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Abstract

Gates are a new notation for representing mixture modelscantext-sensitive
independence in factor graphs. Factor graphs provide aahagpresentation for
message-passing algorithms, such as expectation pragagdbwever, message
passing in mixture models is not well captured by factor gsapnless the en-
tire mixture is represented by one factor, because the messguations have a
containment structure. Gates capture this containmemttstie graphically, al-
lowing both the independences and the message-passintioeguimr a model
to be readily visualized. Different variational approxiioas for mixture models
can be understood as different ways of drawing the gates iademWe present
general equations for expectation propagation and vanatimessage passing in
the presence of gates.

1 Introduction

Graphical models, such as Bayesian networks and factohgrdyp, are widely used to represent
and visualise fixed dependency relationships between randoiables. Graphical models are also
commonly used as data structures for inference algoritimas shey allow independencies between
variables to be exploited, leading to significant efficiegeyns. However, there is no widely used
notation for representingontext-specificlependencies, that is, dependencies which are present or
absent conditioned on the state of another variable in taphgf2]. Such a notation would be
necessary not only to represent and communicate contegtfgpdependencies, but also to be able
to exploit context-specific independence to achieve efft@@d accurate inference.

A number of notations have been proposed for representingexpspecific dependencies, includ-
ing: case factor diagrams [3], contingent Bayesian neta/ptk and labeled graphs [5]. None of
these has been widely adopted, raising the question: wipepies would a notation need, to
achieve widespread use? We believe it would need to be:

e simple to understand and use,
o flexible enough to represent context-specific indepeneésrinireal world problems,

e usable as a data structure to allow existing inference ilgos to exploit context-specific
independencies for efficiency and accuracy gains,

e usable in conjunction with existing representations, agfactor graphs.

This paper introduces thgate a graphical notation for representing context-specifipetielencies

that we believe achieves these desiderata. Section 2 besavhat a gate is and shows how it can
be used to represent context-specific independencies imaatuof example models. Section 3
motivates the use of gates for inference and section 4 espamthis by showing how gates can be
used within three standard inference algorithms: Expiect@®ropagation (EP), Variational Message
Passing (VMP) and Gibbs sampling. Section 5 shows how theepiant of gates can tradeoff cost
versus accuracy of inference. Section 6 discusses the gsg¢asfto implement inference algorithms.



Figure 1: Gate examples (a) The dashed rectangle indicates a gate containing a @ausastor,
with selector variable. (b) Two gates with different key values used to construcxure of two
Gaussians. (c) When multiple gates share a selector variaiele can be drawn touching with the
selector variable connected to only one of the gates. (d)»ure of N Gaussians constructed using
both a gate and a plate. For clarity, factors correspondingtiable priors have been omitted.

2 TheGate

A gate encloses part of a factor graph and switches it on odegending on the state of a latent
selector variable. The gate is on when the selector variaddea particular value, called thkey,
and off for all other values. A gate allows context-specifidgdpendencies to be made explicit in the
graphical model: the dependencies represented by anydangide the gate are present only in the
context of the selector variable having the key value. Maidcally, a gate represents raising the
contained factors to the power zero if the gate is off, or ditad on:

(c=key)
(o)

wherec is the selector variable. In diagrams, a gate is denoted ashedl box labelled with the
value ofkey; with the selector variable connected to the box boundahng [&bel may be omitted if
c is boolean andkeyis true. Whilst the examples in this paper refer to factor graphse gatation
can also be used in both directed Bayesian networks andaatelir graphs.

A simple example of a gate is shown in figure la. This exampjeresents the term
N (z;m,p~1)de=true) 5o that where is true the gate is on andhas a Gaussian distribution with
meanm and precisiorp. Otherwise, the gate is off andis uniformly distributed (since it is con-
nected to nothing).

By using several gates with different key values, multippenponents of a mixture can be repre-
sented. Figure 1b shows how a mixture of two Gaussians caegdresented using two gates with
different key values, true and false. dfis true,z will have distribution\'(m;, p; '), otherwiser
will have distribution\ (1, p; 1) . When multiple gates have the same selector variable betdiff
ent key values, they can be drawn as in figure 1c, with the gatamgles touching and the selector
variable connected to only one of the gates. Notice thatimekample, an integer selector variable
is used and the key values are the integers 1,2,3.

