
SecondNet: A Data Center Network Virtualization
Architecture with Bandwidth Guarantees∗

Chuanxiong Guo1, Guohan Lu1, Helen J. Wang2, Shuang Yang3

Chao Kong4, Peng Sun5, Wenfei Wu6, Yongguang Zhang1

1Microsoft Research Asia, 2Microsoft Research Redmond, 3Stanford University
4Huawei Technologies, 5Princeton University, 6University of Wisconsin-Madison

{chguo,lguohan,helenw,ygz}@microsoft.com, shyang@stanford.edu, chaosfun@gmail.com
pengsun@cs.princeton.edu, wenfeiwu@cs.wisc.edu

ABSTRACT
In this paper, we propose virtual data center (VDC) as
the unit of resource allocation for multiple tenants in the
cloud. VDCs are more desirable than physical data cen-
ters because the resources allocated to VDCs can be rapidly
adjusted as tenants’ needs change. To enable the VDC ab-
straction, we design a data center network virtualization ar-
chitecture called SecondNet. SecondNet achieves scalability
by distributing all the virtual-to-physical mapping, routing,
and bandwidth reservation state in server hypervisors. Its
port-switching based source routing (PSSR) further makes
SecondNet applicable to arbitrary network topologies using
commodity servers and switches. SecondNet introduces a
centralized VDC allocation algorithm for bandwidth guaran-
teed virtual to physical mapping. Simulations demonstrate
that our VDC allocation achieves high network utilization
and low time complexity. Our implementation and exper-
iments show that we can build SecondNet on top of vari-
ous network topologies, and SecondNet provides bandwidth
guarantee and elasticity, as designed.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet-
switching networks

General Terms
Algorithms, Design

Keywords
Virtual data center, DCN, Bandwidth guarantee∗This work was performed when Shuang, Kong, Peng, and
Wenfei were interns at Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2010, November 30 – December 3 2010, Philadelphia,
USA.
Copyright 2010 ACM 1-4503-0448-1/10/11 ...$5.00.

1. INTRODUCTION
With the advent of Amazon EC2, Google AppEngine,

and Microsoft Azure, the dream of computing-as-a-utility
is becoming a reality [3, 13, 25]. By outsourcing com-
puting to the cloud, businesses and consumers are freed
from the cost and burden of planning, purchasing, oper-
ating, and maintaining physical hardware and software,
and at the mean time, it offers elasticity to meet dy-
namic demands in resources and good economy with a
pay-as-you-go billing model [13].

The Service Level Agreement (SLA) of today’s util-
ity computing [3, 25] are centered around computation
(dollars per hour per virtual machine or VM), stor-
age (dollars per GB per month), Internet traffic (dollar
per GB transferred), and the availability of these re-
sources. Nevertheless, no abstraction or mechanisms
and hence no SLAs are available to capture the require-
ments on the interactions among the allocated VMs,
such as bandwidth guarantees among the VMs.

In this paper, we propose virtual data center (VDC)
as the abstraction for resource allocation. A VDC is de-
fined as a set of VMs with a customer-supplied IP ad-
dress range and an associated service level agreement
(SLA). The SLA specifies not only computation and
storage requirements, but also bandwidth requirements
for the VMs. The bandwidth requirement is a key ad-
dition and offers the significant benefit of performance
predictability. A VDC gives the illusion of a dedicated
physical data center. This requires VDCs to be isolated
from one another in all resource access and usage. A
VDC is in fact more desirable than a physical data cen-
ter because it offers elasticity which allows its SLA to be
adjusted according to the customer’s dynamic demands.

To support VDC, we have designed a data center net-
work virtualization architecture called SecondNet. The
goals of SecondNet are as follows. The design must
be scalable. For example, bandwidth reservation state
maintenance must scale up to hundreds of thousands
of servers and millions of VMs in a data center. It
must achieve high utilization of the infrastructure net-

work and support elasticity when tenants’ needs change.
Finally, the architecture must be practically deployable
with commodity servers and switches. Providing band-
width guarantees while achieving these goals is a key
challenge and is the focus of this paper.

Maintaining bandwidth allocation state at switches
is prohibitively expensive even if only a small subset
of the VMs are communicating with one another (Sec-
tion 3.2). We address the scalability issue by distribut-
ing those state at the hypervisors of servers (which need
only handle state for their hosted VMs) and use source
routing to encode the route into each packet. Conse-
quently, switches in SecondNet are stateless. The hy-
pervisors are responsible for bandwidth policing since
they are part of the trusted computing base.

For providing bandwidth guarantees, we leverage a
special characteristic of data center networks. That is,
a data center network is administered by a single entity,
and thereby its network topology and failures within
can be obtained. This global view of the network al-
lows a centralized bandwidth allocation together with
failure handling, which greatly simplifies the problem.
In contrast, significant complexity arises for achieving
Integrated Services for the Internet due to the numerous
ISPs involved [14].

Nevertheless, even centralized bandwidth allocation
poses significant challenges. It is an NP-hard problem.
We then designed a low time-complexity heuristic algo-
rithm. In this algorithm, we group neighboring servers
into clusters of different sizes. When allocating a VDC,
we only search the appropriate clusters instead of the
entire physical network, greatly reducing the allocation
time. This also leads to bandwidth-efficient VDCs be-
cause the servers allocated are close in distance. We
then use the efficient min-cost flow algorithm to map
VMs onto physical servers and leverage the rich connec-
tivity of the physical networks in path allocation. Our
allocation algorithm handles incremental expansion and
release of resource usage to support elasticity.

For a practical implementation of source routing in
the data center environment, we introduce a Port-Switching
based Source Routing (PSSR). Since the network topol-
ogy of a data center network is known, PSSR repre-
sents a routing path as a sequence of output ports of
switches. PSSR can be readily implemented using the
MPLS (multi-protocol label switching) [28] capability
in existing commodity switches. SecondNet therefore
can be ready deployed on top of any of the recently
proposed data center network structure, such as fat-
tree [2], VL2[9], DCell [10], and BCube [11].

The simulation results of our VDC algorithm show
that we can allocate a 5000-VM VDC in 493 seconds
on average in a 100,000-server data center. Moreover,
our allocation algorithm achieves high resource utiliza-
tion. We achieve more than 90% server bandwidth

for BCube, fat-tree, and VL2. We have implemented
SecondNet with commodity servers and switches. We
have constructed a 64-server testbed that supports both
BCube and fat-tree. Our experiments show that Sec-
ondNet provides service differentiation and bandwidth
guarantee, and SecondNet can perform path realloca-
tion in seconds and VM migration in tens of seconds
for failure handling and dynamic VDC expansion.

The rest of the paper is organized as follows. We de-
scribe our VDC service model in Section 2 and overview
our SecondNet architecture in Section 3. We present
PSSR and the VDC allocation algorithm in Section 4
and Section 5. We use simulation to study VDC alloca-
tion in Section 6 and show implementation and exper-
iment results in Section 7. Section 8 presents related
work and Section 9 concludes.

