
Checking Cloud Contracts in Microsoft Azure

Nikolaj Bjørner1 and Karthick Jayaraman2

1 Microsoft Research
nbjorner@microsoft.com

2 Microsoft Azure
karjay@microsoft.com

Abstract. Cloud Contracts capture architectural requirements in data-
centers. They can be expressed as logical constraints over configurations.
Contract violation is indicative of miss-configuration that may only be
noticed when networks are attacked or correctly configured devices go
off-line. In the context of Microsoft Azure’s data-center we develop con-
tracts for (1) network access restrictions, (2) forwarding tables, and (3)
BGP policies. They are checked using the SecGuru tool that continuously
monitors configurations in Azure. SecGuru is based on the Satisfiability
Modulo Theories solver Z3, and uses logical formulas over bit-vectors to
model network configurations. SecGuru is an instance of applying tech-
nologies, so far developed for program analysis, towards networks. We
claim that Network Verification is an important and exciting new op-
portunity for formal methods and modern theorem proving technologies.
Networking is currently undergoing a revolution thanks to the advent of
highly programmable commodity devices for network control, the build
out of large scale cloud data-centers and a paradigm shift from network
infrastructure as embedded systems into software controlled and defined
networking. Tools, programming languages, foundations, and method-
ologies from software engineering disciplines have a grand opportunity
to fuel this transformation.

1 Introduction

Modern large-scale cloud infrastructures are inherently complex to configure and
deploy: Network access restrictions are enforced at multiple points, forwarding
and filtering policies are programmed or configured in various formats targeting
devices that span different vendors and generations. Access restrictions evolve
with organizational changes and operators come and leave. The general problem
of analyzing networks is daunting, inhumane, and can really only be solved using
rigorous tools.

As part of an arsenal of tools to take on this challenge we show in very re-
cent work [11] how policies can be checked through a set of beliefs. Beliefs are
confirmed, refuted or refined by posing queries about the network. Checking be-
liefs in packet switched networks without having any architectural knowledge of
the network requires solving Boolean combinations of reachability properties. To
make general belief checking practical we developed a general purpose Network

Optimized Datalog engine that scales to data-center sized networks and used in
many different contexts: Datalog over bit-vectors is very general and not con-
fined to reasoning about IPv4, IPv6 networks, but applies also to Multi-protocol
Label Switching (MPLS) networks, other arbitrary packet formats and is adapt-
able to many scenarios. The Network Optimized Datalog engine is also available
with Z3.

This paper takes a narrower perspective to a specialized but very important
deployment scenario. We describe a system currently used in production, based
on technologies that have been matured for some time. Our starting point is
a carefully designed infrastructure, Microsoft Azure, where relevant properties
are articulated already in well-motivated design goals. These principles can be
captured using a set of high-level contracts that are enforced throughout the
life-cycle of a deployment. This scenario allows us to take advantage of the prop-
erties we know of the data-center architecture to pose queries that are solved
using specialized logics and efficient, well-established, reasoning engines. The
flip-side is that the contracts we present in this paper do not translate to arbi-
trary scenarios. The scale and economic significance of Microsoft Azure, however,
motivates our specialized solution, and we postulate that many of the techniques
we describe here are of general interest. The three sources of cloud contracts for
Azure’s data-center networks are: (1) network access restrictions, (2) forwarding
tables, and (3) Border Gateway Protocol (BGP) policies.

Many contracts can be captured in fragments of first-order logic. In this
context, we describe the SecGuru tool that checks cloud contracts in the Mi-
crosoft Azure public cloud infrastructure. The tool is based on the Satisfiability
Modulo Theories solver Z3 [6]. SecGuru models network configurations using
quantifier-free logical formulas over bit-vectors. SecGuru’s checking of network
access restrictions is a subject of a separate paper. It is described in detail in [8].
We will here recall the highlights of network access restriction checking, and then
develop our newer extensions for checking forwarding tables and BGP policies.

