
Nikolaj Bjørner Leonardo de Moura

Applications of SMT solvers to
Program Verification

Rough notes for SSFT 2014

Prepared as part of a forthcoming revision of

Daniel Kröning and Ofer Strichman’s book on

Decision Procedures

May 19, 2014

Springer

Contents

1 Applications of SMT Solvers . 5
1.1 Introduction . 5
1.2 From Programs to Logic . 6

1.2.1 An Imperative Programming Language Substrate 6
1.2.2 Programs that are logic in disguise 8

1.3 Test-case Generation using Dynamic Symbolic Execution 9
1.3.1 The Application . 9
1.3.2 An Example . 10
1.3.3 Methodolgy . 11
1.3.4 Interfacing with SMT Solvers . 13
1.3.5 Industrial Adoption . 14

1.4 Symbolic Software Model checking . 15
1.4.1 The Application . 15
1.4.2 An Example . 15
1.4.3 Methodolgy . 16
1.4.4 Interfacing with SMT Solvers . 18
1.4.5 Industrial Adoption . 18

1.5 Static Analysis . 19
1.5.1 The Application . 19
1.5.2 An Example . 20
1.5.3 Methodolgy . 20
1.5.4 Interfacing with SMT Solvers . 22
1.5.5 Industrial Adoption . 22

1.6 Program Verification . 23
1.6.1 The Application . 23
1.6.2 An Example . 23
1.6.3 Methodolgy . 25
1.6.4 Bit-precise reasoning . 28
1.6.5 Industrial Adoption . 29

1.7 Bibliographical notes . 29

4 Contents

References . 31

1

Applications of SMT Solvers

1.1 Introduction

A significant application domain for SMT solvers is in the analysis, verifi-
cation, testing and construction of programs. This chapter covers some of
these areas where SMT solvers have been used. Several of our applications
are in the context of the Z3 SMT solver available from Microsoft Research,
and several of the application areas we cover are based on uses of Z3. Our
description, however, abstracts from implementation features. It provides an
introduction to general SMT concepts and techniques that are of relevance
for the applications we discuss.

The set of applications we will describe here can be roughly divided into
two categories. One set of methods take as starting point a set of properties of
interest uses these to control the interaction with the SMT engine. Program
verification or verification of selected safety properties of programs is largely
property oriented. Program verification systems typically require strengthen-
ing the properties of interest by introducing inductive invariants and addi-
tional pre- and post-conditions for procedures in order to check the original
specification. The second category takes as a starting point program execu-
tions and uses an (abstract) execution trace as the basis for interacting with
the SMT solver. Test-case generation tools are typically execution-oriented.
They search over an under-approximation of the set of possible program exe-
cutions. Symbolic program model checking tools are characterized by building
symbolic representations of the reachable program states. These symbolic rep-
resentations can be formulas that represent an over-approximation of reach-
able program states.

Naturally, there is not always a clear distinction between property and
execution-guided analysis, and there are several tools that combine method-
ologies from the two points of view. From the perspective of the SMT solver,
the two angles give rise to very different sets of verification challenges. The
property-oriented analysis methods that we examine generate first-order for-
mulas using quantifiers, and handling quantifier reasoning is critical. It is im-

6 1 Applications of SMT Solvers

portant to be able to establish proofs for these formulas. On the other hand,
execution-guided systems generate quantifier-free conjunctive formulas, that
can be large. It is important to be able to produce models for these formulas.
The examples we present in this chapter illustrate these main points.

The range of applications we examine also illustrate the use of SMT solvers
for both non-formal and formal verification. In the case of non-formal vrifica-
tion, the main purpose is to find bugs. Model-finding capabilities are crucial
in these cases. In the case of formal verification, the main application is to
formally verify functional correctness of programs.

This chapter examines five application areas of SMT solvers. We start
with describing Dynamic Symbolic Execution in Section 1.3. It illustrates
using SMT solvers for checking path feasibility. Symbolic Software Model
Checking, discussed in Section 1.4, use SMT solvers to bridge the gap from
programs with large or unbounded state spaces into small finite state ab-
stractions. We discuss uses of SMT solvers for scalable static analysis in
Section 1.5, and finally Section 1.6 illustrates the bridge from functional pro-
gram verification to SMT solvers. One way to classify the applications is how
they trade scale for expressiveness and precision. In one end of the spectrum,
program verification systems can be used to verify complex functional proper-
ties of programs, and on the other end static analysis tools aim to be scalable
and target a more restricted set of properties.

