Indexing on Modern Hardware: Hekaton and Beyond

Justin Levandoski
Adrian Birka

David Lomet

Sudipta Sengupta

Cristian Diaconu

Microsoft
{justin.levandoski, lomet, sudipta, adbirka, cdiaconu}@microsoft.com

ABSTRACT

Recent OLTP support exploits new techniques, running on
modern hardware, to achieve unprecedented performance
compared with prior approaches. In SQL Server, the Heka-
ton main-memory database engine embodies this new OLTP
support. Hekaton uses the Bw-tree to achieve its great in-
dexing performance. The Bw-Tree is a latch-free B-tree
index that also exploits log-structured storage when used
“beyond” Hekaton as a separate key value store. It is de-
signed from the ground up to address two hardware trends:
(1) Multi-core and main memory hierarchy: the Bw-tree
is completely latch-free, using an atomic compare-and-swap
instruction to install state changes on a “page address” map-
ping table; it performs updates as “deltas” to avoid update-
in-place. These improve performance by eliminating thread
blocking while improving cache hit ratios. (2) flash storage:
the Bw-tree organizes secondary storage in a log-structured
manner, using large sequential writes to avoid entirely the
adverse performance impact of random writes. We demon-
strate the architectural versatility and performance of the
Bw-tree in two scenarios: (a) running live within Hekaton
and (2) running as a standalone key value store compared
to both BerkeleyDB and a state-of-the-art in-memory range
index (latch-free skiplists). Using workloads from real-world
applications (Microsoft XBox Live Primetime and enter-
prise deduplication), we show the Bw-tree is 19x faster than
BerkeleyDB and 3x faster than skiplists.

1. INTRODUCTION

A B-tree index supports high performance in both access
to individual keys and key-sequential access to subranges
of keys. This combination of random and range access has
made the B-tree the indexing method of choice within both
database systems and stand-alone key value stores. The sys-
tems for which the B-tree was designed were uni-processors.
They used disks for persistent storage. Those days are long
gone. Our demonstration showcases the Bw-tree [8], a new
B-tree whose design enables very high performance in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGMOD’ 14, June 22-27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2594536.

new hardware environment. The Bw-tree addresses two im-
portant aspects of modern hardware:

Modern Multi-core Processors: Modern computer
systems all use multi-core processors to achieve high per-
formance and extensive memory hierarchies to achieve good
memory system performance.

1. Exploiting multiple core systems requires increased con-
currency. In that setting, latches are more likely to
block and limit scalability [1]. The Bw-tree is latch-
free, ensuring a thread never yields or even re-directs
its activity in the face of conflicts.

2. Multi-core memory performance depends on high cache
hit ratios. Updating memory in place results in costly
cache invalidations, especially on multi-socket machines.
The Bw-tree performs “delta” updates that avoid in-
place updates, reducing invalidations and preserving
previously cached page data.

Addressing these two aspects leads to great in-memory in-
dexing performance. For this reason, the Bw-tree is the key
range index used by the Microsoft SQL Server Hekaton in-
memory OLTP engine [4].

Modern Secondary Storage. Hard disk I/O latency
and low I/O rate limit indexing performance. Flash storage
offers higher I1/O operations per second and lower latency
at lower cost per I/O. Due to this performance advantage,
several recent storage systems (e.g. Amazon’s DynamoDB
) explicitly exploit flash [5]. The Bw-tree targets flash stor-
age as well. However, flash has performance idiosyncracies
that must be addressed. While flash has fast random and
sequential reads, it needs an erase cycle prior to write, mak-
ing random writes slower than sequential writes. While flash
SSDs typically have a mapping layer (the FTL) to mask
this difficulty, a noticeable slowdown still exists. Experi-
ments have shown even high-end FusionlIO drives exhibit a
3x faster performance for sequential writes than for random
writes [3]. The Bw-tree performs log structuring itself at
its storage layer to avoid a dependency on FTL and to re-
duce I/O instruction path with batched writes. This makes
write performance as high as possible for both high-end and
low-end flash devices.

