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Cellular data consumption is an important issue for users and network operators. However,
little is understood about data consumption differences between similar apps, smartphone
platforms, and different classes of users. We examine data consumption behavior in the
lab, comparing different apps of the same category, comparing the same top apps across
different platforms, and comparing network APIs that apps use across different platforms.
We also collect data from 387 Android users in India, where users pay for cellular data
consumed, with little prevalence of unlimited data plans. Our findings can inform users on
how their choice of platform and apps has a drastic impact on their data bill. Our findings
can also inform operators on how to use incentives to induce desired data consumption.

I. Introduction
On cellular networks, smartphone data usage can eas-
ily outstrip available capacity. Cellular operators tend
to deal with this problem by applying economic pres-
sure on users. Unlimited data plans are being replaced
with either tiered data plans or “unlimited” plans that
throttle data rates beyond a certain usage limit, both
inside 1, 2, 3 and outside 4, 5 the US. Technologists
are attempting to deal with this problem by improv-
ing cellular standards, but user demand could outpace
such improvements and Shannon’s limit could hold
them back [4].

Beyond a plethora of market research studies that
look at cellular traffic growth curves and project the
rise of video streaming and other bandwidth hogging
apps, there is little published work that studies the
consumption problem in detail. How are smartphone
users different in their data usage? How much of
heavy data consumption is a result of picking one
app over another? How much does the choice of un-
derlying smartphone OS contribute to this problem?
How can answers to such questions impact the way in
which cellular operators sell data plans to users?

In this paper, we explore this problem from multiple
angles. We conduct a number of lab experiments to
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compare different apps and different smartphone plat-
forms. We examine top apps that provide the same
functionality (weather forecasts). We examine pop-
ular apps written by professional developers that are
available on all of the three major smartphone plat-
forms. We exercise individual network APIs on these
three platforms. Data that we collect from 387 An-
droid users in India helps us understand user behavior
across different apps. Our findings include:

• There is tremendous difference in how much
wireless data is consumed by each launch of an
app. This can range from 7KB to over 1MB for
simply getting the current weather forecast. This
huge difference is present across the top weather
apps on all three smartphone platforms.

• There are several popular apps that are common
to all three platforms and authored by the same
professional developers – e.g. Amazon by Ama-
zon Inc., and Netflix by Netflix Inc. Even when
comparing these apps that provide the same func-
tionality across the three platforms, we see large
differences in consumption, with factors such as
5X and 10X depending on the app.

• While the basic APIs for consuming content
from the network are similar across the three
platforms, there are subtle differences. Compres-
sion and caching behavior is different, and maps
consume different amounts of data.

• Among Android users, there are significant dif-
ferences between “light” data users and “heavy”
data users in terms of which apps they use and
how they spend their time and data in these apps.
Our findings suggest that given such information
about the user, we could predict with 58% ac-
curacy which of three data usage categories they
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fall into, while random guessing would achieve
only 33%.

Our findings have significant monetary implications
for users. Data-conscious users have to carefully pick
apps and platforms. Picking the wrong weather app
can result in 140X higher data cost. A user that
primarily runs Amazon, Facebook, Fandango, Gas-
Buddy, and Walgreens with equal frequency can con-
sume 3.3X more data on the worst of the three smart-
phone platforms. We can construct other scenarios
with more horrifying overconsumption.

As a network operator that wants to limit spectrum
usage by phones, it is important to understand the user.
When targeting a user that is a shopper, such as one
that relies on Amazon, Fandango, and Walgreens, it is
best to steer the user to a particular platform. When
targeting a user that is a news and restaurant reviews
fan, a different platform is lighter. An operator can
stereotype the user by asking a set of questions about
their behavior. Based on such classification, the op-
erator could sell the user a tailored data plan, or of-
fer incentives to use or stay away from certain apps
and smartphones. Operators should offer free Wi-Fi
to users as usage of it is mildly correlated with lower
cellular consumption.

II. Methodology
We rely on two sets of experiments in this paper – lab
and field. Lab experiments allow us to evaluate data
consumption while controlling apps, APIs, and plat-
forms. However, they do not capture user behavior. In
our field experiments, we collect data directly from
users’ phones, instead of collecting network traces
from cellular operators. Instrumenting phones has the
advantage that we can observe Wi-Fi usage, user time
in apps, and attribute consumption to the exact app.
While it limits collection to those users that install our
software, it allows us to target multiple operators and
specific geo-regions with more ease. In all our exper-
iments, we measure the total data usage by each app.
Therefore, the data the app uses for analytics and ads
is attributed to the app itself.

II.A. Lab experiments

II.A.1. Network setup

There are three components in our network setup –
smartphones, a laptop, and the Rice University Ether-
net network. The Rice network does not use any web
proxies. The laptop runs Microsoft Windows 7 and
shares its Ethernet Internet connection to smartphones

over Wi-Fi using Connectify-Me 6. The laptop also
has Wireshark 1.8.4 7 and Fiddler 2 8 installed. We use
Wireshark to inspect traffic to/from our smartphones.
For in-depth HTTP analysis, we use Fiddler.

When analyzing traces, we calculate several statis-
tics. We calculate the total number of bytes trans-
ferred, which includes IP headers (we use IPv4 in our
experiments). We split the bytes transferred into four
categories – video, image, text, and other. The video
and image categories show the bytes for any HTTP
transfer, where the “Content-Type” HTTP header field
indicates a MIME type for video or image, respec-
tively. The text category includes both “text” and
“application” MIME types, the latter typically includ-
ing XML and Javascript. The “other” category in-
cludes other MIME types and non-HTTP traffic such
as other TCP traffic, HTTPS, or UDP. We also cat-
egorize HTTP traffic by cache and compression op-
tions. For caching, a client request can specify spe-
cific HTTP headers that will skip stale cached data in
the network. The server can include specific headers
in the response that will indicate to proxies and the
client not to cache the response. Similarly, there are
headers where the client can indicate that it will ac-
cept compressed content, and the server can specify
that the response is compressed.

