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ABSTRACT
CPU is a major source of power consumption in smartphones.
Power modeling is a key technology to understand CPU power
consumption and also an important tool for power manage-
ment on smartphones. However, we have found that existing
CPU power models on smartphones are ill-suited for mod-
ern multicore CPUs: they can give high estimation errors
(up to 34%) and high estimation accuracy variation (more
than 30%) for different types of workloads on mainstream
multicore smartphones. The root cause is that those mod-
els estimate the power consumption of a CPU based on only
frequency and utilization of the CPU, but do not consider
CPU idle power states. However, we have found that CPU
idle power states play a critical role in power consumption
of modern multicore CPUs. Therefore, we have developed a
new approach for CPU power modeling, which takes CPU
idle power states into consideration, and thus can signifi-
cantly improve the power estimation accuracy and stability
for multicore smartphones. We present the detailed design
of our power modeling approach and a prototype implemen-
tation on commercial multicore smartphones. Evaluation re-
sults show that our approach consistently achieves a high
average accuracy of 98% for various benchmarks, and 96%
for real applications, which significantly outperforms the ex-
isting approaches.

1. INTRODUCTION
Power consumption has been a paramount concern in

battery-powered mobile devices such as smartphones,
and CPU is a major source of power consumption in
smartphones [10]. As multicore smartphones become
increasingly popular, CPU power consumption becomes
a more significant component in the smartphone power
consumption portfolio. For example, on a quad-core
Samsung Galaxy S3 smartphone, the CPU power is as
high as 2,845 mW, which is 2.53 times of the maximum
power of the screen, and is 2.5 times of the maximum
power of the 3G interface [11]. According to our mea-
surements, the CPU power consumption of the Google
Nexus series smartphones has increased significantly in
the last three generations: the CPU power consumption
of a Google Nexus 4 smartphone (quad-core, the 4th

Nexus generation) could reach 4,065 mW, which is 2.03
times of the maximum CPU power of a Galaxy Nexus
smartphone (dual-core, the 3rd Nexus generation), and
is 4.51 times of that of a Nexus S smartphone (single-
core, the 2nd Nexus generation). Therefore, accurate
estimation and efficient management of CPU power con-
sumption are among the most important issues in power
management of multicore smartphones.

Power modeling is a lightweight and effective approach
to estimate power consumption of smartphone CPU.
Proper and accurate power models of smartphone com-
ponents benefit both users and developers. Accurate
power models help to detect power hungry applications,
and thus users get better battery life of their smart-
phones [1]. Accurate power models also help develop-
ers profile, and consequently optimize, the energy con-
sumption of their smartphone applications [18]. Be-
cause of its importance, power modeling has been at-
tracting an increasing amount of research effort [12,16,
23–26]. In this paper, we in particular study how to
build accurate models for CPU power consumption in
multicore smartphones.

Existing CPU power modeling approaches for smart-
phones assume CPU operating frequency and CPU uti-
lization are the only major factors that impact CPU
power consumption [24–26]. However, we find that this
assumption does not hold with multicore CPUs in mod-
ern smartphones. Even under the same frequency and
CPU utilization, two workloads with different CPU us-
age patterns (for example, shown in Figure 1) could
consume significantly different amounts of energy. Our
experiments show that the difference can be as large as
50% in a quad-core Google Nexus 4 smartphone (§3).
Therefore, existing smartphone CPU power models are
ill-suited for multicore smartphones. We will later show
that the existing CPU power models give an estimation
error as high as 34% on modern multicore smartphones
(§6). Moreover, the estimation accuracy of existing
models is also notably instable: the same CPU power
model could generate an estimation variation larger than
30% for the different types of workloads (§6). The root
cause of the estimation inaccuracy and instability come
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Figure 1: Two periodic workloads with the same
CPU utilization (50%) but different CPU usage
patterns.

from multiple newly introduced CPU idle power states,
which consume markedly different amounts of power in
multicore CPUs. Workloads with different CPU usage
patterns cause CPU to enter different idle power states
during the computation, which in turn leads to differ-
ent amount of CPU power consumption. Since existing
CPU power modeling methods do not take into account
the impacts of CPU idle power states, they exhibit high
estimation errors and instability for multicore smart-
phones in practice.

We have carefully analyzed the impacts of idle power
states on CPU power consumption, and developed a
new CPU power-modeling method that treats CPU idle
power states as a new major factor of CPU power mod-
eling (§4). As a result, the new modeling method is
able to significantly improve power estimation accuracy
and stability (§6). It is worth noting that CPU idle
states play a less critical role in CPU power consump-
tion on old single-core smartphones than they do on
modern multicore smartphones (§3), which is probably
the reason why CPU idle states are ignored in the exist-
ing CPU power models. However, to accurately model
CPU power consumption in modern multicore smart-
phones, we need to develop a new CPU power modeling
method that considers CPU idle power states.

The model building process is non-trivial indeed. As
we will show in §4, simply using durations or numbers of
entries of CPU idle states does not work. Instead, we
have found and experimentally verified that weighted
average entry duration of CPU idle states is a good
predictor to estimate the power consumption of a mul-
ticore CPU. Based on our proposed model, we have im-
plemented a prototype CPU power estimation system
for commercial state-of-the-art multicore smartphones.
We have also conducted extensive experiments to eval-
uate our prototype system using a set of commercially
representative embedded benchmarks, as well as real
mobile applications. The evaluation results show that
our method achieves a consistent and high average ac-
curacy of 98% for various benchmarks, and 96% for real
applications, with negligible system overheads.

To the best of our knowledge, our work is the first
to target accurate CPU power modeling for multicore
smartphone CPUs. The main contributions of this pa-
per are as follows.

• We identify that existing CPU power modeling

methods for smartphones can be notably inaccu-
rate and unstable in estimating power consump-
tion of multicore CPUs. We analyze the root cause
of the estimation inaccuracy and instability, and
show that different CPU idle power states, which
are not considered in existing CPU power model-
ing approaches, have big impacts on CPU power
consumption.

• We propose and develop a new idle-state-based CPU
power modeling method for accurate CPU power
estimation in multicore smartphones. We demon-
strate that simply considering durations and num-
bers of entries of CPU idle states do not work, and
we show that weighted average entry duration of
CPU idle states is a good predictor to estimate
the CPU power consumption in multicore smart-
phones.

• We design and implement a prototype CPU power
estimation system based on the proposed model
using commercial multicore smartphones. We also
conduct extensive experimental evaluations to eval-
uate our prototype system. The experimental re-
sults show that our system achieves high accuracy
and incurs a negligible amount of overheads.

The rest of the paper is organized as follows. In §2,
we briefly introduce power management schemes used
in contemporary smartphone CPUs. In §3, we discuss
the limitations of existing smartphone CPU power mod-
eling approaches. We develop our idle state based CPU
power model in §4, present the system design and im-
plementation in §5, and report the evaluation results in
§6. We survey related work in §7. We conclude and
discuss future work in §8.

