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Abstract

Standard phrase-based translation models do
not explicitly model context dependence be-
tween translation units. As a result, they rely
on large phrase pairs and target language mod-
els to recover contextual effects in translation.
In this work, we explore n-gram models over
Minimal Translation Units (MTUs) to explic-
itly capture contextual dependencies across
phrase boundaries in the channel model. As
there is no single best direction in which con-
textual information should flow, we explore
multiple decomposition structures as well as
dynamic bidirectional decomposition. The
resulting models are evaluated in an intrin-
sic task of lexical selection for MT as well
as a full MT system, through n-best rerank-
ing. These experiments demonstrate that ad-
ditional contextual modeling does indeed ben-
efit a phrase-based system and that the direc-
tion of conditioning is important. Integrating
multiple conditioning orders provides consis-
tent benefit, and the most important directions
differ by language pair.

1 Introduction

The translation procedure of a classical phrase-
based translation model (Koehn et al., 2003) first di-
vides the input sentence into a sequence of phrases,
translates each phrase, explores reorderings of these
translations, and then scores the resulting candi-
dates with a linear combination of models. Conven-
tional models include phrase-based channel models
that effectively model each phrase as a large uni-
gram, reordering models, and target language mod-
els. Of these models, only the target language model
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(and, to some weak extent, the lexicalized reordering
model) captures some lexical dependencies that span
phrase boundaries, though it is not able to model in-
formation from the source side. Larger phrases cap-
ture more contextual dependencies within a phrase,
but individual phrases are still translated almost in-
dependently.

To address this limitation, several researchers
have proposed bilingual n-gram Markov models
(Marino et al., 2006) to capture contextual depen-
dencies between phrase pairs. Much of their work
is limited by the requirement “that the source and
target side of a tuple of words are synchronized, i.e.
that they occur in the same order in their respective
languages” (Crego and Yvon, 2010).

For language pairs with significant typological di-
vergences, such as Chinese-English, it is quite dif-
ficult to extract a synchronized sequence of units;
in the limit, the smallest synchronized unit may be
the whole sentence. Other approaches explore incor-
poration into syntax-based MT systems or replacing
the phrasal translation system altogether.

We investigate the addition of MTUs to a phrasal
translation system to improve modeling of con-
text and to provide more robust estimation of long
phrases. However, in a phrase-based system there
is no single synchronized traversal order; instead,
we may consider the translation units in many pos-
sible orders: left-to-right or right-to-left according
to either the source or the target are natural choices.
Alternatively we consider translating a particularly
unambiguous unit in the middle of the sentence
and building outwards from there. We investigate
both consistent and dynamic decomposition orders
in several language pairs, looking at distinct orders
in isolation and combination.



2 Related work

Marino et al. (2006) proposed a translation model
using a Markov model of bilingual n-grams, demon-
strating state-of-the-art performance compared to
conventional phrase-based models. Crego and
Yvon (2010) further explored factorized n-gram ap-
proaches, though both models considered rather
large n-grams; this paper focuses on small units with
asynchronous orders in source and target. Durrani
et al. (2011) developed a joint model that captures
translation of contiguous and gapped units as well as
reordering. Two prior approaches explored similar
models in syntax based systems. MTUs have been
used in dependency translation models (Quirk and
Menezes, 2006) to augment syntax directed trans-
lation systems. Likewise in target language syntax
systems, one can consider Markov models over min-
imal rules, where the translation probability of each
rule is adjusted to include context information from
parent rules (Vaswani et al., 2011).

Most prior work tends to replace the existing
probabilities rather than augmenting them. We be-
lieve that Markov rules provide an additional sig-
nal but are not a replacement. Their distributions
should be more informative than the so-called “lex-
ical weighting” models, and less sparse than rela-
tive frequency estimates, though potentially not as
effective for truly non-compositional units. There-
fore, we explore the inclusion of all such informa-
tion. Also, unlike prior work, we explore combina-
tions of multiple decomposition orders, as well as
dynamic decompositions. The most useful context
for translation differs by language pair, an important
finding when working with many language pairs.