Network Verification is an exciting new area for both modern networking
and verification technologies. In the broader context, networking is undergoing
a revolution thanks to new highly programmable commodity devices for network
control, the build out of large scale cloud data-centers and a paradigm shift from
network infrastructure as embedded systems into software controlled and defined
networking. The latter begs for the attention of techniques developed hitherto
for software engineering and CAD disciplines. Many techniques can be adapted
in a straight-forward way to modern packet switched networking, but many more
problems require new techniques and new ideas. It is also useful to appreciate
the differences of the correctness, business and deployment models for network-
ing, hardware and software. Bugs that ship in silicone are in the best case fixed
by firmware updates, and worst case by a costly recall; software bugs can be
addressed by periodic updates, but is vulnerable to the update distribution pro-
cess and adaption; cloud networking, in our context, is run as a (web) service
and bugs lead to outages and missed service level agreements (SLAs). The dy-
namics are different: hardware designs are driven by advances in circuitry that

enables more complex designs; large software systems have to deal with features,
legacy and interoperability; cloud services are constrained by capacity, energy
requirements and current complexities are in part due to a heavy churn in new
technologies and the challenges of deploying large scale distributed monitoring
services. Lessons from the last two decades of static software analysis also include
the often referenced obstacles of the false positives, or even for true positives,
the practical obstacles and business impacts of fixing bugs3. The class of bugs
we address in networking seems to have a somewhat different flavor: each alert
that SecGuru raises is directly actionable. The cost of ignoring alerts translates
to opening a network to attacks, missed revenue (by breaking SLAs), decreased
performance, increased costs, and missing out of a competitive advantage. The
advantages of SecGuru are on the other hand, reduced time for building out new
data-centers, allowing more sophisticated and hence complex policies, making
the service auditable and even using a successful report to save precious time by
ruling out miss-configuration as a culprit during live site incidents.

Sections 2, 3 and 4 describe cloud contracts for access control lists, routing
tables and BGP policies, respectively. The material in Section 2 is described in
more detail in [8]. Section 3 extends the summary from [3] to discuss the impact
of checking routing configurations. Section 4 describes select BGP contracts
for configurations that we check statically. Contracts for the three configuration
sources are now checked on a continuous basis in Microsoft Azure by the SecGuru
tool. Section 5 provides background on the SMT solver Z3, reflects on broader
opportunities around Network Verification.

2 Access Control Lists

The SecGuru [8] tool has been actively used in our production cloud in the past
years for continuous monitoring and validation of Azure. It has also been used for
maintaining legacy edge ACLs. In continuous validation, SecGuru checks policies
over ACLs on every router update as well as once a day. This is more than 40,000
checks per month, where each check takes 150-600 ms. It uses a database of
predefined contracts. For example, there is a policy that says that SSH ports on
fabric devices should not be open to guest virtual machines. While these policies
themselves rarely change, IP addresses do change frequently, which makes using
SecGuru as a regression test useful. SecGuru had a measurable positive impact
in prohibiting policy misconfigurations during build-out, raising in average of
one alert per day; each identifies 3-5 buggy address ranges in the /20 range, e.g.,
˜16K faulty addresses. We also used SecGuru to reduce our legacy corporate
ACL from roughly 3000 rules to 1000 without any derived outages or business
impact.

In more detail, the Azure architecture enforces network access restrictions us-
ing ACLs. These are placed on multiple routers and firewalls in data-centers and
on the edge between internal networks and the internet. Miss-configurations, such

3 A classical issue in the in context of static tools, such as Prefix and Coverity, e.g.,
see http://popl.mpi-sws.org/2014/andy.pdf for an insightful discussion.

as miss-configured ACLs, are a dominant source of network outages. SecGuru
translates the ACLs into a logical predicate over packet headers that are repre-
sented as bit-vectors. These predicates are checked for containment and equiva-
lence with contracts that are represented as other bit-vector formulas. For illus-
tration, representative contracts are of the form:

Cloud Contract 1 DNS ports on DNS servers are accessible from tenant de-
vices over both TCP and UDP.

Cloud Contract 2 The SSH ports on management devices are inaccessible
from tenant devices.

