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Fig. 1. Fully distributed 3-way videoconferencing that preserves the
relative seating geometry as a face-to-face meeting. Such an arrangement
will guarantee that the gaze between meeting participants will be faithfully
maintained.

Index Terms—immersive teleconferencing, 3D, structured light,
virtual seating.

I. INTRODUCTION

Immersive teleconferencing has been an attractive research
topic for many years, aiming to produce “a videoconferencing
experience that creates the illusion that the remote participants
are in the same room with you” [28]. An ideal immersive
teleconferencing system should be able to replicate the light
and sound field (as well as, maybe, taste, smell and touch)
observed by the user in a face-to-face meeting, all in real-
time. This is certainly a non-trivial task.

A few commercial group video conferencing systems
emerged in the past few years, such as the Halo system from
Hewlett-Packard and the Telepresence system from Cisco.
These systems feature life-size video, spatial audio, and envi-
ronment excellence by providing furniture, lighting, even wall
colors to maximize the conference experience. Although these
systems provide substantially improved conference experience
than traditional video chatting over the Internet, they are still
far from being truly immersive, because the mutual gaze [2]
between attendees are not preserved. Research has been done
to feed videos of multiple cameras directly into multiview
displays at the remote party [16], [19], which was shown to
improve the efficiency of group conferencing since the gaze
is roughly preserved [19]. Nevertheless, there are still many
challenges and inflexibleness in group video conferencing,
such as the low visual quality of multiview displays, the
limited view position of the user, and the lack of full 3D
rendering and motion parallax (free viewpoint video).

In this paper, we study the design of a fully distributed
immersive teleconferencing system, which assumes that there
is only one user at each station during the conference. Such a
system would be of equal importance as a group conferencing
system, since many users would prefer to conduct meetings
in their own offices for convenience. Compared with group
conferencing systems, fully distributed systems permit the
rendering of the light and sound fields from a single user’s
viewpoint at each site, which demands less on the system

hardware. However, to create an immersive experience, we
still need to support:

• A flexible number of participants for the conference.
When the number of cameras at each site is fixed, a full
3D reconstruction is needed to ensure correct mutual gaze
when the number of participants is larger than the number
of cameras.

• Conference seating geometry identical to face-to-face
meetings (Fig. 1). This implies that all equipment at
each site shall be calibrated with respect to each other,
including cameras that capture the person, display, table
height, etc.

• 3D audio/video rendering of remote participants, with
motion parallax. For audio, spatial audio rendering is
needed as well as multi-channel echo cancelation. For
video, to support motion parallax, again high-quality 3D
reconstruction is demanded.

• Real-time operation, high network bandwidth and low
latency between participants.

Fig. 1 illustrates three people joining a virtual/synthetic
meeting from their own offices in three separate locations. A
capture device (e.g., one or more Kinect sensors, or a camera
rig) at each location captures users in 3D with high fidelity
(in both geometry and appearance). They are then placed
into a virtual room as if they were seated at the same table.
The user’s eye positions are tracked by the camera so that
the virtual room is rendered appropriately at each location
from the user’s perspective, reproducing the motion parallax
that a user would see in the real world if the three people
were meeting face to face. Because a consistent geometry is
maintained and the user’s eye positions are tracked, the mutual
gaze between remote users is maintained. In Fig. 1, users A
and C are looking at each other, and B will see that A and
C are looking at each other because B sees only their side
views. Furthermore, the audio is also spatialized, and the voice
of each remote person comes from his location in the virtual
room. The display at each location can be 2D or 3D, flat
or curved, single or multiple, transparent or opaque, and so
forth–the possibilities are numerous. In general, the larger the
display is, the more immersive the user’s experience would
be.

The pursuit of fully distributed immersive teleconferenc-
ing has been ongoing for many years. Early representative
work includes the Tele-immersion Portal [20], the VIRTUE
project [22], the Coliseum [3], etc. These systems shared the
same vision that once the 3D models of the users are recon-
structed, they can be placed in a common virtual environment
to be rendered immersively. However, little attention has been
paid to maintaining the conference seating geometry; thus the
mutual gaze between attendees has usually been poor in multi-
party conferences. In addition, the rendering quality of these
systems were often limited due to the small number of cameras
used and computational limitations.