2. BACKGROUND: SMARTPHONE CPU
POWER MANAGEMENT

A smartphone CPU has different states: a CPU core
can be either online (when the CPU core is enabled and
used to process tasks), or offline (when the CPU core
is entirely powered down and thus cannot be used to
process tasks). An online CPU core can further work
in either the operating state or an idle state. The op-
erating system of a smartphone manages the states of
CPU cores to reduce their total energy consumption.
There are three CPU power management schemes used
in modern smartphones, each of which is introduced be-
low, with the emphasis placed on its implementation in
the Android OS and the quad-core Nexus 4 smartphone.

2.1 CPU Performance State Management
When a CPU core works in the operating state, all

processor components are powered up. In the operating
state, a CPU core may operate in different performance
states (also known as “P-states” in the ACPI speci-
fication [14]). Practically, each P-state is associated
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Figure 2: Power consumption of a single Nexus
4 CPU core at different CPU utilizations.

with a fixed CPU operating voltage and frequency. A
technique called Dynamic Voltage and Frequency Scal-
ing (DVFS) is employed to adjust the operating volt-
age/frequency, and thereby switch between different P-
states.

The Nexus 4 smartphone supports 12 different CPU
operating frequencies, ranging from 348 MHz to 1,512
MHz. Operating frequencies can be independently set
in each CPU core. Choosing a proper frequency for
an operating processor core is an important task for
CPU P-state management. In Android kernel (Linux-
based), a subsystem called “CPUfreq” specifically copes
with this task by dynamically adjusting the operating
frequency according to the system load [17].

Each P-state (i.e. CPU operating frequency) con-
sumes a different amount of power. Figure 2 shows the
CPU power consumption of the Nexus 4 smartphone
under different CPU utilizations with only one CPU
core enabled. The operating frequency is fixed at 1,512
MHz, 1,026 MHz, and 384 MHz respectively. It shows
that CPU frequencies have significant impacts on CPU
power consumption: the maximum power consumption
of frequency 1,512 MHz is more than 3 times of that
of frequency 384 MHz. In each P-state, the power con-
sumption is determined by the CPU core utilization.
Figure 2 also shows that different core utilization may
have significantly different power consumptions.

2.2 CPU Idle Power State Management
Smartphone OS may put an online CPU core into

an idle power state when there is no workload. Idle
power states are called “C-states” in the ACPI speci-
fication [14]. CPU in different C-states have different
CPU components switched to low power mode to reduce
power consumption.

Table 1 shows that the Nexus 4 smartphone has four
CPU idle power states: C01, C1, C2, and C3. A CPU

1In the ACPI specification, “C0” refers to the operating
state, and “C1, C2, · · · ” refer to the idle states. Here we
follow the naming convention in the Nexus 4 stock kernel
source code, where the state C0 refers to the shallowest CPU

Table 1: CPU Idle Power States in Nexus 4.

Idle Name Idle System Latency

State Power (mW) (µS)†

C0 Wait for Interrupt 433 1

C1 Retention 390 415

C2 Power Collapse Standalone 330 1300

C3 Power Collapse 200 2000

Without entering idle states 1,060 0

†: The data is obtained from the Nexus 4 kernel source code.

core in the state C0 only disables most of the CPU
clocks, while keeping the core logic powered up. A core
in the state C1 has its logic powered down, but retains
the in-core L0/L1 cache content by keeping the cache
powered up. A core in the state C2 has more power
savings than in the state C1, since the in-core L0/L1
cache are also flushed and disabled. Finally, a core in
the state C3 achieves the most power savings by further
disabling the shared L2 cache.

We have measured the idle system power in each C-
state of a Nexus 4 smartphone. The third column of Ta-
ble 1 shows the results. As a comparison, we have also
measured the case of not entering C-states, where the
idle system power is 1,060 mW. Entering a C-state can
save much power when a system is idle. It also shows
that power consumption of different C-states varies: the
power of C0 is as much as 2.1 times of the power of C3.
Consequently, entering different C-states may cause sig-
nificantly different power savings, as we will show in §3.

In old single-core smartphones, there are less CPU
idle power states. For example, the Nexus S smartphone
has only one idle state, which is equivalent to the C0
state in Nexus 4. Therefore, CPU idle states do not
play a critical role in CPU power consumption on old
single-core smartphones as they do on modern multicore
smartphones.

Although entering idle power states reduces power
consumption when a CPU is idling, it comes with a
price of state switching overhead: the deeper an idle
state is, the larger the switching overhead will be. The
fourth column of Table 1 shows the latencies of switch-
ing between the operating state and an idle state.This
operating/idle state switching latency has significant
impact on performance of time-critical operations, such
as video and audio decoding. In Android kernel (Linux-
based), a subsystem named “CPUidle” is specifically
designed for managing the CPU idle states.When the
OS finds no task to schedule, it directs the control to
the CPUidle subsystem, which then decides to put CPU
into a proper idle state based on several factors, in-
cluding the predicted length of the current idle period
(based on the information on the kernel scheduler and
timers) and the operating/idle switching latency of each

idle state.
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Figure 3: Workloads running in multicore CPU with the same CPU utilization and frequency consume
notably different amounts of CPU power.

individual idle state.

2.3 CPU Hot-Plugging
In a multicore smartphone, the OS turns off a CPU

core from the system when it has no workload for a cer-
tain period of time, and takes it back to online when
the core is needed on the fly. This technique is known
as CPU hot-plugging. While the CPU hot-plugging
technique saves more power than the deepest CPU idle
state, its major disadvantage is that the unplugging/re-
plugging process requires expensive global operations,
which causes a large amount of latency [19].

In Nexus 4, the stock Android system uses a user
space daemon called “mpdecision” to manage the CPU
hot-plugging process. The daemon monitors the load
on CPU cores, enables and disables cores through the
/sys interface accordingly.

3. LIMITATIONS OF THE EXISTING
SMARTPHONE CPU POWER MODELS

The existing power models [12,16,23–26] have achieved
a good accuracy (e.g., more than 90%) on previous
single-core smartphones such as the Nexus one and Nexus
S smartphones. Those models consider only CPU uti-
lization and operating frequency as predictors in mod-
eling [24–26]. Usually, they use a linear CPU power
model. For each CPU frequency freqi, they estimate
the power consumption of a CPU core as below:

Pcpu = αfreqi × Ucpu + βfreqi (1)

where Ucpu is the CPU core utilization, and αfreqi and
βfreqi are two constant parameters whose values are
determined through linear regression during the model
generation process.