The routers that are dedicated to connect internal networks to the Internet
backbone are called Edge routers and they enforce restrictions using ACLs. Fig-
ure 1 provides a canonical example of an Edge ACL. The ACL in this example
is authored in the Cisco IOS language. It is basically a set of rules that filter IP
packets. They inspect header information of the packets and the rules determine
whether the packets may pass through the device.

1 remark Isolating private addresses
2 deny ip 10.0.0.0/8 any
3 deny ip 172.16.0.0/12 any
4 deny ip 192.0.2.0/24 any
5 ...
6 remark Anti spoofing ACLs
7 deny ip 128.30.0.0/15 any
8 deny ip 171.64.0.0/15 any
9 ...

10 remark permits for IPs without
11 port and protocol blocks
12 permit ip any 171.64.64.0/20
13
14 remark standard port and protocol
15 blocks
16 deny tcp any any eq 445
17 deny udp any any eq 445
18 deny tcp any any eq 593
19 deny udp any any eq 593
20 ...
21 deny 53 any any
22 deny 55 any any
23 ...
24 remark permits for IPs with
25 port and protocol blocks
26 permit ip any 128.30.0.0/15
27 permit ip any 171.64.0.0/15
28 ...

Fig. 1. An Edge Network ACL configuration.

Each rule of a policy contains a packet filter, and typically comprises two por-
tions, namely a traffic expression and an action. The traffic expression specifies a
range of source and destination IP addresses, ports, and a protocol specifier. The
expression 10.0.0.0/8 specifies an address range 10.0.0.0 to 10.255.255.255. That
is, the first 8 bits are fixed and the remaining 24 (= 32-8) are varying. A wild
card is indicated by Any. For ports, Any encodes the range from 0 to 216 − 1.
The action is either Permit or Deny. They indicate whether packets matching

the range should be allowed through the firewall. This language has the first-
applicable rule semantics, where the device processes an incoming packet per
the first rule that matches its description. If no rules match, then the incoming
packet is denied by default.

The meaning of network ACLs can be captured in logic as a predicate ACL
over variables src, a source address and port, dst , a destination address and port,
and other parameters, such as protocol and TCP flags. For our example from
Figure 1, we can capture the meaning as the predicate:

ACL ≡
if src = 10.0.0.0/8 ∧ proto = 6 then false else
if src = 172.16.0.0/12 ∧ proto = 6 then false else
if src = 192.0.2.0/24 ∧ proto = 6 then false else
. . .
if dst = 171.64.64.0/20 ∧ proto = 6 then true else
. . .
if proto = 4 ∧ dstport = 445 then false else
. . .

For ease of readability, we re-use the notation for writing address ranges. In bit-
vector logic we would write the constraint src = 10.0.0.0/8 as src[31 : 24] = 10,
e.g., a predicate that specifies the 8 most significant bits should be equal to the
numeral 10 (the bit-vector 00000110).

Traffic is permitted by an ACL if the predicate ACL is true. Traffic permit-
ted by one ACL and denied by another is given by ACL1 ⊕ ACL2 (the exclu-
sive or of ACL1 and ACL2). The SecGuru tool uses the encoding of ACLs into
bit-vector logic and poses differential queries between ACLs to find differences
between configurations. It also checks contracts of ACLs by posing queries of
the form ACL ⇒ Property , where an example property is that UDP ports
to DNS servers are allowed. The main technological novelty in SecGuru is an
enumeration algorithm for compactly representing these differences. Compact
representation of differences help network operators understand the full effect of
a miss-configuration.

3 Routing Tables

We recently added new capabilities to SecGuru. Most notably, using lessons from
our work on the more powerful Network Optimized Datalog engine, we devel-
oped techniques for checking reachability properties for routing tables in Azure.
Routers in Azure are configured to follow a specific layered data-center architec-
ture that we describe in more detail below. Figure 2 shows a schematic overview
of Azure’s data-centers are configured. It is a variant of the VL2 architecture [7].
In this architecture, each rack (at the bottom) is a top-of-rack switch that relays
packets from the rack to a hierarchy of routers above. The hierarchy provides
redundant routes to other racks within the a group called a cluster and to other
racks belonging to other clusters, and external traffic is routed to and from the in-
ternet.