We use three phones in our experiments – iPhone
4 running iOS 5.1.1, Nokia Lumia 710 running Win-
dows Phone (WP) 7.5, and Samsung Galaxy Nexus
running Android 4.1.1. We anonymize the identity
of the smartphone platforms when reporting results in
this paper 9. When capturing traces from one phone,
we make sure the other two phones are disconnected.
We evaluate a number of commercial apps and a few
custom apps we wrote, that we describe next. Prior
to collecting traces, for each phone, we first installed
all the apps, and used each app twice. We then do not
use the phones for a period of 1 week. We turn off all
background activity on the phone, including app back-
ground activity, email sync, and OS updates. We then
capture traces for each app and each phone individu-
ally by running the app to do a specific task and then
exiting the app. We run each app twice in immediate
succession, to observe how much data is presumably
cached between successive runs. We capture separate
traces for each execution of an app, starting the trace
capture just before we launch the app, and stopping

6http://www.connectify.me
7http://www.wireshark.org
8http://fiddler2.com
9The identities of the platforms are not central to our conclu-
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OS updates.
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platform 1 platform 2 platform 3
Weather Channel Weather Channel Weather Channel
WeatherBug WeatherBug WeatherBug
AccuWeather AccuWeather AccuWeather
Weather Underground Weather Underground Weather Underground
Weather Eye MyRadar Weather View
Go Weather Weather Free WeatherDuck
Go Weather EX Farenheit Weather4Me
Yahoo! Weather Weather+ Weather+
1Weather Weather Weather
wetter.com Weather HD 2 Free WeatherForecast USA

Table 1: The weather apps we evaluated on each of
the three smartphone platforms.

the trace capture just after exiting the app. In this
fashion, we believe we are capturing the “typical” net-
work consumption of these apps, as opposed to first-
run behavior which may include one-time downloads
of static icons or configuration.

II.A.2. Commercial apps

We evaluate two sets of apps. The first set is the top 10
apps from the “Weather” category of each of the three
smartphone marketplaces. We picked only free apps,
and skipped those that had specialized functionality
(e.g. ski forecast). The apps are listed in Table 1 and
we used the versions offered by the respective smart-
phone marketplaces on October 1st, 2012. We config-
ured each app to report the weather for Houston, TX,
where we ran the apps. We ran each app only so far
as to get the current weather and the forecast and then
we quit the app.

While those set of apps provide very specific func-
tionality, we also evaluated a broader set of popular
apps. We started with the top 50 free apps on each of
the three smartphone platforms. We then picked those
apps that are available on all three lists and are au-
thored by the same company that owns the brand (e.g.
Amazon by Amazon.com Inc.). We eliminated apps
where it would be difficult to perform the same action
twice on all three phones – e.g. VoIP apps where it
would be hard to ensure the exact same audio is being
transmitted, or multiplayer games where we cannot do
the same game play with the same players. We then
use the top 10 apps that remain on our list and install
the 10 apps on each of the three smartphones. The list
of these apps is in Table 2, as well as the action we per-
formed in the app each time we ran it. For each action,
we waited until the app finished it (e.g. finished load-
ing the news story, or finished playing the video). We
ran the same app on each three phones close enough
in time so that the same content is shown to the user.

app action
Amazon search for Kindle Fire; click on top item
CNN click on top news story
Facebook click on news feed for user
Fandango click on top movie; get showtimes
Fragger play tutorial; finish first level
GasBuddy click on map of gas prices and nearest gas station
Walgreens search for nearest store; click on store details
Weather Channel click on weather and forecast
Yelp search for pizza; click on top item
YouTube search for & watch “Simon’s Cat in Springtime”

Table 2: The popular apps we evaluated on each of
the three smartphone platforms and the action we per-
formed in each run of the app.

task description
audio play 5,757,568 B audio from

http://ardalan.recg.rice.edu/audio.mp3

show map centered at lat 29.94, lon -95.26
Google maps on iPhone, Android; Bing on WP

socket open TCP socket to and receive 1,024 B from
ardalan.recg.rice.edu:5661

text show 139,878 B text file from
http://ardalan.recg.rice.edu/mira/pride_and_prejudice

video play 7,883,627 B video from
http://ardalan.recg.rice.edu/video.3gp

web page show web page that is 51,452 B in total
http://www.owlnet.rice.edu/~aa15/

Table 3: Specific tasks that our custom apps perform
on each of the three smartphones.

Figure 1: Screenshots of our custom apps on the three
smartphones.

II.A.3. Custom apps

We also evaluate specific APIs that consume network
bytes, by building three custom apps. Figure 1 shows
screenshots for the apps and Table 3 lists the actions
that each of the 6 buttons do. For maps, we use the
native maps APIs that each platform offers to display
a specific 1 square mile region in Houston, TX. For
the web page and text file downloads, we use standard
HTTP APIs in the three platforms and use the default
options – i.e. we did not explicitly set any caching or
compression options. On Android, we used the “An-

http://ardalan.recg.rice.edu/audio.mp3
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Figure 2: Screenshots of Metre UI on Android.

droidHttpClient” API. For video and audio playback,
we used APIs that allow us to use URLs as the source.

II.B. Field experiments

Our lab experiments are useful for comparing differ-
ent apps and platforms directly since we control what
actions are performed in each app. However, there
are three main limitations of our lab experiments. All
the experiments are done on Wi-Fi, and it is possi-
ble that some apps may behave differently on cellu-
lar. They do not reflect network consumption by real
users. They only measure foreground activity of apps,
not their periodic background activity. To overcome
these limitations and to understand user behavior in
the wild, we deployed an app on Android.

II.B.1. Metre: data collection app

We developed an app called Metre for Android smart-
phones. The data usage of each app on Wi-Fi and cel-
lular is measured and shown to the user, as in Fig-
ure 2. The user can select three time periods to see
usage over – the current month, week, or day. For
each app, Metre collects the following seven pieces of
data per day: bytes sent and bytes received on each
of Wi-Fi, cellular, and USB, and also the app fore-
ground time. The app foreground time measures the
time that the app is visible on the screen. At the end
of every day, Metre attempts to upload that day’s data
(typically a few KB in size) to a server in the cloud.
This data is accompanied by configuration informa-
tion – the phone model, the network operator name,
Android OS version, and the current time zone. If the
upload fails, Metre will queue it and retry periodically.

To measure data consumption, Metre uses two An-
droid APIs – TrafficStats.getUidRxBytes(appID)

and TrafficStats.getUidTxBytes(appID). Since
these APIs do not distinguish between cellular, Wi-Fi,
and USB consumption, Metre registers for notifica-
tions for network interface changes, calls the Traffic-

task Metre usage Packet traces
audio 6,149,322 B 6,582,117 B
show map 91,008 B 96,330 B
socket 1,138 B 1,778 B
text 140,418 B 152,693 B
video 8,254,200 B 8,274,370 B
web page 44,090 B 46,125 B

Table 4: Metre accuracy tests.

Stats APIs, and attributes consumption appropriately.
Since the phone uses one interface at a time, this ap-
proach is accurate in assigning the data usage to differ-
ent interfaces, catching even short transitions between
them. When an app uses the Android media stream-
ing API, Android assigns that network consumption to
the Android media service rather than to the app. In
Metre, we monitor which app is in the foreground and
appropriately re-assign those bytes to the responsible
app.