For large homogeneous mixtures, gates can be used in ctiojundgth plates [6]. For example,
figure 1d shows how a mixture df Gaussians can be represented by placing the gate, Gaussian
factor and mean/precision variables inside a plate, sdltegtare replicatedv times.
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Figure 2: Examples of models which use gates (a) A line process where neighboring pixel inten-
sities are independent if an edge exists between themustiitites how gates convey the context-
specific independencies present in a model. (b) Testingepeddence between a genetic varignt
and an observed quantitative trajt. The selector variableencodes whether the linear dependency
represented by the structure inside the gate is presensenab

° 3

Gates may be nested inside each other, implying a conjunofitheir conditions. To avoid ambi-
guities, gates cannot partially overlap, nor can a gateagoiits own selector variable.

Gates can also contain variables, as well as factors. Sud@bles have the behaviour that, when
the gate is off, they revert to having a default value of falseero, depending on the variable type.
Mathematically, a variable inside a gate represents a Dietia when the gate is offi(x)!—°(c=kev)
whered(x) is one only whene has its default value. Figure 2b shows an example whereblesia
are contained in gates — this example is described in theWoip section.

2.1 Examplesof modelswith gates

Figure 2a shows kine processrom [7]. The use of gates makes clear the assumption thatéigh-
boring image pixels:; andz; have a dependency between their intensity values, unless isan
edgee;; between them. An opacue three-way factor would hide thissstrspecific independence.

Gates can also be used to test for independence. In thisteaselector variable is connected only
to the gate, as shown in the example of figure 2b. This is a megba in functional genomics [8]
where the aim is to detect associations between a genetamvay, and some quantitative trait,
(such as height, weight, intelligence etc.) given data fecset of vV individuals. The binary selector
variablec switches on or off a linear model of the genetic variant’stdbation y,, to the traitz,,,
across all individuals. When the gate is aff, reverts to the default value 6fand so the trait is
explained only by a Gaussian-distributed background megel Again, the gate makes it clear
thatx,, only depends om,, if cis true. Inferring the posterior distribution ofallows associations
between the genetic variation and the trait to be detected.



3 How gates arise from message-passing on mixture models

A driving force in the popularity of factor graphs is theiglit relationship with message passing
algorithms. Factor graph notation arises naturally whestdleing message passing algorithms,
such as the sum-product algorithm. Similarly, the gatetimtaarises naturally when considering
the behavior of message passing algorithms on mixture raodel

Figure 3: A simple mixture model

As a motivating example, consider the mixture model of figdir&he joint distribution is:

p(x, c;my,ma) = p(e)p(my)p(ma) f (x]my)° ™ f(z|mg)?te=?) 1)
wheref is the Gaussian distribution. If we apply mean-field appr@ation to this model, we obtain
the following fixed-point system:

q(c = k) o< p(c = k) exp (Z g(x) Y q(my)log f(rlmk)> @)
k (e=k)
g(my) o< p(my) exp (Z g(x)log f (wmk-)) €)

q(c=k)
) x Hexp (Zq (myg) logf(xmk)> (4)
mp

These updates can be mterpreted as message-passing edmittim “blurring” (raising to a power
between 0 and 1). For example, the update f@rn;) can be interpreted as (message from
prior)x (blurred message frorfi). The update for(z) can be interpreted as (blurred message from
m1)x(blurred message fromns). Blurring occurs whenever a message is sent from a factor ha
ing a random exponent to a factor without that exponent. Thesxponent acts like a container,
affecting all messages that pass out of it. Hence, we usephiged notation where a gate is a con-
tainer, holding all the factors switched by the gate. Grealhy, the blurring operation then happens
whenever a message leaves a gate. Messages passed intardgatthin a gate are unchanged.

This graphical property holds true for other algorithms alwFor example, if we apply fully-
factorized expectation propagation to this model, we obtaé following messages:

my_e(c= ZZp (my) f(x|myg) (5)

M f—my, (Mi) X proj[p(c # k)ymy—..(c # k)p(mi) + p(c = k) f (z[mp)p(me)] /p(mi)  (6)
= blurg[f(x|mx), p(mi)] (7

me2 (xma), 1] (8)

ma

Me—y(x) o< blur [Zp(ml f(xlma), ] blury

miy

where blu [k, q] = proj[p(c # k)m_.(c # k)q + p(c = k)hq] /q 9)
This has a similar form as the mean-field equations, with aifiedlddefinition of blurring. In this
paperpproj[p] means the unique exponential-family member whose suffisiatistics match [9]:

proj[p] = argmin K'L(p || q) (10)
q



where the minimization is over the distribution family ofénest. For example, if we wagfx) to be
Gaussian theproj[p(z)] in (9) returns a Gaussian whose mean and variance matchstiniation
p(x) (after normalization op(z)).