We build upon a standard phrase-based approach
(Koehn et al., 2003). This acts as a proposal distri-
bution for translations; the MTU MMs provide ad-
ditional signal as to which translations are correct.

3 MTU n-gram Markov models

We begin by defining Minimal Translation Units
(MTUs) and describing how to identify them in
word-aligned text. Next we define n-gram Markov
models over MTUs, which requires us to define
traversal orders over MTUs.
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Figure 1: Word alignment and minimum translation units.

3.1 Definition of an MTU

Informally, the notion of a minimal translation unit
is simple: it is a translation rule that cannot be
broken down any further without violating the con-
straints of the rules. We restrict ourselves to contigu-
ous MTUs. They are similar to small phrase pairs,
though unlike phrase pairs we allow MTUs to have
either an empty source or empty target side, thereby
allowing insertion and deletion phrases. Conven-
tional phrase pairs may be viewed as compositions
of these MTUs up to a given size limit.

Consider a word-aligned sentence pair consisting
of a sequence of source words s = s1 . . . sm, a se-
quence of target words t = t1 . . . tn, and a word align-
ment relation between the source and target words
∼ ⊆ {1..m} × {1..n}. A translation unit is a sequence
of source words si..s j and a sequence of target words
tk..tl (one of which may be empty) such that for all
aligned pairs i′ ∼ k′, we have i ≤ i′ ≤ j if and only
if k ≤ k′ ≤ l. This definition, nearly identical to
that of a phrase pair (Koehn et al., 2003), relaxes the
constraint that one aligned word must be present.

A set of translation units is a partition of the sen-
tence pair if each source and target word is covered
exactly once. Minimal translation units is the par-
tition with the smallest average unit size, or, equiv-
alently, the largest number of units. For example,
Figure 1 shows a word-aligned sentence pair and its
corresponding set of MTUs. We extract these min-
imal translation units with an algorithm similar to
that of phrase extraction.

We train n-gram Markov models only over min-



imal rules for two reasons. First, the segmentation
of the sentence pair is not unique under composed
rules, which makes probability estimation compli-
cated. Second, some phrase pairs are very large,
which results in sparse data issues and compromises
the model quality. Therefore, training an n-gram
model over minimal translation units turns out to
be a simple and clean choice: the resulting segmen-
tation is unique, and the distribution is smooth. If
we want to capture more context, we can simply in-
crease the order of the Markov model.

Such Markov models address issues in large
phrase-based translation approaches. Where stan-
dard phrase-based models rely upon large unigrams
to capture contextual information, n-grams of mini-
mal translation units allow a robust contextual model
that is less constrained by segmentation.

3.2 MTU enumeration orders
When defining a joint probability distribution over
MTUs of an aligned sentence pair, it is necessary
to define a decomposition, or generation order for
the sentence pair. For a single sequence in lan-
guage modeling or synchronized sequences in chan-
nel modeling, the default enumeration order has
been left-to-right.

Different decomposition orders have been used
in part-of-speech tagging and named entity recogni-
tion (Tsuruoka and Tsujii, 2005). Intuitively, infor-
mation from the left or right could be more useful
for particular disambiguation choices. Our research
on different decomposition orders was motivated by
this work. When applying such ideas to machine
translation, there are additional challenges and op-
portunities. An opportunity arises from the reorder-
ing phenomenon in machine translation: while in
POS tagging the natural decomposition orders to
study are only left-to-right and right-to-left, in ma-
chine translation we can further distinguish source
and target sentence orders.

We first define the source left-to-right and the tar-
get left-to-right orders of the aligned sets of MTUs.
The definition is straightforward when there are no
inserted or deleted word. To place the nulls corre-
sponding to such word we use the following defi-
nition: the source position of the null for a target
inserted word is just after the position of the last
source word aligned to the closest preceding non-

null aligned target word. The target position for a
null corresponding to a source deleted MTU is de-
fined analogously. In Figure 1 we define the posi-
tion of M4 to be right after M3 (because “the” is
after “held” in left-to-right order on the target side).