Metre’s accuracy depends on the accuracy of the
underlying Android APIs. Unfortunately, those APIs
do not include TCP/UDP/IP packet header overheads,
retransmissions, nor DNS lookups. To quantify this
inaccuracy, we present Table 4 where we compare the
size of the specific network transfers in Table 3, as
reported by packet traces and as reported by Metre.
We feel that this difference, due to header overheads
and DNS overheads, does not alter the findings from
our comparative analysis.

II.B.2. User population

We deployed Metre in Google Play in February
2012 10. Based on users’ feedback and early data anal-
ysis, we made bug fixes and performance improve-
ments and released a major update. We finally retired
the app in May 2013.

The US population is undergoing a shift from wide
availability of unlimited cellular data plans (29%
of US subscribers had unlimited data in December
2010 [1]) to strict caps or throttling. To avoid the im-
pact of usage limit rate throttling on our analysis, we
avoid US subscribers. Instead, we focus on the coun-
try of India, where operators tend to charge by actual
data consumed 11 and unlimited plans are compara-
tively much more expensive and rarely used.

Android 2.2 and 2.3 together account for 60.9% of
the market 12 even as of December 2012, and we be-

10covered under Rice University IRB approval #12-098X
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lieve these older versions are used predominantly in
India and other emerging markets. Hence we use the
2.2 and 2.3 versions of the relevant APIs to collect
data consumption, and tuned our app’s performance
and stability for these versions. To increase participa-
tion, we advertised Metre through the AdMob mobile
advertising network, specifically targeting India.

In the 2 months since the last update to our app, we
have collected data for over 600 users. After filtering
out non-Indian users (using time-zone and operator
name), and those with fewer than 5 days of records,
we have 387 users from 2012-10-01 to 2012-12-03.

III. Lab Results
We now present results from running apps in the lab.
We designed these experiments to not necessarily be
representative of typical user consumption, but instead
to directly compare apps and platforms.

III.A. Weather apps

There are a lot of apps in each of the three smart-
phone marketplaces. We obviously expect some apps
to consume more wireless data than others, such as
a video streaming app versus a calculator app. How-
ever, we expect apps with similar functionality to con-
sume roughly the same number of bytes. We test this
hypothesis by picking weather apps. Unlike other cat-
egories such as “utilities” or “entertainment”, we ex-
pect weather apps to provide similar, generally unam-
biguous features – weather forecasts for your location.

In Figure 3, we show the total data consumption of
weather apps on each of the three platforms. Each bar
is color-coded to show the size of the content types
that were downloaded, as described in §II. There is
a tremendous difference in how many bytes weather
apps consume. One app consumes as little as 7KB in
a launch, while others consume over 1MB. This is a
staggering difference of over 140X. Neither extreme
is a single data point – there are other apps that have
similarly low data consumption, and others with sim-
ilarly high consumption, on all three platforms.

These findings are surprising to us for several rea-
sons. We ran each app simply to the point where we
see the current weather and the weather forecast. We
did not explore any possibly additional features of an
app, such as high-definition video streams of torna-
does. Hence we expected the majority of network
downloads to be simply the text of weather conditions
and forecasts, which are small and highly compress-
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Figure 3: Data consumption by a variety of popu-
lar, free weather apps on platform 1 (top), platform
2 (middle), and platform 3 (bottom). Each app was
used to request weather for Houston, TX. Each app
was run twice in immediate succession and both val-
ues are plotted. The vertical axes are chopped, and
lines exceeding that are labeled with the total transfer
size.

ible. However, as the figures show, the text fraction of
the download varies.

To avoid including any extra transfers as a result of
first time setup, we ran each app twice, followed by a
week of not using the app, and then ran the app again
twice to capture traces for these results. Hence we do
not expect these results to have variability from some
apps downloading logos and icons on first launch, and
other apps including such content in the app install
package itself. With 4 exceptions, in almost all cases
the second run of the app consumes fewer bytes to
varying degrees. This is presumably due to implicit
caching of HTTP content by the underlying OS, or
explicit caching by the app itself.

There are interesting implications for the user. The
data-conscious user has to be vigilant even when
choosing between weather apps – a type of app that
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Figure 4: Data consumption by a variety of popular
apps on the three platforms. Each app was written by
the same company for all three platforms. The vertical
axis is chopped for clarity, and lines exceeding that
are labeled with the total transfer size. The name of
the app is prefaced with the platform number. The
results are from two runs of each app. These are not
the first runs of the app after install, but rather runs
after a week of no use.

one may otherwise not think would be a data hog. An
OS platform or cellular operator may want to factor
in the data consumption of apps before promoting one
app over another in the marketplace.

III.B. Popular apps

There remain several questions. Why is there such
a big difference in consumption between apps? Are
some apps providing more functionality? Are any of
the platforms inherently more data consuming? Are
some apps not using standard cache controls or com-
pressing network transfers? To understand these in
more depth, we now examine top apps that we can
directly compare across the three different platforms.

III.B.1. Differences between platforms

Figure 4 shows the data consumption of these apps
across the three platforms. As before, each app has
been run before, followed by a week of no use, and
then run twice while collecting packet traces. For
brevity, we show the first of those latter two runs.

To a large extent, we expect the functionality of
the same app by the same author across all three plat-
forms to be the same. Yet, we see a significant varia-
tion in network consumption. For example, the CNN
app consumes 186KB on one platform but over 1MB
on the other two. Fandango consumes almost 1MB
on one platform, but 224KB and 377KB on the other
two. Fragger on platform 2 consumes a huge number
of bytes, and most of the bytes are spent on high res-
olution sprite images that the app does not appear to

cache between runs. The only app with almost simi-
lar consumption is YouTube, which is between 3.3MB
and 3.6MB on the three platforms. This unexpected
finding is not simply explained away by the platform
– no one platform is consistently lighter than another.

As a user, this can have a major impact on my data
consumption depending on what apps I rely on. Sup-
pose a user primarily uses Amazon, Facebook, Fan-
dango, GasBuddy, and Walgreens, and uses each of
them with the same frequency and performing the
same operations as we did. If the user picks platform
1, his data consumption will be 2.8X worse than if he
had picked platform 2, and 3.3X worse than if he had
picked platform 3. A different combination of apps
and different frequency of use may point to a different
platform as the worst offender. Users have little in-
sight today on the impact of the choice of smartphone
platform on the cost of their data plan.

A cellular operator that sells all three smartphone
platforms may choose to adjust their marketing based
on such information. Advertising campaigns often
target specific market demographics (e.g. the social
user, or the gamer, or the movie fan), and an opera-
tor may want to use a different platform to push to
each demographic. An operator that wants users to
conserve data may pick the lightest platform for each
demographic. Conversely an operator that wants to
make the most money from overage charges will want
to pick the worst platform for each demographic.

