
Gates: A graphical notation for mixture models

Tom Minka
Microsoft Research Ltd.

Cambridge, UK

John Winn
Microsoft Research Ltd.

Cambridge, UK

Abstract

Gates are a new notation for representing mixture models andcontext-sensitive
independence in factor graphs. Factor graphs provide a natural representation for
message-passing algorithms, such as expectation propagation. However, message
passing in mixture models is not well captured by factor graphs unless the en-
tire mixture is represented by one factor, because the message equations have a
containment structure. Gates capture this containment structure graphically, al-
lowing both the independences and the message-passing equations for a model
to be readily visualized. Different variational approximations for mixture models
can be understood as different ways of drawing the gates in a model. We present
general equations for expectation propagation and variational message passing in
the presence of gates.

1 Introduction

Graphical models, such as Bayesian networks and factor graphs [1], are widely used to represent
and visualise fixed dependency relationships between random variables. Graphical models are also
commonly used as data structures for inference algorithms since they allow independencies between
variables to be exploited, leading to significant efficiencygains. However, there is no widely used
notation for representingcontext-specificdependencies, that is, dependencies which are present or
absent conditioned on the state of another variable in the graph [2]. Such a notation would be
necessary not only to represent and communicate context-specific dependencies, but also to be able
to exploit context-specific independence to achieve efficient and accurate inference.

A number of notations have been proposed for representing context-specific dependencies, includ-
ing: case factor diagrams [3], contingent Bayesian networks [4] and labeled graphs [5]. None of
these has been widely adopted, raising the question: what properties would a notation need, to
achieve widespread use? We believe it would need to be:

• simple to understand and use,

• flexible enough to represent context-specific independencies in real world problems,

• usable as a data structure to allow existing inference algorithms to exploit context-specific
independencies for efficiency and accuracy gains,

• usable in conjunction with existing representations, suchas factor graphs.

This paper introduces thegate, a graphical notation for representing context-specific dependencies
that we believe achieves these desiderata. Section 2 describes what a gate is and shows how it can
be used to represent context-specific independencies in a number of example models. Section 3
motivates the use of gates for inference and section 4 expands on this by showing how gates can be
used within three standard inference algorithms: Expectation Propagation (EP), Variational Message
Passing (VMP) and Gibbs sampling. Section 5 shows how the placement of gates can tradeoff cost
versus accuracy of inference. Section 6 discusses the use ofgates to implement inference algorithms.

1

n
1

m p

c

x

m2 p2

c

False

m1 p1

True

c

x

mn pn

n=1..N

(a) (b)

(c) (d)m2 p2

c

x

m1 p1 m3 p3

32

Gaussian

x

Figure 1: Gate examples (a) The dashed rectangle indicates a gate containing a Gaussian factor,
with selector variablec. (b) Two gates with different key values used to construct a mixture of two
Gaussians. (c) When multiple gates share a selector variable, they can be drawn touching with the
selector variable connected to only one of the gates. (d) A mixture ofN Gaussians constructed using
both a gate and a plate. For clarity, factors corresponding to variable priors have been omitted.

2 The Gate

A gate encloses part of a factor graph and switches it on or offdepending on the state of a latent
selector variable. The gate is on when the selector variablehas a particular value, called thekey,
and off for all other values. A gate allows context-specific independencies to be made explicit in the
graphical model: the dependencies represented by any factors inside the gate are present only in the
context of the selector variable having the key value. Mathematically, a gate represents raising the
contained factors to the power zero if the gate is off, or one if it is on:

(

∏

i

fi(x)

)δ(c=key)

wherec is the selector variable. In diagrams, a gate is denoted by a dashed box labelled with the
value ofkey, with the selector variable connected to the box boundary. The label may be omitted if
c is boolean andkeyis true. Whilst the examples in this paper refer to factor graphs, gate notation
can also be used in both directed Bayesian networks and undirected graphs.

A simple example of a gate is shown in figure 1a. This example represents the term
N (x;m, p−1)δ(c=true) so that whenc is true the gate is on andx has a Gaussian distribution with
meanm and precisionp. Otherwise, the gate is off andx is uniformly distributed (since it is con-
nected to nothing).

By using several gates with different key values, multiple components of a mixture can be repre-
sented. Figure 1b shows how a mixture of two Gaussians can be represented using two gates with
different key values, true and false. Ifc is true,x will have distributionN (m1, p

−1
1), otherwisex

will have distributionN (m2, p
−1
2) . When multiple gates have the same selector variable but differ-

ent key values, they can be drawn as in figure 1c, with the gate rectangles touching and the selector
variable connected to only one of the gates. Notice that in this example, an integer selector variable
is used and the key values are the integers 1,2,3.

For large homogeneous mixtures, gates can be used in conjunction with plates [6]. For example,
figure 1d shows how a mixture ofN Gaussians can be represented by placing the gate, Gaussian
factor and mean/precision variables inside a plate, so thatthey are replicatedN times.

