
Engineering Theories with Z3?

Nikolaj Bjørner

Microsoft Research
nbjorner@microsoft.com

Abstract. Modern Satisfiability Modulo Theories (SMT) solvers are
fundamental to many program analysis, verification, design and testing
tools. They are a good fit for the domain of software and hardware engi-
neering because they support many domains that are commonly used by
the tools. The meaning of domains are captured by theories that can be
axiomatized or supported by efficient theory solvers. Nevertheless, not
all domains are handled by all solvers and many domains and theories
will never be native to any solver. We here explore different theories that
extend Microsoft Research’s SMT solver Z3’s basic support. Some can be
directly encoded or axiomatized, others make use of user theory plug-ins.
Plug-ins are a powerful way for tools to supply their custom domains.

1 Introduction

This paper surveys a selection of theories that have appeared in applications
of Z3 [7] and also in recent literature on automated deduction. In each case we
show how the theories can be supported using either existing built-in theories
in Z3, or by adding a custom decision procedure, or calling Z3 as a black box
and adding axioms between each call. The theme is not new. On the contrary,
it is very central to research on either encoding (reducing) theories into a sim-
pler basis or developing special solvers for theories. Propositional logic is the
most basic such basis e.g., [14]. In the context of SMT (Satisfiability Modulo
Theories), the basis is much richer. It comes with built-in support for the the-
ory of equality, uninterpreted functions, arithmetic, arrays, bit-vectors, and even
first-order quantification. The problem space is rich, and new applications that
require new solutions keep appearing. We don’t offer a silver bullet solution, but
the “exercise” of examining different applications may give ideas how to tackle
new domains.

Z3 contains an interface for plugging in custom theory solvers. We exemplify
this interface on two theories: MaxSMT (Section 3) and partial orders (Sec-
tion 4). This interface is powerful, but also requires thoughtful interfacing. To
date it has been used in a few projects that we are aware of [18, 2, 16]. Some of
our own work can also be seen as an instance of a theory solver. The quantifier-
elimination procedures for linear arithmetic and algebraic data-types available
in Z3 acts as a special decision procedure [3]. The OpenSMT solver also supports

? Appears in APLAS 2011, Copyright Springer Verlag.

an interface for pluggable theories [5]. We feel that the potential is much bigger
an we conclude with some speculation where the pluggable interface could be
used elsewhere.

Z3 also allows interfacing theories in simpler ways. The simplest is by en-
coding and Section 5 discuss a simple theory with two encodings. Something
between encoding and a user theory, is by calling Z3 repeatedly. Whenever Z3
returns a satisfiable state, then add new axioms that are not satisfied by the
current candidate model for the existing formulas. Section 6 discusses how HOL
can be solved using this method.

The case studies discussed in this paper are available as F# code samples.

2 SMT, DPLL(T), and Z3

2.1 SMT

We will not survey SMT here, but refer the reader to [8] for an introduction.

2.2 DPLL(T)

Modern SMT solvers are mostly based on the DPLL(T) architecture. In this
context, an efficient propositional SAT solver is used to produce a truth assign-
ment to the atomic sub-formulas of the current goal. Let us use M to refer to
a partial assignment. It can be represented as a stack of literals `1, `2, . . . , `n.
The partial assignment is updated by adding new literals to the stack to indi-
cate their values, and by shrinking the stack. We use F for the current goal.
The DPLL(T) architecture uses two main methods for interacting with a theory
solver.

T -Propagate Given a state M ||F , such that ` or ¬` occurs in F , ` is unassigned
in M , C ⊆M (the negation of the literals in C are already assigned in M),
and T ` C ∨ `, then ` must be true under the current assignment M . It is
then sound to propagate `.
External theory solvers in Z3 can force this propagation by asserting the
clause (C ∨ `). Then ` gets assigned by propositional propagation. How-
ever, the asserted clause has no value if ` does not participate in a conflict.
So the default behavior in Z3 is to garbage collect the asserted clause on
backtracking.

T -Conflict Given a state M ||F such that C ⊆ M , T |= C. That is, there is a
subset C of the literals in M that are inconsistent from the point of view of
T , or dually the clause C is T -valid, then assert the valid clause C. The new
clause is in conflict with the current assignment M , because all literals in
C are false under M . The propositional engine detects the resulting conflict
and causes backtracking.
The clause C may also be useless beyond serving the role of signaling the
conflict. It is therefore also by default garbage collected during Z3’s back-
tracking.