2. SERVICE MODEL
Addressing. For address isolation, every VDC has

its own IP address space (possibly supplied by tenants),
which may overlap with other VDCs’ IP address spaces.
VMs within the same VDC can communicate with each
other just as they are in the same layer-2 Ethernet.
VMs in different VDCs cannot talk with each other by
default due to security concern. But if needed, they
can communicate through layer-3 gateways. Similarly,
VMs in VDCs can communicate with computers in the
Internet or other private networks.

Service Types. We enumerate the possible scenar-
ios needed by different tenants and make the case for
different VDC service types.

Firstly, some applications desire performance predictabil-
ity and can benefit from having bandwidth guarantees
between VM-pairs. For example, many web services
can be divided into three tiers: a frontend Web server
tier, a middle application tier for business logic, and a
backend database/storage tier. It is desirable to have
bandwidth guarantees for the frontend-to-middle and
middle-to-backend communications so that such web
services can serve their tenants with predictable perfor-
mance. Also, distributed computing applications, such
as those that use MapReduce for data-intensive oper-
ations, need to shuffle data among many servers. The
execution of such a MapReduce job may be severely de-
layed by a small number of straggling tasks due to con-
tentions for network bandwidth [8]. Bandwidth guar-
antees make it possible to predict the execution time
of such distributed computing applications and hence
know how long a VDC needs to be rented.

Secondly, there are applications, such as background
file backup, that do not require bandwidth guarantee.
A best effort network service is sufficient for them.

Lastly, there are applications whose detailed traffic
patterns cannot be predetermined, but still prefer bet-
ter than best-effort service. For example, when en-

terprises move their IT infrastructures into the cloud,
they can reserve egress/ingress bandwidths for their
Web/email/file servers and assign better than best-effort
priority to these services for service differentiation.

Based on these observations, we support a service
model of three VDC types. Type-0 service provides
guaranteed bandwidth between two VMs, which is anal-
ogous to Integrated Service [14]. We also provide the
traditional best-effort service without any bandwidth
guarantee. Between type-0 and best-effort, we offer a
type-1 service that provides local egress/ingress band-
width reservation for a virtual machine. Our VDC
model focuses on bandwidth since network bandwidth
is a scarce resource [8]. How to include metrics such as
latency into the VDC model is our future work.

From a service differentiation point of view, type-0
provides hard end-to-end bandwidth guarantee. Type-
1 provides only last and/or first hop guarantee, but its
performance is better than best-effort. We therefore as-
sign type-0 traffic the highest priority followed by type-
1 traffic, and best-effort traffic has the lowest priority.
We monitor and shape the type-0 and type-1 traffic and
ensure that they do not violate their reservations. Low
priority traffic can use the network bandwidth reserved
by high priority traffic if the reservation is not fully uti-
lized. Hence the hybrid of different service types natu-
rally results in efficient network bandwidth usage.

A VDC’s bandwidth requirements can be specified
using a set of rules of the format [VDCId, srcVM, dstVM,
srcPort, dstPort, protocol]→ servType (bandwidth). For
example, [vdc0,vm0,vm1,80,*,TCP]→ type-0 (100Mb/s)
specifies that TCP packets from vm0 to vm1 with source
port 80 in vdc0 requires a type-0 service with an end-
to-end bandwidth guarantee of 100Mb/s. SecondNet
needs to reserve the sum of the bandwidth required for
all type-0 flows from vm0 to vm1. In another example,
[vdc1, vm2, *, 139, *, TCP] →type-1 (50Mb/s) speci-
fies that all TCP packets from source port 139 of vm2

requires a type-1 service with a local egress bandwidth
guarantee of 50Mb/s at vm2.

3. SECONDNET OVERVIEW
To support the above service model, we have de-

signed a data center virtualization architecture called
SecondNet as illustrated in Fig. 1. SecondNet focuses
on bandwidth allocation and leverages server hypervisor
technology for CPU, memory, and storage isolation and
sharing. It introduces a VDC manager for VDC cre-
ation, adjustment, and deletion. VDC manager decides
how a VDC is mapped to the physical infrastructure.
VDC manager, server hypervisors, and switches form
the trusted computing base because they are managed
by data center operator. VDC manager manages the
servers and switches using a spanning tree (SPT) based
signaling channel.

Figure 1: The SecondNet architecture. The red
dashed lines form a signaling spanning tree. The
black broad lines show a port-switching source
routing (PSSR) path.

3.1 VDC Manager
A physical data center is administered by a single

entity. This led us to introduce a logically centralized
VDC manager. VDC manager controls all resources. It
performs admission control for VDC requests based on
the request SLA and the available physical resources,
using a VDC allocation algorithm (Section 5). The al-
location algorithm decides how the VMs and virtual
edges of a VDC are mapped onto physical servers and
routing paths. The algorithm also supports elasticity
when tenants expand or shrink the resources of their
VDCs, or when various failures happen.

VDC manager assigns every VDC a unique VDC ID
and uniquely identifies a VM by its VDC ID and IP ad-
dress. When VDC manager creates a VM for a VDC,
it configures the host server hypervisor with the VDC
ID and IP address of the VM, the reserved bandwidths
for type-0 and type-1 services, the routing paths for
type-0 VM-pairs, and the rule set for mapping traffic
to different service types. VMs in a VDC form a con-
ceptual level broadcast domain. Since VDC manager
maps VMs to physical servers, it is the natural place
for VM-to-physical-server resolution.

VDC manager needs to be scalable and highly fault
tolerant. It needs to be up all the time and scale with a
large number of VDC requests both in computation and
in bandwidth. As we will show in Section 6, one sin-
gle server can carry out our VDC allocation for VDCs
with thousands of VMs at most hundreds of seconds.
The traffic between VDC manager and the servers in-
cludes VDC creation, adjustment, release requests and
the associated configuration messages. The traffic vol-
ume is low. For example, the traffic volume for creating
a VDC with 1000 VMs is about 30MB, which can be
easily handled using the SPT signaling channel.

VDC manager needs to maintain two types of state
for its operations. To perform VDC allocation, VDC

manager needs to store the whole physical network topol-
ogy tagged with residual link capacities. For each al-
located VDC, VDC manager needs to store all the re-
source allocation state (i.e., the VM-to-physical-server
mapping, egress/ingress bandwidth reservation for type-
1 services, and bandwidth reservation and routing paths
for type-0 services). Our simulation shows that we need
5GB memory to store all the state for a VL2 [9] network
that contains 100k servers. For fault tolerant, consis-
tent, and high available state maintenance, we adopt
a similar approach to that of the directory service of
VL2 [9] for VDC manager, using replicated state ma-
chines and Paxos consensus protocol [23].

3.2 Data Plane
Stateless switches. To provide bandwidth guaran-

tee, we need to pin the routing paths for type-0 VM-
pairs. One traditional way for bandwidth reservation is
to setup the bandwidth reservation state in not only the
physical servers, but also the switches along the routing
path. However, this approach incurs severe scalability
problem in switch state maintenance. We use VL2 [9]
as an example to illustrate the problem. In VL2, a top-
of-rack (ToR) switch connects 20 servers, and an Aggre-
gation switch connects 72 ToR switches. Suppose each
server hosts 32 VMs and each VM talks to 1000 other
VMs. Then the bandwidth reservation state in an Ag-
gregation switch will be 46 million (32×1000×20×72)
entries. The entries in a server and a ToR switch are
32k (32×1000) and 640k (32×1000×20), respectively.
The state-of-the-art, high-end switches (e.g., Aristanet-
works 7100 [4] and Cisco Nexus 7000 [7]) can only have
16k-128k forwarding entries.