Fig. 2. Schematic overview of data-center routes.

While the architecture is
fixed, each data-center is
deployed using a different
number of machines and
clusters. Data-centers grow
and shrink when tenants
are migrated between ma-
chines and assumptions on
the topologies change when
new technologies are de-
ployed. Thus, there are am-
ple of opportunities for miss-
configuring routers in spite
of the overall fixed design.
It may be entirely possi-
ble to miss-configure all but
one router in a redundancy
group and only observing
the mistake when the cor-
rectly configured router goes
off-line. Our tool checks routers from Azure networks. It catches any such miss-
configurations and at the same time provides a certificate when routers are con-
figured correctly. The latter is indispensable for operators when trouble-shooting
live site incidents - knowing which parts are healthy saves precious time and re-
sources. SecGuru retrieves a very significant amount of data from routers: Each
router has a few thousand rules and each data-center can have between dozen
and a few hundred routers. Some 500GB of routing tables are retrieved and
checked for contracts on a daily basis.

Figure 3 shows an excerpt of a routing table from an Arista network switch
Similarly to ACLs we can model routing tables as relations Router over desti-
nation addresses and next-hop ports that can be represented as atomic Boolean
predicates. Each rule in the routing table is either provisioned based on static

1 B E 0.0.0.0/0 [200/0] via 100.91.176.0, n1
2 via 100.91.176.2, n2
3

4 B E 10.91.114.0/25 [200/0] via 100.91.176.125, n3
5 via 100.91.176.127, n4
6 via 100.91.176.129, n5
7 via 100.91.176.131, n6
8 B E 10.91.114.128/25 [200/0] via 100.91.176.125, n3
9 via 100.91.176.131, n6

10 via 100.91.176.133, n7
11 ...

Fig. 3. A BGP routing table.

configurations specified in the device, or derived based on BGP network an-
nouncements that the device receives.

We here choose an encoding of Router , such that for each destination address
dst and next-hop address n:

Router [dst 7→ dst, n 7→ true] is true
iff

n is a possible next hop for address dst

The routing tables have an ordered interpretation, wherein rules whose desti-
nation prefixes are the longest applies first. The default rule with mask 0.0.0.0/0,
listed first, applies if no other rule applies. For our example, our chosen encoding
of the predicate Router is of the form:

Router ≡
if . . .
if dst = 10.91.114.128/25 then n3 ∨ n6 ∨ n7 else
if dst = 10.91.114.0/25 then n3 ∨ n4 ∨ n5 ∨ n6 else
n1 ∨ n2

Data Center Router

Border Leaves

Data Center Spines

Cluster Spines

Host Leaves

Virtual Machines

Inter Cluster

Traffic

Inter Data Center

Traffic

Fig. 4. Hierarchies in Azure.

Each Azure data-center
is built up around a hier-
archy of routers that facil-
itate high-bandwidth traffic
in and out as well as within
the data-center. Traffic that
leaves and enters the data-
center traverses four lay-
ers of routers, while traffic
within the data-center may
traverse only one, two or at
most three layers depend-
ing on whether the traffic is
within a rack, a physical par-
tition called a cluster, or be-
tween clusters. Figure 4 illustrates the hierarchies employed in Azure. Routers

close to the host machines belong to one of the clusters. Traffic in a correctly
configured data-center is routed without loops and along the shortest path for
cluster-local traffic. Sample (slightly simplified from the ones checked for Azure)
contracts are:

Cloud Contract 3 Traffic from a host leaf directed to a different cluster from
the leaf is forwarded to a router in a layer above. In other words, suppose that
Router belongs to a cluster given as a predicate Cluster, and that RouterAbove
is the set of routers above Router, then

¬Cluster(dst) ∧ Router(dst)⇒
∨
n

RouterAbove(n)

On the other hand,

Cloud Contract 4 Traffic from a host leaf directed to the same cluster is di-
rected to the local VLAN or a router in the layer above that belongs to the same
cluster as the host leaf router:

Cluster(dst) ∧ Router(dst)⇒ VLAN (dst) ∨
∨
n

RouterAbove(n) ∧ Cluster(n)

The routing behavior of routers at the same level from the same cluster should
also act uniformly for addresses within the cluster (they can behave differently
for addresses outside of a cluster range).