2.3 Z3’s Theory Solver API

Z3 exposes a programmatic API for interfacing with the theory solver. It includes
hooks for user theories to add callbacks so that they can implement the effect
of T -Propagate and T -Conflict. As we saw, the effect of the rules is communi-
cated by asserting a new clause to the current state. The corresponding method
is called AssertTheoryAxiom over the .NET API. On the other hand, the state
changes to the partial model M are exposed to the user solver using callbacks.
When a literal is added to M (is assigned to either true or false), then a call-
back (called NewAssignment(atom,truth value)) is invoked with the underlying
atomic formula and the truth value it is assigned to. There are other special-
ized callbacks when new equalities and dis-equalities are discovered. Equalities
and dis-equalities don’t have to correspond to existing atoms. Finally, a callback
(called FinalCheck in .NET) is invoked when the current assignment fully sat-
isfies the current formula F from the point of view of the built-in theories in
Z3. The user theory solver can inspect its own state and compare the assign-
ment it learned from NewAssignment to determine if the resulting assignment
is satisfiable. When the solver performs a new case split or backtracks through
states it calls into the theory solver with callbacks Push and Pop. Any side-effects
made in a user-theory inside the scope of a Push need to be undone when receiv-
ing a matching call to Pop. For example, if a user-theory performs an update
c← c+ wi, where wi is a constant, then it can undo the effect of the operation
by executing c← c− wi during a Pop.

3 Weighted MaxSMT

Weighted MaxSMT is the following problem. Given a set of numeric weights
w1, . . . , wn and formulas F0, F1, . . . , Fn, find the subset I ⊆ {1, . . . , n} such that

1. F0 ∧
∧
i/∈I Fi is satisfiable.

2. The cost : Σi∈Iwi is minimized.

In other words, the weight wi encodes the penalty for a formula Fi to not be
included in a satisfying assignment. The paper [15] develops a theory solver for
weighted MaxSMT. An important point is that the theory evolves as search pro-
gresses: once a satisfiable state is reached with a given cost c, then assignments
that meet or exceed c are useless.

According to [15], weighted MaxSMT can be encoded in Z3 in the following
way: Initially we assert F0 and Fi∨pi for each i, where pi is a fresh propositional
variable. We also maintain a cost c that is initialized to 0, and a min cost that
is set to nil. Then, repeat the following steps until the asserted formulas are
unsatisfiable:

1. When some pi is assigned to true, then update c← c+ wi.
2. If nil 6= min cost ≤ c, then block the current state by calling

AssertTheoryAxiom(
∨
{¬pi | pi is assigned to true}).

3. When receiving the FinalCheck callback, it must be the case that c < min cost
or min cost is nil. So it is safe to set min cost ← c. To block this current
cost call AssertTheoryAxiom(

∨
{¬pi | pi is assigned to true}).

It was tempting to make fuller use of theory support in Z3 for MaxSMT. We also
tried an encoding that used extra variables v1, . . . , vn and axioms pi =⇒ vi = wi,
¬pi =⇒ vi = 0, 0 ≤ vi for each i = 1, . . . , n and Σivi < B. The idea would
be to add assertions B ≤ c every time a new satisfying state with cost c is
encountered. This encoding was counter-productive on the benchmarks used
in [15], it taxes Z3’s arithmetic solver in contrast to relatively cheap propagation
using the blocking propositional clauses.

It can be highly domain dependent whether a particular solution applies.
An example of constraints where the proposed MaxSMT solver performs poorly
comes from constraints used to tune parameters for the Vampire [12] theorem
prover. There, a formula F0[v1, . . . , vn] is asserted and the goal is to minimize
Σivi. The domain of the variables is bounded and the so-far best encoding ap-
pears to be to use bit-vectors for the variables. We can convert the problem to
MaxSMT by adding the following soft clauses: vi[k] = 0 with weight 2k for each
variable vi of bit-width N and 0 ≤ k < N . Nevertheless, we found that this
encoding is inferior to the best technique known so far: a binary search over
constraints of the form Σivi > c, where c is a candidate lower bound.