III.B.2. Differences at the HTTP layer

In these apps, the majority of network data is trans-
ferred over HTTP. There is little use of UDP, perhaps
because we did not test a VoIP app such as Skype.
Since the majority of traffic is HTTP, we can exam-
ine the network caching and compression behavior of
these apps. Table 5 shows the percentage of HTTP
transfer bytes in each app where either the client or the
server explicitly set a no-cache directive, or either the
client did not specify it can accept compressed content
or the server did not compress the response.

Since we are examining traces for a repeated run of
an app, we expect the transferred bytes to be domi-
nated by dynamic content, such as the latest news or
movies list. Interestingly, only in a relatively small
number of cases is the app explicitly specifying a no-
cache primitive in HTTP requests. Doing so forces
the HTTP request to hit the network. It is possible that
most app developers are being network friendly. Al-
ternatively, most app developers may simply be lazy
and not write the additional line of code to specify a
cache header in the HTTP request. Due to this behav-



app % of bytes where
no-cache by no-compress by

client server client server
Platform 1

Amazon 0 0 1 100
CNN 0 5 100 100
Facebook 0 0 0 98
Fandango 0 0 97 100
Fragger 0 1 2 100
GasBuddy 0 0 54 95
Walgreens 0 0 100 100
Weather Channel 0 1 0 70
Yelp 0 0 0 68
YouTube 0 29 1 62

Platform 2
Amazon 85 0 0 91
CNN 98 2 0 67
Facebook 4 10 1 80
Fandango 37 4 0 65
Fragger 94 0 0 100
GasBuddy 0 0 0 98
Walgreens 0 0 0 100
Weather Channel 0 0 0 91
Yelp 39 1 0 97
YouTube 0 4 87 94

Platform 3
Amazon 52 0 52 100
CNN 0 0 24 100
Facebook 0 0 55 100
Fandango 1 1 100 100
Fragger 93 93 7 97
GasBuddy 12 0 84 84
Walgreens 1 0 100 100
Weather Channel 0 0 0 96
Yelp 0 0 49 100
YouTube 89 4 90 96

Table 5: HTTP caching and compression statistics for
professional apps on three platforms

ior, we see a significant reduction in the number of
bytes transferred for most of these apps if we imme-
diately run them again.

Desktop browsers accept compressed content,
which increases download speed by reducing the
number of transferred bytes from the server. How-
ever, smartphone platform support for it is mixed. On
WP 7.x, the underlying platform does not, but app de-
velopers may add that header to outgoing HTTP re-
quests and use third-party libraries to decompress the
response 13. On iPhone, the HTTP API 14 supports de-
compressing content that has been compressed by the
server, but there is confusion out there on whether the
iPhone API specifies the compression option by de-
fault to outgoing requests 15. On Android, if the app
developer uses the “HttpURLConnection” API, gzip

13http://www.sharpgis.net/post/2011/08/28/GZIP-

Compressed-Web-Requests-in-WP7-Take-2.aspx
14http://developer.apple.com/library/mac/

#documentation/Cocoa/Reference/Foundation/

Classes/NSURLConnection_Class/Reference/

Reference.html
15http://www.bigevilempire.com/codelog/entry/

nsurlconnection-with-gzip/

encoding is on by default 16. If the app developer uses
“AndroidHttpClient” instead, it is off by default and
the “modifyRequestToAcceptGzipResponse” method
has to be called to enable it 17.

Hence it is not surprising that for the outgoing
HTTP requests from these apps, some specifically
identify that they can accept compressed content,
while others do not. However, what is surprising is
that despite some use of the compress header in the
client requests, almost all of the server responses are
not compressed. Some of this behavior is explained
by the type of content – video and image content will
typically already be compressed, so the server may
have rules not to apply additional compression on top
of that. However, as Figure 4 shows, there is still a sig-
nificant fraction of text content downloaded by many
apps. We believe that most of this text content is dy-
namically generated content from the server. To com-
press such content, web server administrators have to
enable it. In dynamic compression, any dynamically
generated content will first be passed through gzip
before going over the network. Administrators are
sometimes cautioned 18 against enabling it for fear of
increasing per-request server processing time, thereby
limiting scalability.

Our recommendation to app developers is to take
the effort to add the appropriate headers and/or li-
braries to turn the compression on in the app, and en-
able it on web servers for dynamic content. For ex-
ample, on platform 1, the CNN app transfers 48% of
total bytes as uncompressed text. On platform 2, the
Walgreens app transfers 79% as uncompressed text.
On platform 3, the Yelp app transfers 67% as un-
compressed text. Plain text, XML, JSON and HTML
are highly compressible, and achieving even a decent
compression savings of 60% can cut the total down-
loaded bytes in half for some apps.

III.C. Custom apps

As we have just shown, the choice of app and plat-
form can have a big impact on data consumption. In at
least one case, the choice of API can also impact data
consumption because of the presence or lack of HTTP
compression. Do any of the other network-consuming
APIs behave differently between the three platforms?
We now examine these APIs via our custom apps that

16http://developer.android.com/reference/java/

net/HttpURLConnection.html
17http://developer.android.com/reference/

android/net/http/AndroidHttpClient.html
18http://technet.microsoft.com/en-us/library/

cc753681(v=ws.10).aspx

http://www.sharpgis.net/post/2011/08/28/GZIP-Compressed-Web-Requests-in-WP7-Take-2.aspx
http://www.sharpgis.net/post/2011/08/28/GZIP-Compressed-Web-Requests-in-WP7-Take-2.aspx
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSURLConnection_Class/Reference/Reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSURLConnection_Class/Reference/Reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSURLConnection_Class/Reference/Reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSURLConnection_Class/Reference/Reference.html
http://www.bigevilempire.com/codelog/entry/nsurlconnection-with-gzip/
http://www.bigevilempire.com/codelog/entry/nsurlconnection-with-gzip/
http://developer.android.com/reference/java/net/HttpURLConnection.html
http://developer.android.com/reference/java/net/HttpURLConnection.html
http://developer.android.com/reference/android/net/http/AndroidHttpClient.html
http://developer.android.com/reference/android/net/http/AndroidHttpClient.html
http://technet.microsoft.com/en-us/library/cc753681(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc753681(v=ws.10).aspx


platform 1 platform 2 platform 3
app bytes bytes bytes
Audio 6,582,117 6,052,078 5,984,775
Audio 6,609,732 6,032,148 6,052,678
Map 96,330 3,696,819 373,633
Map 27,045 221,603 7,733
Socket 1,778 1,853 1,564
Socket 1,636 1,448 1,468
Text 152,693 53,086 145,721
Text 147,941 0 730
Video 8,274,370 8,373,289 8,234,287
Video 8,266,237 8,419,384 8,211,878
Web page 46,125 45,140 45,197
Web page 4,756 4,457 4,419