However, the existing CPU power models are ill-suited
for modern multicore CPUs. In particular, we have
found that CPU power consumptions in two quad-core
CPU smartphones with different chipsets, Nexus 4 and
Samsung Galaxy S42, exhibit a large range of varia-
tion even when both CPU frequency and utilization are
2Technically the Samsung Galaxy S4 smartphone has 8 CPU

fixed. In our experiments, we first use a workload gen-
erator program that periodically performs continuous
computation followed by an idle period (see Figure 1)
in a Nexus 4 smartphone. By controlling the ratio of
the idle period to the computation period, the work-
load generator program generates workloads with dif-
ferent CPU utilizations. During the continuous compu-
tation, the program runs a busy loop of computing a
large prime. By changing the busy loop count, we can
also control the length of each continuous computation
period. We have found that by adjusting the length of
each continuous computation, the power consumption
of a CPU core exhibits a large range of variation, even
when the CPU operating frequency and the utilization
were fixed.

For example, Figure 3(a) shows the power consump-
tion of a CPU core3 of the Nexus 4 smartphone when
the operating frequency was fixed at 384 MHz. With
fixed CPU utilization, the power consumption of the
CPU core dropped while the duration of the continuous
computation increased. Figure 3(b) and Figure 3(c)
show the results when CPU frequency was 1,026 MHz
and 1,512 MHz, respectively. They show exactly the
same trend. Figure 3(d) further summarizes the differ-
ence of power consumption with the three CPU frequen-
cies. Each value in Figure 3(d) is the percentage of the
difference between the maximum and minimal powers
over the maximum power for each frequency/utilization
configuration. It shows that the CPU power differ-
ence of workloads causing the same CPU utilization
under the same CPU frequency is significant, especially
when the CPU utilization is at a low level: when fre-
quency/utilization is fixed at 1,512 MHz/25%, the power
difference can reach as high as 50%. As we will explain

cores: a quad-core ARM Cortex-A7 and a quad-core ARM
Cortex-A15. However, these two quad-core CPUs cannot
run concurrently, since the smartphone is using the ARM
big.LITTLE task migration use model [20].
3The CPU power consumption is measured as the system
power when the smartphone is configured in a way that CPU
is the only main source of power consumption. See §6.1 for
more details.
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Table 2: Time duration per second and number
of state entries per second in two workloads of
the same CPU utilization (50%) under the same
CPU operating frequency (1,512 Mhz).

Idle Time duration (ms) # of state entries

State W1 W2 W1 W2

C0 491.85 1.08 468 1.99

C1 0 0 0 0

C2 1.18 1.43 0.1 0.2

C3 5.12 496.86 0.2 7.3

later, this is because the less a CPU core is being uti-
lized, the more chance the CPUIdle subsystem puts the
CPU core into a deeper idle state.

The above results demonstrate that using only CPU
operating frequency and utilization is not enough to
build an accurate CPU power model for multicore smart-
phones. As we discussed in §2, in modern multicore
smartphones like Nexus 4, the CPU power is determined
not only by the CPU frequency and utilization, but also
by the CPU idle power states which are not considered
in the existing smartphone CPU power models. Mod-
ern multicore CPUs like the one of Nexus 4 have mul-
tiple idle power states which have significantly different
power consumptions. When utilization is fixed, pro-
longing the duration of continuous computation causes
the corresponding idle period to increase accordingly.
Longer idle period allows the OS to put the CPU core
into deeper idle states more frequently, which in turn
lowers the CPU power consumption.

To further demonstrate how CPU idle power states
can affect power consumptions of different workloads
running with the same CPU frequency/utilization, we
list in Table 2 the statistics of the idle states of two
workloads (W1 and W2) that were run in a Nexus 4
smartphone: the time duration per second of each state,
and the total number of entries per second of each state.
These two workloads were run with the same CPU fre-
quency (1,512 MHz) and the same CPU utilization (50%),
but they had significantly different power consumptions
(644 mW for W1, and 499 mW for W2). The two work-
loads had notably different idle-state transition statis-
tics as shown in Table 2: with the workload W2, the
CPU core stayed at the deepest idle state much longer
than with the workload W1. This explains why W2
consumed significantly less CPU power than W1. Note
that because the stock Nexus 4 kernel does not enable
the idle state C1, the numbers of C1 in Table 2 are 0s.

We have also performed the experiments in a Sam-
sung Galaxy S4 smartphone, which is equipped with
a chipset different from Nexus 4, and obtained similar
observations. With the Galaxy S4 smartphone, when
the CPU frequency/utilization were fixed at the top
frequency/25%, the power consumption of a CPU core

could exhibit up to 38% difference when we adjusted the
length of continuous computation in the workload gen-
erator program. The power difference we observed in
Galaxy S4 (38%) was slightly smaller than that we have
seen in Nexus 4 (50%). This is probably because Nexus
4 implements deeper idle power states than Galaxy S4
does. According to our measurement, the ratio of the
power consumptions of the deepest idle state over the
shallowest idle state in Nexus 4 is smaller than that
in Galaxy S4 (0.46 for Nexus 4, 0.51 for Galaxy S4).
Since implementing deeper idle power states is a clear
trend in future multicore smartphones (for more energy
efficiency), we can expect the possible power difference
under the same CPU frequency/utilization setting will
keep growing in future smartphones, which urges the
need for developing a new CPU power modeling method
that considers CPU idle power states.

Some existing system power models take CPU idle
states into account. For example, Koala [23] proposes
to takes CPU idle states into account when estimating
system power consumption. However, it only reports
the results on a laptop and a server, both x86-based.
Furthermore, it only considers the portion of each CPU
idle state duration over the whole idle period. As we will
show in §4, even when portion of each idle state dura-
tion is fixed, CPU could have more than 20% variation
of power consumption. Sesame [12] also considers CPU
idle states when modeling CPU power consumption, but
also only for x86-based laptops. Due to the Instruction
Set Architecture (ISA) difference, those power models
for x86 may not be used on ARM-based devices such as
smartphones. To the best of our knowledge, our work
is the first comprehensive study focusing on CPU-idle-
state-based power modeling approach on ARM-based
smartphone CPUs. We have conducted thorough ex-
periments to investigate how CPU idle states can affect
power consumption of smartphone CPUs. We also de-
veloped a new CPU power modeling approach based on
the investigation results, designed and implemented a
prototype system using the new approach, and evalu-
ated the prototype system with comprehensive experi-
ments. We discuss more related work in §7.

Since older single-core smartphones have less CPU
idle states than modern multicore smartphones and CPU
idle states play a less important role in old single-core
smartphone, it is reasonable that existing smartphone
CPU power models ignore CPU idle states. However,
to build an accurate CPU power model for multicore
smartphones, we must consider CPU idle states. Next
in §4 we show how we take CPU idle states into con-
sideration and build an accurate CPU power model for
multicore smartphones.