Several approaches have been proposed to perform real-time
3D reconstruction for immersive teleconferencing, some based
on silhouette [15], [8], some on voxel representation [9], and
some on image-matching [17], [23], [30]. Nevertheless, the
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reconstruction quality of such algorithms are generally unsatis-
factory. A straightforward scheme to improve rendering quality
is to increase the number of cameras at each site. For instance,
the Tele-immersion Portal evolved into a system with over 30
cameras, processed with a computer cluster [18]. Recent work
in [11], [26] employed 48 cameras and 12 computers at each
station for a multi-resolution mesh based reconstruction, which
showed much improved rendering quality. Another recent
work is by Feldmann et al. [7], who fused a hybrid-recursive
matching scheme with volumetric reconstruction to perform
depth reconstruction from 15 HD cameras in real-time, with
the help of multiple high-end workstations and graphics cards.

Another venue for real-time 3D reconstruction is through
structured light. One popular approach is the phase unwrap-
ping based approach by Zhang and Huang [32], which was
adopted in the one-to-many 3D video teleconferencing system
in [10]. Phase unwrapping can generally produce very high
quality depth maps; however, it is sensitive to depth discon-
tinuity and object motion, and cannot be easily extended to
cover a larger view angle. Cotting et al. [6] presented the
imperceptible structured light method, where encoded images
are visible only to cameras synchronized with the projectors.
They focused on reconstructing relatively static scenes through
Gray code, and their single-shot method for acquiring dynamic
scenes had poor quality. Improvements in rendering quality
were made in recent works such as [29] and [1], though few
of them can achieve real-time high quality 3D reconstruction.

The third option is to use directly for 3D capturing depth
cameras such as the Microsoft Kinect or the SwissRanger
depth camera. For instance, Maimone and Fuchs [14] recently
presented a teleconferencing system using 6 Kinect sensors
at each site. The depth maps are merged and processed to
improve rendering quality. However, Kinect sensors cannot be
reliably synchronized, and multiple sensors may interfere with
each other due to overlapped patterns. As a result, it is difficult
to achieve high-quality rendering in their system. Another
system by Lee and Ho [12] employed one depth camera and
multiple color cameras for depth reconstruction, though they
were not considering immersive teleconferencing applications
and their depth refinement algorithm takes minutes to finish.

Inspired by the success of the Kinect sensor, we present
Viewport, a fully distributed immersive teleconferencing sys-
tem based on a structured light approach that uses an infrared
(IR) dot pattern. Each site is equipped with 3 IR cameras, three
color cameras and two low cost IR laser projectors (identical
to those used in the Kinect sensor). A novel algorithm is
developed to reconstruct a sparse point cloud of the user in
real-time with a single workstation, which is then transmitted
along with the three color video streams to all remote parties.
Upon receiving multiple sparse point clouds from the other
stations, a virtual seating algorithm places them in a shared
virtual environment, and renders them with high quality.
The face-to-face meeting geometry is rigorously maintained
in the virtual environment by a careful calibration scheme,
which computes the relative positions between the camera rig
(thus the reconstructed point cloud), the screen, and the table
surface. Motion parallax and spatial audio are also enabled to
improve the immersive experience.

Kinect camera

IR cameras

Color cameras

IR laser projectors

(a)

(b)

Fig. 2. The Viewport camera rig. (a) The configuration of the camera rig.
The Kinect camera in this setup is used for audio capture and head tracking
for motion parallax (See more details in Section IV-A). The laser in the Kinect
camera is disabled to avoid interference. (b) Example images captured by the
camera rig.

The main contributions of this work can be summarized as
follows:

• We developed a real working multimedia system for 3-
way immersive teleconferencing, which is a very chal-
lenging task considering all the technical components
involved.

• We presented a solution for sparse 3D reconstruction for
real-world scenes, by projecting IR laser dot patterns and
reconstruct their 3D positions in real-time. Note surface
reconstruction based on quasi-dense points has been done
before [13], but mostly initialized with 2D feature points,
which is not as robust as laser dot patterns for real-world
systems.

• Most importantly, we introduce the scheme of virtual
seating, where the point clouds are positioned to maintain
the same seating geometry as face-to-face meetings, such
that the mutual gaze between participants is faithfully
maintained.

The rest of the paper is organized as follows. An overview
of the Viewport system is given in Section II. The 3D model
reconstruction and rendering are explained in Section III.
Virtual seating is described in Section IV. Section V briefly
explains the immersive rendering of 3D audio, followed by
some experimental results in Section VI. Finally, conclusions
and future work are given in Section VII.