Our demonstration showcases the design and performance
of the Bw-tree. We describe the novel techniques we de-
signed to achieve in-memory latch-free behavior and log-
structuring on storage. We demonstrate performance in two
settings: (1) as the range index running end-to-end in Heka~
ton; and (2) as an independent key value store. Our live

Bw-Tree
LLAMA
In-Memory Cache Layer

Log-Structured Storage
Layer

Flash Storage

Figure 1: The Bw-tree implemented over LLAMA.

demo runs workloads from two real-world applications: Mi-
crosoft’s XBox Live Primetime and an enterprise deduplica-
tion workload from Windows Server. This demostrates up
to a 3x speedup over latch-free skiplists (state-of-the-art in
main-memory indexing) and a 19x speedup over the Berke-
leyDB B-tree (a traditional storage-based B-tree).

2. THE Bw-TREE DESIGN

The Bw-tree is a B+-tree [2] style index that provides
logarithmic access to keyed records from a one-dimensional
key range, while providing linear time access to sub-ranges.
As depicted in Figure 1, the Bw-tree is built on top of
LLAMA [7], our cache and storage subsystem that sup-
ports building high-performance page-oriented access meth-
ods. LLAMA is divided into layers: (1) an in-memory cache
layer serves the Bw-tree with in-memory pages (bringing
the page in from flash storage if necessary) and provides
latch-free “delta” updates to pages; (2) a storage layer that
implements our log-structured store (LSS) over flash. Other
access methods can be implemented over LLAMA (e.g. we
have implemented linear hashing as well), but for demo pur-
poses we describe our Bw-tree implementation.

The layering in Figure 1 provides an extremely versatile
design since (1) it is architecturally compatible with existing
database kernels; (2) it is suitable as a stand-alone key-value
store; (3) it can be used as an atomic record store in a
decoupled transactional system [6]; and (4) due to its latch-
freedom, it can serve as an efficient range index in a main-
memory database by disabling the LLAMA flash layer (the
Bw-tree is the range index in the SQL Server Hekaton main-
memory database [4]).

2.1 The Mapping Table

The cache layer of LLAMA maintains a mapping table,
that maps logical pages to physical pages. Logical pages are
identified by a logical “page identifier” or PID. The mapping
table translates a PID into either (1) a flash offset, the ad-
dress of a page on stable storage, or (2) a memory pointer,
the address of the page in main memory. The mapping table
is the central location for managing our “paginated” tree. All
links between Bw-tree nodes are PIDs, not physical pointers.
The mapping table enables the physical location of a Bw-
tree node (page) to change on every update and every time a
page is written to stable storage, without requiring that the
location change propagate to the root of the tree, because
inter-node links are PIDs that do not change. This “reloca-
tion” tolerance enables both delta updating of the node in
main memory and log structuring of our stable storage.

LPID Consolidated

Page P

“[a{a]{a]

(b) Consolidating a page

LPID|Ptr

(a) Delta updates

Figure 2: Delta updates and consolidation.

Bw-tree nodes are thus logical and do not occupy fixed
physical locations, either on stable storage or in main mem-
ory. This means we have flexibility in how we physically
represent nodes. Furthermore, we permit page size to be
elastic, meaning we can split pages when convenient as size
constraints do not impose a splitting requirement.

2.2 In-Memory Page Updates

Neither readers nor writers block when accessing Bw-tree
pages in memory due to latch-free page updates in LLAMA.
Being latch-free enables us to drive processors to close to
100% utilization. Instead of latches, LLAMA installs state
changes using the compare and swap (CAS) instruction®.