Table 6: Bytes consumed when exercising six com-
mon APIs across the three smartphone platforms.
Each network operation is done twice, and listed in
order.

we described in § II.A.3
Table 6 lists the bytes consumed. In general, the

numbers roughly match the sizes of objects that we
transfer in Table 3. Platform 2 downloads an egre-
giously large number of bytes (over 3MB) for maps,
while the other two platforms consume about a tenth
of that. We suspect that the platform is prefetching
surrounding map tiles in case the user scrolls around.
Platform 3 is particularly good about caching pre-
viously downloaded map tiles. The socket transfer
numbers are unsurprisingly similar to the transfer size
– there is little room for overhead beyond standard
packet headers and DNS lookups. When transferring
the text file, we use standard HTTP APIs with default
options on all three platforms – the one we use on
platform 2 sets a compression header by default and
hence its download size is lower. Platforms 2 and 3 do
a good job of caching the previously downloaded re-
sult. There is some overhead in the video transfer, but
that is largely due to headers. The web page transfers
show similar numbers. The HTML part of the web
page is likely being transferred as compressed content
because the browser itself is embedded in the app.

III.D. Summary

Our lab experiments have quantified a number of dif-
ferences in data consumption that have implications
for users, app developers, OS developers, and cellular
operators. There are subtle differences between APIs
that the three major platforms expose that can add up
to a significant number of bytes. Support for HTTP
content compression is mixed and can have a big im-
pact on text transfers. Apps that make heavy use of
maps APIs should understand how many bytes the OS
is transferring underneath. Lack of caching of maps
and HTTP content between repeated runs of an app

can also increase consumption.
These differences add up in apps that use multiple

network API calls to build their user experience. Even
apps that provide a “simple” function of weather fore-
casts can have 140X difference in consumption. De-
pending on which apps a user runs and how often,
picking the wrong platform can cost the user.

While these experiments are useful for examining
apps, platforms, and APIs in isolation, they miss the
user behavior aspect of the problem. We now look at
real users and their consumption patterns.

IV. Results from Field Data
We now examine the data we collected from Android
users. The basic question we seek to answer is: how is
data consumed in the field? We break this down into
more specific questions:

• Is there a temporal pattern of data usage?
• How do various apps contribute to data usage?
• How are heavy and light data users different?
• What factors can indicate that a user is a heavy

or light data user?

Answers to these questions will not only help cellular
operators price data plans but also provide insights for
developers to promote their apps.

IV.A. Data set and analysis methods

We focus on data from Metre from September 30 to
December 3, 2012. We only use the data from 387
smartphones from India for which we have at least five
days of data. The median duration of data per user
is 25 days, the median number of apps that ran on a
phone is 50, and the median amount of data used per
user is 16 MB/day. Mathematically, the data set can be
described as {u(i, j, d) : i ∈ P, j ∈ A, d ∈ Di} where
P is the set of users, Di the set of days in which data
from user i ∈ P is collected, and A the set of apps
observed. And u(i, j, d) can denote any one of the
following types of use: time duration, cellular data,
Wi-Fi data, and total data. Table 7 summarizes the
mathematical notations we use in the rest of the paper.

Since a user could install and uninstall Metre on
any day, we have different numbers of days of data
for each user. Figure 5 shows the number of users we
have on each day. Figure 6 shows a CDF of how many
days of data we have across these users, or |Di|.

App Usage: Our users used a diverse set of apps.
We show the data consumption of the 10 most popular
apps as a CDF across all users in Figure 7. This figure
conflates two factors – how much data an app con-
sumes and how much time a user spends in the app.



symbol description

D set of days of data collection
P set of users of data collection

Di set of days for which we have data from user i ∈ P
A set of apps observed

u(i, j, d) use∗ by user i ∈ P through
app j ∈ A on day d ∈ Di

v(i, j) daily average use by user i ∈ P through app
j ∈ A during Di. v(i, j) = 1

|Di|
∑

d∈Di
u(i, j, d)

w(i, d) use by user i ∈ P on day d ∈ Di.
w(i, d) =

∑
j∈A u(i, j, d)

x(i) daily average use by user i ∈ P during Di.
x(i) =

∑
j∈A v(i, j) = 1

|Di|
∑

d∈Di
w(i, d)

y(j) daily average use by app j across all users.
y(j) =

∑
i∈P v(i, j)

Table 7: Important notations. ∗use can be either time
duration, cellular data, Wi-Fi data, or total data.
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Figure 5: Number of users per day during the two
months of data collection.
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Figure 6: CDF of number of days of data collected
across all users. We ignore users under 5 days.

As a result, while we would expect YouTube to be the
right-most curve in this graph, it is actually in the mid-
dle, in part because users spend more aggregate time
in apps such as the browser and Facebook. In the next
subsection, we tease these factors apart.

Smartphone Models: The data includes at least
121 models of smartphones. Table 8 lists the charac-
teristics of the top 10 devices by number of users.

Network Access: 32% of users used Wi-Fi for data
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Figure 7: CDF of average bytes consumed per day for
10 most popular apps across all users. Legend lists
lines in order from top to bottom.

phone model screen # of
size (′′) resolution users

Samsung GT-S5360 3 240x320 180
Samsung GT-S6102 3.14 240x320 141
Samsung GT-S5830i 3.5 320x420 72
Samsung GT-S6802 3.5 320x420 51
Samsung GT-S5300 2.8 240x320 37
Samsung GT-S7500 3.6 320x480 27
Samsung GT-S5830 3.5 320x480 26
Samsung GT-S5570 3.14 240x320 24
Samsung GT-S5670 3.3 240x320 20
Sony Ericsson ST25i 3.5 480x854 19
HTC Explorer A310e 3.2 320x480 18
Samsung GT-S5302 2.8 240x320 17
Samsung GT-I9100 4.3 480x800 17
Sony Ericsson WT19i 3.2 320x480 13
Samsung GT-I9003 4.0 480x800 12
Micromax A75 3.75 320x480 11
Samsung GT-I9070 4.0 480x800 10

Table 8: Characteristics of the most popular phones.

at least once during the data collection. All but 2 users
have used cellular data at least once. 5% of them used
Wi-Fi every day for which they used any data.