The complete MTU sequence in source left-to-
right order is M1-M2-M3-M4-M5. The sequence
in target left-to-right order is M3-M4-M5-M1-M2.
This illustrates that decomposition structure may
differ significantly depending on which language is
used to define the enumeration order.

Once a sentence pair is represented as a sequence
of MTUs, we can define the probability of the
sentence pair using a conventional n-gram Markov
model (MM) over MTUs. For example, the 3-gram
MM probability of the sentence pair in Figure 1
under the source left-to-right order is as follows:
P(M1)·P(M2|M1)·P(M3|M1,M2)·P(M4|M2,M3)·
P(M5|M3,M4).

Different decomposition orders use different con-
text for disambiguation and it is not clear apriori
which would perform best. We compare all four
decomposition orders (source order left-to-right and
right-to-left, and target order left-to-right and right-
to-left). Although the independence assumptions of
left-to-right and right-to-left are the same, the result-
ing models may be different due to smoothing.

In addition to studying these four basic decompo-
sition orders, we report performance of two cyclic
orders: cyclic in source or target sentence order.
These models are inspired by the cyclic depen-
dency network model proposed for POS tagging
(Toutanova et al., 2003) and also used as a baseline
in previous work on dynamic decomposition orders
(Tsuruoka and Tsujii, 2005). 1

The probability according to the cyclic orders is
defined by conditioning each MTU on both its left
and right neighbor MTUs. For example, the prob-
ability of the sentence pair in Figure 1 under the
source cyclic order, using a 3-gram model is defined
as: P(M1|M2) · P(M2|M1,M3) · P(M3|M2,M4) ·
P(M4|M3,M5) · P(M5|M4).

All n-gram Markov models over MTUs are esti-
mated using Kneser-Ney smoothing. Each MTU is
treated as an atomic unit in the vocabulary of the

1The correct application of such models requires sampling
to find the highest scoring sequence, but we apply the max prod-
uct approximation as done in previous work.



n-gram model. Counts of all n-grams are obtained
from the parallel MT training data, using different
MTU enumeration orders.

Note that if we use a target-order decomposition,
the model provides a distribution over target sen-
tences and the corresponding source sides of MTUs,
albeit unordered. Likewise source order based mod-
els provide distributions over source sentences and
unordered target sides of MTUs. We attempted to
introduce reordering models to predict an order over
the resulting MTU sequences using approaches sim-
ilar to reordering models for phrases. Although
these models produced gains in some language pairs
when used without translation MTU MMs, there
were no additional gains over a model using mul-
tiple translation MTU MMs.

4 Lexical selection

We perform an empirical evaluation of different
MTU decomposition orders on a simplified machine
translation task: lexical selection. In this task we
assume that the source sentence segmentation into
minimal translation units is given and that the order
of the corresponding target side of minimal transla-
tion units is also given. The problem is to predict the
target side of MTUs (see Figure 2). The lexical se-
lection task is thus similar to sequence tagging tasks
like part-of-speech tagging, though much more diffi-
cult: the predicted variables are sequences of target
language words with millions of possible outcomes.
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Figure 2: Lexical selection.

We use this constrained MT setting to evaluate the
performance of models using different MTU decom-
position orders and models using combinations of
decomposition orders. The simplified setting allows
controlled experimentation while lessening the im-
pact of complicating factors in a full machine trans-
lation setting (search error, reordering limits, phrase

table pruning, interaction with other models).
To perform the tagging task, we use trigram MTU

models. The four basic decomposition orders for
MTU Markov models we use are left-to-right in tar-
get sentence order, right-to-left in target sentence or-
der, left-to-right in source sentence order, and right-
to-left in source sentence order. We also consider
cyclic orders in source and target.