We use a common format for illustrating the applications. It is based on
a substrate of programs written in a mild variant of the C programming
language. We start by describing this substrate.

1.2 From Programs to Logic

The assignment of logical meaning to programs dates back to seminal work
of Floyd [12] and Hoare [16]. Many refinements and enhancements have been
developed over the years. Connections between logic and programs have been
used in the context of program verification, test-case generation and static
analysis. The current state-of-the-art includes program verification systems
that have been used to verify thousands of lines of industrial code. They
include symbolic test-case generation systems that have been used to analyze
hundreds of thousands of programs. Finally, static analysis systems have been
used on code bases of millions of lines of code.

1.2.1 An Imperative Programming Language Substrate

We illustrate some of these basic ideas by using programs written using a
strongly typed imperative language that corresponds to a strongly typed sub-
set of C, with minor modifications to C++, Java and C#. Our examples only
use a select set of features and we explain just these features.

1.2 From Programs to Logic 7

We use three primitive types: int of signed integers, unsigned int of
unsigned integers, and bool of Booleans. Values of type int are represented
in twos complement 32-bit arithmetic. Thus, the range of signed integers is
[−231..231 − 1] and the range of unsigned integers is [0..232 − 1]. Arithmetical
operations that produce integers outside of these ranges are said to overflow.
The two Boolean values are true and false. It will be convenient to distin-
guish arrays and pointer types because we will be using the length of allocated
arrays in programs and formulas. Pointers to values of type τ are denoted τ∗
and arrays of type τ are denoted τ [].

Expressions are formed from program variables and use side-effect-free
operations, such as arithmetical +, ∗,−, equality ==, disequality ! =, logical
conjunction &&, disjunction ||, and negation !. Pointer dereferencing is written
∗p, and accessing an array a at position i is written a[i]. Expressions can be
directly represented as first-order terms and formulas. For instance, pointer
dereferencing ∗p can be represented as the term deref(h, p), where h tracks
the state of the underlying program heap, and array access a[i] by select(a, i).

It will be convenient to use arrays that carry information about their
lengths. So we will assume we can access the length of an allocated array
a as length(a), which we abbreviate as |a|. In the C programming lan-
guage we would represent such arrays as a struct that contains a length
field and the actual array. So in C, τ [] is shorthand for struct τA { int
length; τ∗ contents; }, and everytime we write a[i] for an array a we
mean a.contents[i]. In C# and Java, arrays are just arrays because the lan-
guages support a length function of the form a.Length(). Some of our exam-
ples allocate arrays. We use alloc array(τ, N) to allocate arrays of type
τ and with N elements. In the C programming language alloc array(τ,
N) is shorthand for {N, (τ∗)malloc(sizeof(τ)∗N)}, and in Java and C#,
alloc array(τ, N) is shorthand for new τ[N]. The first element is ac-
cessed at position 0 and the last element of the allocated array is accessed
at position N − 1. We use the special constant null for pointers and ar-
rays that are set to a special invalid value. Memory allocation may fail to
allocate the requested resource. In this case alloc array returns a value
null. We use the predicate is allooc array(a) to state that pointers or
arrays occupy allocated memory. Successful memory allocation ensures that
is alloc array holds. To capture that allocated memory (of an array) is
also initialized with values we use the predicate init(a).

Statements comprise of the standard constructs known from C, C# and
Java. An assignment of the value of expression e to program variable x is
written x = e, a call to the procedure p using the arguments x and y is
written p(x, y), and we include conditional statments if(e)S; else S′, while
loops and returns. In addition, it will be convenient to also treat as primitive
some additional statements. The assert e statement checks if the Boolean
expression e is true. In an operational interpretation, execution aborts in an
error state if e is false. If e is true, then execution proceeds unaffected. The
assume e statement also checks e. Similar to assert, execution proceeds if e

8 1 Applications of SMT Solvers

is true, but in contrast execution aborts in a success state if e is false. Our
use of assert and assume will be limited to expressions that do not have
side-effects. For example, the assert and assume statements will not contain
procedure calls that update the program state. The havoc x, y, z statement
sets the values of program variables x, y, z to an arbitrary value.