Data Normalization: To compare users and com-
pare apps, we use the average daily data consump-
tion by either users, apps, or both. This removes the
bias from unequal number of days recorded from each
user, and we only consider users with at least 5 days
of data. We use three types of daily averages, as de-
scribed in in Table 7: v(i, j) and x(i) and y(j) . When
we consider top apps, either by data consumption or
time spent, we only consider those apps that had at
least 10 users and at least 10 days of usage across all
users, to further eliminate outlier bias.

IV.B. Temporal pattern of data use

Our data set may be too small to draw definitive con-
clusions on temporal patterns in wireless data use.
Our analysis results suggest the absence of obvious
ones. Figure 8 shows how daily data use by all users
changes during the two months of data collection.
Daily data use goes up and down significantly twice
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Figure 8: Daily data use, aggregated across all users.

0 
0.05 

0.1 
0.15 

0.2 
0.25 

0.3 
0.35 

0.4 
0.45 

0.5 

0 0.1 0.2 0.3 0.4 0.5 

Lo
w

es
t p

ow
er

 fr
eq

ue
nc

y 
(1

/d
ay

) 

Highest power frequency (1/day) 

Figure 9: Frequency spectrum of daily data per user.

in the first month, corresponding to our two advertis-
ing campaigns to promote Metre in Google Play. Me-
tre continues to gain and lose users along the way but
the daily data use changes seem to be random without
any apparent periodicity that may suggest a weekly or
biweekly pattern.

We further examine if there is any temporal pattern
in individual user’s daily data use. We examine the
127 users for whom we have at least 28 consecutive
days of data. We treat each user’s daily data use as
a time series and apply FFT to it to obtain its fre-
quency spectrum. We then examine the spectrum to
see if there is any frequency that has unusually high
power to suggest there is a temporal pattern at that
frequency. For conciseness, we characterize a user
based on the highest and lowest power frequencies as
a single data point in Figure 9. If there is no tempo-
ral pattern common to users, the data points should be
uniformly, randomly distributed in the figure, which
is what the graph shows. Although we see few more
dots toward the left side of the graph, it is likely FFT
artifacts from users with slightly more than 28 days of
data. Notably, we do not observe any concentration
of data points for frequency of 1/7, which would have
suggested a weekly periodicity.
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Figure 10: Average daily data use of all users ranked
from the least to the most, each data point being x(i)
(i is user). The vertical axis is on a log scale.

IV.C. Heavy apps

We now consider y(j), which is the average daily data
use by app j. We use this value to identify the top 10
heavy apps by data usage. We also calculate this by
time usage instead, and identify the top apps by time
consumption.

Table 9 shows the top 10 apps in terms of time use
and the top 10 apps in terms of data use. There is
a large overlap between the top data and top time use
apps. The two groups share six apps. The apps unique
to the top time group are local media playback apps
and a screen lock app that do not require Internet ac-
cess for every launch, and a text messaging app that
produces only a little data traffic. In contrast, the apps
unique to the top data use group are players of online
media, i.e., tubemate and realplayer, and file down-
load. It is interesting to note that ibibo.mtt, a third-
party browser, uses more than five times data per hour
than android.browser, the built-in browser.

IV.D. Heavy users versus light users

Users are very different in their daily data usage. Fig-
ure 10 is a histogram of average data consumption per
day across all users. The median is around 16 MB.

We now examine the difference between the top and
bottom thirds of the users in terms of daily data usage,
i.e., x(i) for data use. We call the top third users heavy
users and the bottom third light users. We denote them
with sets H and L, respectively. The average daily
data use by the heavy data users,

∑
i∈H x(i), is 84.5

MB while that by the light users,
∑

i∈L x(i), is 5.4
MB, or 16X smaller. We focus on comparing heavy
and light data users in order to reveal what factors are
correlated to the difference in daily data use.



y(j) popularity
app MB hours |MB| |hours| # of users % of users
devian.tubemate.homeF 1068.59 6.86 0.61 0.06 45 11.63
com.sec.android.providers.downloadsF 329.84 0 0.19 0 147 37.98
com.tencent.ibibo.mttF 187.27 5.76 0.11 0.05 40 10.34
com.real.RealPlayerF 165.50 1.03 0.09 0.01 26 6.72
com.android.vending†F 1097.37 32.44 0.62 0.29 386 99.74
com.facebook.katana†F 742.32 36.41 0.42 0.32 237 61.24
com.google.android.youtube†F 724.26 13.41 0.41 0.12 309 79.84
com.UCMobile.intl†F 621.76 17.79 0.35 0.16 98 25.32
com.opera.mini.android†F 343.10 35.50 0.19 0.32 151 39.02
com.android.browser†F 332.61 72.15 0.19 0.64 363 93.80
com.whatsapp† 137.02 33.64 0.08 0.30 158 40.83
com.jiubang.goscreenlock† 77.47 30.98 0.04 0.28 37 9.56
com.cooliris.media† 146.18 29.20 0.08 0.26 309 79.84
com.android.music† 35.53 14.71 0.02 0.13 274 70.80

Table 9: Heavy apps measured by total data and time use. F top data apps; † top time apps

IV.D.1. Comparing Usage

We employ two techniques to compare usage by
heavy and light users. In both techniques, we iden-
tify the top 10 apps by the heavy user, Am

H , and those
by the light user, Am

L , in terms of use m, which can
be time or data use. That is, the top 10 apps are the
10 apps with the highest y(j) aggregated over each
group. We focus on these two sets of apps while ig-
noring the rest. The rationale is that the top 10 apps
account for over 80% of the usage of m [3, 14].

First, we show how AL overlaps with AH . Next,
we define a vector V = {v1, v2, ..., v|AL∪AH |} to in-
dicate the use of each app in AL ∪ AH . Let VL de-
note the use vector by the light users and VH that by
the heavy users. We compare the usage by the two
groups quantitatively with the absolute distance be-
tween their vectors, i.e., ||VL − VH ||, and the cosine
similarity between their vectors, which measures the
angle between the two vectors in this space [12].

IV.D.2. Top apps by data use

We first examine the top 10 apps by data use for
heavy and light data users, shown in Table 10. There
are apps where both sets of users spend a lot of data
bytes – three browsers, Facebook, YouTube and the
app marketplace. However, heavy users tend to spend
more bytes on apps that download files and videos –
RealPlayer, MyFiles, TubeMate. In contrast, a larger
fraction of data bytes for light users are spent in com-
munication apps – email, Skype, WhatsApp.