Regardless of the decomposition order used, we
perform decoding using a beam search decoder, sim-
ilar to ones used in phrase-based machine transla-
tion. The decoder builds target hypotheses in left-
to-right target sentence order. At each step, it fills
in the translation of the target side of next MTU, in
the context of the already predicted MTUs to its left.
The top scoring complete hypotheses covering the
first m MTUs are maintained in a beam. When scor-
ing with a target left-to-right MTU Markov model
(L2RT), we can score each partial hypothesis exactly
at each step. When scoring using a R2LT model or
a source order model, we use lower-order approxi-
mations to the trigram MTU Markov model (MM)
scores as future scores, since not all needed context
is available for a hypothesis at the time of construc-
tion. As additional context becomes available, the
exact score can be computed. 2

4.1 Basic decomposition order combinations
We first introduce two methods of combining differ-
ent decomposition orders: product and system com-
bination.

The product method arises naturally in the ma-
chine translation setting, where probabilities from
different models are multiplied together and further
weighted to form the log-linear model for machine
translation (Och and Ney, 2002). We define a similar
scoring function using a set of MTU Markov models
MM1, ...,MMk for a hypothesis h as follows:

Score(h) = λ1logPMM1(h) + ... + λklogPMMk (h)

The weights λ of different models are trained on a
development set using MER training to maximize

2We apply hypothesis recombination, which can merge hy-
potheses that are indistinguishable with respect to future contin-
uations. This is similar to recombination in a standard-phrase
based decoder with the difference that it is not always the last
two target MTUs that define the context needed by future ex-
tensions.



the BLEU score of the resulting model. Note that
this method of model combination was not consid-
ered in any of the previous works comparing differ-
ent decompositions.

The system combination method is motivated
by prior work in machine translation which com-
bined left-to-right and right-to-left machine trans-
lation systems (Finch and Sumita, 2009). Simi-
larly, we perform sentence-level system combina-
tion between systems using different MTU Markov
models to come up with most likely translations.
If we have k systems guessing hypotheses based
on MM1, . . . ,MMk respectively, we generate 1000-
best lists from each system, resulting in a pool of
up to 1000k possible distinct translations. Each of
the candidate hypotheses from MMi is scored with
its Markov model log-probability logPMMi(h). We
compute normalized probabilities for each system’s
n-best by exponentiating and normalizing: Pi(h) ∝
PMMi(h). If a hypothesis h is not in system i’s n-
best list, we assume its probability is zero according
to that system. The final scoring function for each
hypothesis in the combined list of candidates is:

Score(h) = λ1P1(h) + ... + λkPk(h)

The weights λ for the combination are tuned using
MERT as for the product model.

4.2 Dynamic decomposition orders

A more complex combination method chooses the
best possible decomposition order for each transla-
tion dynamically, using a set of constraints to de-
fine the possible decomposition orders, and a set of
features to score the candidate decompositions. We
term this method dynamic combination. The score
of each translation is defined as its score according
to the highest-scoring decomposition order for that
translation.

This method is very similar to the bidirectional
tagging approach of Tsuruoka and Tsujii (2005).
For this approach we only explored combinations of
target language orders (L2RT, CycT, and R2LT). If
source language orders were included, the complex-
ity of decoding would increase substantially.

Figure 3 shows two possible decompositions for
a short MTU sequence. The structures displayed are
directed graphical models. They define the set of

parents (context) used to predict each target MTU.
The decomposition structures we consider are lim-
ited to acyclic graphs where each node can have one
of the following parent configurations: no parents
(C = 0 in the Figure), one left parent (C = 1L),
one right parent (C = 1R), one left and one right
parent (C = LR), two left parents (C = 2L), and
two right parents (C = 2R). If all nodes have two
left parents, we recover the left-to-right decomposi-
tion order, and if all nodes have two right parents,
the right-to-left decomposition order. A mixture of
parent configurations defines a mixed, dynamic de-
composition order. The decomposition order chosen
varies from translation to translation.