1.2.2 Programs that are logic in disguise

The methods for assigning logical meaning to programs pioneered by Floyd
and Hoare apply to programs with side-effects, loops and procedure calls.
In general, imperative programs are not directly representable as first-order
logical formulas. The main obstacle is the presence of unbounded loops and
recursion. The obstacle is avoided if we restrict ourselves to programs with
bounded recursion and bounded loops. Bounded recursion means that the
depth of recursive calls is bounded by a fixed number. Likewise, bounded
loops are traversed by a fixed number of iterations. In this case there is a
straight-forward mapping from programs to logical formulas that summarize
the input-output relations of the program. The mapping uses the single static
assignment (SSA) representation of programs. The main idea is to unfold
bounded loops and procedure calls and then create a time-stamped version
of program variables, such that repeated assignments to the same program
variable is tracked as assignments to different variables. Once the program is
in SSA form, we can extract a logical formula by treating each assignment as
an equality.

Let us illustrate the idea with an example.

Example 1.1. Consider Program 1.2.1.

Program 1.2.1 A recursion-free program with bounded loops and an SSA
unfolding.

int Main(int x , int y)
{

i f (x < y)
x = x + y ;

for (int i = 0 ; i < 3 ; ++i) {
y = x + Next (y) ;

}
return x + y ;

}

int Next (int x) {
return x + 1 ;

}

int Main(int x0 , int y0)
{

int x1 ;
i f (x0 < y0)

x1 = x0 + y0 ;
else

x1 = x0 ;
int y1 = x1 + y0 + 1 ;
int y2 = x1 + y1 + 1 ;
int y3 = x1 + y2 + 1 ;
return x1 + y3 ;

}

1.3 Test-case Generation using Dynamic Symbolic Execution 9

The initialization, the increments, and the loop test involving i have been
inlined in the unfolding. The first line in the main program is an if statement
that updates x if the condition holds. In the SSA form, we ensure that x is not
updated in the case the condition does not hold. The input-output relation of
the SSA program is now simple to express: Each assignment corresponds to
an equality assertion, and conditional branch statements become conditional
formulas.

∃x1, y1, y2, y3

 (x0 < y0 =⇒ x1 = x0 + y0) ∧ (¬(x0 < y0) =⇒ x1 = x0) ∧
y1 = x1 + y0 + 1 ∧ y2 = x1 + y1 + 1 ∧ y3 = x1 + y2 + 1 ∧
result = x1 + y3

1.3 Test-case Generation using Dynamic Symbolic
Execution

1.3.1 The Application

Larger well-structured programs are typically composed from many smaller
functions. Most of such functions can be treated as units that can be com-
posed in different ways within other units. A unit test exercises one of these
functions. The main problem in unit testing is to find input values to these
functions that will exercise all interesting behaviors of the function and, dur-
ing development and testing, uncover bugs in the unit. The problem of finding
suitable input values that exercise all interesting behaviors is also relevant to
whole programs (that depend on inputs). There are several approaches to
enumerate a space of hopefully interesting inputs to a program. These range
from generation of random test input to fuzzing. The starting point of fuzzers
is a set of existing representative inputs to a program or unit. Fuzzers pertub
the input in order to exercise different and hopefully useful variants. These
approaches can quickly produce a large set of potentially useful inputs, but
there is little to ensure that all the corner cases are covered.

The idea of symbolic simulation is to represent an execution path by the
set of instructions that are executed during the path. These instructions can
be converted into formulas: assignments are conjoined as equations and con-
ditions from if-then-else statements are simply conjoined (with negation of
the else-branch is taken). The satisfying instances of this formula correspond
to input values that steer executions along this path. Other paths can be
explored by negating one of the branch conditions encountered on the path.
How is the execution path chosen? In symbolic simulation, the execution path
can be chosen by extending a partial path with new conjuncts as long as the
resulting formula is satisfiable. Dynamic symbolic simulation uses a concrete
execution to guide the selection of paths: given the instructions executed on a
concrete execution path, create a formula that corresponds to instructions up
to a selected branch. The selected branch condition is added with the oppo-
site sign (negation) as the concrete execution would produce. If the resulting

10 1 Applications of SMT Solvers

path formula is satisfiable, then a satisfying model for the formula produces
new inputs that can guide execution to follow the opposite branch. Dynamic
symbolic simulation also comes with the advantage that concrete executions
come with concrete input values for a feasible path. Some of these values can
be reused in cases where the program being analyzed makes a system call.