II. SYSTEM OVERVIEW

Our Viewport system uses a camera rig for scene capture
at each site. The rig consists of three IR cameras, three color
cameras and two IR projectors, as shown in Fig. 2(a). The
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Fig. 3. Overview of the Viewport system.

IR projectors are identical to those in the Kinect device,
and were placed in an acrylic enclosure for easy mounting.
We did not build the system directly with multiple Kinect
sensors because they cannot be reliably synchronized and their
color image quality is very poor. The IR and color cameras
are PointGrey Flea2 cameras, synchronized with an external
trigger and operating at 1024 × 768 pixel resolution. Note
for the IR cameras, we removed the IR filter in Flea2 and
added a visible light filter (a cheap black acrylic plastic) to
increase contrast. Some example images captured by the rig
are shown in Fig. 2(b). The system also adopts a Kinect camera
for audio capture and head tracking, though the laser in the
Kinect camera is disabled to avoid interference.

The overall work flow of our system is shown in Fig. 3.
At the sender site, a sparse point cloud of the user is first
reconstructed from the camera rig. After compression, the
point cloud is sent over the network, together with the three
color video streams and three binary mask videos obtained
from the IR video. At the receiver site, multiple sparse point
clouds and video streams are decompressed. The sparse point
clouds are interpolated into dense point clouds with a regres-
sion algorithm. The binary masks are also utilized in this step
to improve quality. The dense point clouds are then converted
into triangular meshes. Once all remote parties’ point clouds
are processed, the receiver runs a virtual seating algorithm to
arrange the meshes in their correct positions, such that the
conference geometry of a face-to-face meeting is maintained.
Afterwards, all the meshes are rendered to the user for an
immersive videoconferencing experience.

We have set up a three-site immersive teleconferencing sys-
tem for experiment. Each site is equipped with two high-end
workstations, one for capturing/sparse point cloud generation
(the capture workstation), and the other for dense point cloud
generation, meshing and rendering (the rendering workstation).
The workstations have dual Intel Xeon Six-Core X5690 CPUs
(3.46 GHz), 24 GB of memory, and an NVidia GeForce GTX
580 graphics card. At the capture workstation, the sparse point
cloud reconstruction takes about 40 ms, and the remaining
cycles are used for frame grabbing, Bayer pattern demosaicing,
and compression of three HD color videos (1024 × 768),
three IR masks, and the sparse point cloud. At the rendering
workstation, the dense point interpolating and meshing take
about 15 ms for each remote party. The remaining cycles are

(a)

(b)

Camera 1, board position 1 Camera 2, board position 1

Camera 1, board position 2 Camera 2, board position 2

Fig. 4. Camera rig calibration. (a) The color/IR cameras are calibrated with
a specially designed checkerboard. (b) Example images used for calibrating
the laser projectors. Note each image contains a few bright dots, which were
artifacts of the laser pattern generation mechanism. We take advantage of these
bright dots to manually initialize the homography between any two images.

used for audio capture/compression, decoding all compressed
streams, and audio/video rendering. There is no dedicated
audio/video synchronization across the two machines, and
they both run in a best effort mode. The overall system
runs at about 10–12 frames per second. Note currently all
components except mesh rendering are implemented on the
CPUs only. Implementing these algorithms on the GPU is
relatively straightforward, and we expect much faster frame
rate in the near future.

III. 3D VIDEO PROCESSING

In this section, we examine in detail the pipeline of 3D video
processing. The calibration of the camera rig is first presented
in Section III-A. The sparse point cloud reconstruction scheme
is then discussed in Section III-B. Finally, the rendering of the
sparse point cloud is described in Section III-C.

A. Camera Rig Calibration
As shown in Fig. 2, the camera rig in our system contains

three color/IR camera pairs, spaced about 35 cm apart. Since
the subject is only 50-120 cm from the camera rig, the baseline
between cameras is relatively large. Consequently, we found
it difficult to reconstruct the full geometry based solely on
the cameras. To remedy the problem and keep the number of
cameras small, we also calibrate the dot patterns of the laser
projectors, giving additional information for reconstructing the
side of the face and body (Fig. 6).

The first step in calibration is to calibrate all the color/IR
cameras. We use a specially designed checkerboard to facili-
tate the task, as shown in Fig. 4(a). Thanks to the landmarks
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in the checkerboard, all checkerboard corners can be automat-
ically detected. The user waves the checkerboard in front of
the camera rig and capture a set of 30–50 images, and Zhang’s
calibration algorithm [33] is adopted to find all the intrinsic
and extrinsic parameters of the cameras.