2

(a)

F F

Edge labels

Pixel intensities

e12

x1 x2 x3

e23

(b)

c
xn

+

n=1..N

Gaussian

zn

×

Genetic

variant

Quant.

trait

w

yn

gn

m

p

Figure 2:Examples of models which use gates (a) A line process where neighboring pixel inten-
sities are independent if an edge exists between them. It illustrates how gates convey the context-
specific independencies present in a model. (b) Testing for dependence between a genetic variantgn

and an observed quantitative traitxn. The selector variablec encodes whether the linear dependency
represented by the structure inside the gate is present or absent.

Gates may be nested inside each other, implying a conjunction of their conditions. To avoid ambi-
guities, gates cannot partially overlap, nor can a gate contain its own selector variable.

Gates can also contain variables, as well as factors. Such variables have the behaviour that, when
the gate is off, they revert to having a default value of falseor zero, depending on the variable type.
Mathematically, a variable inside a gate represents a Diracdelta when the gate is off:δ(x)1−δ(c=key)

whereδ(x) is one only whenx has its default value. Figure 2b shows an example where variables
are contained in gates – this example is described in the following section.

2.1 Examples of models with gates

Figure 2a shows aline processfrom [7]. The use of gates makes clear the assumption that twoneigh-
boring image pixelsxi andxj have a dependency between their intensity values, unless there is an
edgeeij between them. An opaque three-way factor would hide this context-specific independence.

Gates can also be used to test for independence. In this case the selector variable is connected only
to the gate, as shown in the example of figure 2b. This is a modelused in functional genomics [8]
where the aim is to detect associations between a genetic variant gn and some quantitative traitxn

(such as height, weight, intelligence etc.) given data froma set ofN individuals. The binary selector
variablec switches on or off a linear model of the genetic variant’s contribution yn to the traitxn,
across all individuals. When the gate is off,yn reverts to the default value of0 and so the trait is
explained only by a Gaussian-distributed background modelzn. Again, the gate makes it clear
thatxn only depends ongn if c is true. Inferring the posterior distribution ofc allows associations
between the genetic variation and the trait to be detected.

3

3 How gates arise from message-passing on mixture models

A driving force in the popularity of factor graphs is their tight relationship with message passing
algorithms. Factor graph notation arises naturally when describing message passing algorithms,
such as the sum-product algorithm. Similarly, the gate notation arises naturally when considering
the behavior of message passing algorithms on mixture models.

1

m2

c

x

m1

2

Figure 3: A simple mixture model

As a motivating example, consider the mixture model of figure3. The joint distribution is:

p(x, c,m1,m2) = p(c)p(m1)p(m2)f(x|m1)
δ(c−1)f(x|m2)

δ(c−2) (1)

wheref is the Gaussian distribution. If we apply mean-field approximation to this model, we obtain
the following fixed-point system:

q(c = k) ∝ p(c = k) exp

(

∑

x

q(x)
∑

mk

q(mk) log f(x|mk)

)

(2)

q(mk) ∝ p(mk) exp

(

∑

x

q(x) log f(x|mk)

)q(c=k)

(3)

q(x) ∝
∏

k

exp

(

∑

mk

q(mk) log f(x|mk)

)q(c=k)

(4)

These updates can be interpreted as message-passing combined with “blurring” (raising to a power
between 0 and 1). For example, the update forq(mk) can be interpreted as (message from
prior)×(blurred message fromf). The update forq(x) can be interpreted as (blurred message from
m1)×(blurred message fromm2). Blurring occurs whenever a message is sent from a factor hav-
ing a random exponent to a factor without that exponent. Thusthe exponent acts like a container,
affecting all messages that pass out of it. Hence, we use a graphical notation where a gate is a con-
tainer, holding all the factors switched by the gate. Graphically, the blurring operation then happens
whenever a message leaves a gate. Messages passed into a gateand within a gate are unchanged.

This graphical property holds true for other algorithms as well. For example, if we apply fully-
factorized expectation propagation to this model, we obtain the following messages:

mf→c(c = k) =
∑

x

∑

mk

p(mk)f(x|mk) (5)

mf→mk
(mk) ∝ proj[p(c 6= k)mf→c(c 6= k)p(mk) + p(c = k)f(x|mk)p(mk)] /p(mk) (6)

= blurk[f(x|mk), p(mk)] (7)

mc→x(x) ∝ blur1

[

∑

m1

p(m1)f(x|m1), 1

]

blur2

[

∑

m2

p(m2)f(x|m2), 1

]

(8)

where blurk[h, q] = proj[p(c 6= k)mf→c(c 6= k)q + p(c = k)hq] /q (9)

This has a similar form as the mean-field equations, with a modified definition of blurring. In this
paper,proj[p] means the unique exponential-family member whose sufficient statistics matchp [9]:

proj[p] = argmin
q

KL(p || q) (10)

4

where the minimization is over the distribution family of interest. For example, if we wantq(x) to be
Gaussian thenproj[p(x)] in (9) returns a Gaussian whose mean and variance match the distribution
p(x) (after normalization ofp(x)).