The table also shows how many bytes and how
much time the two sets of users spent in these apps.
These two vectors are hard to directly compare be-
tween heavy users and light users because in part the
magnitude (how much data a user spends overall) is

different. Hence we calculate the normalized vectors
for data and time consumption. We can compare two
normalized vectors by calculating the smallest angle
between them – the minimum angle of 0◦ means that
the two vectors are the same, and the maximum angle
of 90◦ means that they are opposites. If we compare
the data normalized vectors for heavy users and light
users, the angle between them is 54.8◦. This indicates
that the data they spend across these different top apps
is significantly different. The angle between the nor-
malized time vectors is 34.5◦, which is much smaller
than that between the data normalized vectors. That
is, how heavy and light data users spend their data
is relatively more different than how they spend their
time among these top data apps. This difference is not
explained by simply different top apps being used or
simply different amounts of time spent on top apps.

IV.D.3. Top apps by time use

Similar to the previous analysis, we now examine the
top apps where heavy and light data users spend most
of their foreground time (as opposed to those apps
where they spend most of their data). In Table 11, we
again see some apps are common to both sets of users
– web browsers, Facebook, and so on. Interestingly,
heavy users spend a lot of time in YouTube, while
light users spend a lot of time in Deskclock and Bub-
bleShooter – two apps that consume very little data.

For the top time apps, the angle between the nor-
malized vectors for data is 44◦, and that for the time
vectors is 34.7◦. While the angle between the nor-
malized vectors for time is similar to those reported
above for top data apps (34.7◦ vs. 34.5◦), the angle
between the normalized vectors for data is smaller
than that reported above for top data apps (44◦ vs.
54.8◦). This means that the difference between how
heavy and light users consume data from the top time



heavy users (
∑

i∈H v(i, j))) light users (
∑

i∈L v(i, j))
app MB hours |MB| |hours| # users MB hours |MB| |hours| # users
com.cooliris.mediaF 124.14 11.87 0.08 0.25 92 4.69 7.51 0.03 0.29 109
com.real.RealPlayerF 164.95 0.22 0.10 0.00 13 0.07 0.33 0.00 0.01 2
com.UCMobile.intlF 549.28 11.76 0.35 0.25 47 5.48 1.03 0.04 0.04 15
devian.tubemate.homeF 1034.20 5.18 0.66 0.11 25 7.19 0.46 0.05 0.02 8
com.android.browser†F 166.56 35.87 0.11 0.75 123 52.35 14.41 0.35 0.55 116
com.android.vending†F 522.10 12.84 0.33 0.27 127 111.81 4.82 0.75 0.18 126
com.facebook.katana†F 529.55 14.16 0.34 0.30 82 69.11 9.08 0.46 0.35 64
com.google.android.youtube†F 621.90 10.47 0.39 0.22 110 16.03 0.60 0.11 0.02 90
com.opera.mini.android†F 214.52 11.47 0.14 0.24 54 25.71 7.92 0.17 0.30 41
com.sec.android.providers.downloads†F 240.48 0.00 0.15 0.00 47 17.67 0.00 0.12 0.00 39
com.android.email† 5.31 0.75 0.00 0.02 55 10.19 1.35 0.07 0.05 62
com.google.android.apps.maps† 20.04 2.37 0.01 0.05 115 11.78 1.47 0.08 0.06 120
com.viber.voip† 2.03 0.36 0.00 0.01 18 8.37 1.12 0.06 0.04 23
com.whatsapp† 49.95 7.25 0.03 0.15 41 28.48 15.76 0.19 0.60 57

Table 10: Heavy users and light users, H and L, in their top apps by data consumption. F top data consumer for
heavy users; † top data consumer for light users

heavy users (
∑

i∈H v(i, j)) light users (
∑

i∈L v(i, j))
app hours MB |hours| |MB| # users hours MB |hours| |MB| # users
com.google.android.youtubeF 10.47 621.90 0.34 0.61 22 0.59 13.18 0.03 0.17 90
com.jiubang.goscreenlockF 13.04 31.40 0.42 0.03 113 5.24 4.38 0.23 0.06 4
com.UCMobile.intlF 11.76 549.28 0.38 0.54 60 1.04 5.53 0.05 0.07 16
com.android.browser†F 35.87 166.56 1.15 0.16 123 14.36 51.40 0.63 0.66 116
com.android.music†F 5.37 21.23 0.17 0.02 81 4.17 4.17 0.18 0.05 92
com.android.vending†F 12.84 522.10 0.41 0.51 127 4.85 109.74 0.21 1.40 126
com.cooliris.media†F 11.87 124.14 0.38 0.12 88 7.51 4.69 0.33 0.06 109
com.facebook.katana†F 14.16 529.55 0.45 0.52 86 8.99 65.89 0.40 0.84 64
com.opera.mini.android†F 11.47 214.52 0.37 0.21 17 8.10 26.80 0.36 0.34 42
com.whatsapp†F 7.25 49.95 0.23 0.05 45 15.65 28.21 0.69 0.36 56
com.sec.android.app.myfiles† 5.13 13.06 0.16 0.01 59 2.94 2.55 0.13 0.03 78
com.wssyncmldm† 0.80 0.32 0.03 0.00 44 2.60 1.17 0.11 0.01 22
util.sms† 2.22 19.05 0.07 0.02 28 4.46 7.00 0.20 0.09 15

Table 11: Heavy users and light data users, H and L, in their top apps by foreground time. F top time consumer
for heavy users; † top time consumer for light users

apps is smaller than that between how they consume
data from the top data apps. This suggests that the
heavy and light users are more different in how they
consume data via their top data apps.

IV.E. Indicators of heavy data use

Based on our findings so far, we identify a candidate
set of variables that may be correlated with being a
heavy or light user. We now employ regression and
correlation analysis to quantify this. Note that we
identify correlation between variables, not causal re-
lationships. Knowing such correlations can be useful
for cellular operators, who may want to tailor their ad-
vertising or data plans to specific customers.

The technique we use here is the ordered probit
analysis, which is a form of the regression analysis
that allows for an ordinal categorical dependent vari-
able. Regression analysis is a technique to estimate
the relationship between dependent variables, or re-
sponses, and independent variables, or predictors. The
dependent variable in our analysis is whether a user is
a heavy user, a light user, or an in-between user (3

categories) as defined by cellular data usage (§IV.D).
This dependent variable is ordinal. That is, there is
a simple ordering between the categories, i.e., heavy
users are those users who use more data than other
users. The ordered probit analysis calculates the prob-
ability of a user being a heavy or light user or in-
between, based on the independent variable(s). These
probabilities can then be used for prediction by pick-
ing the most probable outcome. The prediction ac-
curacy will be 33% when there is no dependency be-
tween independent and dependent variables and the
prediction is purely random. As our input to each
analysis, we measure and use the value of the indepen-
dent variables for each user. Therefore, each analysis
has 387 input values.

Table 12 summarizes the ordered probit analysis re-
sults with different independent variables. Below we
summarize the main findings.