1.3.2 An Example

Program listing 1.3.1 contains the definition of a procedure ReadBlocks. The
program is artificial, but it exemplifies low-level parsing code that is typically
used when processing file formats, such as the media formats jpeg, avi or
mpeg.

Program 1.3.1 Reading blocks from an array.

1 void ReadBlocks (int [] data , int cook i e)
2 {
3 int i = 0 ;
4 while (true)
5 {
6 int next = data [i] ;
7 i f (! (i < next && next < l ength (data))) return ;
8 i = i + 1 ;
9 for (; i < next ; i = i + 1) {

10 i f (data [i] == cook i e) {
11 i = i + 1 ;
12 }
13 else {
14 Process (data [i]) ;
15 }
16 }
17 }
18 }

The input array data encodes implicitly a linked list of blocks. Each
block is linked by a next pointer that is an offset read from the data array.
Reading data at offsets outside of the range 0..length(data)-1 results
in a runtime error and we wish to check that the program does not encounter
such errors.

The example intentionally contains an array access bug. When i = next
- 1 and next = length(data) - 1 and data[i] == cookie, then i
is incremented twice to next + 1 = length(data). So the array access
in line 6 violates the array bounds. We will here walk through the process
that symbolic execution uses to identify this bug.

1.3 Test-case Generation using Dynamic Symbolic Execution 11

1.3.3 Methodolgy

Consider the execution trace that corresponds to running through the loop
once and then exiting during the second iteration. Program listing 1.3.2 repro-
duces the sequence of instructions that corresponds to this execution. Each
branch condition and runtime check (that is implicit in the original program
listing) is included as an assertion: the successful execution along this path
requires that each assertion holds. We have included line numbers from the
original program to make it easier to trace back where the instructions come
from.

Program 1.3.2 Constraints along a loop executed once.

3 . i = 0 ;
6 . assume data != n u l l && 0 <= i && i < | data | ;
6 . next = data [i] ;
7 . assume i < next && next < | data | ;
8 . i = i + 1 ;
9 . assume i < next ;
10 . assume data != n u l l && 0 <= i && i < | data | ;
10 . assume (data [i] != cook i e) ;
14 . assume data != n u l l && 0 <= i && i < | data | ;
14 . Process (data [i]) ;
9 . i = i + 1 ;
9 . assume ! (i < next) ;
6 . assume data != n u l l && 0 <= i && i < | data | ;
6 . next = data [i] ;
7 . assume ! (i < next && next < | data |) ;

The trace does not contain any unbounded loops or recursive procedure
calls. We can therefore use the SSA conversion as a step to obtain a formula
that characterizes all values of the inputs data and cookie that exercise the
same trace. We will here ignore the call to the procedure Process, which
we here assume does not change the values of data. Of course, this is a
simplifying assumption. Functions calling ReadBlocks could store the array
data in a global variable that can be modified from Process.

The formula obtained from the SSA conversion is:

12 1 Applications of SMT Solvers

∃i0, i1, i2, next0, next1 .

i0 = 0 ∧
data 6= null ∧ 0 ≤ i0 < |data| ∧
next0 = data[i0] ∧
(i0 < next0 ∧ next0 < |data|) ∧
i1 = i0 + 1 ∧
i1 < next0 ∧
data 6= null ∧ 0 ≤ i1 < |data| ∧
data[i1] 6= cookie ∧
i2 = i1 + 1 ∧
¬(i2 < next0) ∧
data 6= null ∧ 0 ≤ i2 < |data| ∧
next1 = data[i2] ∧
¬(i2 < next1 ∧ next1 < |data|)

. (1.1)