To make state maintenance scalable at switches, we
use source routing. With source routing, switches be-
come stateless and are unaware of any VDC and band-
width reservation state at all. They just perform prior-
ity queueing and forward packets based on the source
routing information carried in the packet headers.

Hypervisors. Source hypervisors store virtual-to-
physical mappings, routing paths and bandwidth reser-
vation state. The number of bandwidth reservation en-
tries in a server is around 32k in the above example.
This number can be trivially managed by servers.

Hypervisors classify VM packets to different service
types and assign priority to those packets according to
SLA. They then monitor and shape the type-0 and type-
1 traffic before the traffic enters switches. Best-effort
traffic does not need shaping due to its lowest priority.
Best-effort traffic therefore can use network bandwidth
when type-0 and type-1 services do not fully use their
reservations. Hypervisors encode the priority and rout-
ing path into packet headers. We note that traffic mon-
itoring, shaping and prioritization must be placed in
hypervisors instead of VMs since VMs are not trusted.

Practical deployment. Commodity servers and
switches provide the best performance-price tradeoff [5].
We therefore want to implement both priority queueing
and source routing on commodity servers and switches.
Priority queueing is widely available in both servers and
switches. Source routing can be efficiently implemented
in current server operating systems as kernel drivers.

However, source routing generally is not available in
commodity switches. Furthermore, commodity switches
use MAC or IP address for packet forwarding. Some
data center network structures may even not use MAC
or IP address [10, 11, 15].

To this end, we introduce port-switching based source
routing (PSSR). Instead of carrying a sequence of next-
hop addresses in source routing path, we directly carry
the sequence of next-hop output port numbers. With
PSSR, SecondNet can be implemented with any ad-
dressing schemes and network topologies. PSSR can
be implemented readily with MPLS (multi-protocol la-
bel switching) [28], which is a commodity technology.
Fig. 1 shows one PSSR path {0,2,2,1} from vm0 to vm1

in VDC0. Suppose vm0 in VDC0 needs to send a packet
to its peer vm1, it first generates a packet that contains
vm1 as the destination address and vm0 as the source
address and delivers the packet to the host hypervisor
s0. The host s0 then inserts the routing path, {0,2,2,1},
priority, and related information into the packet header
and sends the packet to the neighboring switch. The
switches then route the packet using PSSR. After the
destination server s1 receives the packet, it removes the
PSSR header, and delivers the packet to vm1.

3.3 Signaling and Failure Handling
VDC manager needs a signaling channel to manage

all the server hypervisors network devices. Various server
and switch and link failures are inevitable in large data
centers. Failures cause network topology changes which
then impact both signaling and bandwidth reservation.
VDC manager must be notified when failures occur, and
routing paths of the affected VDCs must be adjusted.
Timely signaling delivery is challenging since the sig-
naling channel itself may fail. In SecondNet, we build
a robust, in-band spanning tree (SPT) rooted at the
VDC manager as our signaling channel.

In the spanning tree protocol, every device exchanges
an SPT message with all its physical neighbors. The
message contains the parent and the level of the de-
vice. When a device does not know its level, its level is
set to NULL. The level of VDC manager is 0. Direct
neighbors of VDC manager then get level 1, and so on.
A device always chooses the neighbor with the lowest
level as its parent. When a device finds that its parent
becomes unavailable or the level of its parent becomes
NULL, it tries to get a new level from its available neigh-
bors other than its children. As long as the network is

connected, the spanning tree can be maintained. Since
the spanning tree maintenance message contains parent
information, a parent node knows all its children.

VDC manager uses the spanning tree for all VDC
management tasks. Devices use the spanning tree to
deliver failure messages to VDC manager. VDC man-
ager then adjusts routing paths or reallocate VMs for
the affected VDCs if needed. VDC manager also broad-
casts the topology changing information to all devices
via the spanning tree. Certainly when a link in the
spanning tree breaks, the link failure message can only
be delivered after the spanning tree has been restored.

We note that the spanning tree is only for signaling
purpose hence the traffic volume in the spanning tree is
small. We set the priority of the signaling traffic to be
the highest. And we can reserve a small amount of the
link bandwidth for the spanning tree. Section 6 further
shows that the spanning tree converges very quickly
even when the link failure rate is 5%.

4. PORT-SWITCHING BASED SOURCE
ROUTING

4.1 Source Routing
Since servers know network topology and various fail-

ures via the spanning tree, we can remove switches from
making routing decisions. This leads us to use source
routing for a scalable data plane.

For type-0 traffic, source routing paths are decided by
VDC manager. Server hypervisors directly use those
paths for routing. For type-1 and best-effort traffic,
all the existing DCN routing designs can be easily im-
plemented using source routing at source hypervisors.
Both VL2 [9] and BCube [11] use source routing at the
server side, hence they can be directly incorporated into
the SecondNet framework. In PortLand [15], switches
use destination physical MAC (PMAC) hashing to de-
cide the next hop. The source servers can easily calcu-
late the routing path on behalf of the switches in this
case. Similarly, the source servers can calculate routing
paths for DCell [10], since DCell routing path is derived
from DCell IDs.

The overhead of source routing is the routing path
carried in the header of every packet. We pay the over-
head willingly for a scalable data plane and a flexible
routing framework, since the maximum path length of a
typical data center network is small (typically 6-8 hops).

4.2 Port-switching
We introduce port-switching to simplify switch func-

tionalities. Traditionally, packet switching is based on
destination address. In layer-2 Ethernet switches and
layer-3 IP routers, packet switching is based on desti-
nation MAC and IP addresses, respectively. Fig. 2(a)
shows how layer-2 switching works. When a packet ar-

Figure 2: (a) MAC address-based switching. (b)
Port-switching.

rives at a port, the forwarding process of the switch
extracts the destination MAC address from the packet
header (step 1 in Fig. 2(a)) and uses it as the key
to lookup the MAC table (step 2). The MAC table
contains MAC address in one column and output port
number in another. By querying the MAC table, the
forwarding process gets the output port (step 3) and
forwards the packet to that port (step 4). The MAC
table is stored in SRAM or TCAM, and its size must
increase accordingly when the network size grows. Fur-
ther, in order to maintain the MAC table, the switches
must run a distributed signaling protocol. IP forward-
ing works similarly.

Port-switching is much simpler. Instead of carry-
ing MAC or IP addresses, we directly carry the output
port numbers of the intermediate switches in the packet
header. The forwarding process directly gets the for-
warding port from the packet header.

Physical port numbers work well for point-to-point
links. But a server may have multiple neighbors via
a single physical port in topologies such as DCell [10]
and BCube [11]. In order to handle this case, we intro-
duce virtual port. A physical port can map to multiple
virtual ports depending on the number of neighboring
servers this physical port connects to. A server main-
tains a virtual-port table, in which every row repre-
sents a neighboring server. The row id corresponds to
the virtual port number and each row contains fields in-
cluding the physical port number and the MAC address
of the neighboring server. The size of the virtual-port
table is the total number of neighboring servers. The
virtual-port table is static in nature unless the neighbor-
ing servers change their NICs (which is very unlikely).