In (8), the two gates containingf(x|m1) andf(x|m2) have been treated as separate factors. Another
approach, which is more accurate for EP, is to treat these twogates as one factor. This leads to the
same updates exceptmc→x is now:

mc→x(x) = proj

[

p(c = 1)
∑

m1

p(m1)f(x|m1) + p(c = 2)
∑

m2

p(m2)f(x|m2)

]

(11)

which is the exact marginal forx.

3.1 Why gates are not equivalent to ‘pick’ factors

It is possible to rewrite this model so that thef factors do not have exponents, and therefore
would not be in gates. However, this will necessarily changethe approximation. This is be-
cause the blurring effect caused by exponents operates in one direction only, while the blur-
ring effect caused by intermediate factors is always bidirectional. For example, suppose we
try to write the model using a factorpick(x|c, h1, h2) = δ(x − h1)

δ(c−1)δ(x − h2)
δ(c−2).

We can introduce latent variables(h1, h2) so that the model becomesp(x, c,m1,m2, h1, h2) =
p(c)p(m1)p(m2)f(h1|m1)f(h2|m2)pick(x|c, h1, h2) (see figure 4a) . Thepick factor will cor-
rectly blur the downward messages from(m1,m2) to x. However, thepick factor will also blur
the message upward fromx before it reaches the factorf , which is incorrect.

Another approach is to pick from(m1,m2) before reaching the factorf , so that the model becomes
p(x, c,m1,m2,m) = p(c)p(m1)p(m2)f(x|m)pick(m|c,m1,m2) (see figure 4b) . In this case,
the message fromx to f is not blurred, and the upward messages to(m1,m2) are blurred, which is
correct. However, the downward messages from(m1,m2) to f are blurred before reachingf , which
is incorrect.

m2

c

x

m1

h1 h2

f f

pick

c

m

m1 m2

pick

x

f

(a) (b)

Figure 4: Two different ways of writing figure 3a without gates. Both lead to problems in message-
passing.

5

3.2 Variables inside gates

1

m2

c

x

m1

y y

f2

f1

f2

f1

2

Figure 5: A mixture model with a variable inside the gates

Now consider an example where it is natural to consider a variable to be inside a gate. The model
is:

p(x, c,m1,m2, y) = p(c)p(m1)p(m2)
∏

k

(f1(x|y)f2(y|mk))
δ(c−k) (12)

as depicted in figure 5. If we use a structured variational approximation wherey is conditioned on
c, then the fixed-point equations are [10]:

q(c = k) ∝ p(c = k) exp

(

∑

x

q(x)
∑

y

q(y|c = k) log f1(x|y)

)

exp

(

∑

y

q(y|c = k)
∑

mk

q(mk) log f2(y|mk)

)

exp

(

−
∑

y

q(y|c = k) log q(y|c = k)

)

(13)

q(y|c = k) ∝ exp

(

∑

x

q(x) log f1(x|y)

)

exp

(

∑

mk

q(mk) log f2(y|mk)

)

(14)

q(mk) ∝ p(mk) exp

(

∑

y

q(y|c = k) log f2(y|mk)

)q(c=k)

(15)

q(x) ∝
∏

k

exp

(

∑

y

q(y|c = k) log f1(x|y)

)q(c=k)

(16)

Notice that only the messages tox andmk are blurred; the messages to and fromy are not blurred.
Thus we can think ofy as sitting inside the gate. The message from the gate toc can be interpreted
as the evidence for the submodel containingf1, f2, andy.

The factorf1(x|y) does not depend onk, so we could rewrite the model into an equivalent one
wheref1 does not have an exponent:

p(x, c,m1,m2, y) = p(c)p(m1)p(m2)f1(x|y)
∏

k

(f2(y|mk))
δ(c−k) (17)

If we do this, then the update forq(x) becomes:

q(x) ∝ exp

(

∑

y

(
∑

k

q(y|c = k)q(c = k)) log f1(x|y)

)

(18)

which is equivalent to (16). The other updates are also the same.

6

4 Inference with gates

In the previous section, we explained why the gate notation arises when performing message passing
in some example mixture models. In this section, we describehow gate notation can be generally
incorporated into Variational Message Passing [11], Expectation Propagation [12] and Gibbs Sam-
pling [7] to allow each of these algorithms to support context-specific independence.

For reference, Table 1 shows the messages needed to apply standard EP or VMP using a fully
factorized approximationq(x) =

∏

i q(xi). See appendices A and B for a full explanation of this
table. Notice that VMP uses different messages to and from deterministic factors, that is, factors
which have the formfa(xi,xa\i) = δ(xi−h(xa\i)) wherexi is the derived child variable. Different
VMP messages are also used to and from such deterministic derived variables. For both algorithms
the marginal distributions are obtained asq(xi) =

∏

a ma→i(xi), except for derived child variables
in VMP whereq(xi) = mpar→i(xi). The (approximate) model evidence is obtained by a product
of contributions, one from each variable and each factor. Table 1 shows these contributions for each
algorithm, with the exception that deterministic factors and their derived variables contribute1 under
VMP.