The program variables that are local to ReadBlocks are existentially quan-
tified and the input parameters data and cookie are free. It is simple to
eliminate the existential quantifier: every existentially quantified variable oc-
curs on the left hand side of an equation and there is no cyclic dependencies
between quantified variables. So existential quantification can be eliminated
by substituting the effect of assignments into the places where the updated
values are used. The resulting formula is:

data 6= null ∧ 0 ≤ 0 < |data|
∧ 0 < data[0] ∧ data[0] < |data|
∧ 1 < data[0]
∧ data 6= null ∧ 1 ≤ 1 < |data|
∧ data[1] 6= cookie

∧ data 6= null ∧ 0 ≤ 2 < |data|
∧ ¬(2 < data[2] ∧ data[2] < |data|) .

(1.2)

It follows that all interpretations of data and cookie that satisfy the formula
exhibit the same path.

An exhaustive test-case generation process examines all possible branches
of a program. This includes checking the negation of all branch conditions on
the path. We then see that the path constraint

data 6= null ∧ ¬(0 ≤ 0 < |data|)

is satisfied when data is an array of length 0. This input could cause the
program to produce an access violation. This corner case is not too hard to
encounter during random or fuzz testing. On the other hand the program
has a different bug that requires a more sophisticated analysis. There is a
possible array bounds violation when the last element in a range matches
the cookie argument. In this case, the program variable i gets incremented
past next. If in addition next points to the last element of data (that is,
next = |data| - 1), then the subsequent access to data[i] reads past
the bounds of data. The relevant path constraint is the satisfiable formula:

1.3 Test-case Generation using Dynamic Symbolic Execution 13

data 6= null ∧ 0 ≤ 0 < |data|
∧ 0 < data[0] ∧ data[0] < |data|
∧ 1 < data[0]
∧ data 6= null ∧ 1 ≤ 1 < |data|
∧ data[1] = cookie

∧ data 6= null ∧ 0 ≤ 2 ∧ ¬(2 < |data|) .

(1.3)

1.3.4 Interfacing with SMT Solvers

The example illustrates the constraints produced as a byproduct of symbolic
execution. We see that they are mainly a conjunction of atomic formulas.
It is important to extract a satisfying assignment (a model) for these con-
junctions. The model provides the test inputs that steer execution in new
directions. Many path queries posed by symbolic execution engines can be
highly-related. Consider for instance the path in Program 1.3.2. We are inter-
ested in finding input values that exercise different paths. Each assumption
along this path represents a possible execution path that exercises a different
branch. The different execution path is reached if we can find input to the
program that satisfies the negated assumption together with the prefix of as-
sumptions from the original path. There is something naturally incremental
about this description: the assumptions along the path that was exercised
are reused when probing further down in the path. On the other hand, the
search has to consider both variants of each assumption: the negated version
and the original version of the assumption as it appears on the path. This
style of probing is suppored directly by modern SMT solvers. They contain
interfaces for incrementally adding and retracting assertions using a stack dis-
cipline. The interfaces expose an operation, push that creates a new scope.
All formulas that are asserted within this scope are retracted by a matching
pop that exits the scope. Scopes can be nested. The concept is similar to the
state updates made during backtracking DPLL search.

Let us illustrate how one can interact with SMT solvers using the stan-
dardized SMT-LIB2 textual interface 1. It follows LISP conventions for the
syntax so, for example, the equality formula i = 0 is written (= i 0). It
contains the basic commands assert that takes a formula and conjoins it to
the current logical context. The command push creates a scope, that is exited
when there is a matching pop command. The check-sat command checks
satisfiability of the logical context (everything that is asserted under the cur-
rent set of pushes) and get-model obtains the satisfying assignment to the
current set of variables. The illustration below simulates a search through dif-
ferent paths of Program 1.3.1. The first two check-sat invocations perform
array bounds checks that are implicit with the access data[i] in line 6. It
then pushes constraints that correspond to further executing the loop. Two
branches are explored, the first where the loop condition i < next is false,
and the other where it is true.
1 http://smtlib.org

14 1 Applications of SMT Solvers

(set-option :model true)
(declare-fun i () Int)
(declare-fun i1 () Int)
(declare-fun next () Int)
(declare-fun data () (Array Int Int))
(declare-fun null () (Array Int Int))
(declare-fun length ((Array Int Int)) Int)