Port-switching can be naturally integrated with source
routing to form a port-switching based source routing
(PSSR), in which a source routing path contains port
numbers instead of addresses. Fig. 2(b) shows how
PSSR works. Now every packet carries a source routing
path identified by output port numbers in its packet

header. There is a pointer in the header that points to
the next output port number (step 1). The forward-
ing process uses the next port number to lookup the
virtual-port table (step 2), gets the physical port num-
ber (step 3), and updates the pointer and forwards the
packet through that port (step 4).

PSSR significantly simplifies switch functionalities.
Switches are not involved in routing. The virtual-port
table is static. The size of virtual-port table is small,
since a node typically has at most tens of neighbors.
As a comparison, the MAC table (or IP-lookup table)
needs at least several thousands entries and its size in-
creases as the network expands.

4.3 MPLS for PSSR
PSSR is easy to implement conceptually - servers en-

code path and priority information into packet head-
ers, and switches simply perform priority queueing and
forward packets based on port-switching. Commodity
switches, which are increasingly popular in data centers
due to technology advances and the rule of economics
of scale [5], can support PSSR as long as it has MPLS,
a commonly available switching technology.

In MPLS, switches perform forwarding based on la-
bels carried in packet headers. Labels only have lo-
cal meaning between two adjacent switches. Switches
rewrite the label of a packet hop-by-hop. Labels can
also be stacked together to form label stack for MPLS
tunneling. In MPLS, labels are established using an
LDP (label distribution protocol) signaling protocol.

In SecondNet, we re-interpret MPLS label as port.
Consequently, the MPLS label table is interpreted as
our virtual-port table. We further implement source
routing with MPLS label stack. Since the virtual-port
table is static and is pre-configured, signaling proto-
col like LDP is eliminated. An MPLS label is 20-bits,
which is more than enough to describe the number of
neighbors a switch or server has (typically less than one
hundred). MPLS label also has 3 Exp bits for packet
priority. We therefore can implement both PSSR and
priority queueing using commodity MPLS switches.

As we have mentioned, VMs in the same VDC form
a layer-2 broadcast domain. To support broadcast, we
assign a special MPLS tag for each VDC, and use this
tag to setup broadcast spanning tree for the VDC in
the infrastructure network.

5. VDC ALLOCATION

5.1 Problem Definition
We introduce the notations we will use in Table 1.

We denote the physical network as G(S, X, E) where S
is the set of servers, X is the set of switches, E is the set
of links. Each link has a corresponding link capacity. A
server si has ki (ki ≥ 1) ports {portjsi

|j ∈ [0, ki − 1]}.

G(S, X, E) The physical network infrastructure
Ck Server cluster k
si Physical server i
ibsi Residual ingress bandwidth of si

ebsi Residual egress bandwidth of si

path(si, sj) A routing path from server si to sj

VDCg Virtual data center with ID g
vmg

i Virtual machine i in VDCg

rg
i,j Requested bandwidth from vmi to vmj

in VDCg for type-0 service
erg

i , irg
i Requested egress, ingress bandwidth for vmi

in VDCg for type-1 service

Table 1: Notations.

We denote the ingress and egress residual bandwidths
of portjsi

as ibj
si

and ebj
si

, respectively. We call ibsi =
maxj ibj

si
and ebsi

= maxj ebj
si

the residual ingress and
egress bandwidths, respectively.

For type-0 VDC, we have m virtual machines and the
associated m × m bandwidth requirement matrix Rg,
where rg

i,j denotes the bandwidth requirement of the
(vmi,vmj) virtual edge. The required egress and ingress
bandwidths of vmg

i are therefore erg
i =

∑m−1
j=0 rg

i,j and
irg

i =
∑m−1

j=0 rg
j,i, respectively. For type-1 VDC, we have

m virtual machines and the associated egress/ingress
bandwidth requirement vector ERg = {(erg

0 , irg
0), (erg

1 , irg
1),

· · · , (erg
m−1, ir

g
m−1)}.

We can treat best-effort VDC as a special case of
type-1 VDC by setting the egress/ingress bandwidth re-
quirement vector to zero. Similarly, we can treat type-1
VDC a special case for type-0 VDC. We therefore focus
on type-0 VDC allocation in the rest of this section.
We assume one VM maps to one physical server. When
a user prefers to allocate several VMs to one physical
server, we treat all these VMs as one large VM by sum-
ming up their requirements.

The problem of type-0 VDC allocation is to allocate
the VMs {vmi|i ∈ [0,m− 1]} to servers sπi (i ∈ [0,m−
1]) selected from the server set S, in a way that the
computation requirements (CPU, memory, and disk) of
vmi are satisfied and there exists a path path(sπi , sπj)
whose residual bandwidth is no smaller than rg

i,j for
every VM-pair. In this paper, we use single-path to
avoid the out-of-order arrival problem of multi-path.

The VDC allocation problem has two parts: if an al-
location exists (decision problem) and if the allocation
uses minimal aggregate network bandwidth (optimiza-
tion problem). The less network bandwidth an alloca-
tion uses, the more VDCs we can accept. Both problems
are NP-hard. We have proved the NP-hardness by re-
ducing the single-source unsplittable flow [21] to VDC
allocation (see [12]).

In the rest of this section, we focus on heuristic de-
sign. There are several challenges. First, the algo-
rithm has to be fast even when a VDC has thousands
of VMs and the infrastructure has tens to hundreds of
thousands servers and switches. Second, the algorithm

should well utilize the network bandwidth, and accom-
modate as many VDCs as possible. Third, the algo-
rithm needs to offer elasticity when tenants’ require-
ments change and timely performs resource reallocation
when various failures happen.

Related problems have been studied in virtual net-
work embedding and testbed mapping [6, 30, 27]. The
previous solutions cannot be applied to VDC allocation
due to the scale of our problem and the VDC elasticity
requirement. See Section 8 for detailed discussion.

To our best knowledge, our VDC allocation algorithm
is the first attempt that addresses VDC allocation and
expansion with thousands of VMs in data centers with
hundreds of thousands servers and switches. Further-
more, by taking advantage of VM migration, our al-
gorithm is able to perform bandwidth defragmentation
when the total residual bandwidth becomes fragmented.

5.2 The Allocation Algorithm
We pre-configure servers into clusters before any VDC

allocation takes place. This is to reduce the problem
size and to take server locality into account. There
are clusters of different diameters (and hence different
sizes). Intuitively, servers within the same ToR switch
form a ToR cluster, servers within the same aggregate
switch form a Pod cluster, etc. Formally, we use server
hop-count, which is the number of hops from one server
to another, as the metric to group servers into clus-
ters. A server can belong to multiple clusters, e.g., a
2-hop cluster, a 4-hop cluster, and certainly the whole
server set.When the size of a cluster is much larger than
that of its belonging small clusters, we combine several
smaller ones to form middle size clusters. We denote
the clusters as C0, C1, · · · , Ct−1. A cluster Ck has |Ck|
servers. The clusters are sorted in ascending order such
that |Ci| ≤ |Cj | for i < j.