2.2.1 Delta Updating

The Bw-tree updates pages by creating a delta record (de-
scribing the change) and prepending it to an existing page
state (the delta record contains a pointer to the existing
page state). It then requests that the LLAMA cache layer
install the (new) memory address of the delta record into
the page’s slot in the mapping table using a CAS instruc-
tion. If the CAS succeeds, the delta record address becomes
the new physical “root” address of the page, thus updating
the page. This strategy is used both for data changes (e.g.,
inserting a record) and management changes (e.g., spliting a
page). Delta updating simultaneously enables latch-free ac-
cess in the Bw-tree and preserves processor data caches by
avoiding update-in-place. Figure 2(a) depicts a delta update
record D prepended to page P; the dashed line represents
P’s original address, while the solid line to D represents P’s
new address. We occasionally consolidate pages by creat-
ing a new page that applies all delta changes to a search
optimized base page. This reduces memory footprint and
improves search performance. A consolidated form of the
page is also installed with a CAS, as depicted in Figure 2(b)
showing the consolidation of page P with its deltas into a
new “Consolidated Page P”.

2.2.2 Structure Modifications

Index structure modifications operations (SMOs) such as
node splits and deletes/merges introduce changes to more
than one page. This presents a problem in a latch-free en-
vironment since (a) we cannot change multiple pages with
a single CAS and (b) we cannot employ latches to protect
parts of our index during the SMO. All Bw-tree SMOs are
performed in a latch-free manner; to our knowledge this has
never been done before. The main idea is to break an SMO
into a sequence of atomic actions, each on a single page and

!CAS is an atomic instruction that compares a given old
value to a current value at location L, if the values are equal
the instruction writes a new value to L, replacing current.

Mapping Sequential log (on Flash)

Table
LPID | Ptr /) Base page 3
[e) Base page 'E

P o~ A-recorde

Base page |y

Q |«
\. A - record @ "

Figure 3: Log structured storage.

f N

>

=

3
(<}

1]

a

°

Write ordering in log

installable via a CAS. The details of latch-free SMOs are
described elsewhere in our full paper [8].

2.3 Log Structured Store

2.3.1 Caching

In addition to latch-free page updates, LLAMA is re-
sponsible for reading, flushing, and swapping pages between
memory and flash. It maintains the mapping table and pro-
vides the abstraction of logical pages to the Bw-tree. Pages
in main memory are occasionally written (flushed) to stable
storage for a number of reasons. For instance, the Bw-tree
may assist in transaction log checkpointing if it is part of
a transactional system such as Deuteronomy [6, 9], or to
reduce memory usage. Flushing and “swap out” of a page
installs a flash offset in the mapping table and permits re-
claiming page memory.

2.3.2 Storage Management

Log structuring. LLAMA organizes data on flash stor-
age in a log structured manner similar to a log structured
file system [12]. Thus, each page flush relocates the posi-
tion of the page on flash (an additional reason for using our
mapping table). Log structured storage (LSS) has the sub-
stantial advantage of greatly reducing the number of writes
per page and makes the writes “sequential”. That is, it con-
verts many random writes into one large multi-page write.

Figure 3 depicts an example of our LSS. A logical page
consists of a base page and zero or more delta records re-
flecting updates to the page (much like its representation in
memory). This allows a page to be written to flash in pieces
when it is flushed. Thus, a logical page on flash corresponds
to records on possibly different physical device blocks that
are linked together using file offsets as pointers. Further, a
physical block may contain records from multiple pages.

Incremental flushing. To keep track of which part of
the page is on stable storage and where it is, we use a flush
delta record, which is installed by updating the mapping
table entry for the page using a CAS. Flush delta records
also record which changes to a page have been flushed so
that subsequent flushes send only incremental page changes
to stable storage. This can dramatically reduce how much
data is written during a page flush, increasing the number of
page updates that that take place during a flush, and hence
reducing the number of I/O’s per page. There is a penalty
on reads, however, as the discontinuous parts of pages must
all be in main memory to make a page accessible in the main
memory cache. This penalty is mitigated by the very high
random read performance of flash.