(assert (= i 0))
(push)
(assert (= data null))
(check-sat)
(get-model)
(pop)
(assert (not (= data null)))
(push)
(assert (not (and (<= 0 i) (< i (length data)))))
(check-sat)
(get-model)
(pop)
(assert (and (<= 0 i) (< i (length data))))
(check-sat)
(assert (= next (select data i)))
(assert (and (< i next) (< next (length data))))
(assert (= i1 (+ i 1)))
(push)
(assert (not (< i1 next)))
(check-sat)
(get-model)
(pop)
(assert (< i1 next))
(check-sat)
(get-model)
...

1.3.5 Industrial Adoption

Symbolic execution has recently found significant industrial adoption in the
context of security analysis. The SAGE [13] tool that is based on dynamic
symbolic execution is used to find most of the bugs identified by Microsoft’s
fuzz-testing infrastructure. It has been used on hundreds of parsers for various
media formats and is administrated in a data-center test environment. The
Klee tool [4], similarly, has been instrumental in finding a large number of
security vunerabilities in code deployed on Windows and Linux. Finally, the
Pex [13] tool offers an integration of dynamic symbolic execution with the

1.4 Symbolic Software Model checking 15

.NET runtime so that it can be used on any .NET language, including C#. Pex
lets programmers directly take advantage of the symbolic execution technology
for generating test inputs to .NET code. It offers a sophisticated integration
with the .NET type system that enables it to generate test cases for complex
structured data. Dynamic symbolic execution remains of interest also for the
security community including “white”, “blue” and “black” “hats” (jargon for
industrial, legitimate and hackers with a shady purpose).

1.4 Symbolic Software Model checking

1.4.1 The Application

Dynamic symbolic execution finds some input that can guide execution into
bugs. This method alone does not produce any guarantee that programs are
free of all of the errors being checked for. The goal of program model checking
tools is to automatically check a functional specification. The basic idea of
program model-checking is to explore all possible executions using a finite
and sufficiently small abstraction of the program state space.

1.4.2 An Example

We will use the program fragment in Program 1.4.1 as an example of producing
a small finite state abstraction. It accesses requests using GetNextRequest.
The call is protected by a lock to allow multiple threads to access the queue
data-structure where requests are stored. Once a request is dequeued and
released we can release the lock because the data associated with a request
is not accessed by different threads. It is also important to release the lock
before processing the request, which can take a long time or acquire different
locks. It should not be possible to exit the loop without owning the lock. If it
were, then the call to unlock() after the loop would release the lock twice.
This violates how locks may be used: unlock() should never be called by a
thread without that thread having acquired the lock using a call to lock().
The program has a very large number of states since the value of count can
grow arbitrarily.

16 1 Applications of SMT Solvers

Program 1.4.1 Processing requests using locks.

1 do {
2 lock () ;
3 o ld count = count ;
4 r eque s t = GetNextRequest () ;
5 i f (r eque s t != NULL) {
6 ReleaseRequest (r eque s t) ;
7 unlock () ;
8 ProcessRequest (r eque s t) ;
9 count = count + 1 ;

10 }
11 }
12 while (o ld count != count) ;
13 unlock () ;

1.4.3 Methodolgy

From the point of view of checking correct uses of locks, the actual values of
count and old count are not important. On the other hand, the relationship
between them contains useful information. Program 1.4.2 shows a finite state
abstraction of the same locking program. The Boolean variable b encodes the
relation count == old count. We call this abstract program a Boolean
program; the only type is Booleans. It is obtained from the original program by
a method called predicate abstraction [14]. In general, a predicate abstraction
may use many predicates to capture the behaviors of a program that are
relevant to checking a specification. In this example a single predicate suffices.
Given the finite Boolean program we can now explore the finite number of
states to verify that the lock is always held when exiting the loop.

1.4 Symbolic Software Model checking 17

Program 1.4.2 Processing requests using locks, abstracted.