In certain scenarios, users may prefer to allocate VMs
to separate locations for reliability reason. In this case,
we may use servers at different racks or pods to form
clusters. The detail depends on the reliability require-
ments and are out of the scope of this paper. Though
clusters may be formed differently, the VDC allocation
procedure is the same.

Fig. 3 shows the VDCAlloc algorithm. The input
VDCg has an m × m bandwidth requirement matrix
Rg. The output is m physical servers that will host
the virtual machines and the paths set corresponding
to Rg. In the first step, we select a cluster Ck. The
number of servers of Ck should be larger than the VM
numbers in VDCg (line 2). The aggregate ingress and
egress bandwidths of Ck should be larger than those of
VDCg (line 3).

In the second step, we build a bipartite graph with
the VMs at the left side and the physical servers of
Ck at the right side. We say that a physical machine

/*VDCg has m VMs and an m×m bandwidth matrix Rg .*/
VDCAlloc(VDCg):
1 for (k = 0;k < t;k + +)/*t is the clusters number*/
2 if (|Ck| < m) continue;
3 if ib(Ck)<ib(VDCg) or eb(Ck)<eb(VDCg)
4 continue;
bipartite: /*build weighted bipartite graph*/
5 for (0 ≤ i < m)
6 for (0 ≤ j < |Ck|)
7 if (sj ∈ Ck is a feasible candidate for vmi)
8 add edge (vmi, sj) to the bipartite;
node matching:
9 res=MinCostMatching()
10 if (res== false) continue;
11 for each (i ∈ [0, m− 1]) vmi → sπi ;
path alloc:
12 fail flag=0;
13 for each (rg

i,j 6= 0)

14 if (FindPath(sπi , sπj , ri,j)==false)
15 fail flag=1; break;
16 if (fail flag==0) return succeed;
17 return false; /*fail after trying all the clusters*/

Figure 3: The VDC allocation algorithm.

si ∈ Ck is a feasible candidate to a virtual machine
vmg

j if the residual CPU, memory, and disk space of si

meet the requirement, and the egress and ingress resid-
ual bandwidths of si are no smaller than erg

j and irg
j ,

respectively. If server si is a feasible candidate to vmg
j ,

we draw an edge from vmg
j to si (lines 7-8).

We then use the min-cost network flow [1] to get a
matching (line 9). We add a source node src at the left
side of the VMs and a dst node at the right side of the
physical servers. We add edges from src to the VMs and
from the servers to dst. We assign weight of an edge as
the used bandwidth of the corresponding server. The
bipartite matching problem then transforms to the min-
cost flow from src to dst with capacity m. If we cannot
find a matching, we continue by choosing another clus-
ter. Otherwise, we go to the third step.

One might assume that different weight assignment
policies may result in different mapping result. For ex-
ample, our weight assignment policy may get better net-
work utilization, since our mapping favors servers with
higher residual bandwidth hence more balanced map-
ping and higher utilization. Our experiment, however,
showed that different weight assignment policies have
little effect on network utilization. The major reason
is because of the clustering heuristic, VDCs will be as-
signed to appropriate cluster. After that, weight assign-
ment policies cannot significantly affect mapping results
and network utilization. In this paper, we simply ad-
here to our weight assignment policy.

In the third step, we allocate paths for the VM-pairs
that have non-zero reserved bandwidths (lines 13-14).
We sort the requested bandwidth in descending order
and allocate paths sequentially. This is because paths
with higher bandwidth request is more difficult to allo-
cate. In the case we cannot allocate path for a VM-pair,
we can fail faster and switch to another cluster faster.

We use FindPath to allocate path from sπi
and sπj

with bandwidth requirement rg
i,j . In G(S, X,E), we re-

move the links whose residual bandwidth is smaller than
rg
i,j , and use shortest-path to get a path from sπi

to sπj
.

Since all the links have unit length, we use Breadth First
Search (BFS) as the shortest-path algorithm. After we
assign a path for a VM-pair, we update the residual
bandwidths of the links along the path. If we fail to al-
locate a path for a VM-pair, we go back to get another
cluster and start again. If we do allocate paths for all
rg
i,j 6= 0, we succeed and return the assigned physical

servers and paths. If we cannot find an allocation after
searching all the clusters, we fail and reject the VDC
allocation request.

VDCAlloc naturally supports VDCs that have mul-
tiple service types. For example, when a VM has both
type-0 and type-1 requests, a bipartite edge between
this VM and a server is feasible only when the egress and
ingress residual bandwidths of the server meet the sum
of the two requests. After the bipartite is constructed,
the rest allocation procedure is the same. VDCAlloc
can be executed in parallel for different VDC request
as long as they use different clusters. Therefore, a large
VDC request will not block a small VDC request. Also
during a VDCAlloc, the physical topology may change
due to various failures, as long as the related cluster is
not affected, VDCAlloc is not affected. Otherwise, we
may need to redo the allocation.

The major components, min-cost flow and path allo-
cation, are of low time-complexity. Since all the edges in
the bipartite graph have unit weight, MinCostMatching
can be solved in O(n3 log(n+m)), where n is the number
of VMs and m is the number of servers in the current
cluster. The worst-case time-complexity for path allo-
cation is O(n2|E|), where |E| is the number of edges
of the physical network. The complexity of VDCAlloc
certainly depends on how many clusters we need to try
before a matching is found. Our simulation (Section 6)
shows that even for VDCs with 5000 VMs in data cen-
ters with 100k servers, VDCAlloc needs only hundreds
of seconds even when network utilization is high.

5.3 VDC Adjustment
VDC has the advantage of dynamic expansion and

shrinking as tenants’ needs change. VDC shrinking
can be trivially performed by releasing the unneeded
VMs and bandwidths. VDC expansion, however, is not
that easy. There are two expansion cases: increasing
bandwidth reservations for existing VM-pairs, or adding
new VMs. Also we need to perform VDC reallocation
when failures happen. When server failures happen,
the hosted VMs disappear. Hence server failures need
to be handled by user applications using for example
replica which is out of the scope of this paper. But for
link or switch failures, SecondNet can perform path re-

allocation or VM migration for the affected VDCs. It
is possible that VDC reallocation may fail. But as we
demonstrate in Section 6, VDC reallocation can always
succeed when the network utilization is not high.

In this work, we handle incremental expansion and
failures with the same algorithm based on VDCAlloc.
Our goal is to minimize reallocations of existing VMs.
Moreover, we try to reuse existing routing paths. When
we increase bandwidth reservation of a VM-pair, we
try to increase bandwidth reservation along its exist-
ing path. When the existing path cannot meet the re-
quirement (due to link or switch failure, or insufficient
bandwidth along that path), we try to allocate a new
path for that VM-pair. When path reallocation is not
possible, VM migration needs to be performed.