Ble Edt Ve Quey Pject Debug Took Window Eép
9 pacecount
FEE S

5QLQueryLsqi - (.ON

Figure 4: Bw-Tree running in SQL Server Hekaton.
3. DEMONSTRATION SCENARIO

Our demonstration scenario showcases both the architec-
tural versatility and performance of the Bw-tree. First, we
demonstrate the Bw-tree running live within the SQL Server
Hekaton engine in a real enterprise OLTP scenario. Second,
we demonstrate the Bw-tree running as a standalone key-
value store and compare its performance to two state-of-
the-art range indexing architectures running on workloads
from two real-world applications.

3.1 Bw-Tree in SQL Server Hekaton

This demo-scenario showcases the Bw-tree running as a
purely in-memory latch-free index within Hekaton [4], Mi-
crosoft SQL Server’s main-memory OLTP engine.

Hekaton. The Hekaton engine is integrated into SQL
Server; it is not a separate database system. A user can
declare a table to be memory-optimized which means that it
will be stored in main memory and managed by Hekaton. A
Hekaton table can have several indexes and two index types
are available: hash indexes and ordered indexes (the Bw-
tree). Hekaton is designed for high levels of concurrency but
it does not rely on partitioning to achieve this; any thread
can access any row in a table without acquiring latches or
locks. All data structures in Hekaton are latch-free (lock-
free) to avoid physical interference among threads.

Scenario. This demo involves running a large-scale en-
terprise OLTP workload on Hekaton. The workload involves
updates and queries that exercise the Bw-tree. Figure 4 de-
picts the SQL Server Management Studio used to run the
workload and provide timing results. We run two versions
of the workload: (1) Memory optimized that defines all ta-
bles using the MEMORY_OPTIMIZED keyword, denoting they
are managed by the Hekaton engine; (2) Regular that uses
regular SQL Server tables with a buffer pool large enough
to fit the OLTP workload in memory. The attendee will
be able to witness the significant performance improvement
that the Bw-tree and Hekaton exhibit compared to a tradi-
tional database architecture running completely in-memory.

3.2 Bw-Tree as a Key-Value Store

This demo scenario showcases the Bw-tree as a standalone
key-value store. We provide a side-by-side comparison of the
Bw-tree with two different ordered index architectures:

LIVE

Running Xbox LIVE workload on Bw-tree...

M[6M) 7MfEM

Figure 5: Demo scenario workload driver

BerkeleyDB B-tree. To show that the Bw-tree is an
efficient flash-aware key-sequential index, we compare it to
the BerkeleyDB B-tree known for its good performance as
a standalone storage engine. We use the C implementa-
tion of BerkeleyDB running as a standalone B-tree index
sitting over a buffer pool cache that reads and writes from
disk at page granularity, representing a typical B-tree ar-
chitecture. We run BerkeleyDB in non-transactional mode
(meaning better performance) that supports a single writer
and multiple readers using page-level latching (the small-
est latch granularity in BerkeleyDB, and indeed in most
database engines) to maximize concurrency.

Latch-free skip list. To show that the Bw-tree serves
as a very efficient memory-only latch-free ordered index, we
compare it to a latch-free main memory skip list imple-
mentation [11]. The skip list has become a popular key-
sequential index choice for in-memory databases? since it
can be implemented latch-free, exhibits fast insert perfor-
mance, and maintains logarithmic search cost. Our imple-
mentation installs an element in the bottom level (a linked
list) using a CAS to change the pointer of the preceding el-
ement. It decides to install an element at the next highest
layer (the skip list towers or “express lanes”) with a proba-
bility of 1.

3.3 Benchmark Machine and Workloads

The demo uses workloads from two real-world applications
from within Microsoft:

Xbox LIVE. This workload contains 27 Million get-set
operations obtained from Microsoft’s Xbox LIVE Prime-
time online multi-player game [13]. Keys are alpha-numeric
strings averaging 94 bytes with payloads averaging 1200
bytes. The read-to-write ratio is approximately 7.5 to 1.