1 do {
2 lock () ;
3 b = true ;
4 i f (∗) {
5 unlock () ;
6 i f (b) {
7 b = fa l se ;
8 }
9 else {

10 havoc b ;
11 }
12 }
13 }
14 while (! b) ;
15 unlock () ;

The finite state abstraction provided in Program 1.4.2 can be constructed
from Program 1.4.1 by solving several logic queries. The approach we outline
here abstracts each statemet in the program individually. For example, let us
consider the statement count = count + 1. Let us examine the effect of
this assignment on the predicate b : count == old count. The predicate
b′ holds the value of b after an atomic statement. For example, in the case of
the assignment count = count + 1, the variable b′ stands for count +
1 == old count. What relationships are there between b and b′? We can
find these relationships by enumerating formulas using b and b′ and check each
formula for validity. For example the formula:

b =⇒ ¬b′ : (count = old count) =⇒ ¬(count+1 = old count)

is valid. The formula says that if the current value of b is true, then after
executing the statement count = count + 1 it will be false. Note that if
b is false, then neither of the following conjectures is valid.

¬(count = old count) =⇒ (count+1 = old count)

¬(count = old count) =⇒ ¬(count+1 = old count)

In both cases, an SMT solver produces a counter-example to the conjecture.
So when the current value of b is false, nothing can be said about its value
after the execution of the statement. The result of these three proof attempts
is then used to replace the statement

count = count + 1; by if (b) {b = false;} else {havoc b;}

18 1 Applications of SMT Solvers

Similarly, we replace the assignment old count = count; by b =
true; because b′, which summarizes the effect of the assignment, is equiv-
alent to the valid equality count = count. Furthermore, the loop test
count 6= old count is just substituted with ¬b. Finally, the calls to
GetNextRequest, ReleaseRequest, and ProcessRequest can be ab-
stracted. The only property that is relevant with respect to checking locking
is the test request != NULL, which we can replace by a non-deterministic
branch.

This analysis allows forming Program 1.4.2, which now uses only a small
number of finite states. A finite state model checker can now be used on the
Boolean program. It will establish that b is always true, and that the lock is
held, when control reaches calls to unlock().

1.4.4 Interfacing with SMT Solvers

The example used just one predicate b and the method suggested to re-
place atomic statements by logical formulas over b and b′. There are 16 non-
equivalent formulas using b and b′. In general, with 2n predicates b1, . . . , bn, b

′
1, . . . , b

′
n,

there are 22
2n

non-equivalent logical formulas. It is therefore highly infeasible
to first enumerate these formulas and then check for validity. Many optimiza-
tions and heuristics are therefore used in tools for predicate abstraction. One
approach searches for just valid implications of the form `1 ∧ . . . ∧ `n =⇒ b′,
where `i is either bi or ¬bi. This reduces the search space of possible ab-
stractions; there are “only” n2n implication checks. Furthermore, unsatisfi-
able cores can be used to futher prune the set of redundant implications: if
b1 ∧ b3 =⇒ b′2 is valid, then both b1 ∧ b2 ∧ b3 ∧ . . . ∧ b20 =⇒ b′2 and
b1 ∧ ¬b2 ∧ b3 ∧ . . . ∧ b20 =⇒ b′2 are valid. Recall that the basic idea
behind using unsatisfiable cores is to extract a subset of assertions that were
used. When checking b1 ∧ b2 ∧ b3 ∧ . . . ∧ b20 =⇒ b′2 for validity, SMT
solvers, dually check b1 ∧ b2 ∧ b3 ∧ . . . ∧ b20 ∧ ¬b′2 for unsatsifiability. The
set b1 ∧ b3 ∧ ¬b′2 is already unsatisfiable, and SAT/SMT solvers can extract
the unsatisfiable core. It is now redundant to enumerate other implications
that contain b1 and b3.