The calibration of the laser projectors is less obvious. We
use a planar white board (e.g., a 122 × 91 cm white form
board) and the calibrated camera rig to help the process. For
each laser projector, we capture two pairs of images of the
planar board from two IR cameras, as shown in Fig. 4(b).
It can be observed that the projected laser patterns have a
few brighter dots. We ask the user to manually specify the
2D position of these dots, which can be used to compute the
homography between any two images. The dots’ positions can
be estimated with subpixel accuracy by fitting a Gaussian to
the pixel intensities of a small patch around the dot. Since
the two cameras are already calibrated, it is straightforward
to reconstruct the position of the planar board (thus all 3D
points) in 3D. Since we capture two pairs of images of the
board, and we know the homography between all 4 images, we
effectively know a large set of laser beams in 3D. The center
of projection of the laser projector is thereafter calculated,
with an estimated error of less than 0.02cm, thanks to the
large number of correspondences found between the captured
images. Furthermore, we compute all the light ray directions of
the laser projector. During 3D reconstruction, the IR projectors
are treated as IR cameras. That is, given the projectors’ centers
of projection and their light ray directions, a synthesized 2D
IR images is generated by spreading a small Gaussian kernel
along the intersection of the light rays and the virtual imaging
plane of the IR projectors. These synthesized IR images
are combined with the IR/color images captured by the real
cameras for sparse point cloud reconstruction, as explained
next.

B. Sparse 3D Poind Cloud Reconstruction

Given the camera rig, it is natural to first consider using
traditional multiview stereo algorithms to reconstruct the 3D
geometry of the user. In fact, Yang et al. [30] demonstrated
that with the help of commodity GPUs, simple multiview
stereo algorithms such as plane sweeping can perform real-
time 3D reconstruction well. However, the cameras in our
system are in high resolution, and a series of post processing
steps is often required to obtain high quality dense depth maps
after plane sweeping, which include combining multiple scores
from different cameras, hole filling, occlusion handling, etc.
We implemented a CPU version of dense multiview stereo with
our high-resolution color/IR cameras that includes the above-
mentioned post processing steps, and it takes about 40–45
seconds to perform reconstruction for a single video frame on
our 12-core machine (code not fully optimized, but parallelized
whenever possible), which is clearly unsuitable for immersive
telecommuncations.

We therefore resort to a new sparse point cloud reconstruc-
tion algorithm for our task. The key idea is to match the dot
patterns in the IR images only. Since the dot patterns are sparse
in the IR images, we can greatly save computation time.
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Fig. 5. The work flow of the sparse 3D point cloud reconstruction algorithm.

The work flow of our sparse 3D point cloud reconstruction
algorithm is summarized in Fig. 5. For each IR image, we
first extract an IR mask that represents the foreground using a
simple threshold, as shown in Fig. 6(a). Computing the IR
mask has two benefits. First, it improves the speed of the
reconstruction, since dot patterns outside the IR masks belong
to the background and can be ignored during reconstruction.
Second, the masks are used as a silhouette constraint during
dense depth map interpolation and rendering at the viewer site,
which is very important for achieving high-quality rendering.

The dot patterns in the IR images are then extracted using
local maximum detection based on their pixel intensity. No
Gaussian fitting is used since that would be too slow. For
each dot that is detected, we extract a 15 × 15 pixel patch
surrounding the dot as its descriptor. Since the cameras and IR
projectors cover a large view angle for the user, multiple plane
sweeping procedures are launched: a 2-view plane sweeping
between the left most IR camera and the virtual image of the
left laser projector, a 3-view plane sweeping between all three
IR images, and another 2-view plane sweeping between the
right most IR camera and the virtual image of the right laser
projector. The three IR images are used as references in the
three plane sweeping routines, respectively. Although the IR
projectors may interfere with each other near the frontal facing
region of the user, the 3-view plane sweeping is insensitive to
such interference, and can help the overall system to perform
robustly.