A directed graphical model defines the probability
of an assignment of MTUs to the variable nodes as a
product of local probabilities of MTUs given their
parents. Here we extend this definition to scores
of assignments by using a linear model with con-
figuration features and log-probability features. The
configuration features are indicators of which par-
ent configuration is active at a node and the settings
of these features for the decompositions in Figure
3 are shown as assignments to the C variables. The
log-probability feature values are obtained by query-
ing the appropriate n-gram model: L2RT, CycT, or
R2LT. For example, in the first decomposition in
Figure 3, since every node has two left parents, the
local log-probabilities are set by the L2RT model.

To find the best translation of a sentence the
model now searches over hidden decomposition or-
ders in addition to assignments to target side of
MTUs. The final score of a translation and decom-
position is a linear combination of the two types of
feature values – model log-probabilities and config-
uration types. There is one feature weight for each
parent configuration (six configuration weights) and
one feature weight for each component model (three
model weights). The final score of the second de-
composition and assignment in Figure 3 is:

Score(h)

= 2 ∗ wC0 + wCLR + wC1R

+ wL2RlogPLR(m1) + wCyclogPCyc(m2|m1,m3)

+ wR2LlogPRL(m3|m4) + wL2RlogPLR(m4)

There are two main differences between our ap-
proach and that of Tsuruoka and Tsujii (2005): we



1

� 1�

2

1

� 2| 1�

3

2

� 3| 2,	 1�

4

2

� 4| 3,	 2�

� 1� � 2| 1,	 3�

1

� 3| 4� � 4�

Figure 3: Different decompositions.

perform beam search with hypothesis recombination
instead of exact decoding (due to the larger size of
the hypothesis set), and we use parameters to be
able to globally weight the probabilities from dif-
ferent models and to develop preferences for using
certain types of decompositions. For example, the
model can learn to prefer right-to-left decomposi-
tions for one language pair, and left-to-right decom-
positions for another. An additional difference from
prior work is the definition of the possible decompo-
sition orders that are searched over.

Compared to the structures allowed in (Tsuruoka
and Tsujii, 2005) for a trigram baseline model, our
allowed structures are a subset; in (Tsuruoka and
Tsujii, 2005) there are sixteen possible parent con-
figurations (up to two left and two right parents),
whereas we allow only six. We train and use only
three n-gram Markov models to assign probabilities:
L2RT, R2LT, and CycT, whereas the prior work used
sixteen models. One could potentially see additional
gains from considering a larger space of structures
but the training time and runtime memory require-
ments might become prohibitive for the machine
translation task.

Because of the maximization over decomposition
structures, the score of a translation is not a simple
linear function of the features, but rather a maximum
over linear functions. The score of a translation for
a fixed decomposition is a linear function of the fea-
tures, but the score of a translation is a maximum of
linear functions (over decompositions). Therefore,
if we define hypotheses as just containing transla-
tions, MERT training does not work directly for op-
timizing the weights of the dynamic combination

method. 3 We used a combination of approaches;
we did MERT training followed by local simplex-
method search starting from three starting points:
the MERT solution, a weight vector that strongly
prefers left-to-right decompositions, and a weight-
vector that strongly prefers right-to-left decomposi-
tions. In the Experiments section, we report results
for the weights that achieved the best development
set performance.

5 N-best reranking

To evaluate the impact of these models in a full MT
system, we investigate n-best reranking. We use a
phrase-based MT system to output 1000-best can-
didate translations. For each candidate translation,
we have access to the phrase pairs it used as well as
the alignments inside each phrase pair. Thus, each
source sentence and its candidate translation form a
word-aligned parallel sentence pair. We can extract
MTU sequences from this sentence pair and com-
pute its probability according to MTU Markov mod-
els. These MTU MM log-probabilities are appended
to the original MT features and used to rerank the
1000-best list. The weight vectors for systems using
the original features along with one or more MTU
Markov model log-probabilities are trained on the
development set using MERT.

6 Experiments

We report experimental results on the lexical selec-
tion task and the reranking task on three language
pairs. The datasets used for the different languages
are described in detail in Section 6.2.