First, Wi-Fi usage is a mild indicator of cellular
usage. As our independent variable in this analysis,
we use a binary variable that indicates whether a user
used Wi-Fi at all in our collected dataset. In fact, the



independent variable(s) prediction accuracy
Wi-Fi 43%
screen size and resolution 40%
average time use 49%
heavy apps 46%
light apps 36%
altogether 58%

Table 12: Accuracy of predicting whether a user is
a heavy user, or light user, or in-between user using
different independent variables in the ordered probit
analysis. Random guesses can do no better than 33%.

users who used Wi-Fi (125 users out of 387), used
a median of 6.4 MB of cellular data per day, while
the users who did not use Wi-Fi at all used a me-
dian 16.3 MB of cellular data per day, which further
demonstrates a (negative) correlation between Wi-Fi
and cellular usage.

Second, a smartphone’s screen size and resolution
shows a mild correlation with data usage. The inde-
pendent variables for the screen size and resolution are
the size in inches and the number of pixels, respec-
tively. This finding goes against common intuition
that better and larger screens result in higher data us-
age. The reasons for this intuition are that apps might
download content with higher resolution for better
screens, and that a larger screen size makes it easier
for the user to browse webpages and apps. However,
our data includes a limited set of screen sizes and res-
olutions, so this finding may be premature.

Third, total usage time of a smartphone is a decent
indicator of data usage. The longer one uses the smart-
phone, the higher the data usage is likely to be. The in-
dependent variable in this analysis is the average daily
time use of a user (the sum across all apps). Usage of
heavy apps (Table 10) is also a decent indicator of data
usage. However, the converse is not true – light apps
are poor indicators. As our independent variables, we
use the number of top 3 heavy apps and the number of
top 3 light apps that a user has ever used. Heavy apps
are a decent indicator because they consume signifi-
cant amounts of data, and therefore, have a noticeable
impact on a user’s data usage.

Finally, the combination of these 5 independent
variables can achieve a decent prediction accuracy of
58%. Recall that we have three categories of users, so
random can do no better than 33%. Cellular operators
can obtain estimates of these variables for new users
by asking simple and quick questions, without the
need for instrumentation of their phones. By know-
ing in advance what bucket a user will fall into, the
cellular operator can promote different data plans.

V. Related work
Wireless traffic characterization: Xu et al. [15]
characterized app usage by examining packet traces
from a large cellular operator. Their packet traces
cover a large number of users in the US and there are
many interesting findings on the geographic locality
of apps. Our goals are different and require us to do
lab experiments and collect traces from phones, and
would be difficult to achieve with packet traces. Since
they rely on the HTTP User-Agent field to identify
apps, they are unable to attribute non-HTTP traffic
nor apps that embed browsers. Email, YouTube and
browser usage can only be indirectly inferred and are
hard to study in depth. Their packet traces do not in-
clude Wi-Fi usage, and do not indicate how long a
user ran an app for. They do not compare different
smartphone platforms in depth nor directly compare
individual apps with similar functionality.

Falaki et al. [3] studied the behavior of 255 An-
droid and Windows Mobile users. They found tremen-
dous diversity in total data consumption and interac-
tion time among different users. Similar findings were
made by LiveLab [12, 14] which measures the smart-
phone usage of 34 iPhone users. Unlike Metre, these
tools cannot breakdown network traffic by app. As a
result, they did not investigate per-app data usage.

There have also been several studies [2,7,10,11] on
network performance and how app traffic leads to ex-
cessive energy consumption on smartphones. In par-
ticular, periodic measurements and transfers, although
small in terms of traffic volumes, may consume a dis-
proportionately large amount of energy.

Caching and prefetching: Qian et al. [9] showed
that most HTTP caching library implementations on
smartphones do not conform to the HTTP specifica-
tions, nor do all apps effectively leverage caching op-
portunities, resulting in redundant transfers. Prefetch-
ing may reduce user-perceived latency, but the
prefetched content that is not used results in wasted
network consumption. Higgins et. al. [6] developed
a prefetching library for mobile devices to optimize
prefetches and reduce waste.

Data usage charging: Ha et al. [5] proposed time-
dependent pricing, as opposed to conventional usage-
based pricing, to incent users to shift traffic to off-peak
hours. Peng et al. [8] demonstrated that the current
charging systems employed by cellular operators can
be inaccurate, leading to overcharges or undercharges
in specific scenarios. Our work investigates how the
wireless data usage is correlated with different users,
apps, and platforms, which could help cellular opera-
tors improve their charging schemes. Zhang et al [16]



study the additional network traffic cost of free apps
compared to their paid versions. They find that due to
advertising and telemetry traffic, the paid versions are
cheaper in the long term.

Offloading to other networks: Small cells, such
as Wi-Fi hotspots and femtocells, can be leveraged
to combat limited spectrum availability. Shifting traf-
fic to these networks whenever available could reduce
contention at cellular towers. However, it is unclear
if that simply allows users to consume more, or if it
actually reduces consumption at cellular towers. Rah-
mati et al. [13] designed a system for smartphones to
transparently switch between cellular and Wi-Fi net-
works without any network support.

VI. Conclusion
Cellular consumption is a pain point for both users
and network operators. Especially in countries where
post-paid plans are the norm, users pay for the data
that their apps consume. There is little clarity on how
the choice of app and smartphone impacts data cost.

We have studied the data cost of different apps, plat-
forms, and APIs. From field measurements, we have
examined user behavior. We have found that even for
a relatively straightforward task of getting a weather
forecast, there is as much as 140X difference in data
consumption between apps. When comparing apps
with the same functionality and written by the same
professional authors across different platforms, there
is huge diversity in consumption. While no one plat-
form is lighter than another across the board, a user
with particular app habits can consume 3.3X higher
data or more if they pick the wrong platform.

Operators may want to tailor data plans to users, in-
cent specific behavior via coupons or rebates, or cus-
tomize their marketing. Operators do not need in-
trusive monitoring to classify users – knowing what
screen size a user prefers, whether they will use Wi-
Fi, how long they may use the phone for and for
which apps, has the potential for accurately classify-
ing the user. Simply identifying a user’s popular apps
and pattern of usage can point to which of the three
smartphone platforms is lowest in data consumption
for them.

Several areas for future work remain open. Market
research studies have been warning us of impending
overload as a result of video streaming. While we did
not see this behavior in our data, we wonder what the
impact will be in the future. We did our lab exper-
iments over Wi-Fi, and it is possible that some apps
adjusted their behavior automatically based on what
network they were on. We do not know if such behav-

ior exists in current apps, and we expect new research
and tools to be developed to help app developers au-
tomatically adjust their network usage. Finally, we
specifically targeted users in India for our study, and
it would be interesting to understand how their behav-
ior is different from other parts of the world.
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