The plane sweeping algorithm implemented in our system
is similar to the traditional scheme [5], except for one major
difference – it focuses only on the dot patterns. That is, given
the reference frame, only the pixels that coincide with the
detected dots are used for multiple depth hypothesis testing.
Moreover, since a dot in one image must match with another
dot in another image, many of the hypothesized depth values
can be quickly rejected, leading to significant speed up for
reconstruction. When a hypothesized depth value satisfies
the dot-dot-matching criteria, a score is computed based on
normalized cross-correlation of the descriptors, which is com-
monly used in the stereo matching literature.
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(a)

(c)

(d)

(e)

(b)

(f)

Fig. 6. Results illustrating different steps during sparse point cloud recon-
struction. The input images were shown in Fig. 2 (b). (a) The IR masks. (b)
Raw sparse point clouds of the three plan sweeping as shown in Fig. 5, without
using collaborative filtering in score-volume. (c) Raw sparse point clouds of
the three plan sweeping as shown in Fig. 5, using collaborative filtering in
score-volume. (d) Post-filtered sparse poind clouds. (e) Two views of the
merged sparse point cloud. (f) Rendering results from various viewpoints
based on the sparse cloud cloud.

After plane sweeping, for each dot in the reference image,
we obtain a score vector, each element corresponding to one
hypothesized depth value. The higher the score, the more
likely that the scene object resides at that depth. The most
straightforward scheme would then be to select the depth value
of the highest score as the output depth for each dot (Fig. 6(b)).
However, the output point cloud is generally very noisy. More
sophisticated schemes such as belief propagation and graph
cut could be used to find a globally optimal solution similar
to those used in dense multiview stereo [21], but these methods
are too slow for real-time applications. In our implementation,
we adopted a filtering approach to encourage nearby dots to
have similar depth values. Denoting the score vector of a dot

x as s(x), we filter the score vector as:

sf (x) =
∑

xi∈N (x)

wis(xi), (1)

where N (x) is a predefined neighborhood of x, e.g., x’s
k nearest neighbor (including x itself) in 2D coordinate in
the reference image. The weights wi are determined by the
distance between x and xi, e.g.:

wi = exp{−||xi − x||2

2σ2
}, (2)

where σ is a constant. The depth value corresponding to the
highest element in sf (x) is chosen as the output, as shown
in Fig. 6(c). It can be noted that the point cloud has reduced
noise, compared with Fig. 6(b).

We then conduct another round of post-filtering to further
remove outliers in the point cloud. Given a dot x and its k
nearest neighbors N (x), we require that a certain percentage
of the dots in the neighborhood have depth values similar to
the depth of x. Otherwise, the dot will be excluded from the
final output. This post-filtering scheme is very effective, as
shown in Fig. 6(d). Finally, the three point clouds are merged
into one final result. During the process, the 3D points are
also projected onto the three color images to make sure they
are consistent in color projection. In this regard, we measure
the color consistency as the L2 distance between the projected
pixel colors in the UV color space. If the distance were larger
than a certain threshold, the point will be rejected. The final
point cloud is shown in Fig. 6(e).

For a typical scene, we reconstruct 8,000–12,000 sparse
points. Each point is also associated with three binary flags,
indicating which of the three IR images were used to obtain
the highest score. These flags are useful because they record
visibility information of the sparse points, which is helpful for
rendering. Together with the binary flags, the 3D points are
quantized and transmitted to the remote sites for rendering
(Fig. 6(f)). The rendering scheme will be described next.

C. 3D Video Rendering

As mentioned earlier, in our Viewport system, each site
is equipped with two workstations, one for capturing, and
the other for rendering. The rendering workstation receives
multiple sparse point clouds and their related color videos/IR
masks. The goal is to render these with high quality, and be
consistent in seating geometry with face-to-face meetings. We
will elaborate more on seating geometry in Section IV. In this
section, we describe the process of generating a 3D mesh for
rendering from the input sparse point cloud.

The most straightforward way of performing meshing is to
use Delaunary triangulation on the sparse point cloud directly.
However, due to noises during the reconstruction step, such a
scheme does not produce satisfactory results (Fig. 8 (d)). We
propose a rendering algorithm as in Fig. 7. Given the sparse
point cloud, we first project it to the three IR cameras, resulting
in a sparse 2D point set on each image. Note the binary flags
of each point are used here to make sure only the visible IR
cameras receive the corresponding points. For each projected
image j, denote the sparse projections as yi, i = 1, · · · ,Kj ,
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Fig. 7. The work flow of the rendering algorithm.

where Kj is the number of visible IR dots in the jth image,
and their depth values as d(yi). For each valid pixel y inside
the IR mask, we perform a regression style interpolation as:

d(y) =
∑

yi∈N (y)

αid(yi), (3)

where N (y) represents a 2D neighborhood of pixel y. The
weights αi are related to the distance yi − y as:

αi ∝ exp{−||yi − y||2

2σ2
}, (4)

and
∑

i αi = 1. The resultant dense depth maps are shown in
Fig. 8(e). Note because the sparse point cloud is noisy for this
particular frame, the interpolated dense depth maps contain
blobs of outliers that need to be processed before meshing.