4. IDLE-STATE-BASED CPU POWER MODEL
We propose a new CPU power modeling approach for

5



(d)(c)(b)(a)

0

20

40

60

80
300
600

To
ta

l e
nt

rie
s p

er
 se

co
nd

 C0
 C1
 C2
 C3

10
0020

0
40

0
80

0
Computation duration (ms) 

60
08010

06040201086421

150
100

5

50

4
3
2
1

A
ve

ra
ge

 d
ur

at
io

n 
pe

r e
nt

ry
 (m

s)  C0
 C1
 C2
 C3

10
0020

0
40

0
80

0
Computation duration (ms) 

60
08010

06040201086421
0

90

30

120

60

3.5
3.0
2.5
2.0
1.5
1.0
0.5W

ei
gh

te
d 

av
er

ag
e 

du
ra

tio
n 

pe
r e

nt
ry

 (m
s)  C0

 C1
 C2
 C3

10
0020

0
40

0
80

0
Computation duration (ms) 

60
08010

06040201086421
00

250

200

150

100

50

10
0020

0
40

0
80

0

To
ta

l d
ur

at
io

n 
pe

r s
ec

on
d 

(m
s)

Computation duration (ms) 

 C0
 C1
 C2
 C3

60
08010

06040201086421

Figure 4: Single-core power model development. Figures (a)-(d) show TCi , ECi , EDCi , and WEDCi

for the four CPU idle states C0 - C3, respectively (with CPU frequency f = 1, 512 MHz, utilization
U = 75%).

smartphones, which considers not only CPU frequency
and utilization, but also the impacts of CPU idle states.
In this section, we first present the development of our
power modeling for the single-core case. Then, we show
how the single-core power model can be extended to
the multicore case. All the experiments described in
this section are performed in a Nexus 4 smartphone.

4.1 Power Modeling for a Single CPU Core
Similar to existing work, we use regression-based method

to integrate the predictors. Our predictors include not
only CPU frequency and utilization, but also idle states.
To determine what statistic of CPU idle states should
be used as a predictor variable of the regression model,
we first consider TCi

, which is the total time duration
that a CPU core stays in the idle state Ci per second
when frequency f and utilization U are fixed. Suppose
the total CPU idle time per second is Tidle, we have

Tidle =
∑
i

TCi
(2)

Figure 4(a) shows TCi
for idle states C0 to C3 when

we ran our workload generator program on a single
CPU core (with f = 1, 512 MHz, U = 75%). Since
the stock Nexus 4 kernel does not enable the idle state
C1, statistics for C1 remain zero in Figure 4. The fig-
ure shows that the CPU core spent more time stay-
ing in deeper idle states as duration of the continuous
computation increased, because the idle period also in-
creased accordingly. However, TCi is not a good pre-
dictor of CPU power consumption. For example, after
the computation duration increased to 20 millisecond,
TCi

(i = 0, 1, 2, 3) stayed stable, but the CPU power ac-
tually kept decreasing as the the computation duration
increased (see Figure 3(c)). In fact, in our experiment,
the power difference could reach 24% for the same TCi

(i = 0, 1, 2, 3) (when f = 1, 512 MHz, U=25%).
Figure 4(b) shows ECi

, which is the number of entries
for idle state Ci per second, in the same experiment. For
the same TCi

, smaller ECi
means less operating/idle

transition energy overhead, and thus more energy sav-

ings. This explains our previous observation that CPU
power kept decreasing when TCi is unchanged. How-
ever, ECi alone is also not a good predictor of CPU
power consumption, as it has no direct link to energy
savings by idle states.

We then look at the average entry duration for idle
state Ci, which is notated as EDCi

:

EDCi
=
TCi

ECi

(3)

Generally, EDCi
is a good predictor of CPU power, as

it involves both idle state duration and state transi-
tion overhead. However, EDCi

could suffer from noise,
which comes from those sporadic entries of idle state Cj

when the CPU enters state Ci most of the time. For
example, Figure 4(c) shows EDCi in the experiment.
We can see that EDC3

was greater than EDC0
when

C0 is the dominant idle state.
To eliminate noises in EDCi

, we apply a weight wi,
which is the portion of time the CPU stay at the state
Ci over the whole idle period, to EDCi to form weighted
average entry duration WEDCi

:

WEDCi
= wi × EDCi

, where wi =
TCi

Tidle
(4)

Figure 4(d) shows WEDCi in the experiment.
Finally, we model power consumption of a single CPU

core working at frequency f as

Pcore =
∑
i

βCi ·WEDCi + βU · U + c (5)

where βCi and βU are the coefficients of WEDCi and
the utilization U , and c is a constant. For each CPU
frequency f supported by Nexus 4, we obtain the co-
efficients and the constant by running linear regression
analysis on the training data containing different TCi

and U , and the corresponding Pcore (see §5).

4.2 Power Modeling for Multicore CPU
We further conduct an experiment to study how the

single-core CPU power model can be extended to mul-
ticore scenario. In the experiment, we enabled differ-
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Table 3: CPU power with different number of
cores running (with utilization U=50%).

f=384 MHz f=1512 MHz

Nc PBL,Nc PCPU P∆,core PBL,Nc PCPU P∆,core

(mW) (mW) (mW) (mW) (mW) (mW)

1 62 144 82 62 495 433

2 73 213 70 73 902 415

3 73 282 70 73 1,312 413

4 73 348 69 73 1,732 415

Nc: number of cores that ran the workload.
PBL,Nc : baseline CPU power with Nc cores enabled.
PCPU : whole CPU power.
P∆,core: power increment per core.

ent number of CPU cores, which are running at the
same frequency, and then generated the same amount
of workload on each enabled core. We measure the CPU
power while varying the core frequencies and utilization.
Table 3 presents the results for the cases when core fre-
quencies are fixed at 384 MHz and 1,512 MHz, and the
core utilization was 50%. In the table, the power incre-
ment per core is calculated as P∆,core =

PCPU−PBL,Nc

Nc
,

where Nc is the number of cores enabled, PBL,Nc
is

the baseline CPU power when Nc cores are enabled,
and PCPU is the whole CPU power measured. We
can see that P∆,core is consistent for the same “fre-
quency/utilization” with more than one core enabled,
but is notably smaller than the value when there is only
one core running the workload. The reason is that in
Nexus 4, when there are more than one core running,
the deepest CPU idle state each running core can enter
is state C2. The state C3, where the shared L2 cache is
disabled, can only be entered by core-0 when no other
core is online. Therefore, P∆,core for the single-core case
is always greater than that for the multicore case.

Based on our observation, we model a multi-core CPU
power consumption PCPU as

PCPU = PBL,Nc +

Nc∑
i

P∆,core,Ui,fi (6)

where Nc is the number of cores enabled, PBL,Nc
is

the baseline CPU power with Nc enabled cores, and
P∆,core,Ui,fi is power increment of core-i when it is work-
ing at frequency fi with utilization Ui. For each fre-
quency fi, P∆,core,U,fi can be predicted using the single-
core power model developed previously, while PBL,Nc

is
a constant value that can be measured beforehand. For
Nexus 4, we need to model P∆,coreU ,fi separately for
the case when there is only one core is online and when
there are multiple cores are online, because these two
cases have different sets of CPU idle states.