When performing inference on models with gates, it is useful to employ anormalised formof gate
model. In this form, variables inside a gate have no links to factors outside the gate, and a variable
outside a gate links to at most one factor inside the gate. Both of these requirements can be achieved
by splitting a variable into a copy inside and a copy outside the gate, connected by an equality factor
inside the gate. A factor inside a gate should not connect to the selector of the gate; it should be

Alg. Type Variable to factor Factor to variable

mi→a(xi) ma→i(xi)

EP Any
∏

b 6=a

mb→i(xi)
proj

[

∑

xa\xi

(

∏

j∈a mj→a(xj)
)

fa(xa)
]

mi→a(xi)

VMP Stochastic
∏

a∋i

ma→i(xi) exp





∑

xa\xi





∏

j 6=i

mj→a(xj)



 log fa(xa)





Det. to parent
∏

b 6=a

mb→i(xi)
exp





∑

xa\(i,ch)





∏

k 6=(i,ch)

mk→a(xk)



 log f̂a(xa)





wheref̂a(xa) =
∑

xch
mch→a(xch)fa(xa)

Det. to child mpar→i(xi) proj





∑

xa\xi





∏

j 6=i

mj→a(xj)



 fa(xa)





Alg. Evidence for variable xi Evidence for factor fa

EP si =
∑

xi

∏

a ma→i(xi) sa =
∑

xa
(
∏

j∈a mj→a(xj))fa(xa)
∑

xa

∏

j∈a mj→a(xj)ma→j(xj)

VMP si = exp(−
∑

xi
q(xi) log q(xi)) sa = exp

(

∑

xa

(

∏

j∈a mj→a(xj)
)

log fa(xa)
)

Table 1:Messages and evidence computations for EP and VMP The top part of the table shows
messages between a variablexi and a factorfa. The notationj ∈ a refers to all neighbors of
the factor,j 6= i is all neighbors excepti, par is the parent factor of a derived variable, andch
is the child variable of a deterministic factor. Theproj[p] operator returns an exponential-family
distribution whose sufficient statistics matchp. The bottom part of the table shows the evidence
contributions for variables and factors in each algorithm.

7

given the key value instead. In addition, gates should bebalancedby ensuring that if a variable links
to a factor in a gate with selector variablec, the variable also links to factors in gates keyed on all
other values of the selector variablec. This can be achieved by connecting the variable to uniform
factors in gates for any missing values ofc. This has no impact on computational cost since the
uniform factors involve no computation; it is only a convenience in describing the algorithm. After
balancing, each gate is part of agate block– a set of gates activated by different values of the same
condition variable. See appendix C for details.

4.1 Variational Message Passing with gates

VMP can be augmented to run on a gate model in normalised form,by changing only the messages
out of the gate and by introducing messages from the gate to the selector variable. Messages sent
between nodes inside the gate and messages into the gate are unchanged from standard VMP. The
variational distributions for variables inside gates are implicitly conditioned on the gate selector, as
at the end of section 3. In the following, an individual gate is denotedg, its selector variablec and
its keykg.

The messages out of a gate are modified as follows:

• The message from a factorfa inside a gateg with selectorc to a variable outsideg is the
usual VMP message, raised to the powermc→g(c = kg), except in the following case.

• Where a variablexi is the child of a number of deterministic factors inside a gate blockG
with selector variablec, the variable is treated as derived and the message is a moment-
matched average of the individual VMP messages. Then the message toxi is

mG→i(xi) = proj





∑

g∈G

mc→g(c = kg)mg→i(xi)



 (19)

wheremg→i(xi) is the usual VMP message from the unique parent factor ing and proj is
a moment-matching projection onto the exponential family.

The message from a gateg to its selector variablec is a product of evidence messages from the
contained nodes:

mg→c(c = kg) =
∏

a∈g

sa

∏

i∈g

si, mg→c(c 6= kg) = 1 (20)

wheresa andsi are the VMP evidence messages from a factor and variable, respectively (Table 1).
The set of contained factors includes any contained gates, which are treated as single factors by the
containing gate. Deterministic variables and factors sendevidence messages of1, except where a
deterministic factorfa parents a variablexi outsideg. Instead of sendingsa = 1, the factor sends:

sa = exp

(

∑

xi

ma→i(xi) log mi→a(xi)

)

(21)

The child variablexi outside the gate also has a different evidence message:

si = exp

(

−
∑

xi

mG→i(xi) log mi→a(xi)

)

(22)

wheremG→i is the message from the parents (19) andmi→a is the message fromxi to any parent.
To allow for nested gates, we must also define an evidence message for a gate:

sg =





∏

a∈g

sa

∏

i∈g

si





q(c=kg)

(23)

These rules are derived by considering the behavior of VMP onan equivalent model that does not
use gates. For compactness, define amerge variableto be a variablexi that is the child of of a

8

number of deterministic factors inside a gate block. Defineexists(xi) to be the indicator for nodexi

to exist, i.e. the product ofδ(cg − kg) for all gatesg thatxi is contained in. Note that a gate selector
variable can be a derived variable. However the gate it selects cannot be its parent factor.