We run a gradient fill algorithm to cluster the above dense
depth maps into connected regions. The area of each connected
region is compared against a threshold. If the area of the region
is too small, the region will be removed from the dense depth
map. Afterwards, a simple hole filling algorithm is conducted
to remove holes that are not connected with the background
region. The processed dense depth map is shown in Fig. 8(f).
It can be seen that the quality of the dense depth maps has
been significantly improved.

The dense depth maps can be used directly for rendering
through surface splatting, as shown in Fig. 9(a). However, it
is generally difficult to determine the splat radii, as radii that
are too small will cause holes in rendering, and those that are
too large will reduce the rendering resolution. In our system,
we create a mesh out of each dense depth map, and render
them using triangle stripes. The rendering results are shown in
Fig. 9(b). Note the improvement in regions where the splatting
based rendering has many holes.

(a)

(b)

(c)

(e)

(f)

(g)

(d)

Fig. 8. Results illustrating different steps during rendering. (a) Input IR
images. (b) Reconstructed sparse point cloud viewed from two different
viewpoints. (c) IR masks. (d) Meshing on the sparse point cloud using
Delaunay triangulation. Edges longer than a threshold are discarded to avoid
artifacts. Note resultant mesh is noisy and contains outliers. (e) Dense depth
map after interpolation. (f) Dense depth map after outlier removal and hole
filling. (g) Rendering results after meshing the dense depth maps.

IV. VIRTUAL SEATING

In immersive teleconferencing, it is important to preserve
the seating geometry of the participants in a face-to-face
meeting, as was shown in Fig. 1. While many existing systems
have attempted to reconstruct the 3D geometry of the meeting
participants and place them in a common virtual environment,
few were able to faithfully maintain the seating geometry,
leading to poor mutual gaze during the meeting. Indeed,
careful calibration of the camera rig, the monitor, and the table
surface is required in order to achieve such a goal. In this
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(a)

(b)

Fig. 9. Comparing splatting and meshing for rendering. (a) Splatting. (b)
Meshing.
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Fig. 10. Illustration of virtual seating.

section, we discuss various steps involved for seating the 3D
models correctly in the virtual environment.

A. Virtual Seating

Fig. 10 illustrates the basic idea of virtual seating for a
three-party meeting. The reconstructed point clouds are in
their respective camera rig coordinate systems, denoted as
CR0 , CR1 and CR2 . We would like to place them around a
virtual table in the virtual environment. Let the virtual world’s
coordinate be CW . If the rotation and the translation between
the camera rigs’ coordinates and the virtual world’s coordinate
can be defined, for a particular 3D point Xk

i , where i is the
index of the points in the point cloud reconstructed from the
kth camera rig, we have:

XW
ki = RRkWXk

i + tRkW , (5)

and the points will be placed in the correct location in the
virtual world. Note here RRkW and tRkW denote the rotation
and translation from rig k’s coordinate system to the virtual
world’s coordinate system.

Point in 3D

Screen

���

Look direction (perpendicular to screen)

User

�
��

��

���

Fig. 11. Rendering in the screen coordinate.

During rendering, given the viewer’s eye location in the
virtual world’s coordinate system, and the screen’s display
region in the same coordinate system, all point clouds or
meshes can be rendered correctly. Note the viewer’s eye
location is tracked in order to provide a sense of motion
parallax, which is an important effect for immersive telecon-
ferencing [31]. Ideally, eye tracking can be conducted using
the images captured from the camera rig, which are already in
the camera rig’s coordinate system. However, recall that due
to intensive computation still required with our current CPU
implementation, we used two workstations for each site, one
for capture and the other for rendering. To reduce the motion
parallax latency, we added a kinect camera on top of the rig
(Fig. 2) to perform head tracking and audio capture at the
rendering workstation. Consequently, the Kinect camera must
also be calibrated with respect to the virtual world.