In (8), the two gates containing(xz|m;) andf (xz|m2) have been treated as separate factors. Another
approach, which is more accurate for EP, is to treat theseybtes as one factor. This leads to the
same updates except._... iS now:

Mz () = Proj Zp (mq) f(x|my) + p(c Zp (ma) f(x|mz) (11)
which is the exact marginal far.

3.1 Why gatesare not equivalent to ‘pick’ factors

It is possible to rewrite this model so that tifefactors do not have exponents, and therefore
would not be in gates. However, this will necessarily chatige approximation. This is be-
cause the blurring effect caused by exponents operates andmaction only, while the blur-
ring effect caused by intermediate factors is always bitio@al. For example, suppose we
try to write the model using a factgsick(z|c, hy, hy) = 6(z — hy)?Dé(z — hy)de=2),

We can introduce latent variablés,, ho) so that the model becomegx, ¢, m1, ma, hy, he) =
p(e)p(m1)p(ma) f(h1|ma) f(ha|me)pick(x|c, h1, ha) (See figure 4a) . Thpi ck factor will cor-
rectly blur the downward messages frgm;, m2) to x. However, thepi ck factor will also blur
the message upward frombefore it reaches the factgr which is incorrect.

Another approach is to pick froifin,, mo) before reaching the factgh, so that the model becomes
p(x,c,my,ma,m) = p(c)p(mq)p(ma) f(z|m)pick(m|c,mi,ms) (see figure 4b) . In this case,
the message from to f is not blurred, and the upward message&iq, ms) are blurred, which is
correct. However, the downward messages ftem, m-) to f are blurred before reachirnfg which

is incorrect.

Figure 4: Two different ways of writing figure 3a without gatdoth lead to problems in message-
passing.



3.2 Variablesinside gates

—_—— —— —— 1

Figure 5: A mixture model with a variable inside the gates

Now consider an example where it is natural to consider abbgito be inside a gate. The model
is:

p(x, ¢, mi,ma,y) = p(e)p(ma)p(ma) [ | (fu(zly) f2(ylmi))’ ™) 12
k

as depicted in figure 5. If we use a structured variationat@pmation wherey is conditioned on
¢, then the fixed-point equations are [10]:

alc = k) o plc = k) exp (qu S alyle = k) log f1<xy>>

exp (Z q(yle=k) Y q(my)log fz(ylmk)> exp <— > alyle = k)log q(ylc = k))

Y

(13)
q(yle = k) o< exp (Z q(x)log fl(wy)> exp (Z q(my) log fz(ylmk)> (14)
) q(c=k)
q(my,) o< p(mx) exp (Z q(yle = k)log f2(y|mk)> (15)
’ q(c=k)
q(x) o< [ [ exp (Z q(yle = k) log fl(xly)) (16)
k Y

Notice that only the messagesit@ndm,, are blurred; the messages to and frgare not blurred.
Thus we can think of as sitting inside the gate. The message from the gateam be interpreted
as the evidence for the submodel containfingf,, andy.

The factor f; (z|y) does not depend ok, so we could rewrite the model into an equivalent one
where f; does not have an exponent:
p(x,¢;my, ma,y) = ple)p(my)p(ma) fi (xly) [ | (F2(ylmi))* ™ )
k
If we do this, then the update fgfz) becomes:

g(x) o< exp (Z(Z g(yle = k)g(c = k) log fl(wly)> (18)

Y k
which is equivalent to (16). The other updates are also timesa



4 Inferencewith gates

In the previous section, we explained why the gate notatiseswhen performing message passing
in some example mixture models. In this section, we desdridve gate notation can be generally
incorporated into Variational Message Passing [11], Etqiem Propagation [12] and Gibbs Sam-
pling [7] to allow each of these algorithms to support cot¥specific independence.

For reference, Table 1 shows the messages needed to appiiarsteEP or VMP using a fully
factorized approximation(x) = [, ¢(z;). See appendices A and B for a full explanation of this
table. Notice that VMP uses different messages to and framrménistic factors, that is, factors
which have the fornf, (z;, x,\;) = 0(x; —h(x,\;)) Wherez; is the derived child variable. Different
VMP messages are also used to and from such determinisiiedesariables. For both algorithms
the marginal distributions are obtainedgs;) = [[, ma.—i(x;), except for derived child variables

in VMP whereq(z;) = mpar—i(z;). The (approximate) model evidence is obtained by a product
of contributions, one from each variable and each factdsleTa shows these contributions for each
algorithm, with the exception that deterministic factamsl ¢éheir derived variables contributeinder
VMP.