5. SYSTEM DESIGN AND IMPLEMENTA-
TION

We have designed and implemented a prototype CPU
power estimation system using our idle-state-based CPU
model on Android platform. Figure 5 shows an overview

CPU power 
model

CPU power 
model

Controller
program
Training 
program

User Space

Model 
generator

Measured 
power data

CPUfreq CPUidle
Data collector
• CPU frequency
• CPU utilization

Kernel Space
User Space

CPU utilization
• Idle state statistics

Figure 5: System overview.

of the system. The system contains two parts: one runs
in the kernel space, and the other runs in the user space.
In the kernel space, the data collector component col-
lects necessary CPU usage data including the CPU fre-
quency, CPU utilization, and CPU idle state statistics.
In the user space, the controller component controls
the procedure of model generation. To generate a CPU
power model, the controller runs a set of training pro-
grams, starts the data collector, and collects CPU usage
data. At the same time, we measure the system power
consumption using a power meter, with the smartphone
configured in a way that CPU is the only major hard-
ware component consuming system power (see §6.1).
Using the measured power data and the collected CPU
usage data, the model generator component creates a
CPU power model through linear regression. Although
our implementation is based on Android platform, we
expect the system design can also work on other mobile
platforms such as Windows Phone and iOS.

Collecting data in the kernel. We design a data
collector to work in the kernel space for lightweight and
efficient data collection. A design alternative is to pe-
riodically sample CPU utilization and CPU idle states
in the user space via the high-latency /proc and /sys
filesystems. However, because our power model needs
CPU statistics for each working frequency, which may
change tens of times per second, the user space alterna-
tive would need to poll the kernel with an equally high
frequency, which is impractical and inefficient. With
our kernel-mode data collection approach, we can ag-
gregate raw data, and report only the aggregated data
to the user programs via the system call interface. Con-
sequently, we significantly reduce the number of user-
kernel mode switching, and thus introduce much less
system overheads in collecting the data. Moreover, run-
ning the data collection in the kernel allows us to obtain
fresh and accurate data without the latency of user-
kernel mode switching.

To guarantee accuracy, it is straightforward to peri-
odically sample data in the kernel, with the sampling
rate set to the highest possible value of frequency chang-
ing rate. However, this method would incur unneces-
sary system overheads, since it requires a high sampling
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Figure 6: Data structure used in the data col-
lector.

rate even when the actual CPU frequency changing rate
is low. We take a different method in our implementa-
tion. We take advantage of the CPUfreq and CPUi-
dle subsystems of the Android kernel to collect data
efficiently. Specifically, we piggyback our data collect-
ing with activities of the subsystems. We have instru-
mented the subsystems so that we know when the CPU
frequency or CPU idle state are changed. Each fre-
quency change in CPUfreq triggers a new process of
data collection for the new working frequency. For each
CPU idle state change in CPUidle, we collect new data
about the previous CPU idle state and aggregate them
to the existing data. Therefore, our data collection au-
tomatically adapts to CPU frequency changes, and thus
avoids unnecessary system overheads.

Figure 6 shows the data structure used in our data
collector (assuming a Nexus 4 smartphone is used). We
collect the CPU usage data for each CPU core and each
CPU frequency separately. Each CPU core has an ar-
ray of 12 CPU frequencies. For each CPU frequency, we
record the total CPU busy time and the total CPU idle
time, based on which the CPU utilization can be calcu-
lated. We also record the CPU idle state information,
including the total residency time duration and the to-
tal number of entries of each CPU idle state. With the
data structure in Figure 6, we do not need to record the
raw data (e.g., the CPU usage data of every trigger of
data collection). Instead, for each trigger of data col-
lection, we simply update the corresponding values in
the data structure to aggregate the new data with the
existing data. As a result, the data collector consumes
a small fixed amount of memory, which is independent
of the time duration of data collecting. Compared to
recording the raw data, this approach also uses much
less memory, especially when the data collecting time is
long.

Generating CPU power model. To generate a
CPU power model, we have run a set of training pro-
grams with various workloads and CPU usage patterns.
We use the workload generator described in §3 to cre-
ate training programs with various CPU frequencies,
utilization, and various continuous computation dura-
tions. For each CPU frequency, we train 3 CPU utiliza-
tion levels (25%, 50%, and 75%). For each CPU utiliza-

tion level, we train 8 computation durations (1 ms, 2
ms, 4 ms, 8 ms, 20 ms, 40 ms, 80 ms, and 200 ms). For
each CPU frequency, we also train the CPU idle case
(5% utilization), and the CPU busy case (100% uti-
lization), but with a fixed computation duration (100
ms). In total we have created 312 different training
programs. We first enable only one CPU core, and run
these training programs on the CPU core to generate
the single-core power model described in §4.1. Then we
enable all cores, and run the training programs with an
identical process on each core, to generate the multi-
core power model described in §4.2. The whole model
generation procedure takes about 2 hours. It is worth
noting that the ground-truth CPU power consumption
is obtained manually by using power meter. One could
also obtain the ground-truth value by referring to the
battery interface [12, 24], which allows for automated
model generation. We opted to manual measurement
because we wanted to reduce the possible errors intro-
duced by using the battery interface.

Applying CPU power model. We have written a
user space CPU power estimation C library that sup-
ports our CPU model in user space programs. The li-
brary gets CPU statistics from the data collector lo-
cated in the kernel as shown in Figure 5, calculates the
estimated CPU power consumption, and reports infor-
mation to user programs as requested. The interfaces
provided by our C library to user programs include
starting and stopping the CPU power estimation pe-
riod, getting the estimated CPU power consumption of
the estimation period, and getting different CPU statis-
tics, such as CPU online information, CPU utilization,
and CPU idle states information.

In total, our implementation has about 3,000 lines
of code (LOC) in C programming language, with 1,300
LOC in kernel implementation and instrumentation, 800
LOC in the controller component, 500 LOC in the CPU
power estimation C library, and 300 LOC in the model
generator component.

6. EVALUATION

6.1 Experimental Setup
We used a Nexus 4 smartphone, which has a 1.5 GHz

Quad-core Snapdragon S4 Pro CPU, 2 GB RAM, and
8 GB internal storage, and runs Android 4.2. We mea-
sured the system power consumption using a Monsoon
power meter [3]. Since we focus on the CPU power con-
sumption, we disabled other hardware components as
much as possible including turning off the screen, net-
work interfaces (cellular, WiFi, Bluetooth, and NFC),
and sensors (GPS, accelerometer etc.). We also killed
all the background services and processes that were not
required to run the experiments. Note that the mea-
sured CPU power (i.e., the ground truth value) include
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Table 4: Benchmarks tested in the evaluation.