6.1 Lexical selection experiments

The data used for the lexical selection experiments
consists of the training portion of the datasets used
for MT. These training sets are split into three sec-
tions: lex-train, for training MTU Markov models
and extracting possible translations for each source
MTU, lex-dev for tuning combination weights for
systems using several MTU MMs, and lex-test, for
final evaluation results. The possible translations for

3If we include the decompositions in the hypotheses we
could use MERT but then the n-best lists used for training might
not contain much variety in terms of translation options. This is
an interesting direction for future research.



Model Chs-En Deu-En En-Bgr
Dev Test Dev Test Dev Test

Baseline 06.45 06.30 11.60 10.98 15.09 14.40
Oracle 69.79 70.78 72.28 75.39 85.15 84.32
L2RT 24.02 25.09 28.69 28.70 49.86 46.45
R2LT 23.79 24.91 30.14 30.14* 49.22 46.58
CycT 18.59 20.33 25.91 26.83 41.30 38.85
L2RS 25.81 27.89* 25.52 25.10 45.69 43.98
R2LS 26.48 27.96* 26.03 26.30 47.36 43.91
CycS 21.62 23.38 22.68 23.58 39.11 36.44

Table 1: Lexical selection results for individual MTU
Markov models.

each source MTU are defined as the most frequent
100 translations seen in lex-train. The lex-dev sets
contain 200 sentence pairs each and the lex-test sets
contains 1000 sentence pairs each. These develop-
ment and test sets consist of equally spaced sen-
tences taken from the full MT training sets.

We start by reporting BLEU scores of the six in-
dividual MTU MMs on the three language pairs in
Table 1. The baseline predicts the most frequent tar-
get MTU for each source MTU (unigram MM not
using context). The oracle looks at the correct trans-
lation and always chooses the correct target MTU if
it is in the vocabulary of available MTUs.

We can see that there is a large difference between
the baseline and oracle performance, underscoring
the importance of modeling context for accurate pre-
diction. The best decomposition order varies from
language to language: right-to-left in source order is
best for Chinese-English, right-to-left in target order
is best for German-English and left-to-right or right-
to-left in target order are best in English-Bulgarian.
We computed statistical significance tests, testing
the difference between the L2RT model (the stan-
dard in prior work) and models achieving higher test
set performance. The models that are significantly
better at significance α < 0.01 are marked with a
star in the table. We used a paired bootstrap test with
10,000 trials (Koehn, 2004).

Next we evaluate the methods for combining de-
composition orders introduced in Sections 4.1 and
4.2. The results are reported in Table 2. The up-
per part of the table focuses on combining different
target-order decompositions. The lower part of the
table looks at combining all six decomposition or-
ders. The baseline for the target order combinations,

Model Chs-En Deu-En En-Bgr
Dev Test Dev Test Dev Test

Baseline-1 24.04 25.09 30.14 30.14 49.86 46.45
TgtProduct 25.27 25.84* 30.47 30.49 51.04 47.27*
TgtSysComb 24.49 25.27 30.20 30.15 50.46 46.31
TgtDynamic 24.07 25.10 30.60 30.41 49.99 46.52
Baseline-2 26.48 27.96 30.14 30.14 49.86 46.45
AllProduct 28.68 29.59* 31.54 31.36* 51.50 48.10*
AllSyscomb 27.02 28.30 30.20 30.17 50.90 46.53

Table 2: Lexical selection results for combinations of
MTU Markov models.

Baseline-1, is the best single target MTU Markov
model from Table 1. Baseline-2 in the lower part
of the table is the best individual model out of all
six. We can see that the product models TgtProduct
(a product of the three target-order MTU MMs) and
AllProduct (a product of all six MTU MMs) are con-
sistently best. The dynamic decomposition models
TgtDynamic achieve slight but not significant gains
over the baseline. The combination models that are
statistically significantly better than corresponding
baselines (α < 0.01) are marked with a star.