We then maintain a to-be-allocated VM set, which
includes the newly added VMs and the VMs that need
reallocation. We try to allocate these VMs within the
same cluster of the existing VMs using the bipartite
matching of Fig. 3. If we find a matching, we allocate
paths (step 3 of Fig. 3, with existing paths unchanged).
Once we cannot allocate a path between an existing VM
and a to-be-allocated VM, we add that existing VM into
the to-be-allocated VM set and iterate. If a matching
cannot be found, VDC expansion or reallocation within
this cluster is not possible. We choose a larger cluster
which contains this existing cluster and iterate.

5.4 Bandwidth Defragmentation
An advantage of server virtualization is that VMs can

be migrated from one server to another. VM migration
can be used for not only server upgrade and mainte-
nance, but also for better network utilization. We use
an example to illustrate the idea. Suppose a small num-
ber of VMs of VDC0 are mapped to servers in a cluster
C0 and most of the other VMs are mapped to a cluster
C1. When VMs of some other VDCs in C1 are released,
it is possible to migrate VMs of VDC0 in C0 to C1. The
migration not only increases the residual capacity of the
physical infrastructure (due to the fact that the inter
C0-C1 bandwidth of VDC0 is released), but also im-
proves the performance of VDC0 by reducing the path
lengths among its VMs.

Based on the above observation, we design a VDC
defragmentation algorithm as follows. When a VDC is
released from a cluster, we check if we get chance to
migrate VMs of some VDCs to this cluster. To accel-
erate VDC selection, we mark VDCs that have VMs
scattered in different clusters as defragmentation can-
didates. A defragmentation is carried out only when
the following two conditions are met: 1) the bandwidth
reservation of the reallocated VDCs can still be met;
2) the total residual bandwidth of the physical infras-
tructure is increased. VDC defragmentation is a back-
ground process and can be performed when the activity

of the to-be-migrated VM is low. Simulation results [12]
show that bandwidth defragmentation can significantly
improve network utilization.

6. SIMULATIONS
Setup. We use simulation to study the performance

of our VDC allocation algorithm. All the experiments
are performed on a Dell PE2950 server with 32G mem-
ory and 2 quad-core 2.8GHZ Xeon CPUs. We use three
typical structures BCube [11], fat-tree [2], and VL2 [9],
which represent data center networks of different types
and sizes. We did consider tree, but found tree is not
suitable for VDC bandwidth guarantee due to its in-
herent low capacity. For a two-level, 4000 servers tree
structure with each ToR gigabit switch connecting 20
servers and an aggregation gigabit switch connecting
200 ToR switches, the aggregation links soon become
bottlenecks when we try to allocate several VDCs with
200 VMs.

We also tried to compare our algorithm with several
related virtual network embedding algorithms [6, 24].
But the time complexities of the algorithms turned out
to be very high. For example, the algorithm in [24]
needs 12 seconds to allocate a VDC with 8 VMs in an
empty small BCube2 network with 512 servers. And
the algorithm in [6] has even higher time complexity.

The BCube network is a BCube3 with 4096 servers
and 4 layers of 8-port mini-switches (Fig.1 of [11]). The
fat-tree has 27,648 servers and three-layers of 48-port
switches (Fig.3 of [2]). Links in BCube and fat-tree are
1Gb/s. The VL2 structure (Fig.5 of [9]) has three layers
of switches and 103,680 servers. Each ToR switch con-
nects 20 servers with their 1Gb/s ports. A ToR switch
connects two aggregate switches with two 10Gb/s ports.
The aggregate switches and a layer of intermediate switches
form a complete bipartite graph. The aggregate and in-
termediate switches have 144 10G-ports.

Using the hop-count metric, we divide the servers of
the three networks into different clusters. For fat-tree
and VL2, these clusters are simply the ToR clusters
(2-hop) and Pod clusters (4-hop) etc. For BCube, we
get 2048 2-hop clusters, 384 4-hop clusters, 32 6-hop
clusters, and one 8-hop clusters.

We define network utilization (n util for abbrevia-
tion) as the total bandwidth allocated to VDCs divided
by the total link capacity. Similarly, server bandwidth
utilization (or s util) is the total server bandwidth allo-
cated to VDCs divided by the total server link capacity.

We use the Google cluster dataset [20] for VDC size
distribution. This dataset gives a normalized job size
distribution extracted from Google product workloads.
The distribution shows more than 51% jobs are the
smallest one. But middle size jobs use most of the re-
sources. For example, the 20% middle sized jobs use
65% of the total resources. The probability of large

 0

 0.2

 0.4

 0.6

 0.8

 1

BCube fat-tree VL2

U
ti
li
z
a
ti
o
n

n-util

s-util

Figure 4: Network and server utilizations for
different structures.

jobs are rare. But they use negligible resources. For ex-
ample, the 0.4% percent largest jobs use 5% resources.
We use this dataset to generate synthetic VDC size dis-
tribution [L,H], where L and H denote the min and
max VDC size.

Utilization. Fig. 4 shows the maximum network
and server bandwidth utilizations for the three struc-
tures. The VDC size distribution is [10,200]. We add
a sequence of randomly generated VDCs into the net-
works, and get the utilizations when we meet the first
rejected VDC. The reported results are mean values for
1000 measurements. We have tested all the three bi-
partite weight assignment strategies (Section 5.2) and
get the same result. The result shows that our VDC
allocation algorithm achieves high resource utilization.
For fat-tree and VL2, we achieve high server bandwidth
utilization (93%) and 49% network utilization. BCube
achieves 95% utilization for both s util and n util since
all its links directly connect to servers.

The reason that BCube achieves better network uti-
lization than the rest two structures is because all BCube
links are equal, which is not the case for fat-tree and
VL2. Due to fact that most of the VDCs are small and
the locality of VDC allocation, the bisection bandwidth
of the high layer switch-switch cannot be fully utilized
when the servers run out of bandwidth. BCube there-
fore accepts more VDCs. The average number of VMs
on a server is 20 for BCube, 9.9 for fat-tree and 9.6 for
VL2. This is because BCube has larger server band-
width, which is the bottleneck for fat-tree and VL2.
The result shows that BCube performs better for VDC
allocation than the rest structures when most of the
VDCs are of small size.

Allocation time. Fig. 5 shows the VDC allocation
time for the three structures. The VDC size parame-
ters for the three structures are [10,200], [10,1000], and
[10,5000], respectively. The results are gotten when the
server bandwidth utilizations are 80% (which are close
to their max utilizations). The VDC allocation is quite
fast even when the server bandwidth utilization is high.
For a VDC with 100 VMs in BCube, we only need 2.8
seconds in average. For a VDC with 1000 VMs in fat-
tree, we can perform allocation in 20-90 seconds. Even
for VDCs with 5000 VMs, we can carry out the allo-
cation within 23 minutes in the worst case. The result
shows that the allocation time only grows quadraticly

Link failure Time slot PDF (%)
rate (%) 0 1 2 3 4 5

1 62.02 34.14 3.62 0.13 0.09 0
2 61.72 34.74 3.18 0.17 0.12 0.05
3 61.78 34.58 3.38 0.14 0.06 0.04
4 60.38 35.93 3.39 0.17 0.08 0.03
5 59.96 36.22 3.34 0.26 0.18 0.03

Table 2: The distribution of the spanning tree
convergence time under different link failure
rate for the BCube network.

with the VDC size, which shows the scalability of our
allocation algorithm.