Benchmark Description

prime Compute a large prime.

basicmath Perform simple mathematical tasks.

qsort Quick sort over an array of strings.

susan Susan image recognition.

jpeg Encode/decode a JPEG image.

dijkstra The shortest path Dijkstra algorithm.

patricia Patricia trees of routing tables.

stringsearch Search for given words in phrases.

sha SHA secure hash algorithm.

aes Advanced Encryption Standard (AES).

crc32 32-bit Cyclic Redundancy Check (CRC).

fft Fast Fourier Transform (FFT).

pcm Pulse Cod Modulation (PCM).

power consumption by CPU, memory, and flash disk.
Since our training programs also include memory activ-
ities, we expect power consumption on flash disk will
incur small impact on the accuracy of our CPU mod-
els. Each experiment was repeated for 5 times and we
report the average results.

Benchmarks. We used 13 benchmarks in our evalu-
ation. The first one is the workload generator described
in §3. We call it the prime benchmark. By replac-
ing the prime computation part of the benchmark with
other types of computation, we created the other 12
benchmarks as showed in Table 4. We ported these
12 types of computation from MiBench, which is a free
and commercially representative embedded benchmark
suite [13]. As shown in Table 4, these benchmarks cover
a diverse set of computation types that are widely used
in networking, security, telecommunication, image pro-
cessing, and many other scenarios and applications. We
ran each benchmark for 15 seconds with the CPU uti-
lization randomly selected from 0% to 100%, and the
busy loop count randomly selected from 1 to 5 during
the continuous computation periods. Depending on the
computation type, the continuous computation periods
ranged from 10 ms to 1000 ms, 250 ms on average.

Real applications. Besides the above benchmarks,
we also used the following 5 applications to evaluate our
CPU power model.

• Web browsing : we used the Dolphin Browser [6]
to load five web pages pre-downloaded from www.

nytimes.com. The five pages include the home-
page and four subpages. Dolphin Browser is a
popular web browser similar to Googles Chrome
web browser, both of which are based on the We-
bKit engine. We chose the Dolphin browser over
the Chrome browser because the Dolphin Browser
provides more control interfaces, which allow for
automated tests.

• Map: we used Google Map to browse an offline

map with operations including zooming in/out,
swiping, and moving the map. We used the tool
[27] to capture and replay the user inputs on the
touch screen, so that we could operate on the map
with desired operations automatically.

• App loading : we launched 8 real apps including
Kingsoft Office, ThinkFree Office, Chrome browser,
Firefox browser, Opera browser, Google Map, Baidu
Map, and Ezpdf reader. We did not choose any
games because (1) the loading processes of many
CPU intensive games (e.g., Angry Birds) termi-
nate when the screen is turned off, and (2) these
games usually use GPU for graphic processing, but
GPU is not considered in our power model.

• Video decoding : we used Dolphin Player to play a
MP4 video clip (30 frames/sec, 611 kbps bitrate)
for 20 seconds. We configured Dolphin Player to
do video decoding in software using CPU rather
than the dedicated video decoding hardware.

• Audio decoding : we used Google Music to play
a MP3 song clip (44.1 KHz sample rate, 64 kbps
bitrate) for 20 seconds. The Google Music decodes
audio file with software.

Please note that the goal of conducting experiments on
real applications is to evaluate how our power model-
ing approach, which focuses on estimating power con-
sumption of the CPU component, works on real app
workloads in addition to those ported from MiBench.
If one wants to estimate the power consumption caused
by a particular app, she also needs to consider power
consumption generated by other hardware components
(e.g., WiFi, Bluetooth) [24].

Utilization based CPU power models. To com-
pare our power model (labeled as IM) with existing
CPU power models, we generated 4 utilization based
CPU power models (i.e., traditional CPU power mod-
els that consider only CPU frequency and utilization)
as follows. We used the same training programs as in
our model generation process (§5), but only considered
CPU frequency and utilization, ignoring the CPU idle
states. The 4 utilization based models (labeled as UM-
1, UM-2, UM-3 and UM-4) were generated using 4 dif-
ferent computation durations: 2 ms, 8 ms, 20 ms, and
200 ms, respectively. Once we generated the single-
core power models, we further created the correspond-
ing multicore models according to the procedure de-
scribed in §4.2. It is worth noting that in previous work,
utilization based CPU power models were trained only
on single-core CPUs. For fair comparison, we extended
the CPU utilization based power models to multicore
CPU case using the same method we used in our CPU
idle state based power model.

We define the accuracy of a power model as follows:

Accuracy = 100%− |Pe − Pm|
Pm

% (7)
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Figure 7: Single-core model accuracy of the 13 benchmarks.

Table 5: Single-core model accuracy of the 13 benchmarks with different CPU utilizations.

Model Accuracy (%)

Benchmark 30% CPU utilization 60% CPU utilization 90% CPU utilization

IM UM-1 UM-2 UM-3 UM-4 IM UM-1 UM-2 UM-3 UM-4 IM UM-1 UM-2 UM-3 UM-4

prime 98 84 98 81 73 100 92 98 96 88 99 97 96 94 98

basicmath 98 74 89 96 88 100 88 93 97 94 99 98 96 94 98

qsort 99 85 96 77 69 95 98 92 87 80 93 91 93 95 87

susan 97 82 96 74 66 100 93 99 96 86 97 95 93 91 100

jpeg 100 82 96 93 84 99 91 97 98 90 99 95 94 92 99

dijkstra 94 70 85 97 93 94 84 87 93 98 98 92 89 89 98

patricia 99 87 100 90 81 99 92 97 99 89 99 97 96 94 98

stringsearch 96 79 91 81 71 98 94 99 94 84 95 92 90 88 97

sha 94 68 84 98 93 95 85 89 95 96 96 91 89 87 96

aes 94 82 94 97 88 98 90 95 100 92 100 96 94 93 99

crc32 99 87 98 85 77 99 91 97 98 89 96 93 92 90 99

fft 100 88 99 92 84 99 92 97 99 90 98 99 98 96 96

pcm 92 75 90 97 88 98 89 94 99 92 99 94 93 91 99

where Pe is the power estimated by the power model,
and Pm is the power measured using the power meter.

6.2 Experimental Results
We evaluated our prototype system from two aspects:

accuracy of our CPU power models and system over-
heads.

6.2.1 Accuracy of single-core models
We first evaluated the model accuracy when only a

single CPU core was used.
Benchmark experiments results. Figure 7 shows

the results of the 13 benchmarks with randomly decided
CPU utilization in each computation period. On aver-
age our model achieved a high accuracy of 98%, with
a small variation ranging from 94% to 100% for differ-
ent benchmarks. The average accuracy and the range
of accuracy variation of the four utilization based mod-
els were (with the variation range shown in the paren-
thesis): 89% (81%-97%), 94% (87%-99%), 95% (85%-
99%), and 89% (78%-98%), respectively. We can see
that our model significantly outperforms the utilization
based models in terms of estimation accuracy and accu-

racy stability. Although the average accuracy of UM-2
and UM-3 were not far below that of our model, they
exhibited a much larger range of accuracy variation for
different benchmarks. This is because different bench-
marks have different CPU usage patterns, which further
causes different patterns of CPU idle state entries. The
utilization based models were unable to capture the effect
of these CPU idles state changes, which are important
dynamics affecting CPU power consumption. On the
contrary, our model can well cope with this dynamic us-
age pattern, since it is designed with the impacts of idle
states in mind.