4 Theories for partial orders and class inheritance

A partial order is a binary relation that is reflexive, anti-symmetric, and transi-
tive. In other words, � is a partial order if for every x, y, z:

x � x, x � y ∧ y � x =⇒ x = y, x � y ∧ y � z =⇒ x � z

When there are no other non-ground properties of �, it is relatively straight-
forward to support the theory using axioms that get instantiated fully during
search. Unfortunately, the theory is expensive. When n is the number of terms
in the goal that occur in either side of �, the axiom for transitivity causes up
to O(n3) clauses and generates up to O(n2) instantiations of �. The (quantifier-
free) theory of partial orders can be solved using graph search procedures. Let
us illustrate two theory solvers in the context of partial orders.

4.1 A basic solver for partial orders

We present a basic decision procedure for the theory of partial orders. It main-
tains a directed graph D and a set N of pairs of terms. They are both initially
empty. Assert F , the original formula to satisfy and check for satisfiability with
the following theory solver actions:

1. When t � t′ is asserted to true, then add the edge t→ t′ to D.
2. When t = t′ is asserted, then add edges t→ t′ → t to D.

3. If D contains a cycle with edges t1 → t2 → t3 → ..tn → t1, for terms that
are not yet asserted equal, then call

AssertTheoryAxiom(t1 � t2 � t3 . . . tn � t1 →
n−1∧
i=1

ti = ti+1)

4. When t � t′ is asserted to false, then add the pair (t, t′) to N .
5. If for some pair (t, t′) in N there is a path in D from t to t′ (the path can

be empty and t = t′), then assert

AssertTheoryAxiom(t � t1 � t2 . . . tn � t′ → t � t′)

Correctness of the algorithm is straight-forward: The graph D is a model: every
term in strongly connected components are forced equal, and every constraint
t 6� t′ is checked. It is critical that the algorithm has access to the current
equalities between terms and it takes part of equality propagation as well.

A basic implementation of the corresponding solver is to defer all processing
to FinalCheck. Tarjan’s ubiquitous linear time algorithm for finding strongly
connected components in a graph will identify implied equalities, and each pair
in N can be checked in time |D|.

4.2 Sub-typing Closure

The object inheritance hierarchy of classes in object oriented programs forms
a partial order. A special class of partial order constraints are relevant in this
context, and [17] develops a specialized decision procedure. In the context of
object inheritance we can assume there is a fixed set of constants cls1, . . . , clsn
that are (1) all distinct and (2) covers the universe of types that are used in the
query. The type hierarchy among cls1, . . . , clsn is fixed once and the queries are
Boolean formulas over atoms of the form x = clsi and x � clsi, where x is a
variable (it is equal to one of cls1, . . . , clsn, but the concrete value is not known
yet.

The theory can be handled using a specialized solver that tracks satisfiability
of assignments to the atoms: For each variable x, initialize the set of candidates
cand(x) to {cls1, . . . , clsn}, and dependencies dep(x) to ∅.

1. The state is updated upon asserting a literal ` as follows:

(a) x = clsi: set cand(x)← cand(x) ∩ {clsi}.
(b) x 6= clsi: set cand(x)← cand(x) \ {clsi}.
(c) x � clsi: intersect cand(x) with the descendants of clsi.
(d) x 6� clsi: subtract the descendants for clsi from cand(x).

2. The asserted literal ` is also added to dep(x).
3. The state is unsatisfiable if cand(x) = ∅. To block it, call:

AssertTheoryAxiom(
∨
{¬` | ` ∈ dep(x)})

The interesting problem is implementing the updates to cand(x) efficiently.
The assumption that the type hierarchy is fixed can be exploited. The Type
Slicing [10] structure was developed in the context of fast dispatch tables for
object oriented programs, and it was used in [17] for making the updates to
cand(x) efficient. The data-structure represents a partial order (directed acyclic
graph) using a set of colored nodes that are ordered. The data-structure satisfies
the following condition: For every node n and color c, the set of descendants of n
of color c are contiguous with respect to the ordering. The contiguity requirement
allows to represent descendants using the first and last element only of the
interval. We will not review this data-structure and the methods for building it
here, but note that the sketched solver integration with Z3 allows writing only
the theory solver, while efficient handling of Boolean case splitting comes for
free.