Cloud Contract 5 Let Router1,Router2 be two routers at the same layer within
the cluster Cluster, then

Cluster(dst)⇒ Router1(dst) ≡ Router2(dst)

4 BGP: Border Gateway Protocol policies

The Azure network comprises several routing domains, and uses the BGP proto-
col to announce routing and reachability information between them. The com-
bination of static policies configured in the device and the route information the
device hears from its neighbors from the other routing domains determines (1)
the forwarding rules enforced in the device, and (2) the BGP announcements
that the device can make. These policies are critical to assure the availability
and stability of the network. For example, policies are configured in the devices
to avoid several hundreds of routes when they can be succinctly summarized as
a single route. As another example, policies are configured to reject routes that
are not reachable within the origin network. Such policies critical to enforce that
nobody can impersonate an address. The intent of these policies can be captured
as contracts, as we will illustrate with some examples.

Aggregate network statements (ANS) are used to specify a coarse aggre-
gate of address ranges Given a device, aggregate network statements (ANS) are

128.230.0.0/18 128.230.64.0/18 128.230.128.0/18 128.230.192.0/18

128.230.0.0/16 128.230.0.0/16 128.230.0.0/16
Domain A

Domain B

Fig. 5. BGP Aggregate Addresses.

used to specify a that are accessible from the device. Figure 5 provides an ex-
ample scenario. In this figure, domain A comprises 3 routers, and domain B
comprises 4 routers. Each router The addresses reachable from the routers in
domain A are a union of all the addresses reachable in domain B. All the four
address ranges reachable in domain B, namely 128.230.0.0/18, 128.230.64.0/18,
128.230.128.0/16, and 128.230.192.0/18, can be merged into a single address
range, namely 128.230.0.0/16. Thus, we could configure an aggregate network
statement in the routers in domain A to announce the combined aggregate
128.230.0.0/16 instead of announcing each of the four address ranges. Other
routers receiving the announcements from the routers in domain A thus have to
store only one route instead of four, thus saving memory consumption in the de-
vice. In real large IP networks such as Azure, the savings from these statements
are in the order of several hundreds of rules. The contract for the ANS is that
the set of configured tenant addresses that are handled by a given router

Given a device, aggregate network statements (ANS) are used to specify a
coarse aggregate of address ranges that are accessible from the device. Figure
5 provides an example scenario. Domain A comprises 3 routers, and domain
B comprises 4 routers. The addresses reachable from the routers in domain
A are a union of all the addresses reachable in domain B. All the four ad-
dress ranges reachable in domain B, namely 128.230.0.0/18, 128.230.64.0/18,
128.230.128.0/16, and 128.230.192.0/18, can be merged into a single address
range, namely 128.230.0.0/16. Thus, we could configure an aggregate network
statement in the routers in domain A to announce the combined aggregate
128.230.0.0/16 instead of announcing each of the four address ranges received
from the routers in domain B. Routers receiving the announcements from the
routers in domain A thus have to store only one route instead of four, thus
saving memory consumption in the device. In large IP networks such as Azure,
the savings from these statements are in the order of several hundreds of rules.
The contract for the ANS is that the set of configured tenant addresses that are
handled by a given router coincides with the configured ANS address ranges. In
other words:

Cloud Contract 6 The set of designated tenant addresses reachable from a
router coincides with the address ranges summarized in the BGP aggregate net-
work statements.

Safety contracts for route announcements are enforced using a construct
called route maps. Route maps specify policies for filtering or transforming route
annoucements before either redistributing them or incorporating them as for-
warding rules. For example, a safety contract for this configuration is that the
devices in domain A reject any route announcements for an address range that
is not contained in 128.230.0.0/16. In other words:

Cloud Contract 7 The device rejects any BGP route announcement with an
address range that is contained in the complement of tenant addresses reachable
from the router.