Failure handling. We study how the signaling span-
ning tree reacts to failures. Table 2 shows the conver-
gence time of the spanning tree under different link fail-
ure rates for BCube. A time slot is the time to transmit
an SPT maintenance message (around 1us for 1Gb/s
links). The convergence time is not sensitive to failure
rate and the SPT converges quickly. The SPT converges
within one time slot with high probability (96%+). SPT
therefore builds a robust signaling channel.

We have studied incremental expansion, VDC ad-
justment due to failures, and VDC defragmentation.
See [12] for details. The results show that incremental
expansion is much faster than allocation from scratch
and that VDC adjustment can be performed by path re-
allocation or VM migration, and that defragmentation
increases network utilization.

7. IMPLEMENTATION AND EXPERIMENTS
We have designed and implemented a SecondNet pro-

tocol stack in Windows Server 2008 R2, which inte-
grates Hyper-V hypervisor. In Hyper-V, there is a host
OS in the root partition, and VMs are in child parti-
tions. VMs are connected to a software virtual switch.
In our implementation, VDCs have different VDC IDs
and VMs of different VDCs can have the same private
IP address space.

We implement the SecondNet stack as an NDIS (Net-
work Driver Interface Specification) intermediate driver
below the virtual switch. The driver maintains a virtual-
to-physical table for every VDC, with each entry con-
tains local/peer VM IP, the physical server IP of the
peer VM, the reserved bandwidth and PSSR path, and
the service rule set. The driver uses a policy manager
to map packets into different service types as defined
by the SLA rules. It implements leaky bucket for band-
width regulation for type-0 and type-1 traffic, and pri-
ority queueing for traffic differentiation. The driver uses
an SPT module for in-band signaling.

The driver is implemented in C and has 35k lines of
code. We have prototyped VDC manager using 2k lines
of C# and 3k lines of C++ code.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350

T
h
ro

u
g
h
p
u
t
(G

b
/s

)

Time (second)

VDC 1

VDC 2

Figure 6: SecondNet provides service differenti-
ation and bandwidth guarantee.

7.1 Testbed
We have built a testbed with 64 servers (40 Dell

PE R610 and 24 Dell PE2950), numbered from s0 to
s63. All the servers have four Broadcom Gigabit Eth-
ernet ports and install Windows Server 2008 R2 and
our SecondNet driver. We use the first two ports to
construct a BCube1 [11] network with 16 8-port DLink
DGS-1008D gigabit mini-switches. The BCube net-
work contains 8 BCube0s, and each BCube0 contains
8 servers. We use the third port of the servers and 9
Broadcom BCM956334K MPLS switches (each has 24
GE ports) to form a 2-level fat-tree. The first-level 6
switches use 12 ports to connect to servers and the rest
12 ports to connect to the 3 second-level switches. Each
second-level switch acts as 4 6-port virtual switches.
Our testbed therefore supports both fat-tree and BCube.

7.2 Experiments
In the first experiment, we use a three-tier Web ap-

plication to show that SecondNet provides service dif-
ferentiation and bandwidth guarantee. We use fat-tree
for this experiment. We have performed the same ex-
periment using BCube and gotten similar result. We
create two VDCs, VDC1 and VDC2, both have 24 VMs
divided into frontend, middle, and backend. Each tier
has 8 VMs. We map the frontend to s0-s7, middle tier
to s8-s15, and backend to s16-s23, and let one server
host one VM for each of the VDCs. For each VDC, ev-
ery VM in the frontend has a TCP connection to every
VM in the middle. Similarly, every VM in the middle
has one connection to every backend VM. The frontend
servers send data to the middle tier, and the middle
tier servers send data to the backend. All the routing
paths are calculated by our VDC manager to maximize
throughput. The two VDCs share the same path set.

Fig. 6 shows the result. In the beginning, only VDC1

has best-effort traffic and achieves around 14Gb/s to-
tal throughput. VDC2 starts to generates best-effort
traffic at time 127 seconds. Both VDCs get around
7Gb/s. At time 250, we set the traffic of VDC1 to

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

VDC size (#VM)

T
im

e
 (

s
e
c
o
n
d
)

BCube

(a)

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

VDC size (#VM)

T
im

e
 (

s
e
c
o
n
d
)

Fat−tree

(b)

10
1

10
2

10
3

10
−2

10
0

10
2

10
4

VDC size (#VM)

T
im

e
 (

s
e
c
o
n
d
)

VL2

(c)

Figure 5: The min, mean, and max VDC allocation times. (a) BCube. (b) fat-tree. (c) VL2.

type-0, and set the bandwidth allocation for each TCP
connection to 80Mb/s. After that, the total throughput
of VDC1 jumps to 10Gb/s, and the average through-
put of TCP connections is 75Mb/s with standard de-
viation 0.78Mb/s. SecondNet therefore provides band-
width guarantee for VDC1 and service differentiation
between the two VDCs.

In the second experiment, we show SecondNet well
handles link failure and incremental expansion. This ex-
periment uses BCube. We create a VDC with two VMs
vm0 and vm1, which are hosted at s0 (BCubeID=00)
and s3 (03). There is a 600Mb/s type-0 bandwidth
reservation for (vm1,vm0) via path {03,00}. Fig. 7
shows vm1’s aggregate sending rate. At time 62, the
level-0 link of s3 fails. When VDC manager is notified,
it re-calculates and adjusts the path to {03,13,10,00}
in 77 milliseconds. The interruption time due to link
failure is only four seconds.

At time 114, we expand the VDC by adding a new
vm2, and request a 600Mb/s type-0 bandwidth from
vm1 to vm2. In this case, s3 cannot meet this new re-
quirement since it has only one link with 400Mb/s avail-
able bandwidth. Using the expansion algorithm in Sec
5.3, VDC manager first adds vm1 to the to-be-allocated
VM set, and then migrates vm1 to s4(04) and maps vm2

to s5(05), and finally allocates path {04,00} for (vm1,
vm0) and {04,14,15,05} for (vm1,vm2). The migration
traffic from s3 to s4 goes through the path {03,13,14,04}
and its throughput is also shown in Fig. 7. The migra-
tion transmission finishes in 45 seconds. Note that the
interruption time, however, is only five seconds. This
is because the VM switches to the new host server only
when all its states are synchronized. At time 199, vm1

starts sending traffic to vm2, the aggregate throughput
of vm1 becomes 1.2Gbps. This experiment shows that
SecondNet well handles both failure and VDC expan-
sion with minimal service interruption time.

8. RELATED WORK
Data center virtualization. Recently, Seawall [29]

uses a hypervisor-based framework for bandwidth fair

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250

T
h
ro

u
g
h
p
u
t
(M

b
/s

)
Time (second)

Application Traffic

Migration
Traffic

Figure 7: Failure handling and VDC expansion.

sharing among VM-pairs. It focuses on fair sharing and
how resource allocation and bandwidth guarantee can
be provided in the framework. NetShare [22] proposes
a hierarchical max-min bandwidth allocation. It uses
weighted fair queueing for bandwidth allocation among
different services, and TCP congestion control or rate
limiting to achieve flow level bandwidth sharing within
a service. Its relative bandwidth sharing model can be
complimentary to the bandwidth guarantee model of
SecondNet. FlowVisor [16] is built on top of Open-
flow [26]. FlowVisor enables different logical networks
with different addressing and forwarding mechanisms to
share a same physical network. The goal of SecondNet
is different from them. SecondNet is end-user oriented
and its VDC hides all the networking details from end
users.