Remark 1. When detecting a conflict we suggested to include the negation of all
literals from dep(x) in the asserted theory axiom. The resulting axiom may have
redundancies. For example if we assert x = string followed by x � System.Object
followed by x = bool, we obtain a conflict by just producing the clause x 6=
string ∨ x 6= bool. The constraint x � System.Object is redundant. A simple
method is to minimize the conflicting dependencies for x by temporarily remov-
ing each literal from dep(x) and check if there is still a conflict. Generating
minimal conflicts is important for efficient search.

5 A Theory of Object Graphs

There are many cases where a new theory can already be encoded using existing
built-in theories. There is then no need for special purpose procedures. Still there
may not be a unique way to encode these theories. We here give an example of
this situation.

The theory of object graphs uses elements from the theory of algebraic and
co-algebraic data-types, yet it is not possible to directly use one or the other.
The theory is also non-extensional. The theory of object graphs occurs naturally
in the context of Pex [11]. Pex is a state-of-the-art tool for unit-test case genera-
tion. It applies to typed .NET code. Let us here consider the following program
fragment:

class O {

public readonly D d ;
public readonly O l e f t ;
public O r i g h t ;

public O(D data ,
O l e f t ,
O r i g h t) {

this . data = data ;
this . l e f t = l e f t ;
this . r i g h t = r i g h t ;

}
}

void f (O n0) {

Assert (n0 == null | |
n0 . l e f t != n0) ;

O n1 = new O(1 , null , null) ;
O n2 = new O(2 , n1 , null) ;
O n3 = new O(2 , n1 , null) ;

Assert (n2 != n3) ;

n1 . r i g h t = n2 ;
n2 . r i g h t = n1 ;

. . .

Program 5.1:

Objects of type O are created using a constructor that we also call O . Each
allocation creates a different object (the default equality method is reference
equality), so in the program n2 is different from n3. We can use a heap, here
called H , to track the state of objects. So access and updates to objects is done
through the heap. The signature that is relevant for O is:

sorts: O,
constructors: null : O,O : H ×D ×O ×O → H ×O,
accessors: data : H ×O → D, left : H ×O → O, right : H ×O → O,
modifiers: update right : H ×O ×O → H

The sort is O and there is a distinguished constant null . There are three ac-
cessors, the data accessor retrieves a data field from objects of type O, and left
and right access left and right children. The read-only declared attributes of O
cannot be updated, so there is only a single modifier for the right attribute.

The theory of O is characterized as follows:

(h′, o) = O(h, d, l, r) =⇒ o 6= null

(h′, o) = O(h, d, l, r) =⇒ data(h′, o) = d

(h′, o) = O(h, d, l, r) =⇒ left(h′, o) = l

(h′, o) = O(h, d, l, r) =⇒ right(h′, o) = r

left(null) = right(null) = null

h′ = update right(h, o, r) ∧ o 6= null =⇒ right(h′, o) = r

h′ = update right(h, o, r) ∧ o′ 6= o =⇒ right(h′, o′) = right(h, o′)

h′ = update right(h, o, r) =⇒ left(h′, o′) = left(h, o′)

h′ = update right(h, o, r) =⇒ data(h′, o′) = data(h, o′)

The read-only field constrains what objects are possible in a valid heap state.
In particular all formulas of the form

o 6= null =⇒ left(h1, left(h2, left(. . . left(hn, o)))) 6= o (1)

are valid. The restriction is similar to the occurs check (well-foundedness) of
recursive data-types. On the other hand, the attributes following paths using
right need not be well-founded.

The question we will now address is: How can we equip a decision procedure
for reasoning about ground formulas over the theory of O?

5.1 An Encoding using Arrays

A direct encoding of objects is to use one array per field. To enforce well-
foundedness of left-access (see (1)) one can use a time-stamp. We use O ⇒ D
for the sort of arrays that map O to D, and encode the sort O as the set N of
natural numbers. The sort H is a tuple with one array for data, other arrays for
left and right , and finally a clock that we will increment when allocating new
objects.