Our takeaway from these experiments is that mul-
tiple decomposition orders are good, and thus taking
a product (which encourages agreement among the
models) is a good choice for this task. The dynamic
decomposition method shows some promise, but it
does not outperform the simpler product approach.
Perhaps a lager space of decompositions would
achieve better results, especially given a larger pa-
rameter set to trade off decompositions and better
tuning for those parameters.

6.2 Datasets and reranking settings

For Chinese-English, the training corpus consists
of 1 million sentence pairs from the FBIS and
HongKong portions of the LDC data for the NIST
MT evaluation. We used the union of the NIST
2002 and 2003 test sets as the development set and
the NIST 2005 test set as our test set. The baseline
phrasal system uses a 5-gram language model with
modified Kneser-Ney smoothing (Kenser and Ney,
1995), trained on the Xinhua portion of the English
Gigaword corpus (238M English words).

For German-English we used the dataset from
the WMT 2006 shared task on machine translation
(Koehn and Monz, 2006). The parallel training set
contains approximately 751K sentences. We also



Language Training Dev Test
Chs-En 1 Mln NIST02+03 NIST05
Deu-En 751 K WMT06dev WMT06test
En-Bgr 4 Mln 1,497 2,498

Table 3: Data sets for different language pairs.

used the English monolingual data of around 1 mil-
lion sentences for language model training. The de-
velopment set contains 2000 sentences. The final
test set (the in-domain test set for the shared task)
also contains 2000 sentences. Two Kneser-Ney lan-
guage models were used as separate features: a 4-
gram LM trained on the parallel portion of the data,
and a 5-gram LM trained on the monolingual corpus.

For English-Bulgarian we used a dataset con-
taining sentences from several data sources: JRC-
Acquis (Steinberger et al., 2006), TAUS4, and web-
scraped data. The development set consists of 1,497
sentences, the English side from WMT 2009 news
test data, and the Bulgarian side a human translation
thereof. The test set comes from the same mixture of
sources as the training set. For this system we used
a single four-gram target language model trained on
the target side of the parallel corpus.

All systems used phrase tables with a maximum
length of seven words on either side and lexicalized
reordering models. For the Chinese-English sys-
tem we used GIZA++ alignments, and for the other
two we used alignments by an HMM model aug-
mented with word-based distortion (He, 2007). The
alignments were symmetrized and then combined
with the heuristics ”grow-diag-final-and”. 5 We tune
parameters using MERT (Och, 2003) with random
restarts (Moore and Quirk, 2008) on the develop-
ment set. Case-insensitive BLEU-4 is our evaluation
metric (Papineni et al., 2002).

6.3 MT reranking experiments

We first report detailed experiments on Chinese-
English, and then verify our main conclusions on the
other language pairs. Table 4 looks at the impact of
individual 3-gram and 5-gram MTU Markov models

4www.tausdata.org
5The combination heuristic was further refined to disallow

crossing one-to-many alignments, which would result in the ex-
traction of larger minimum translation units. We found that this
further refinement on the combination heuristic consistently im-
proved the BLEU scores by between 0.3 and 0.7.

3-gram models 5-gram models
Model Dev Test Dev Test
Baseline 32.58 31.78 32.58 31.78
L2RT 33.05 32.78* 33.16 32.88*
R2LT 33.05 32.96* 33.16 32.81*
L2RS 32.90 33.00* 32.98 32.98*
R2LS 32.94 32.98* 33.09 32.96*
4 MMs 33.22 33.07* 33.37 33.00*
4 MMs phrs 32.58 31.78 32.58 31.78

Table 4: Reranking with 3-gram and 5-gram MTU trans-
lation models on Chinese-English. Starred results on the
test set indicate significantly better performance than the
baseline.

and their combination. Amongst the decomposition
orders tested (L2RT, R2LT, L2RS, and R2LS), each
of the individual MTU MMs was able to achieve
significant improvement over the baseline, around 1
BLEU point.6 The results achieved by the individ-
ual models differ, and the combination of four direc-
tions is better than the best individual direction, but
the difference is not statistically significant.