Starting from a gate model in normalised form, the gates are removed as follows:

1. Replace each factorfa(xa) with f ′
a(xa, ca) = fa(xa)exists(fa) whereca is the set of con-

dition variables forfa to exist.

2. For each merge variablexi, replacexi’s parents with a single deterministic factor given by
multiplying the parents together.

3. Erase all gates, promoting all variables to the top level.This defines an equivalent ungated
model.

To get good results on this ungated model, the approximationq(x) should not be fully factorized but
rather have the form

∏

i q(xi|exists(xi)). If xi is a merge variable with parents inside a gate block
with selector variableci, then the term forxi should beq(xi|exists(xi), ci). (Note thatexists(xi) in-
cludesexists(ci) sincexi andci must be in the same gate.) Running structured VMP on this ungated
model leads to the rules given above, whereq(xi) above actually representsq(xi|exists(xi)).

4.2 Expectation Propagation with gates

As with VMP, EP can support gate models in normalised form by making small modifications to the
message-passing rules. Once again, messages between nodesinside a gate are unchanged. Recall
that, following gate balancing, all gates are part of gate blocks. In the following, an individual gate
is denotedg, its selector variablec and its keykg.

The messages into a gate are as follows:

• The message from a selector variable to each gate in a gate block G is the same. It is the
product of all messages into the variable excluding messages from gates inG.

• The message from a variable to each neighboring factor inside a gate blockG is the same.
It is product of all messages into the variable excluding messages from any factor inG.

Let nbrs(g) be the set of variables outside ofg connected to some factor ing. Each gate computes
an intermediate evidence-like quantitysg defined as:

sg =
∏

a∈g

sa

∏

i∈g

si

∏

i∈nbrs(g)

sig wheresig =
∑

xi

mi→g(xi)mg→i(xi) (24)

wheremg→i is the usual EP message toxi from its (unique) neighboring factor ing. The third term
is used to cancel the denominators ofsa (see definition in Table 1). Given this quantity, the messages
out of a gate may now be specified:

• The combined message from all factors in a gate blockG with selector variablec to a
variablexi is the weighted average of the messages sent by each factor:

mG→i(xi) =
proj

[

∑

g∈G mc→g(c = kg)sgs
−1
ig mg→i(xi)mi→g(xi)

]

mi→g(xi)
(25)

(Notemi→g(xi) is the same for each gateg.)

• The message from a gate blockG to its selector variablec is:

mG→c(c = kg) =
sg

∑

g∈G sg

(26)

Finally, the evidence contribution of a gate block with selector c is:

sc =

∑

g∈G sg
∏

i∈nbrs(g)

∑

xi
mi→g(xi)mG→i(xi)

(27)

9

These rules are derived by considering the behavior of EP on an equivalent model that does not use
gates. The idea is to consider each gate block as a monolithicfactor, as in the derivation of (11).
When calculating the messages out of this factor, we apply EP recursively to the gate body. This
is possible due to the gate balancing transformation which ensures the set of connected variables is
the same for all cases, and the link-removal transformationwhich ensures that inner variables can
be summed out.

When a gate block is considered as a monolithic factorfG(c,xG) wherexG = nbrs(G), we have
the formula:

fG(c,xG) =
∏

g∈G

fg(xG)δ(c−kg) (28)

wherefg(xG) is the product of all factors in gateg, summed over all variablesxg inside gateg:

fg(xG) =
∑

xg

∏

a∈g

fa(xa) (29)

Given incoming messages for the gate,mi→g(xi) for all xi ∈ xG, the EP message fromfG to c is:

mG→c(c = kg) = Z−1
G

∑

xG

fg(xG)
∏

i

mi→g(xi) (30)

whereZ−1
G is an arbitrary scale factor. Expanding the definition offg and locally applying the EP

evidence formula givesmG→c(c = kg) = Z−1
G sg. To makemG→c(c) a normalized distribution

overc, the appropriate scale factor is:

ZG =
∑

g∈G

sg (31)

The EP message fromfG to xi ∈ xG is:

mG→i(xi) =
proj

[

∑

g∈G mc→g(c = kg)rg(xi)
]

mi→g(xi)
(32)

whererg(xi) =
∑

xG\xi

fg(xG)
∏

j

mj→g(xj) (33)

Expanding the definition offg and locally applying the EP evidence formula to the right-hand side
givesrg(xi) = sgs

−1
ig mg→i(xi)mi→g(xi) as in (25). The evidence contributionsG for the gate

block is the usual formula for the evidence contribution of afactor, specialized to (28):

sG =

∑

g∈G mc→g(kg)
∑

xG
fg(xG)

∏

i mi→g(xi)
(

∑

g∈G mc→g(kg)mG→c(kg)
)

∏

i∈nbrs(G) mi→g(xi)mG→i(xi)
(34)

=

∑

g∈G mc→g(kg)sg
(

∑

g∈G mc→g(kg)mG→c(kg)
)

∏

i∈nbrs(G) mi→g(xi)mG→i(xi)
(35)

=
ZG

∏

i∈nbrs(G) mi→g(xi)mG→i(xi)
(36)

4.3 Gibbs sampling with gates

Gibbs sampling can easily extend to gates which contain onlyfactors. Gates containing variables
require a facility for computing the evidence of a submodel,which Gibbs sampling does not provide.
Note also that Gibbs sampling does not support deterministic factors. Thus the graph should only
be normalised up to these constraints. The algorithm startsby setting the variables to initial values
and sending these values to their neighboring factors. Thenfor each variablexi in turn:

1. Query each neighboring factor for a conditional distribution for xi. If the factor is in a gate
that is currently off, replace with a uniform distribution.For a gateg with selectorxi, the
conditional distribution is proportional tos for the key value and1 otherwise, wheres is
the product of all factors ing.