O = N

H = 〈data : O ⇒ D , left : O ⇒ O , right : O ⇒ O , clock : N〉

The constant null is set to 0 and object allocation modifies the arrays main-
tained in H . The initial heap h0 uses the value 0 for clock , such that allocated
objects are different from null .

null = 0

left0 = store(left0,null ,null)

right0 = store(right0,null ,null)

h0 = 〈data, left0, right0, 0〉

O(〈data, left , right , clock〉, d, l, r) =

 let o = clock + 1
(〈store(data, o, d), store(left , o, l),
store(right , o, r), clock + 1〉, o)

data(〈data, left , right , clock〉, o) = select(data, o)

left(〈data, left , right , clock〉, o) = select(left , o)

right(〈data, left , right , clock〉, o) = select(right , o)

update right(〈data, left , right , clock〉, o, r) = 〈data, left , store(right , o, r), clock〉

To enforce well-foundedness in models produced by Z3 it suffices to enforce that
the time-stamp (here it is the same as the natural number used to identify
objects) on non-null objects is smaller on their left children. It suffices to assert

an axiom that gets instantiated for every use of left(h, o)1

∀h : H , o : O . o 6= null =⇒ 0 ≤ left(h, o) < o .

5.2 An Encoding using Recursive Data-types and Arrays

Another option is to encode the read-only fields using the theory of algebraic
data-types. We use a unique identifier field id to make sure allocated objects are
distinct.

O = null | O(id : N, data : D, left : O)

H = 〈right : O ⇒ O , clock : N〉

right0 = store(right0,null ,null)

h0 = 〈right0, 0〉

O(〈right , clock〉, d, l, r) =

 let clock ′ = clock + 1
let o = O(clock ′, d, l)
(〈store(right , o, r), clock ′〉, o)

data(h,O(id , d, l)) = d

left(h,O(id , d, l)) = l

left(h,null) = null

right(〈right , clock〉, o) = select(right , o)

update right(〈right , clock〉, o, r) = 〈store(right , o, r), clock〉

5.3 Not All Encodings are Equal

The advantage of using the built-in algebraic data-types becomes highly visible
when the heap gets updated multiple times. For example, in one test we created
1000 objects and then verified that the left child of the first object remained un-
changed after the 1000 updates. It takes Z3 18 seconds to instantiate 600,000+
array axioms and establish the equality using the array-based encoding. The
second encoding can prove the same theorem in a small fraction of a second.
Establishing (1) requires also about 18 seconds and 232,582 quantifier instantia-
tions using the first encoding, and is establish instantaneously using the second
encoding.

1 The mechanism for achieving this in Z3 is to annotate quantified formulas using this
term as a pattern

6 HOL

Sattalax [4] is a theorem prover for Church’s Higher-Order Logic (HOL) [1]
that is based on simple type theory with Hilbert’s choice operator. It won the
CASC division for higher-order logic in 2011. The main idea in Sattalax is to
reduce problems in HOL to a sequence of SAT problems. Sattalax uses the
MiniSAT SAT solver. This, apparent unsophisticated method, has an edge over
current competing tools thanks to the highly tuned SAT solver MiniSAT, and
a judicious combination of strategies in Sattalax. The Sattalax reduction uses
several components: It searches for quantifier instances for quantified formulas.
It then encodes satisfiability of quantifier-free formulas into propositional logic.
The purpose of this section is very straight-forward. It is to show how to leverage
an SMT solver for handling the encoding of ground formulas into propositional
logic. The other much more profound challenge remains, and we don’t address
it here: sophistication and tuning for finding useful quantifier instantiations.

There is a set of variables V with elements x, y, z, The theory HOL is
based on simply typed λ calculus. It includes a special sort o of propositions and
i of individuals. Types are of the form:

σ ::= i | o τ ::= σ | τ → τ

Furthermore, we use the notation τ as a shorthand for τ1, . . . , τn and τ → σ as
a shorthand for τ1 → . . .→ τn → σ. Terms are of the form:

M,N ::= λx : τ . M | (M N) | x

We assume also a fixed set of interpreted constants:

false : o, =⇒: o→ o→ o,

ε : (τ → o)→ τ, ∀ : (τ → o)→ o, =: τ → τ → o for each type τ

As usual, terms are assumed simply and well-typed: (M N) can only be formed
if M has type τ → τ ′ and N has type τ . We write Mτ for a term M with type
τ (under a type environment Γ). Simply typed terms are strongly normalizing,
so they admit βη normal forms that we denote M ↓. Equality under α-renaming
can be dealt with by using de-Bruijn indices. HOL is generally highly incomplete
(it can encode Peano arithmetic) but it is complete under Henkin [13] seman-
tics. Under the Henkin term-based semantics the set of values in every type τ
comprises of the all the closed terms of type τ . This set is non-empty for every
τ because we can always include ε(λx : τ.false). The interpreted constants are
characterized by