VL2 [9] provides a service model which gives each ser-
vice the illusion that all the servers allocated to it, and
only those servers, are connected by a layer-2 switch.
VDC differs from VL2 service in several aspects. 1)
A VDC has its own IP address space, whereas a VL2
service is more like an application. 2) We provide band-
width guarantee for VDCs whereas VL2 cannot. 3) VL2
service model is tightly coupled to their specific network
topology, whereas VDC works for arbitrary topology.

Virtual Private Cloud (VPC) [18, 3] has been pro-
posed to connect the cloud and enterprise private net-

works. VPC does not focus on VMs within a VPC.
Amazon provides no implementation details about EC2
and their VPC. Measurement study [19] showed that
there is no bandwidth guarantee for EC2 instances.

Virtual network embedding. The virtual network
embedding [6, 30] and testbed mapping [27] are related
to the VDC allocation problem. In [27], simulated an-
nealing is used for testbed mapping. The work of [27],
however, cannot be applied to VDC allocation since it
only handles simple physical topology without multi-
path. Virtual network embedding was studied in [30, 6],
with [30] considered path splitting and path migration
and [6] used mixed integer programming. The physi-
cal networks they studied have only 50-100 nodes. As
we have discussed in Section 6, the complexity of these
algorithm are high and not applicable to our problem.

Bandwidth guarantee. In the Internet, DiffServ [17]
and IntServ [14] are designed to provide service differ-
entiation and bandwidth guarantee, respectively. Com-
pared to DiffServ, SecondNet provides bandwidth guar-
antee. Compared to IntServ, SecondNet does not need
to maintain bandwidth reservation state in switches.
SecondNet has the advantages of both DiffServ and
IntServ without their shortcomings due to the fact that
the network structure is known in advance and data
centers are owned and operated by a single entity.

9. CONCLUSION
We have proposed virtual data center (VDC) as the

resource allocation unit in the cloud, and presented the
design, implementation, and evaluation of the Second-
Net architecture for VDC support. SecondNet provides
VDC isolation, service differentiation, and bandwidth
guarantee. SecondNet is scalable by distributing all
the virtualization and bandwidth reservation state into
servers and keeping switches stateless. Our VDC allo-
cation algorithm achieves high network utilization and
has low time complexity. It also enables elasticity by
supporting incremental VDC expansion and shrinking.
By introducing a port-switching based source routing
(PSSR), we have be able to prototype SecondNet using
all commodity devices.

10. ACKNOWLEDGEMENT
We thank David Chu, Jim Larus, Sandeep Singhal,

Zheng Zhang, Lidong Zhou for their insightful com-
ments and discussions. We thank Zheng Zhang, Feng
Zhao, Lidong Zhou for their help and support for testbed
construction. We are grateful to Pinyan Lu for his help
on the NP-hard proof of the VDC allocation problem.

11. REFERENCES
[1] R. Ahuja, T. Magnanti, and J. Orlin. Network

Flows:Theory, Algorithms, and Applications. Prentice Hall,
1993.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In
SIGCOMM, 2008.

[3] Amazon EC2 and VPC. http://aws.amazon.com/ec2 and
http://aws.amazon.com/vpc/.

[4] Aristanetworks. 7100 Series 10GBASE-T Data Center
Switches. http://www.aristanetworks.com/en/
7100T Datasheet.pdf.

[5] A. Bechtolsheim. The silicon choice for cloud networking,
March 2009. http://www.aristanetworks.com/andy/blog-
entry/20090326200852.

[6] N. Chowdhury, M. Rahman, and R. Boutaba. Virtual
Network Embedding with Coordinated Node and Link
Mapping. In Infocom, 2009.

[7] Cisco. Cisco Nexus 7000 Series 32-Port 10Gb Ethernet
Module, 80Gb Fabric. http://www.cisco.com/.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[9] A. Greenberg et al. VL2: A Scalable and Flexible Data
Center Network. In SIGCOMM, 2009.

[10] C. Guo et al. DCell: A Scalable and Fault Tolerant
Network Structure for Data Centers. In SIGCOMM, 2008.

[11] C. Guo et al. BCube: A High Performance, Server-centric
Network Architecture for Modular Data Centers. In
SIGCOMM, 2009.

[12] C. Guo et al. SecondNet: A Data Center Network
Virtualization Architecture with Bandwidth Guarantees.
Technical Report MSR-TR-2010-81, MSR, 2010.

[13] M. Armbrust et al. Above the Clouds: A Berkeley View of
Cloud Computing. Technical Report UCB/EECS-2009-28,
EECS University of California at Berkeley, 2009.

[14] R. Braden et al. Resource ReSerVation Protocol (RSVP),
Sept 1997. IETF RFC 2205.

[15] R. Mysore et al. PortLand: A Scalable Fault-Tolerant
Layer 2 Data Center Network Fabric. In SIGCOMM, 2009.

[16] R. Sherwood et al. FlowVisor: A Network Virtualization
Layer. Technical Report Openflow-tr-2009-1, Stanford
University, 2009.

[17] S. Blake et al. An Architecture for Differentiated Services,
Dec 1998. IETF RFC 2475.

[18] T. Wood et al. The Case for Enterprise-Ready Virtual
Private Clouds. In HotCloud, 2009.

[19] S. Garfinkel. An Evaluation of Amazon’s Grid Computing
Services: EC2, S3 and SQS. Technical Report TR-08-07,
Harvard University, 2008.

[20] Google. Google Cluster Data.
http://code.google.com/p/googleclusterdata/.

[21] S. Kolliopoulos and C. Stein. Improved approximation
algorithms for unsplittable flow problems. In FOCS, 1997.

[22] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese.
NetShare: Virtualizing Data Center Networks across
Services. Technical report, UCSD, 2010.

[23] L. Lamport. The Part-time Parliament. ACM Trans.
Computer Systems, May 1998.

[24] J. Lischka and H. Karl. A virtual network mapping
algorithm based on subgraph isomorphism detectionm. In
SIGCOMM VISA Workshop, 2009.

[25] Microsoft. Windows Azure platform case studies.
http://www.microsoft.com/windowsazure/evidence/.

[26] Openflow. http://www.openflowswitch.org.
[27] R. Ricci, C. Alfeld, and J. Lepreau. A Solver for the

Network Testbed Mapping Problem. SIGCOMM CCR,
33(2), 2003.

[28] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol
Label Switching Architecture, Jan 2001. RFC 3031.

[29] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Seawall:
Performance Isolation for Cloud Datacenter Networks. In
HotCloud, 2010.

[30] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking
virtual network embedding: substrate support for path
splitting and migration. SIGCOMM CCR, 38(2), 2008.

