power links transmit with 4W transmit power and low-power links
transmit either with 40 mW or 100 mW (as in the White Space
scenario [6]). Link lengths are selected randomly, but in such way
that the achievable link rate is at least 12 Mbps. We run a single
FTP flow over each link. Flows are single hop. All packet sizes are
1000B.

We select 10 random network topologies. For each topology we
execute five runs and each run lasts 20s. We calculate the average
rates of flows over all five runs for each topology and we plot the
CDFs of different metrics over the 10 random topologies.
Starvation: In Figure 11 (a) we plot the TCP rate of the flow with
the smallest rate in the network. We see that the smallest rates of
the high-power flows are comparable for all three MAC designs,
even in presence of a large number of low-power links. However,
Weeble MAC assigns significantly better rates to the smallest low-
power flows. Both WiFi and FDM MAC yielded zero throughput
to at least one flow in 90% of the cases. This did not happen with
Weeble MAC.

We next look at the number of starved flows, that is the number of
flows that achieve TCP rate lower than 100 kbps. This is depicted in
Figure 11 (b). FDM on average starves around 2 low-power flows

7Note that since our test-bed is relatively small there are no starved
flows, hence the number of starved flows metric is not applicable
to the test-bed evaluation.
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Figure 11: Performance for random scenarios: (a) TCP rate of the flow with the smallest rate; (b) number of starved flows in the network (flows
with the TCP rate less than 100 kbps); (c) Sum of TCP rates of all flows in the network.

per network topology (20% of flows) and WiFi around 4 low-power
flows per network topology (40% of flows). We see that Weeble
starves on average 4% of flows, and in 7 out of 10 topologies it
did not starve any flow. We also note that WiFi starves one of the
two high-power flows in 20% of the cases. Weeble does not starve
high-power flows.

WiFi is particularly bad in starving low-power links because high-
power nodes cannot detect them. FDM also starves some low-
power links because it reserves only half of the bandwidth for 10
low-power links formed by 20 competing nodes running TCP flows.
By design, Weeble MAC is able to dynamically share the capacity
among available links, regardless of how many low-power or high-
power links are present.
Total throughput: Finally, we look at the total network throughput
for the three MAC protocols. We see that the loss in total through-
put is 0%-40% when compared to WiFi and 20%-35% when com-
pared to FDM. This inefficiency is due to imperfect carrier sensing.
Weeble has to speculatively schedule low-power reservation peri-
ods of fixed lengths (particularly bad when a TCP window doesn’t
have packets to send) whereas with WiFi and FDM the backlogged
nodes can resume the countdown whenever the RSSI has gone down.
This inevitable trade-off is due to power asymmetry that implies
that any signalling between the low-power and high-power nodes
comes at a cost. In contrast, WiFi ignores low-power nodes and
FDM isolates them in a static sub-band. In both cases there is no
signalling between the low and high power nodes. The protocols
are non-adaptive, and cause starvations.
Comparison with test-bed results: We see that the effects of inter-
ference of high-power flows on low-power flows in simulations are
more severe than in the test-bed results, presented in Section 6.2.
This is because the simulated network has more links hence there is
more contention, and also because the links use TCP, whose perfor-
mance is more affected by interference. We also see that the total
network throughput is more affected than in the test-bed evaluation
results. This is again because the simulated network has more low-
power links and more medium access time has to be reserved for
them.

7. RELATED WORK
Coexistence: Most prior work on how to coexist with an incum-
bent (a legacy transmitter) or with a high-power node can be di-
vided into two groups. The first group comprises of the designs in
which a new technology tries to avoid being starved (avoid interfer-
ence from incumbents or high-power nodes). One idea is to trans-
mit when the incumbents/high-power node is idle (see e.g. [13]),
but it fails when the incumbent is always active. Jung et al [19]
propose to use high-power signaling packets to avoid starvation of
low-power nodes. This is impossible in our setting due to power
and regulatory constraints. Gollakota et al [8] suggest using orthog-

onal MIMO streams to avoid incumbents. This approach works
well with 802.11n against legacy hardware (which mainly uses sin-
gle antenna for transmission) but it is not suitable for coexistence
in white-spaces. In white-spaces, MIMO may be deployed on the
high-power nodes; the low-power nodes are assumed portable and
MIMO is highly impractical8. Both requirements are incompatible
with the approach from [8].