When performing inference on models with gates, it is usef@mploy anormalised fornof gate
model. In this form, variables inside a gate have no linksatddrs outside the gate, and a variable
outside a gate links to at most one factor inside the gateh 8idhese requirements can be achieved
by splitting a variable into a copy inside and a copy outsiegate, connected by an equality factor
inside the gate. A factor inside a gate should not connedidcélector of the gate; it should be

Alg. Type Variableto factor Factor to variable
Mi—a () Ma—i(T3)
ol P10 [ Y v, (T ca mimalay)) falxa)]
) CT e
b#a
VMP Stochastic H Ma—i(x;) exp Z H mj_a(z;) | log fo(x4)
a>i xo\Ti \J#i

L a 1 Aa a
Det. to parent Hmb—n’(l’i) exp Z H Mi—a(Tr) | 10g fo(Xa)

Xa\(i,ch) \ k#(i,ch)

b#a
# Wherefa (Xa) = chh Mch—a (Ich)fa(Xa)
Det. to child Mpar—i (i) proj Z H mj—a(z;) | fa(Xa)
xa\wi J#i
Alg. Evidence for variable z; Evidence for factor f,
qu H amJ—’G(z') fa,(xn,)
EP Si = Zml Ha maai(xi) Sa = PO I%Ije‘]aemj*,,l(il)j)]m)aaj(xj)

VMP | s; = exp(— Zx q(z;) log q(x;)) Sq = exp (Zxa (Hjea mjﬂa(xj)) log fa(xa))

Table 1:Messages and evidence computations for EP and VMP The top part of the table shows
messages between a variableand a factorf,. The notationj € « refers to all neighbors of
the factor,j # i is all neighbors except par is the parent factor of a derived variable, asid

is the child variable of a deterministic factor. Theoj[p] operator returns an exponential-family
distribution whose sufficient statistics matgh The bottom part of the table shows the evidence
contributions for variables and factors in each algorithm.



given the key value instead. In addition, gates shouldaddancedby ensuring that if a variable links

to a factor in a gate with selector varialelethe variable also links to factors in gates keyed on all
other values of the selector variaklieThis can be achieved by connecting the variable to uniform
factors in gates for any missing valuesof This has no impact on computational cost since the
uniform factors involve no computation; it is only a convemée in describing the algorithm. After
balancing, each gate is part ofjate block- a set of gates activated by different values of the same
condition variable. See appendix C for detalils.

4.1 Variational Message Passing with gates

VMP can be augmented to run on a gate model in normalised foyrohanging only the messages

out of the gate and by introducing messages from the gateetsdlector variable. Messages sent
between nodes inside the gate and messages into the gatechemged from standard VMP. The

variational distributions for variables inside gates anplicitly conditioned on the gate selector, as
at the end of section 3. In the following, an individual gatelenotedy, its selector variable and

its key k.

The messages out of a gate are modified as follows:

e The message from a factgy, inside a gatey with selectore to a variable outside is the
usual VMP message, raised to the power.,(c = k,), except in the following case.

e Where a variable; is the child of a number of deterministic factors inside seddbckG
with selector variable, the variable is treated as derived and the message is a ntomen
matched average of the individual VMP messages. Then theagegar; is

MG—i(x;) = proj Z Meg(c = kg)mg—i(xi) (19)
geG

wherem,_.;(z;) is the usual VMP message from the unique parent factgrand proj is
a moment-matching projection onto the exponential family.

The message from a gateto its selector variable is a product of evidence messages from the
contained nodes:

Mg—elc =ky) = H Sa Hsi, Mmg_c(c# kyg) =1 (20)
acg €9

wheres, ands; are the VMP evidence messages from a factor and variabfggetagely (Table 1).
The set of contained factors includes any contained gateishvare treated as single factors by the
containing gate. Deterministic variables and factors saridence messages bf except where a
deterministic factorf, parents a variable; outsideg. Instead of sending, = 1, the factor sends:

Sq = exp (Z Ma—i(2;)log miﬂa(mi)) (21)

T

The child variabler; outside the gate also has a different evidence message:

$; = exp (— Z mea—qi(x;)log mi_m(xi)> (22)

X4

wheremg_,; is the message from the parents (19) and. , is the message from; to any parent.
To allow for nested gates, we must also define an evidenceage$sr a gate:

q(c=kg)

Sqg = H Sa H Si (23)

acg 1€9

These rules are derived by considering the behavior of VMRroaquivalent model that does not
use gates. For compactness, defineexge variableto be a variabler; that is the child of of a



number of deterministic factors inside a gate block. Defitigts(z;) to be the indicator for node;
to exist, i.e. the product d@¥(c, — k,) for all gatesy thatz; is contained in. Note that a gate selector
variable can be a derived variable. However the gate it tetennot be its parent factor.

Starting from a gate model in normalised form, the gateser®ved as follows:

1. Replace each factdf, (x,) With f/(x,,ca) = fa(xq)2*2) wherec, is the set of con-
dition variables forf, to exist.

2. For each merge variahle, replacer;’s parents with a single deterministic factor given by
multiplying the parents together.

3. Erase all gates, promoting all variables to the top Ielkis defines an equivalent ungated
model.

To get good results on this ungated model, the approximatirnshould not be fully factorized but
rather have the form], ¢(z; |exists(z;)). If z; is a merge variable with parents inside a gate block
with selector variable;, then the term for; should bey(z; |exists(x;), ¢;). (Note thakexists(x;) in-
cludesexists(c; ) sincex; ande; must be in the same gate.) Running structured VMP on thistedga
model leads to the rules given above, whete;) above actually represenjse; |exists(z;)).

4.2 Expectation Propagation with gates

As with VMP, EP can support gate models in normalised form lkimg small modifications to the
message-passing rules. Once again, messages betweerinsidies gate are unchanged. Recall
that, following gate balancing, all gates are part of gateks. In the following, an individual gate
is denotedy, its selector variable and its keyk,.

The messages into a gate are as follows:

e The message from a selector variable to each gate in a gafle @l the same. It is the
product of all messages into the variable excluding messgm gates irG.

e The message from a variable to each neighboring factoreresighte block is the same.
It is product of all messages into the variable excludingsagss from any factor i&y'.

Letnbrs(g) be the set of variables outside @¢tonnected to some factor in Each gate computes
an intermediate evidence-like quantity defined as:

sg=[[sa]lsi ] siw  wheresig=> mig(wi)my_i(x:) (24)

acg i€g  i€nbrs(g) T,

wherem,_.; is the usual EP messagedpfrom its (unique) neighboring factor in The third term
is used to cancel the denominators gfsee definition in Table 1). Given this quantity, the message
out of a gate may now be specified:

e The combined message from all factors in a gate bl@ckith selector variable: to a
variablez; is the weighted average of the messages sent by each factor:

Dr0j [ e Mg € = k)55 i mi g (2:)]
mG—i(@i) = Mg (23) (29)
1—g 1

(Notem,_ 4(z;) is the same for each gage)
e The message from a gate bloGkto its selector variable is:

S
ma—c(c=ky) = =—2+— (26)
7 ZgEG S.‘]
Finally, the evidence contribution of a gate block with sédec is:
S
g = ZgEG g (27)

Hienbrs(g) Zzl Mi—g (xi)mG*’i (x’b)



These rules are derived by considering the behavior of Em@uaivalent model that does not use
gates. The idea is to consider each gate block as a mondtitiior, as in the derivation of (11).
When calculating the messages out of this factor, we applyeERrsively to the gate body. This
is possible due to the gate balancing transformation whislies the set of connected variables is
the same for all cases, and the link-removal transformatibich ensures that inner variables can
be summed out.

When a gate block is considered as a monolithic fagtdic, x) wherexs = nbrs(G), we have
the formula:
alexa) = [ folxa)™e ) (28)
geG
wheref,(x¢) is the product of all factors in gaig summed over all variables, inside gatey:

foxa) = S" ] falxa) (29)

Xg a€g
Given incoming messages for the gate, ., (x;) for all z; € x¢, the EP message froff; to c is:
ma—ele=ky) = 25"y fo(xa) [ mimg(z) (30)
Xa 7

whereZ, !is an arbitrary scale factor. Expanding the definitiorypfand locally applying the EP

evidence formula givesig_..(c = ky) = Zg;lsg. To makem¢—_,.(c) a normalized distribution
overc, the appropriate scale factor is:

ZG = Z Sg (31)
geG
The EP message froffy; to x; € x¢ is:
proj |y Me—g(c=ky)ry(z;)
mGHi(«Ti) — { geqG g g9)'g (32)
mz—>g<xz)
wherery(z;) Z fo(xa Hmj_,g xj) (33)
xc\T;i
Expanding the definition of, and locally applying the EP evidence formula to the righthaide

givesry(x;) = sg48; glmgﬂ(:z:,)mﬁg(:cl) as in (25). The evidence contributiog; for the gate
block is the usual formula for the evidence contribution ¢detor, specialized to (28):

s — 2ogec Me—g(kg) Dosr, fo(x6) [T mimg(2i) (34)

(ZQEG mc—’g(kg)mG—’C(kg)) HiEHbrs(G) Mi—g (xi)mc—*’i (xl)
_ dea Me—g(kg)sy
(deG mC*g(kg)mG—W(kg)) HiEHbrs(G) Mg (T:)MG—i (i)
Za

- (36)
[Ticnbrs(a) Mimg(@i)ma—i(z:i)

(39)

4.3 Gibbssampling with gates

Gibbs sampling can easily extend to gates which contain famprs. Gates containing variables
require a facility for computing the evidence of a submowdblich Gibbs sampling does not provide.
Note also that Gibbs sampling does not support deterngrfistitors. Thus the graph should only
be normalised up to these constraints. The algorithm dégrgetting the variables to initial values
and sending these values to their neighboring factors. Tdrezach variable:; in turn:

1. Query each neighboring factor for a conditional disttiitmufor x;. If the factor is in a gate
that is currently off, replace with a uniform distributioRor a gatey with selectorz;, the
conditional distribution is proportional te for the key value and otherwise, where is
the product of all factors ig.

2. Multiply the distributions from neighboring factors &t@er to get the variable’s conditional
distribution. Sample a new value for the variable from itaditional distribution.

10



(a) Dirichlet Gaussian Gamma (b) Dirichlet Gaussian Gamma

Disgrete Disc¢rete

Figure 6:Student-t mixture model using gates (a) Model from [13] (b) Structured approximation
suggested by [14], which can be interpreted as enlargingdte

5 Enlarging gatesto increase approximation accuracy

Gates induce a structured approximation as in [10], so byimgovodes inside or outside of gates,
you can trade off inference accuracy versus cost. Becawsgain of a gate block is always on, any
node (variable or factor) outside a gate bl@glcan be equivalently placed inside each gaté/of
This increases accuracy since a separate set of messages mvdintained for each case, but it may
increase the cost.

For example, Archambeau and Verleysen [14] suggested etwsted approximation for Student-t
mixture models, instead of the factorised approximatiofi8f. Their modification can be viewed
as a gate enlargement (figure 6). By enlarging the gate btouoictudew,,,,, the blurring between
the multiplication factor and,,,,, is removed, increasing accuracy. This comes at no additimsa
sinceu,,, is only used by one gate and therefore only one message isdheed: andm.

6 Discussion and conclusions

Gates have proven very useful to us when implementing arlifca inference in graphical mod-
els. By using gates, the library allows mixtures of arbitraub-models, such as mixtures of fac-
tor analysers. Gates are also used for computing the ew@dena model, by placing the entire
model in a gate with binary selector varialbleThe log evidence is then the log-oddsbothat is,

log P(b = true) — log P(b = false). Similarly, gates are used for model comparison by placing
each model in a different gate of a gate block. The marginat tive selector gives the posterior
distribution over models.

Graphical models not only provide a visual way to represeptadabilistic model, but they can
also be used as a data structure for performing inferenchaimtodel. We have shown that gates
are similarly effective both as a graphical modelling niotatand as a construct within an inference
algorithm.
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A Summary of Variational Message Passing

This section describes how to fit a fully factorized approadiong(x) = [, ¢(z;) using Variational
Message Passing (VMP) [11]. VMP distinguishes betweenKmds of nodes in a factor graph:

¢ Deterministic factors, which have the forfp(z;, xq\;) = 6(zs — h(Xa\i))-
e Stochastic factors (all other factors)

e Stochastic variables (children of stochastic factors)

e Derived variables (children of deterministic factors)

Deterministic factors and derived variables come in paech deterministic factor having a des-
ignated derived child variable and each derived variabienigaa designated deterministic parent
factor. For each of these four node types, VMP describes b@ormpute (1) the outgoing messages
and (2) the evidence contribution.