5 Z3, SMT, Model Checking and Network Verification

𝑥2 + 𝑦2 < 1 𝑎𝑛𝑑 𝑥𝑦 > 0.1 sat, 𝑥 =
1

8
, 𝑦 =

7

8

𝑥2 + 𝑦2 < 1 𝑎𝑛𝑑 𝑥𝑦 > 1 unsat, Proof

Is execution path P feasible? Does Policy Satisfy Contract?

SAGE

F
O
R
M
U
L
A

W
I
T
N
E
S
S

Solution/Model

Fig. 6. Symbolic analysis with Z3

The Satisfiability Modulo
Theories [2, 5] (SMT) solver
Z3 [6], from Microsoft Re-
search, is a core of several
advanced program analysis,
testing and model-based de-
velopment tools. Figure 6
highlights the functionality
and use of Z3. Z3 determines
satisfiability of logical for-
mulas. Furthermore, Z3 can
provide witnesses for satisfi-
able formulas. This is useful
for analysis tools that rely on
components using logic for
describing states and trans-
formations between system
states4. Consequently, they
require a logic inference en-
gine for reasoning about the
state transformations. Z3 is particularly appealing because it combines special-
ized solvers for domains that are of relevance for computation and it integrates
crucial innovations in automated deduction. It is tempting to build custom ad-
hoc solvers for each application, but extending and scaling these require a high
investment and will inevitably miss advances from automated deduction. New

4 Online demonstrations of the tools mentioned in the bottom of Figure 6 are available
from http://rise4fun.com

applications introduce new challenges for Z3 and provide inspiration for improv-
ing automated deduction techniques. It is not uncommon that when improve-
ments to Z3 are made based on one application, other applications benefit as
well.

The source code, as well as nightly builds of Z3 is available online from
http://z3.codeplex.com. There are several online resources around Z3. An inter-
active tutorial on using Z3 is available from http://rise4fun.com/z3/tutorial.

Z3 has recently been applied in a number of contexts related to Network Veri-
fication. These contexts require quite different capabilities. The use we described
in this paper only relies on the quantifier-free theory of bit-vectors. On the other
hand, the Network Optimized Datalog engine that we use in other work [11] re-
quires optimized data-structures to maintain sets of reachable states. Checking
firewall configurations is central to securing networks. Several other tools address
checking firewall configurations. These include Margrave [14], which provides a
convenient formalism for expressing rich properties of networks and firewalls (but
counter-examples are only available for one address at a time), and the firewall
testing tool in [4], which builds upon Isabelle/HOL and Z3 for generating test-
cases. Z3 is also used in a very different twist for verifying compilers for software
defined networks [15, 1].

More broadly, SAT, QBF (Quantified Boolean Formula) and other SMT
solvers are actively purused for network data plane verification [18, 12]. It is
beneficial to use specialized data-structures for analyzing IP networks, and this
is explored in [10, 9, 17]. Model checkers are also currently being developed for
verifying controller code for software defined networks [16, 13].

6 Conclusion

We developed Cloud Contracts to capture main architectural constraints in Mi-
crosoft Azure. The SecGuru tool is used to check these contracts on a continuous
basis. By handling ACLs, routing tables and BGP policies, we covered the main
sources of how IP networking is managed in Azure. It provides indispesible value
for both more rapidly building out correctly configured data-centers, during the
life-cycle of data-centers, as part of certifying isolation boundaries in data-centers
and for analyzing live site incidents. SecGuru leverages the SMT solver Z3 for
checking cloud contracts. Many software analysis, testing and verification tools
already rely on Z3 and other SMT solvers to handle logical queries. The experi-
ence with SecGuru illustrates that the domain of engineering modern networks
is a fresh new area where many problems can be reduced to logical queries and
solved using advanced software engineering tools.
Acknowledgment We would like to express our gratitude to George Varghese
and Charlie Kaufman for numerous interactions that have shaped this work. Our
perspective on directions in current networking is influenced by conversations
with Nick McKeown. Our experiences with network verification is based on joint
work with several collaborators, including: Mooly Sagiv, Geoff Outhred, Nuno
Lopes, Mingchen Zhao, Jeff Jensen, Monika Machado, Garvit Juniwal, Ratul

Mahajan, Ari Fogel, Jim Larus, Thomas Ball, Aaron Gember, Shachar Itzhaky,
Aleksandr Karbyshev, Michael Schapira and Asaf Valadarsky.