The accuracy of the existing utilization based models
are also subject to CPU utilization. Table 5 shows more
results when the CPU utilization was fixed at 30%, 60%,
and 90%. We can see that the utilization based mod-
els gave notably high errors in some cases, especially
when CPU utilization was at a low value. For exam-
ple, when the CPU utilization was 30%, the accuracy of
model UM-4 was only 66% in the susan benchmark, and
the accuracy of model UM-1 was only 68% in the sha
benchmark. This is because when CPU utilization was
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Figure 9: Single-core model accuracy with real
apps.

low, there were more idle time, which in turned led to
more dynamic pattern of idle state entries. Our model
achieved consistently high accuracy, with the lowest ac-
curacy of 92% (in the pcm benchmark with 30% CPU
utilization).

To further study how different types of workloads and
different CPU utilizations could affect the existing uti-
lization based models, we show in Figure 8 the power
estimation ratio of UM-1 to UM-4 when testing the 13
benchmarks with CPU utilization fixed at 30%, 60%,
and 90%, respectively. The power estimation ratio is
the percentage of the estimated power value over the
measured (i.e., ground truth) power value. Thus, the
closer to 100%, the better is the power estimation ratio.
Figure 8 shows that for a given benchmark at fixed CPU
utilization, it is possible to find a CPU utilization based
model to achieve a high estimation accuracy. However,
that model would have a much lower model estimation
accuracy in some other benchmarks and other CPU uti-
lization levels. For example, when the CPU utilization
is 60% (Figure 8(b)), UM-2 achieves almost 100% es-
timation ratio for benchmark stringsearch, but UM-2
would estimate about 15% more than the ground truth
value if it is used for benchmark dijkstra. Another ex-
ample is that UM-3 achieves an estimation ratio slightly
more than 95% for benchmark susan when CPU uti-
lization is 60% (Figure 8(b)). However, the estimation
ratio for the same benchmark drops below 75% when
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Figure 10: Estimation ratio vs. utilization.

CPU utilization is 30% (Figure 8(a)). In sum, it is not
possible to have a single CPU utilization based model to
achieve a high and consistent modeling accuracy in all
the benchmarks and CPU utilization levels. On the con-
trary, our model, which considers CPU idle states and
thus can adapt to variation of CPU usage pattern, is
able to achieve a consistently high estimation accuracy
in all the benchmarks and different CPU utilizations.

Real application experiments results. The simi-
lar observations can be found in the real application ex-
periments as well. Figure 9 shows the single-core model
accuracy in the five real application experiments. We
can see that our model also achieved a high accuracy,
96% on average, with a variation ranging from 90% to
99% for different applications. The accuracy is slightly
lower than that of the benchmark experiment. This is
likely because the applications had more flash disk op-
erations, but our model does not consider flash disk.
Our model had the lowest accuracy of 90% in video de-
coding. This is probably because that the player used
GPU which is also not considered in our model. For
the utilization based models, their accuracy in the real
application experiments exhibited a large range of vari-
ation. The average accuracy and the range of accuracy
variation were: 93% (90%-97%), 91% (78%-96%), 85%
(67%-98%), and 80% (61%-92%), respectively.

We also examined the relationship between power es-
timation ratio and CPU utilization for the real applica-
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Figure 11: Multicore model accuracy

Table 6: Multicore model accuracy of the 13 benchmarks with different CPU utilizations.

Model Accuracy (%)

Benchmark 30% CPU utilization 60% CPU utilization 90% CPU utilization

IM UM-1 UM-2 UM-3 UM-4 IM UM-1 UM-2 UM-3 UM-4 IM UM-1 UM-2 UM-3 UM-4

prime 100 93 90 91 89 99 91 98 99 100 98 98 98 97 96

basicmath 98 90 98 98 96 97 96 96 96 96 98 96 100 99 98

qsort 97 97 80 81 79 94 97 90 89 88 95 96 92 91 90

susan 99 97 86 87 85 98 93 99 98 96 99 95 99 100 98

jpeg 100 94 94 94 92 99 94 99 99 98 98 93 97 98 100

dijkstra 98 81 92 93 94 100 90 97 97 99 99 93 97 98 99

patricia 98 79 91 92 93 98 87 94 95 96 97 88 92 93 95

stringsearch 99 94 89 90 88 99 93 99 97 96 98 94 98 100 99

sha 98 87 98 99 100 99 93 99 100 99 99 93 97 98 99

aes 98 89 100 100 98 99 93 99 99 97 98 92 96 98 99

crc32 96 88 96 97 95 94 84 93 93 95 93 84 89 90 92

fft 99 95 94 94 92 98 97 96 96 94 97 97 99 98 96

pcm 98 90 99 100 98 99 95 99 98 97 99 95 99 100 98

tion experiments. Figure 10 shows the estimation ratios
of all the models when the CPU utilization was differ-
ent in the Web browsing application. We controlled the
CPU utilization by changing the time interval between
loading the webpages. We can see that the CPU utiliza-
tion based models gave a large range of accuracy vari-
ation when the CPU utilization was different. In par-
ticular, when the CPU utilization was low, they gave a
lower model accuracy, which was also observed in other
applications. The curve of our model is much flatter and
the estimation ratios are consistently close to 100%, in-
dicating that our model is also able to adapt to CPU
utilization changes and achieve consistent high estima-
tion accuracy under different CPU utilizations.

6.2.2 Accuracy of multicore models
Figure 11 shows the multicore model accuracy re-

sults when we ran the benchmarks and applications
using all the four CPU cores. Figure 11 (a) and (b)
show the results of the benchmark experiments and
the real application experiments respectively. Similar
to the single-core case, our model achieved a higher
average accuracy, and a much smaller range of accu-
racy variation than the existing utilization based mod-

els. The average accuracy and the corresponding ac-
curacy variation were as follows. For our model, the
results were 98% (96%-100%) for the benchmark ex-
periments, and 98% (95%-100%) for the application ex-
periments. For the four CPU utilization based mod-
els, the results were 91% (76%-98%), 96% (86%-99%),
96% (86%-100%), and 95% (87%-100%) for the bench-
mark experiments; and 94% (90%-97%), 88% (81%-
95%), 85% (79%-92%), and 84% (77%-91%) for the real
application experiments. Table 6 shows more results
when the CPU utilization was fixed at 30%, 60%, and
90%.