Enterprise storage deduplication trace. This work-
load comes from a real enterprise deduplication trace used
to generate a sequence of chunk hashes for a root file direc-
tory and compute the number of deduplicated chunks and
storage bytes. This trace contains 27 Million total chunks
and 12 Million unique chunks, and has a read to write ration
of 2.2 to 1.

When comparing the Bw-tree with the skiplist, we run
the workloads in memory-only mode by removing the flash
layer of the Bw-tree, forcing it to run completely in memory.

2For example, the MemSQL in-memory database uses a skip
list as its key-sequential index [10]

CPU Usage CPU Usage History

Bw tree CPU monitor

‘CPU Usage Hitory

b) BerkeleyDB CPU monitor
Flgure 6: CPU monitor.

When comparing the Bw-tree with BerkeleyDB, we run the
workloads in flash mode by setting system memory limits low
enough to force each system to spill pages to flash storage.

3.4 Demo Application

Our primary demo application is a workload driver re-
sponsible for playing our real-world workloads over each in-
dex (as depicted in Figure 5). The driver also reports the
performance for each system.

In order for the demo attendee to witness the speed of
each system, the demo application “flips” a tile after com-
pletion of every 1M operations. Upon workload termination
the application reports the throughput achieved by each sys-
tem. The demo also uses a live CPU monitor, depicted in
Figure 6 so the demo attendee may see the CPU utilization
achieved by each system. For example, the Bw-tree (and
Skiplist) achieves 100% CPU utilization when the workloads
run in memory-only mode, and close to a 100% utilization for
the flash mode workload (Figure 6(a)). Meanwhile, Berke-
leyDB achieves roughly 60% CPU utilization (Figure 6(b))
due to latching and and in-place updates both in memory
and on flash. Our demonstration scenario shows the Bw-tree
achieving up to a 3x and 19x speedup over the skiplist and
BerkeleyDB B-tree, respectively.

4 REFERENCES

A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.
DBMSs on a Modern Processor: thrc Does Time Go? In
VLDB, pages 266-277, 1999.

[2] D. Comer. The Ubiquitous B-Tree. ACM Comput. Surv.,
11(2):121-137, 1979.

[3] B. Debnath, S. Sengupta, and J. Li. SkimpyStash: RAM Space
Skimpy Key-Value Store on Flash-based Storage. In SIGMOD,
pages 25-36, 2011.

[4] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL
Server’s Memory-Optimized OLTP Engine. In SIGMOD, 2013.

[5] Amazon DynamoDB. http://aws.amazon.com/dynamodb/.

[6] J. J. Levandoski, D. B. Lomet, M. F. Mokbel, and K. Zhao.
Deuteronomy: Transaction Support for Cloud Data. In CIDR,
pages 123-133, 2011.

[7] J. J. Levandoski, D. B. Lomet, and S. Sengupta. LLAMA: A
Cache/Storage Subsystem for Modern Hardware. PVLDB,
6(10):877-888, 2013.

[8] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The Bw-Tree:
A B-tree for New Hardware Platforms. In ICDE, pages
302-313, 2013.

[9] D. Lomet, A. Fekete, G. Weikum, and M. Zwilling. Unbundling
Transaction Services in the Cloud. In CIDR, pages 123-133,
2009.

[10] MemSQL Indexes.
http://developers.memsql.com/docs/1b/indexes.html.

[11] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced
Trees. Commun. ACM, 33(6):668-676, 1990.

[12] M. Rosenblum and J. Ousterhout. The Design and
Implementation of a Log-Structured File System. ACM Trans.
Comput. Syst., 10(1):26-52, 1992.

[13] Xbox LIVE Primetime. http://www.xboxprimetime.com.