2. Multiply the distributions from neighboring factors together to get the variable’s conditional
distribution. Sample a new value for the variable from its conditional distribution.

10

zn

xn

µm λm

m

m=1..M

π

unm×

Gaussian

Gaussian

Gamma

Discrete

Dirichlet

n=1..N

Gamma

zn

xn

µm λm

m

m=1..M

π

unm×

Gaussian

Gaussian

Gamma

Discrete

Dirichlet

n=1..N

Gamma

(a) (b)

Figure 6:Student-t mixture model using gates (a) Model from [13] (b) Structured approximation
suggested by [14], which can be interpreted as enlarging thegate.

5 Enlarging gates to increase approximation accuracy

Gates induce a structured approximation as in [10], so by moving nodes inside or outside of gates,
you can trade off inference accuracy versus cost. Because one gate of a gate block is always on, any
node (variable or factor) outside a gate blockG can be equivalently placed inside each gate ofG.
This increases accuracy since a separate set of messages will be maintained for each case, but it may
increase the cost.

For example, Archambeau and Verleysen [14] suggested a structured approximation for Student-t
mixture models, instead of the factorised approximation of[13]. Their modification can be viewed
as a gate enlargement (figure 6). By enlarging the gate block to includeunm, the blurring between
the multiplication factor andunm is removed, increasing accuracy. This comes at no additional cost
sinceunm is only used by one gate and therefore only one message is needed pern andm.

6 Discussion and conclusions

Gates have proven very useful to us when implementing a library for inference in graphical mod-
els. By using gates, the library allows mixtures of arbitrary sub-models, such as mixtures of fac-
tor analysers. Gates are also used for computing the evidence for a model, by placing the entire
model in a gate with binary selector variableb. The log evidence is then the log-odds ofb, that is,
log P (b = true) − log P (b = false). Similarly, gates are used for model comparison by placing
each model in a different gate of a gate block. The marginal over the selector gives the posterior
distribution over models.

Graphical models not only provide a visual way to represent aprobabilistic model, but they can
also be used as a data structure for performing inference on that model. We have shown that gates
are similarly effective both as a graphical modelling notation and as a construct within an inference
algorithm.

References

[1] B. Frey, F. Kschischang, H. Loeliger, and N. Wiberg. Factor graphs and algorithms. InProc. of the 35th
Allerton Conference on Communication, Control and Computing, 1998.

[2] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific independence in Bayesian
networks. InProc. of the 12th conference on Uncertainty in Artificial Intelligence, pages 115–123, 1996.

[3] D. McAllester, M. Collins, and F. Pereira. Case-factor diagrams for structured probabilistic modeling.
Uncertainty in Artificial Intelligence, 2004.

[4] B. Milch, B. Marthi, D. Sontag, S. Russell, D. L. Ong, and A. Kolobov. Approximate inference for infinite
contingent Bayesian networks. InProc. of the 6th workshop on Artificial Intelligence and Statistics, 2005.

[5] E. Mjolsness. Labeled graph notations for graphical models: Extended report. Technical Report TR# 04-
03, UCI ICS, March 2004.

11

[6] W. L. Buntine. Operations for learning with graphical models.JAIR, 2:159–225, 1994.

[7] S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, andthe Bayesian restoration of
images.IEEE Trans. on Pattern Anal. Machine Intell., 6:721–741, 1984.

[8] E. S. Lander and D. Botstein. Mapping Mendelian factors underlyingquantitative traits using RFLP
linkage maps.Genetics, 121(1):185–199, 1989.

[9] T. Minka. Divergence measures and message passing. Technical Report MSR-TR-2005-173, Microsoft
Research Ltd, 2005.

[10] W.A.J.J. Wiegerinck. Variational approximations between mean field theory and the junction tree algo-
rithm. In UAI, pages 626–633, 2000.

[11] J. Winn and C. M. Bishop. Variational Message Passing.JMLR, 6:661–694, 2005.

[12] T. P. Minka. Expectation propagation for approximate Bayesian inference. InUAI, pages 362–369, 2001.

[13] M. Svenśen and C. M. Bishop. Robust Bayesian mixture modelling.Neurocomputing, 64:235–252, 2005.

[14] C. Archambeau and M. Verleysen. Robust Bayesian clustering.Neural Networks, 20:129–138, 2007.