Compared to the single-core case, the accuracies of
the four CPU utilization based models are relatively
higher, and the differences among the four models are
relatively smaller. This is because the Nexus 4 smart-
phone allows only two CPU idle states (C0 and C2)
when multiple CPU cores are enabled. Thus, the impact
of CPU idle states become smaller. However, we still
have the same observations as in the single-core case:
1) our model has a consistently high accuracy in all the
benchmarks and applications, and significantly outper-
forms the CPU utilization based models; 2) the CPU
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utilization based models have a large range of model
accuracies in different benchmarks and application, and
give a lower accuracy when the CPU utilization is lower.
As smartphone CPUs are becoming increasingly power-
ful, smartphone CPU utilization is usually low for the
most of time. Thus, the CPU utilization based mod-
els tend to generates high errors in practice. On the
contrary, our idle-state-based CPU power model is able
to adapt to CPU usage pattern changes and utilization
changes, and thus can accurately estimate CPU power
consumption with different workloads and different CPU
utilizations.

6.2.3 System overheads
From the 312 training programs (§5), we chose those

that cause the most frequent frequency changes and idle
state entries to evaluate the CPU overhead of our sys-
tem. On average, the chosen workloads incur about 40
frequency changes per second and about 450 entries of
CPU idle states. Although our implementation should
have the maximum system overhead when running these
workloads, we have seen no noticeable CPU usage in-
crease. This is because our data recording and reporting
process is extremely lightweight: only several variable
updates when a frequency change or idle state entry
happens, and the data are reported to user space only at
the beginning and end of the power estimation period.
As for the memory usage, our prototype implementa-
tion use about 8 KB kernel memory, with the majority
consume by the data recording data structure.

7. RELATED WORK
Existing approaches for modeling CPU power con-

sumption can be classified into two categories as below.
CPU frequency/utilization based approaches.

Existing approaches for modeling CPU power consump-
tion [12, 16, 22, 24, 26] on smartphones are all CPU fre-
quency and utilization based. They assume CPU fre-
quency and utilization as two major factors impacting
CPU power consumption. While this assumption works
well for single-core smartphones, where CPU idle states
have little impact on CPU power, it does not hold for
multicore smartphone with multiple CPU idle states, in
which power consumptions are significantly different.

Some existing approaches of CPU power modeling
also consider CPU idle states [12,23]. Specifically, Koala
[23] proposes a model based approach to estimate run-
time system power. In this approach, CPU idle states
are considered as a factor affecting system power con-
sumption. However, Koala only considers the time du-
ration of each idle state, while ignoring overheads of
the operating/idle transitions. As we have showed be-
fore, even for two workloads with the same CPU fre-
quency/utilization and the same residency of idle states,
the CPU power consumption could have more than 20%
difference. Moreover, it only reports evaluation results

on the x86 architecture. Sesame [12] also considers CPU
idle states in modeling CPU power consumption. How-
ever, it does not provide description about how this
particular information is used in the modeling process.
Similar to Koala, the idle states are only considered in
the laptop model (x86-based) in Sesame. In our work,
we focus our attention on measuring/investigating the
impacts of CPU idle state on ARM-based smartphone
CPUs. We also developed a new idle-state-based CPU
power modeling approach based on the investigation re-
sults.

In [28], we propose to incorporate idle states into
CPU power modeling for multicore smartphones, and
present preliminary results. In this paper, we did more
systematic study, presented the detailed prototype sys-
tem design and implementation, and conducted com-
prehensive evaluations with various benchmarks and real
applications.

CPU hardware events based approaches. An-
other way of performing CPU power modeling is to
model the relationship between CPU power and CPU
hardware events [8, 9, 15, 21]. For example, Power Con-
tainers [21] considers a linear model between CPU power
consumption and a series of hardware events, including
retired instructions, floating point operations, last-level
cache requests, and memory access. While the CPU
hardware events based approaches work well for PC or
server CPUs, whose ISA are mostly x86 based, they can-
not be applied in current smartphones. This is because
although many hardware events are recommended to be
implemented in the hardware monitor by the ARMv7
architecture specification [7], only very few of them are
mandated. For example, in the CPU used by the Nexus
4 smartphone, only the hardware events of instruction
rate, number of instructions retired and branches exe-
cuted and missed are implemented, which is not enough
to support the CPU hardware events based modeling.

8. CONCLUSION AND FUTURE WORK
In this paper we demonstrated that existing CPU uti-

lization based power models are ill-suited for modern
multicore smartphones. Without considering the im-
pacts of CPU idle states, existing power models give
high errors in multicore smartphones. To address the
limitations of existing power models, we developed an
idle-state-based CPU power model for accurate CPU
power modeling in multicore smartphones.

We have designed and implemented a prototype sys-
tem of our new CPU power modeling approach using
the quad-core CPU Nexus 4 smartphones, and also con-
ducted comprehensive evaluations using a diverse set of
benchmarks and real applications. Experimental results
show that our CPU power model achieves a high model
accuracy, which significantly outperforms the existing
CPU utilization based power models, with negligible
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system overheads.
Although our current implementation and evaluation

are performed on the Nexus 4 smartphone only, our ap-
proach of modeling CPU power consumption can be ap-
plied to many other smartphones. The quad-core CPU
used by Nexus 4, Qualcomm Snapdragon S4 Pro, has
been widely used on many types of mainstream mul-
ticore smartphones, such HTC Droid DNA, LG Opti-
mus G, Sony Xperia Z, and Samsung Galaxy S4 AT&T
version. Our CPU power model should work for these
smartphones.

We plan to further study the performance of our
power modeling approach using more multicore smart-
phone chipsets, such as Samsung Exynos [5] and NVIDIA
TEGRA 4 [4]. Besides homogeneous multicore CPUs,
we are also interested in examining heterogeneous mul-
ticore architectures, such as the ARM big.LITTLE ar-
chitecture [2] used in Samsung Galaxy S4 smartphones.
Although these chipsets all share the same ARM archi-
tecture and we expect that our method will work on
them, the different implementations regarding how dif-
ferent CPU cores cooperate demand more exploration
to study how well our method may work. For exam-
ple, in the Qualcomm Snapdragon S4 chipset (i.e., the
one used in Nexus 4 smartphones), each running cores
can be configured independently, while in the Samsung
Exynos chipset, all the running cores must share the
same configurations (e.g., operating frequency, max/min
frequencies, CPUfreq governors). In the ARM big.LITTLE
architecture, the “big” cores and the “little” cores can
also cooperate in different ways: in the big.LITTLE
task migration use model [20], the two types of cores
take responsibility for different ranges of frequencies
and cannot work concurrently, while in the big.LITTLE
MP use model [20], the two types of cores can work to-
gether when more computation power is needed. Fur-
thermore, as smartphone GPUs become increasingly
powerful and consume a significantly high power [11],
we also plan to study how to achieve accurate and light-
weight GPU power modeling for smartphones.
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