For a stochastic variable;, the incoming messages are functions_.;(x;), one from each neigh-
boring factorf,. The outgoing message,_..(z;) to any neighborf, is the marginal ofz;, com-
puted as the product of all incoming messages:

q(wi) o< [ ma—i(e:) (37)
a>i
Mi—a(i) = q(x:) (38)
The evidence contribution is = exp(—»_, q(z:)logg(z:)).
For a derived variable;;, VMP distinguishes between the incoming messagg,_.;(x;) from

the parent factoyf,.. and the incoming messages,_.;(x;) from the other factors. The outgoing
messagen,;_.p.: (z;) to the parent factor is the product of messages from the &dhtors:

Mipar (i) = [ moilas) 39)
b#par
The outgoing message; ., (x;) to a child factor is the message from the parent factor:
mzﬁb(wz) = Mpar—i (xz) (40)

The evidence contribution is 1.

For a stochastic factof,(x,), the incoming messages are functions_.,(z;), one from each
neighboring variable:;. The outgoing message,,_.;(x;) is the logarithmic average of the factor
over the other variables:

ma—>7(z7) X exp ( Z (H mj—m(xj)) log fa(xa)) (41)

Xa\af'i J#i
The evidence contribution is, = exp (Exa (H]@ mj%(xj)) log fa(xa)).

For a deterministic factorf, (zen, Xqa\en), VMP distinguishes between the incoming message
Meh—a(zen) from the child variable and the incoming messages..(z;) from the other vari-
ables. The outgoing message, .., (x.y) to the child variable is the average of the factor over the
other variables, projected onto the approximating family.:

ma—»ch(xch) = Proj [ Z (H mjﬁa(xj)) fa(xa)] (42)

Xa \Zch Jj#ch

The outgoing message,,—.;(x;) to a parent variable is the logarithmic average, over theroth
parent variables, of the factor averaged over the childatbéei

Mq—;(Tj) X €xp Z H Mi—a(xy) | log (Z mchﬂa(mch)fa(xa)> (43)

%o \(Zi,xcn) \ k#(i,ch) Tch
Becausef,(x,) = 0(Ten — h(Xa\cn)), the inner termzl_ch Meh—a(Ten) fa(xq) reduces to
Men—a(h(Xa\ch)). The evidence contribution is 1.
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B Summary of Expectation Propagation

This section describes how to fit a fully factorized appraadion ¢(x) = [, ¢(z;) using Expecta-
tion Propagation (EP) [12, 9]. EP only distinguishes betwt node types: factors and variables.
Deterministic factors are not treated specially. For eamtertype, EP describes how to compute (1)
the outgoing messages and (2) the evidence contribution.

For a variablez;, the incoming messages are functiens_.;(x;), one from each neighboring factor
fa. The approximate marginal distribution is proportionaltte product of incoming messages:
q(x;) o< Hma_n‘(a:i) (44)
a>1

The outgoing message,_..(x;) to f, is proportional to the product of all incoming messages
except fromf,:

Mia(wi) o< [ [ mp—i(zi) (45)

b#a

The evidence contribution far; is:

S = ZHmaﬂz(x’L) (46)

For a factorf,, the incoming messages are functions.,,(z; ), one from each neighboring variable
x;. The outgoing message,,.; (x;) is proportional to the moment-matched projection of thédiac
averaged over the other variables:

proj [EXa\wi (HJ‘Ea mj—‘“(xj)) f“(X“>]

miﬁa(wi)

(47)

Ma—i(T;)
The evidence contribution is:

S (Teamimalay)) faxa) o
Sq =
Yoxo Ljca Mi—al@j)ma—;(z;)
The approximate model evidence is the product of contmstifrom all variables and factors:
[1.. sa I1; si- Note that this formula is invariant to any rescaling of thessages.

14



C Transformation to normal form

C.1 Removinglinksto variablesinside gates

This section describes how to transform a factor graph intequivalent model where a variable
inside a gate does not link to any factors outside the gatis. tfdnsformation ensures that if a gate
g1 contains the selector variable of another gategheng, also contaings. Thus the state of a gate

can be uniquely determined from the value of its selectaatae.

Suppose the variableis inside a gatg and linked to some factorg, outsideg. Just outside of,
create a variable’ and link the outer factorg, to 2’ instead ofz. Insideg, place a deterministic
factor f_(z,2’) = §(«’ = x). Alongsideg, create a complementary gage (A complementary
gate is a gate which is open wheiris closed, and vice versa.) Insigeplace a deterministic factor
fo(z") = 6(2’ = 0) that constrains its argument to be zero.