The second group are the designs where a new technology tries
to avoid starving incumbents/low-power nodes. One example is
IEEE 802.11h standard [15] that imposes power control to WiFi
nodes to avoid interference with satellite communications. Another
example is IEEE 802.22 [16], where secondary users need to sense
and back-off when primaries are present. Also, UWB must de-
tect and avoid WiMAX devices in certain regulatory domains [27].
However, in all these cases the detection of primary signals takes
long time (as we discuss below) and the packet-level statistical mul-
tiplexing is not possible. SWIFT [31] addresses the coexistence
problem through dynamic frequency adaptation. However, it does
not apply to our asymmetric power setting.
Detection: An important part of the coexistence problem is how
can a high-power node detect whether a low-power user is dis-
turbed by its interference. One way of detecting a legacy interferer
is cyclo-stationary detection (c.f. [12, 22] and references therein).
However, cyclo-stationary is slow at low SNR and one is not able
to use it for statistical multiplexing at a packet level. Other feature-
based detection techniques, such as [38, 1, 36], also do not work at
SNRs below 0dB. The other approach is to detect a known pream-
ble, which is also used as a part of the carrier-sense mechanism
[18]. Busy tone approach [11] is a special case of detecting a known
preamble. Several recent papers [9, 33] show that it is possible to
detect an interferer with 80% accuracy at SNR as low as -14dB, but
only if all nodes are coarsely synchronized (see [12, 9, 33] for dis-
cussion). Coarse-level synchronization is not possible in our set-
ting. Also, repetitive preambles are used in 802.11 standard for
coarse-grained synchronization, but they do not work at low SNR
and they are not adaptive. It is worth noting that there are other
detector designs for multi-path channels with Gaussian noise, such
as [29], but it is not a priori clear how they could be modified to be
adaptive, simple and to scale to very low SNR.
Adaptive carrier-sensing: Several papers consider adapting the
carrier sensing threshold [37, 21] to optimize the network perfor-
mance. However, these techniques do not consider power-asymmetric
networks and cannot be used when the SNR is below the noise floor.
Antenna design: The use of directional antennas is one approach
to tackle the hidden terminal problem and increase network per-
formance [4, 24]. This approach mitigates but it does not solve
the coexistence issue, and it increases the complexity. Similarly,

8the wavelength of the white-space bands is around 1/2m



high-gain antennas do not solve the problem as they extend both
the reception and the transmission range of high-power nodes.
Existing TV white-space standard activities: IEEE 802.22 [16]
is a regional network standard. It introduces a spectrum manager
entity at each node, whose goal is to provide the dynamic spectrum
access according to constraints obtained from different sources (geo-
database, policy, sensing). The time-scale of spectrum allocation
is much longer than a packet duration. Another white-space re-
lated standard activity is 802.11af [3], which focuses on in-home
devices. In order to keep the network simple and leverage on the
existing silicon design for 802.11, it extends 802.11 design to ad-
dress the challenges of white-space networks. Coexistence between
high-power and low-power nodes is currently an open problem in
the 802.11af standardization process, which we aim to solve with
this paper. Our work is also aligned with IEEE 802.19 [14], another
ongoing standardization activity that is planning to address similar
coexistence problems.

8. DISCUSSION AND FUTURE WORK
Can Weeble MAC ideas be used for different MAC designs?
Weeble MAC can be seen as a set of generic signaling and reser-
vation techniques. For example, they could also be applied in con-
junction with a spectrum manager proposed in IEEE 802.22 [16]
to allow for coexistence among several administrative domains, in
case two non-coordinated spectrum managers belonging to two dif-
ferent administrative domains happen to allocate different networks
to the same channel. Evaluating such a design remains as a future
work.
Can Weeble be generalized to multiple power-level classes? Our
protocol naturally extends to multiple power-level classes. Each
power-level class i should have has its own Li and Hi preambles.
A node at power-level i should be able to detect and back-off on all
preambles Lj coming from nodes at lower power-levels j < i. It
should also be able to detect and ignore all high-power preambles
Hk for all k ≥ i. However, this generalization increases the PHY
complexity as each node in the network should implement as many
correlators as there are power-level classes in the network.
Can one adjust the priorities of high-power and low-power traf-
fic? Our design goal is to avoid starvation of low-power nodes with
a minimum impact on the performance of high-power nodes. How-
ever, it is easy to extend our design to achieve arbitrary prioritiza-
tion of different high-power and low-power devices. For example,
to guarantee an absolute priority to a low-power wireless mic, one
could mandate the high-power nodes to back-off whenever an LP
preamble is detected (even within an ongoing low-power reserva-
tion periods), and keeping the rest of the MAC the same. An actual
implementation of a particular variant of the MAC would crucially
depend on the design requirements for different devices and is out
of scope of this paper.
Can Weeble MAC work with variable channel widths? Our cur-
rent preamble detector design assumes that all nodes use the same
channel width (e.g. one TV channel). This can be generalized to
a scenario where channel bonding is allowed, similarly to the way
a green-field 802.11g link can detect a legacy 802.11a/g link. We
leave the further exploration for future work.

9. CONCLUSIONS
In this paper we have presented a design, implementation and

evaluation of a fully decentralized Weeble MAC for coexistence be-
tween low and high-power nodes. It avoids starvation of low-power
links, and it only slightly drops the efficiency of the network. The
main components of our design are the adaptive preamble mecha-

nism and the low-power reservation protocol. We implement and
evaluate our design in a software-designed radio test-bed and in
Qualnet simulator and we show that it avoids starvation in all cases
with only a slight drop in efficient, unlike the existing distributed
MACs for white-spaces.
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