(∀ (λx : τ .¬(M x))) ∨ (M (ε M)) for every M : τ → o (2)

M = N ⇔ (∀λx : τ . (M x) = (N x)) for every M,N : τ → τ ′ (3)

(∀ M) =⇒ (M N) for every M : τ → o,N : τ (4)

together with the usual congruence properties of equality and the Boolean con-
nectives =⇒ and false (and the definitions for derived abbreviations ¬,⇔,∨, and

∧). Furthermore, M↓ = M for every M . The main idea of Sattalax is to saturate
a goal F under these properties. Since Sattalax is based on a SAT solver it also
has to saturate with respect to the theory of equality. The main point made
here is that this part of the theory propagation is already taken care of by SMT
solvers that provide ground equality reasoning as a built-in feature. Saturation
causes the properties to be instantiated by every constructable terms M,N . Two
challenges arise, the first is to find a way to enumerate all constructable terms,
the second is to enumerate the terms in an order that is useful for finding short
proofs. In general, one must fairly enumerate every type τ and every term of
type τ . We sketch a construction of sets of terms with free variables from the
typing context Γ and of type τ as the set T [Γ ; τ]. It is the least fixed-point under
the membership constraints:

(λx : τ . M) ∈ T [Γ ; τ → τ ′] if M ∈ T [Γ, x : τ ; τ ′]
(x M1 . . . Mk) ∈ T [Γ ;σ] if (x : τ → σ) ∈ Γ, Mi ∈ T [Γ ; τi]

The constructed terms are in βη long normal form. We here assume that Γ is pre-
populated with the constants false and =⇒ and for every type τ a corresponding
instance of ∀, ε,=. A useful approach for enumerating the terms is to fix a depth
towards the number of times one is willing to use either of the saturation rules
above and then enumerate all terms and types up to the fixed depth.

6.1 Leveraging theories

[[(∀M)]] = d(∀M)e
[[(ε M)]] = d(ε M)e

[[M =⇒ N]] = [[M]] =⇒ [[N]]

[[M = N]] = [[M]] = [[N]]

[[(M N)]] = select([[M]], [[N]])

[[λx : τ . M]] = dλx : τ . Me
[[f]] = f for constant f

The translation of λ-terms into first-order
terms can exploit the support for equality
and propositional logic that already exists
in the context of SMT solvers. We give the
translation function [[]] to the right. It creates
quoted terms dMe for λ-terms that don’t cor-
respond to Z3-expressible terms. The quoted
terms are treated as uninterpreted constants
from Z3’s point of view. The theory of exten-
sional arrays furthermore lets us enforce that application is extensional without
having to expand axioms for extensionality ourselves. In other words, the func-
tion select satisfies (∀x : τ . select(M,x) = select(N, x)) =⇒ M = N . We can
therefore replace (3) with only the left-to-right implication.

We are now ready to outline the basic saturation loop for HOL. Initialize
the depth d← 0. Assert [[F ↓]]. Then repeatedly apply the following steps until
[[F ↓]] is ground unsatisfiable:

1. F contains the sub-term d(ε M)e, then add [[(2) ↓]] to F .
2. F contains the sub-term [[Mτ→τ ′

= N]], then add [[(3) ↓]] to F .
3. F contains the sub-term d(∀ Mτ→o)e, then for every N ∈ T [ε; τ] of depth

less than d add [[(4) ↓]] to F .
4. d← d+ 1.

Remark 2. We can in principle retain even more of the structure of λ-terms when
interpreting them in the context of Z3. The support for the theory of arrays [6]
in Z3 includes native handling of combinators K : τ → (τ ′ ⇒ τ) (the constant
array), and map : (τ ⇒ τ ′) → (τ ′′ ⇒ τ) → (τ ′′ ⇒ τ ′) (a map combinator),
besides the function store : (τ ⇒ τ ′) → τ → τ ′ → (τ ⇒ τ ′) that updates an
array at a given index. The ground theory with these combinators is decidable
(satisfiability is NP complete). We call the theory CAL for combinatory array
logic. We could therefore in principle extend [[]] with the cases [[λx . M]] =
(K [[M]]) if x 6∈ FV (M), and [[λx . (M (N x))]] = map([[M]], [[N]]) when x 6∈
FV (M) ∪ FV (N). It would be interesting to explore to which extent CAL can
be leveraged for solving HOL formulas. We could for instance prove f ◦ g =
g ◦ f ⇒ f ◦ g ◦ g = g ◦ g ◦ f using the decision procedure for CAL.