For the jth user, denote CSj as local coordinate system of
the screen, and CCj as local coordinate system of the Kinect
tracking camera. Let the user’s eye position with respect to
CCj be YCj . We may transform it to world coordinates as:

YW
j = RCjWYCj + tCjW , (6)

where RCjW and tCjW are the rotation and translation from
the Kinect’s local coordinate system to the virtual world’s
coordinate system. To perform rendering, it might be more
convenient to compute everything in the coordinate system of
the screen. One can easily transform the point cloud and the
viewer position to the screen coordinate system CSj by using:

X
Sj

ki = (RSjW )−1(XW
ki − tSjW ), (7)

YSj = (RSjW )−1(YW
j − tSjW ), (8)

where RSjW and tSjW are the rotation and translation from
the screen’s local coordinates to the virtual world’s coor-
dinates. Once in screen coordinates, the final rendering is
simple and illustrated in Fig. 11. Note that the renderer’s look
direction should be the same as the normal direction of the
screen.

B. System Calibration

To perform virtual seating accurately, we need to perform
calibration to obtain the related rotation matrices and transla-
tion vectors, including:

• The transforms from camera rig to virtual world coordi-
nate RRkW and tRkW ;
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Fig. 12. An auxiliary pattern and an external camera is used to help calibrate
the relationship between the camera rig, the screen, and the table top.

• The transforms from tracking camera to virtual world
coordinate RCjW and tCjW ;

• The transforms from screen to virtual world coordinate
RSjW and tSjW .

To this end, we introduce an auxiliary pattern and an
external camera to help register the cameras and the screen,
as shown in Fig. 12. The pattern is positioned at the edge of
the participants’ table, roughly 80 cm from the screen. Such
an arrangement will help properly map everyone around the
table, since it automatically aligns all table tops to the same
height when mapping to the virtual world (more details in the
next paragraph). The pattern has a number of hollow squares,
which can be seen by the camera rig, the tracking camera,
and the external camera that is facing the screen. We define a
local coordinate system on the pattern, denoted as CPj . Since
the pattern is known, we can compute the transforms from the
camera rig to the pattern coordinates as RRkPk and tRkPk ,
and the transforms from the tracking camera to the pattern
coordinates as RCjPj and tCjPj . With the external camera, we
also capture multiple images that include both the pattern and
the screen (e.g., Fig. 12), thus obtaining the transforms from
the screen to the pattern coordinates as RSjPj and tSjPj . If we
can find the relationship between the pattern’s coordinate and
the virtual world coordinate, all transforms mentioned earlier
will be easily computed.

Not surprisingly, the transforms between the patterns’ coor-
dinates and the virtual world can be defined based on the face-
to-face meeting geometry. For instance, for a 3-way distributed
teleconference as Fig. 10, the three transforms can be defined
as:

RPjW =

 cos(θj) 0 sin(θj)
0 1 0

− sin(θj) 0 cos(θj)

 , tPjW =

 r sin(θj)
0

r cos(θj)

 ,

(9)
where θ0 = 0, θ1 = − 2π

3 , and θ2 = 2π
3 . r is the distance from

the center of the virtual table to the patterns, which is deter-
mined by the size of the virtual table wanted. Note between
the patterns and the virtual world there is no translation in y
axis. This is because the patterns are all placed at the table
top level when calibrating each site, and it guarantees that the
meeting attendees are at about the same level in the virtual
world.

V. 3D AUDIO PROCESSING

An immersive teleconference would not be possible without
immersive audio. Although this is not the main focus of this

��

��

�/2

−�/2

Virtual table

�	


�


�

Fig. 13. 3D spatial audio rendering.

paper, we briefly review the techniques used in our system in
this Section.

During virtual seating, the positions of all the participants
have been computed. An example is shown in Fig. 13. Given
the local user’s head orientation and location in the virtual
world, the relative angle θi between his/her look direction and
the remote participants can be easily computed. As a result,
the remote participants’ audio can be spatialized to the correct
locations for generating faithful immersive audio.

If the user is using headphones, the spatialization task is
relatively easy, and can be accomplished by convolving the
audio with an appropriate head related transform function
(HRTF). As presented in [4], to increase the realism of of
spatial audio, we directly measured the combined room im-
pulse response and HRTF (using a dummy head) at a number
of fixed locations, and interpolated them to cover additional
locations. The combined head and room impulse responses
(CHRIRs) are then convolved with the mono (single-channel)
audio signal coming from each remote party to perform the
spatialization.

If the users are not using headphones with close micro-
phones, then additional steps have to take place. For example,
on the capture site, one needs to use acoustic echo cancelation
(AEC) potentially followed by dereverberation to get the true
speaker signal. On the playback site, if the loudspeakers
are close to the user’s ears, then potentially one can simply
use the spatialized audio as is done for the headphones. If
the speakers are reasonably far from the listener, then one
may have to compensate for speaker cross-talk and the room
impulse response from the loudspeakers to the listener, as
has been done in [24]. For the current implementation, we
deploy the scheme described in our earlier work in [34], where
spatialization is naturally combined with multichannel AEC
with constrained Kalman filtering.