For VMP, if x is a derived variable and one of the factgiswasx’s parent, thenf, becomes a
parent ofz’, andz’s parent is nowf—. Otherwisef— and f, are the parents af. In either casey’
treated by VMP as a derived variable.

C.2 Reduction of gate crossings

This section describes how to transform a factor graph intequivalent model where a variable
outside a gate links to at most one factor inside the gates ffansformation is useful to reduce
the number of gate-crossing edges and thereby avoid bjuafirmessages, as well as to convert
stochastic variables into derived variables.

Suppose the variable is outside a gatg and linked to some factor§, insideg. Insideg, create
a new variabler’ and link it to all the factorsf, instead ofz. Insideg, add a deterministic factor
f=(z,2") = §(2’ = x). If one of the factorsf, wasz's parent, thery, becomes the parent of,
andzx’s parent is nowf—. Note thatz’s parent is now deterministic. If this transformation isxédo
all of 2’s parent gates, thenwill be a derived variable in VMP.

C.3 Gatebalancing

This section describes how to transform a factor graph intequivalent model where gates are
balancedin the sense that if a gatewith selector variable links to a variabler outsideg then for
everyvalue ofc there is a gate linking te.

Suppose variable links to gateg; with conditionc = k&, but does not link to any gate when
¢ = k9. Then create a new gage with conditionc = k5 and place a uniform factgf(z) = 1 inside
it. Repeat this for every value efuntil the gate is balanced.
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C.4 Removing linksto selectors

This section describes how to transform a factor graph intecquivalent model where the selector
variable of a gatgy has no neighbors insidg¢ Suppose selector variableconnects to factoyf
insidey. If the gate has ke, then factorf will only be active ifc = k,. So f can equivalently be
connected to a constant with valkig, instead ot

D Converting case-factor diagramsto gates

A case-factor diagram (CFD) is a compact way to encode a setrftraints on Boolean variables.
It has the following syntax:

D::=0| 1| case(x,D1,D2) | factor(D1, D2)

In this notation, “0” means an impossible state, i.e. “faill” means that all unassigned variables
are false, “x” stands for any Boolean variable, and “D1” ab@™ are sub-diagrams. For example,
this CFD states that exactly one (@f, y, 2) is true:

case(x, 1, case(y,1, case(z,1,0)))

The size of this CFD is linear in the number of variables, \whgca big improvement over the usual
factor graph notation for that constraint.

To illustrate the complexities of CFDs, consider the caistr‘an even number of variables are
true” over the setq, ..., z,,. We can encode this using the following recursion:

EVEN, = 1 (49)
ODDy =0 (50)
EVEN; = case(z;, ODD;_1, EVEN,_4) 1=1,..,n (51)
ODD; = case(z;, EVEN,_,0DD,_4) 1=1,.,n (52)

The final CFD is thertVEN,,. In this CFD, the subexpressidVEN;_; appears twice. However,
these appearances are mutually exclusive since in onecgcéstalse and in the other; is true.

It turns out that any case-factor diagram can be encoded @®d factor graph with only a constant
factor increase in the number of nodes. The general tramsfioon is as follows. Each unique
subexpression in the CFD is given a Boolean variaplg,. which is true iff the expression is reached
in the CFD. Each.,, is fed by an OR factor. The OR factor has one input always sktise, so
that the variable is false if never used. The other inputsespond to each use of the expression in
the CFD. Because a node in a CFD can be reached in at most onatwagst one of these inputs
will be true. In addition to the OR factor, we connegt,, as follows:

e v IS constrained to be false.

e v iS not constrained.

® Upctor(D1,02) IS CONNected tor(vp; ) andor(vps).

® Ucase(z,D1,02) 1S CONNEcted to a gate surrounding two fresh variableand z’ with a
NOT factor between themz’ is connected t@r(vp;) andz’ is connected tor(vps).

Additionally, 2’ is connected t@,, (notor(v,)) via an equality constraint_(2’, v,,) which
sits inside the gate.

e For the top-level expressial of the CFD, constraimp, to be true.
The graph that results from this transformation can be sfiagla bit. For example;; and all edges
leading tov; can be dropped sinag is unconstrained. Sincg) is always false, it can be dropped

and all edges leading tg can be replaced witfalseconstraints. Sincep, is always true, it can be
dropped and th&rue constraint propagated forward to its children.
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