We ran an additional experiment to test whether
MTU MMs make effective use of context across
phrase boundaries, or whether they simply pro-
vide better smoothed estimates of phrasal transla-
tion probabilities. The last row of the table reports
the results achieved by a combination of MTU MMs
that do not use context across the phrasal bound-
aries. Since an MTU MM limited to look only inside
phrases can provide improved smoothing compared
to whole phrase relative frequency counts, it is con-
ceivable it could provide a large improvement. How-
ever, there is no improvement in practice for this lan-
guage pair; the additional improvements from MTU
MMs stem from modeling cross-phrase context.

Table 5 shows the test set results of individ-
ual 3-gram MTU Markov models and the com-
bination of 3-gram and 5-gram models on the
English-Bulgarian and German-English datasets.
For English-Bulgarian all individual 3-gram Markov
models achieve significant improvements of close to
one point; their combination is better than the best
individual model (but not significantly). The indi-
vidual 5-gram models and their combination bring
much larger improvement, for a total increase of
2.82 points over the baseline. We believe the 5-

6Here again we call a difference significant if the paired
bootstrap p-value is less than 0.01.



Model En-Bgr Deu-En
Baseline 45.75 27.92
L2RT 3-gram 47.07* 28.15
R2LT 3-gram 47.06* 28.19
L2RS 3-gram 46.44* 28.15
R2LS 3-gram 47.04* 28.18
4 3-gram 47.17* 28.37*
4 5-gram 48.57* 28.47*
4 3-gram phrs 46.08 27.92
4 5-gram phrs 46.17* 27.93

Table 5: English-Bulgarian and German-English test set
results: reranking with MTU translation models.

gram models were more effective in this setting be-
cause the larger training set allowed for successful
training of models of larger capacity. Also the in-
creased context size helps to resolve ambiguity in
the forms of morphologically-rich Bulgarian words.
For German-English we see a similar pattern, with
the combination of models outperforming the in-
dividual ones, and the 5-gram models being better
than the 3-gram. Here the individual 3-gram models
are better than the baseline at significance level 0.02
and their combination is better than the baseline at
our earlier defined threshold of 0.01. The within-
phrase MTU MMs (results shown in the last two
rows) improve upon the baseline slightly, but here
again the improvements mostly stem from the use of
context across phrase boundaries. Our final results
on German-English are better than the best result of
27.30 from the shared task (Koehn and Monz, 2006).

Thanks to the reviewers for referring us to re-
cent work by (Clark et al., 2011) that pointed out
problems with significance tests for machine trans-
lation, where the randomness and local optima in the
MERT weight tuning method lead to a large vari-
ance in development and test set performance across
different runs of optimization (using a different ran-
dom seed or starting point). (Clark et al., 2011) pro-
posed a startified approximate randomization statis-
tical significance test, which controls for optimizer
instability. Using this test, for the English-Bulgarian
system, we confirmed that the combination of four
3-gram MMs and the combination of 5-gram MMs
is better than the baseline (p = .0001 for both, using
five runs of parameter tuning). We have not run the
test for the other language pairs.

7 Conclusions

We introduced models of Minimal Translation Units
for phrasal systems, and showed that they make a
substantial and statistically significant improvement
on three distinct language-pairs. Additionally we
studied the importance of decomposition order when
defining the probability of MTU sequences. In a
simplified lexical selection task, we saw that there
were large differences in performance among the
different decompositions, with the best decomposi-
tions differing by language. We investigated multi-
ple methods to combine decompositions and found
that a simple product approach was most effective.
Results in the lexical selection task were consistent
with those obtained in a full MT system, although
the differences among decompositions were smaller.

In future work, perhaps we would see larger gains
by including additional decomposition orders (e.g.,
top-down in a dependency tree), and taking this idea
deeper into the machine translation model, down to
the word-alignment and language-modeling levels.

We were surprised to find n-best reranking so ef-
fective. We are incorporating the models into first
pass decoding, in hopes of even greater gains.
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