12

A Summary of Variational Message Passing

This section describes how to fit a fully factorized approximationq(x) =
∏

i q(xi) using Variational
Message Passing (VMP) [11]. VMP distinguishes between fourkinds of nodes in a factor graph:

• Deterministic factors, which have the formfa(xi,xa\i) = δ(xi − h(xa\i)).

• Stochastic factors (all other factors)

• Stochastic variables (children of stochastic factors)

• Derived variables (children of deterministic factors)

Deterministic factors and derived variables come in pairs,each deterministic factor having a des-
ignated derived child variable and each derived variable having a designated deterministic parent
factor. For each of these four node types, VMP describes how to compute (1) the outgoing messages
and (2) the evidence contribution.

For a stochastic variablexi, the incoming messages are functionsma→i(xi), one from each neigh-
boring factorfa. The outgoing messagemi→a(xi) to any neighborfa is the marginal ofxi, com-
puted as the product of all incoming messages:

q(xi) ∝
∏

a∋i

ma→i(xi) (37)

mi→a(xi) = q(xi) (38)

The evidence contribution issi = exp(−
∑

xi
q(xi) log q(xi)).

For a derived variablexi, VMP distinguishes between the incoming messagempar→i(xi) from
the parent factorfpar and the incoming messagesmb→i(xi) from the other factors. The outgoing
messagemi→par(xi) to the parent factor is the product of messages from the otherfactors:

mi→par(xi) =
∏

b 6=par

mb→i(xi) (39)

The outgoing messagemi→b(xi) to a child factor is the message from the parent factor:

mi→b(xi) = mpar→i(xi) (40)

The evidence contribution is 1.

For a stochastic factorfa(xa), the incoming messages are functionsmi→a(xi), one from each
neighboring variablexi. The outgoing messagema→i(xi) is the logarithmic average of the factor
over the other variables:

ma→i(xi) ∝ exp





∑

xa\xi





∏

j 6=i

mj→a(xj)



 log fa(xa)



 (41)

The evidence contribution issa = exp
(

∑

xa

(

∏

j∈a mj→a(xj)
)

log fa(xa)
)

.

For a deterministic factorfa(xch,xa\ch), VMP distinguishes between the incoming message
mch→a(xch) from the child variable and the incoming messagesmj→a(xj) from the other vari-
ables. The outgoing messagema→ch(xch) to the child variable is the average of the factor over the
other variables, projected onto the approximating family of xch:

ma→ch(xch) = proj





∑

xa\xch





∏

j 6=ch

mj→a(xj)



 fa(xa)



 (42)

The outgoing messagema→j(xj) to a parent variable is the logarithmic average, over the other
parent variables, of the factor averaged over the child variable:

ma→j(xj) ∝ exp





∑

xa\(xi,xch)





∏

k 6=(i,ch)

mk→a(xk)



 log

(

∑

xch

mch→a(xch)fa(xa)

)



 (43)

Becausefa(xa) = δ(xch − h(xa\ch)), the inner term
∑

xch
mch→a(xch)fa(xa) reduces to

mch→a(h(xa\ch)). The evidence contribution is 1.

13

B Summary of Expectation Propagation

This section describes how to fit a fully factorized approximationq(x) =
∏

i q(xi) using Expecta-
tion Propagation (EP) [12, 9]. EP only distinguishes between two node types: factors and variables.
Deterministic factors are not treated specially. For each node type, EP describes how to compute (1)
the outgoing messages and (2) the evidence contribution.

For a variablexi, the incoming messages are functionsma→i(xi), one from each neighboring factor
fa. The approximate marginal distribution is proportional tothe product of incoming messages:

q(xi) ∝
∏

a∋i

ma→i(xi) (44)

The outgoing messagemi→a(xi) to fa is proportional to the product of all incoming messages
except fromfa:

mi→a(xi) ∝
∏

b 6=a

mb→i(xi) (45)

The evidence contribution forxi is:

si =
∑

xi

∏

a

ma→i(xi) (46)

For a factorfa, the incoming messages are functionsmi→a(xi), one from each neighboring variable
xi. The outgoing messagema→i(xi) is proportional to the moment-matched projection of the factor
averaged over the other variables:

ma→i(xi) ∝
proj

[

∑

xa\xi

(

∏

j∈a mj→a(xj)
)

fa(xa)
]

mi→a(xi)
(47)

The evidence contribution is:

sa =

∑

xa

(

∏

j∈a mj→a(xj)
)

fa(xa)
∑

xa

∏

j∈a mj→a(xj)ma→j(xj)
(48)

The approximate model evidence is the product of contributions from all variables and factors:
∏

a sa

∏

i si. Note that this formula is invariant to any rescaling of the messages.

14

C Transformation to normal form

C.1 Removing links to variables inside gates

This section describes how to transform a factor graph into an equivalent model where a variable
inside a gate does not link to any factors outside the gate. This transformation ensures that if a gate
g1 contains the selector variable of another gateg2, theng1 also containsg2. Thus the state of a gate
can be uniquely determined from the value of its selector variable.