We implemented a light-weight HOL theorem prover based on the presented
method using Z3. It is not tuned, but can (given some patience) for instance
prove that injective functions have inverses: (∀x, y : i . (fx) = (fy)) =⇒ ∃g :
i→ i . ∀x : i . (g (f x)) = x by synthesizing the instantiation g := λx : i . (ε (λy :
i . (f y) = x)).

7 Conclusions

We examined a number of theories. The theories were not native to Z3, but
could be either encoded using existing theories, be supported by saturating with
theory axioms, or be supported efficiently using custom solvers that work in tan-
dem with core solver. Other constraint satisfiability problems can be encoded
as custom theory solvers. This includes both thoroughly and partially explored
applications, such as custom constraint propagators for scheduling domains, the-
ories with transitive closure and fixed-point operators, local theory extensions,
separation logic and answer set programming.
Thanks to Chris Brown, Albert Oliveras, Nikolai Tillmann, Andrei Voronkov
and Matt Dwyer for their inspiration and input on the theories and examples
used here.

References

1. A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5:56–68, 1940.

2. Anindya Banerjee and David Naumann and Stan Rosenberg. Decision Procedures
for Region Logic. In submission, Aug. 2011. http://www.cs.stevens.edu/ nauman-
n/publications/dprlSubm.pdf.

3. N. Bjørner. Linear quantifier elimination as an abstract decision procedure. In
Giesl and Hähnle [9], pages 316–330.

4. C. E. Brown. Reducing higher-order theorem proving to a sequence of sat problems.
In N. Bjørner and V. Sofronie-Stokkermans, editors, CADE, volume 6803 of Lecture
Notes in Computer Science, pages 147–161. Springer, 2011.

5. R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The opensmt solver. In
J. Esparza and R. Majumdar, editors, TACAS, volume 6015 of Lecture Notes in
Computer Science, pages 150–153. Springer, 2010.

6. L. de Moura and N. Bjørner. Efficient, Generalized Array Decision Procedures.
In FMCAD. IEEE, 2009.

7. L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan
and J. Rehof, editors, TACAS, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, 2008.

8. L. M. de Moura and N. Bjørner. Satisfiability modulo theories: introduction and
applications. Commun. ACM, 54(9):69–77, 2011.

9. J. Giesl and R. Hähnle, editors. Automated Reasoning, 5th International Joint
Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Proceedings, volume
6173 of Lecture Notes in Computer Science. Springer, 2010.

10. J. Gil and Y. Zibin. Efficient dynamic dispatching with type slicing. ACM Trans.
Program. Lang. Syst., 30(1), 2007.

11. P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani, W. Schulte, N. Tillmann,
and M. Y. Levin. Automating Software Testing Using Program Analysis. IEEE
Software, 25(5):30–37, 2008.

12. K. Hoder, L. Kovács, and A. Voronkov. Interpolation and symbol elimination in
vampire. In Giesl and Hähnle [9], pages 188–195.

13. L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15:81–
91, 1950.

14. S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling and verification of out-of-
order microprocessors in uclid. In M. Aagaard and J. W. O’Leary, editors, FMCAD,
volume 2517 of Lecture Notes in Computer Science, pages 142–159. Springer, 2002.

15. R. Nieuwenhuis and A. Oliveras. On sat modulo theories and optimization prob-
lems. In A. Biere and C. P. Gomes, editors, SAT, volume 4121 of Lecture Notes in
Computer Science, pages 156–169. Springer, 2006.

16. P. Rümmer and C. Wintersteiger. Floating-point support for the Z3 SMT Solver.
http://www.cprover.org/SMT-LIB-Float.

17. E. Sherman, B. J. Garvin, and M. B. Dwyer. A slice-based decision procedure for
type-based partial orders. In Giesl and Hähnle [9], pages 156–170.

18. P. Suter, R. Steiger, and V. Kuncak. Sets with cardinality constraints in satisfia-
bility modulo theories. In R. Jhala and D. A. Schmidt, editors, VMCAI, volume
6538 of Lecture Notes in Computer Science, pages 403–418. Springer, 2011.