VI. EXPERIMENTAL RESULTS

Fig. 14 compares the proposed sparse point reconstruction
and interpolation based rendering scheme with our earlier
implementation of dense multiview stereo. The dense stereo al-
gorithm also performs three reconstructions using the three IR
images as reference, and involves all color/IR cameras and the
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(a)

(b)

Fig. 14. Comparison between dense multiview stereo and the proposed scheme. (a) Rendering results from dense multiview stereo. (b) Rendering results
from the proposed scheme.

calibrated laser patterns. The scores from different modalities
are combined with the robust voting scheme presented in [27].
The combined depth and outlier estimation approach proposed
by [25] was also implemented to improve the quality of the
final dense depth map. The dense multiview stereo algorithm
takes about 40–45 seconds to reconstruct one frame, while
the sparse point cloud based method takes only 40 ms for
reconstruction and an additional 15 ms to render. We achieved
almost three orders of magnitude speed up with the proposed
method.

In terms of rendering quality, we find the two schemes
comparable. The dense multiview stereo scheme does better
in some aspects, such as eyeglasses, and has fewer holes. On
the other hand, due to the low-resolution nature of the sparse
point cloud, the proposed method generates a smoother mesh,
and has fewer outliers. The outlier filtering scheme described
in Section III-C is aggressive, leading to more holes in the
final rendering results. We hope some of these holes will be
filled once we include the color images for matching score
computation in our future implementation.

Regarding the network bandwidth required for our system,
we currently transmit three HD color videos at 1024 × 768
pixel resolution, three IR binary masks at 512 × 384 pixels
resolution, and 8,000–12,000 sparse points. The color videos
can be compressed with a typical video codec, e.g., H.264. The
IR masks are currently compressed with run-length coding,
which consumes about 10 kb per mask. The 3D coordinates
of the sparse points are quantized into 10 bits per dimension
(around 1 mm accuracy), plus 3 bits for the visibility flags.
Therefore, the overall upload bandwidth of a site is the sum
of three HD videos (in total around 75 kB per frame) plus
about 50 kB per frame for the masks and sparse point clouds.
At 10 fps, the total bandwidth is around 10 Mbps. We are
currently exploring better schemes for compressing the sparse
point clouds.

The 3-way Viewport system was demonstrated in an
internal event with hundreds of visitors to the booth (Fig. 15),
and a demo video of the system is available at:

http://research.microsoft.com/apps/video/default.aspx?id=169617.
The general feedback was very positive. People found it has
perfect gaze awareness, and were able to tell easily whether

Fig. 15. The 3-way Viewport system was demonstrated in an internal event.

a remote party is paying attention to him or her. At one of
the stations we used a 3D display to show that the rendering
algorithm can also output stereoscopic video. Visitors enjoyed
the 3D conferencing experience, and commented that although
the rendering still has artifacts, on a 3D display the artifacts
were not as disturbing as on a 2D display. We are working
on a formal user study to compare gaze awareness in our
system to traditional systems, and the results will be reported
in a future publication.

VII. CONCLUSIONS AND FUTURE WORK

We presented Viewport, a fully distributed immersive tele-
conferencing system. With the help of infrared dot patterns,
we are able to reconstruct high quality 3D models for each
user in real-time, and embed these 3D models into a common
virtual environment. Thanks to our virtual seating algorithm,
the seating geometry of face-to-face meetings is faithfully
maintained, leading to accurate mutual gaze between meeting
participants.

There is still much room to improve in Viewport. In par-
ticular, the sparse point cloud based reconstruction algorithm
does not perform well on hair, since it generally reflects little
IR light. In addition, very thin objects such as eyeglass arms
tend to be missing in the reconstruction, as the proposed
method often smoothes these structures out or removes them
as outliers. When the requested virtual viewpoint is very far
from the camera’s capturing viewpoint, the rendering quality
is still not guaranteed. A denser camera array may be able
to solve this problem. Another interesting research issue is
whether the presented virtual seating algorithm can be applied
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on small screens, where faithful seating geometry could cause
the remote participants to be rendered outside the display. We
are exploring schemes to distort the seating geometry, and
still maintain the mutual gaze by tracking the users’ head
orientations.
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