Suppose the variablex is inside a gateg and linked to some factorsfa outsideg. Just outside ofg,
create a variablex′ and link the outer factorsfa to x′ instead ofx. Insideg, place a deterministic
factor f=(x, x′) = δ(x′ = x). Alongsideg, create a complementary gateḡ. (A complementary
gate is a gate which is open wheng is closed, and vice versa.) Insideḡ, place a deterministic factor
f0(x

′) = δ(x′ = 0) that constrains its argument to be zero.

For VMP, if x is a derived variable and one of the factorsfa wasx’s parent, thenfa becomes a
parent ofx′, andx’s parent is nowf=. Otherwisef= andf0 are the parents ofx′. In either case,x′

treated by VMP as a derived variable.
TrueTrue

c x c

x′

x = 0

False

C.2 Reduction of gate crossings

This section describes how to transform a factor graph into an equivalent model where a variable
outside a gate links to at most one factor inside the gate. This transformation is useful to reduce
the number of gate-crossing edges and thereby avoid blurring of messages, as well as to convert
stochastic variables into derived variables.

Suppose the variablex is outside a gateg and linked to some factorsfa insideg. Insideg, create
a new variablex′ and link it to all the factorsfa instead ofx. Insideg, add a deterministic factor
f=(x, x′) = δ(x′ = x). If one of the factorsfa wasx’s parent, thenfa becomes the parent ofx′,
andx’s parent is nowf=. Note thatx’s parent is now deterministic. If this transformation is done to
all of x’s parent gates, thenx will be a derived variable in VMP.

c

x

c
x′

x

=

C.3 Gate balancing

This section describes how to transform a factor graph into an equivalent model where gates are
balancedin the sense that if a gateg with selector variablec links to a variablex outsideg then for
everyvalue ofc there is a gate linking tox.

Suppose variablex links to gateg1 with condition c = k1, but does not link to any gate when
c = k2. Then create a new gateg2 with conditionc = k2 and place a uniform factorf(x) = 1 inside
it. Repeat this for every value ofc until the gate is balanced.

11

m2

c

x

m1 m2

c

x

m1

uniform uniform

2 2

15

C.4 Removing links to selectors

This section describes how to transform a factor graph into an equivalent model where the selector
variable of a gateg has no neighbors insideg. Suppose selector variablec connects to factorf
insideg. If the gate has keykg, then factorf will only be active ifc = kg. Sof can equivalently be
connected to a constant with valuekg, instead ofc.

False

c

False

c False

D Converting case-factor diagrams to gates

A case-factor diagram (CFD) is a compact way to encode a set ofconstraints on Boolean variables.
It has the following syntax:

D ::= 0 | 1 | case(x,D1,D2) | factor(D1,D2)

In this notation, “0” means an impossible state, i.e. “fail”, “1” means that all unassigned variables
are false, “x” stands for any Boolean variable, and “D1” and “D2” are sub-diagrams. For example,
this CFD states that exactly one of(x, y, z) is true:

case(x,1, case(y,1, case(z,1,0)))

The size of this CFD is linear in the number of variables, which is a big improvement over the usual
factor graph notation for that constraint.

To illustrate the complexities of CFDs, consider the constraint “an even number of variables are
true” over the setx1, ..., xn. We can encode this using the following recursion:

EVEN0 = 1 (49)

ODD0 = 0 (50)

EVENi = case(xi,ODDi−1,EVENi−1) i = 1, ..., n (51)

ODDi = case(xi,EVENi−1,ODDi−1) i = 1, ..., n (52)

The final CFD is thenEVENn. In this CFD, the subexpressionEVENi−1 appears twice. However,
these appearances are mutually exclusive since in one casexi is false and in the otherxi is true.

It turns out that any case-factor diagram can be encoded as a gated factor graph with only a constant
factor increase in the number of nodes. The general transformation is as follows. Each unique
subexpression in the CFD is given a Boolean variablevexpr which is true iff the expression is reached
in the CFD. Eachvexpr is fed by an OR factor. The OR factor has one input always set tofalse, so
that the variable is false if never used. The other inputs correspond to each use of the expression in
the CFD. Because a node in a CFD can be reached in at most one way, at most one of these inputs
will be true. In addition to the OR factor, we connectvexpr as follows:

• v0 is constrained to be false.

• v1 is not constrained.

• vfactor(D1,D2) is connected toor(vD1) andor(vD2).

• vcase(x,D1,D2) is connected to a gate surrounding two fresh variablesx′ and x̄′ with a
NOT factor between them.x′ is connected toor(vD1) and x̄′ is connected toor(vD2).
Additionally,x′ is connected tovx (notor(vx)) via an equality constraintf=(x′, vx) which
sits inside the gate.

• For the top-level expressionD of the CFD, constrainvD to be true.

The graph that results from this transformation can be simplified a bit. For example,v1 and all edges
leading tov1 can be dropped sincev1 is unconstrained. Sincev0 is always false, it can be dropped
and all edges leading tov0 can be replaced withfalseconstraints. SincevD is always true, it can be
dropped and thetrueconstraint propagated forward to its children.

16