References

1. Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr Karby-
shev, Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. VeriCon: towards ver-
ifying controller programs in software-defined networks. In Michael F. P. O’Boyle
and Keshav Pingali, editors, PLDI, page 31. ACM, 2014.

2. Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Sat-
isfiability Modulo Theories. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 825–885. IOS Press, 2009.

3. Nikolaj Bjørner and Karthick Jayaraman. Network Verification: Calculus and
Solvers. In SDN and FSI: The Next Generation Networking Infrastructure,
Moscow, 2014.

4. Achim D. Brucker, Lukas Brügger, and Burkhart Wolff. hol-TestGen/fw - An
Environment for Specification-Based Firewall Conformance Testing. In Zhiming
Liu, Jim Woodcock, and Huibiao Zhu, editors, ICTAC, volume 8049 of Lecture
Notes in Computer Science, pages 112–121. Springer, 2013.

5. Leonardo de Moura and Nikolaj Bjørner. Satisfiability Modulo Theories: Introduc-
tion & Applications. Comm. ACM, 2011.

6. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.
In TACAS, 2008.

7. Albert G. Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. VL2: a scalable and flexible data center network. Commun. ACM,
54(3):95–104, 2011.

8. Karthick Jayaraman, Nikolaj Bjørner, Geoff Outhred, and Charlie Kaufman. Au-
tomated analysis and debugging of network connectivity policies. Technical Report
MSR-TR-2014-102, Microsoft Research, July 2014.

9. Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis:
static checking for networks. In NSDI, 2012.

10. Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. Ver-
iflow: Verifying Network-wide Invariants in Real Time. SIGCOMM Comput. Com-
mun. Rev., pages 467–472, September 2012.

11. Nuno Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and George
Varghese. Dna pairing: Using differential network analysis to find reachability
bugs. Technical Report MSR-TR-2014-58, Microsoft Research, April 2014.

12. Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten God-
frey, and Samuel Talmadge King. Debugging the Data Plane with Anteater. In
Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, New York,
NY, USA, 2011. ACM.

13. Rupak Majumdar, Sai Deep Tetali, and Zilong Wang. Kuai: A model checker for
software-defined networks. In FMCAD, 2014.

14. Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and Shri-
ram Krishnamurthi. The Margrave tool for firewall analysis. In LISA, pages 1–8,
Berkeley, CA, USA, 2010. USENIX Association.

15. Sudip Roy, Lucja Kot, Nate Foster, Johannes Gehrke, Hossein Hojjat, and
Christoph Koch. Writes that fall in the forest and make no sound: Semantics-
based adaptive data consistency. CoRR, abs/1403.2307, 2014.

16. Divjyot Sethi, Srinivas Narayana, and Sharad Malik. Abstractions for model check-
ing SDN controllers. In Formal Methods in Computer-Aided Design, FMCAD 2013,
Portland, OR, USA, October 20-23, 2013, pages 145–148. IEEE, 2013.

17. Hongkun Yang and Simon S. Lam. Real-time verification of network properties
using atomic predicates. In 2013 21st IEEE International Conference on Net-
work Protocols, ICNP 2013, Göttingen, Germany, October 7-10, 2013, pages 1–11.
IEEE, 2013.

18. Shuyuan Zhang and Sharad Malik. SAT Based Verification of Network Data
Planes. In Dang Van Hung and Mizuhito Ogawa, editors, ATVA, volume 8172
of Lecture Notes in Computer Science, pages 496–505. Springer, 2013.