1.4.5 Industrial Adoption

The approach to symbolic model checking of software we described here is
used in the SDV [1] model checker that ships with Windows Server as part
of the Driver Development Kit. SDV is used to model-check device driver
software. Device driver software is low-level systems code that interacts with
devices and the core operating system. The many interaction scenarios and
assumptions makes the construction of such programs notoriously difficult. On
the other hand, a faulty device driver can crash the entire operating system.
The Symbolic Model Verifier tool SMV from Cadence 2 can also be used for

2 http://www.kenmcmil.com/

1.5 Static Analysis 19

software model checking. It uses an entirely different technique for finding a
finite state abstraction. Instead of mining the program for suitable predicates
to use for the abstraction it finds them by constructing Craig interpolants. It
is beyond the scope of this chapter to explain the details of this method, but
let us mention that this technique integrates with the explanations (proofs)
produced by SMT solvers. The BLAST [15] tool has over time incorportated
and developed techniques that relate to both predicate abstraction and inter-
polation. Many other software model checking tools that implement different
techniques are being adapted in practice, for instance the Yogi [22] tool builds
an abstract transition graph and refines it by propagating weakest precondi-
tions. It is used as part of SDV as an independent model checker.

1.5 Static Analysis

1.5.1 The Application

Large scale industrial software is rarely executable as a stand-alone module
with simple input and output behavior. System software, such as an operating
system scheduler, a file system and associated filter drivers, a network stack
and higher level network services are reactive as they maintain an ongoing
interaction with an environment. Detailed finite state abstraction techniques,
such as the one described in Section 1.4, have beem successful on device driver
software, but have so far not been developed for fully automatic analysis of
large scale software. Dynamic symbolic simulation techniques, described in
Section 1.3, face the challenge of isolating or simulating environment inter-
actions. Modular static analysis addresses the challenge with scalability and
environment interactions by performing symbolic analysis of each procedure
in isolation. Each analysis produces a procedure summary, that captures
the behaviors of each procedure in a succinct way. The summaries are used
when analyzing other procedures.

Typically, static analyzers take as starting point a program and a set of pre-
defined properties, such as absence of errors division by zero, array bounds
violations, heap access violations, and memory leaks. They then establish
statically that no such errors are encountered, or they identify an abstract
execution trace that can potentially cause a runtime error. Powerful static
analysis engines are inter-procedural; they analyze the behavior of a given
procedure using a compositional analysis of functions that call and are called
from the analyzed procedure.

The PREfix [3] analysis tool pioneered a bottom-up analysis of proce-
dures: it summarizes basic procedures as a set of guarded transitions, and then
uses these guarded transitions when analyzing procedures that call them. The
PREfix tool also performs symbolic execution of procedure bodies in order
to extract the procedure summaries, but unlike dynamic symbolic execution
tools, the bottom-up nature of the analysis and the tradeoffs for scalability

20 1 Applications of SMT Solvers

also means that the potential bug trace found by static analysis may not need
to correspond to a reachable state in the program, i.e., there can be false
warnings.

1.5.2 An Example

Let us illustrate the generation of bottom-up procedure summaries using Pro-
gram 1.5.1. The procedure takes as input an unsigned integer n and returns a
character array and a Boolean status. It assumes that n is at most 65535. This
is ensured by the second if statement. It avoids memory allocation when n
is 0, and returns false on allocation failure. The InitName procedure is
called by GetName, whose purpose is to allocate the memory required for the
name buffer and then copy over the contents from source into the newly
allocated buffer. We will now see how static analysis tools can find potential
problems with this code.

Program 1.5.1 Procedures InitName and GetName.

bool InitName (
unsigned int n ,
char [] ∗ outname)

{
i f (n == 0)

return true ;
i f (n > 65535)

e x i t (1) ;
∗outname =

a l l o c a r r a y (char , n) ;
i f (∗ outname == 0)

return fa lse ;
return true ;

}

char [] GetName(char∗ source ,
unsigned int n)

{
bool s u c c e s s ;
char [] name ;
s u c c e s s = InitName (n , &name) ;
i f (! s u c c e s s) {

return n u l l ;
}
s t r cpy (source , name) ;
return name ;

}

1.5.3 Methodolgy

There are two main components to the methodology. The first component
consists of a bottom-up summarization of procedures. We illustrate how
InitName is summarized as a set of guarded transitions. The second com-
ponent is checking path feasibility. We illustate a path feasibility check on
GetName. It uses the summaries from InitName.

1.5 Static Analysis 21

assume (n == 0) ;
r e s u l t = true ;

assume (n != 0) ;
assume ! (n > 65535) ;
assert (outname != n u l l) ;
∗outname =

a l l o c a r r a y (char , n) ;
assume (∗ outname == 0) ;
r e s u l t = fa l se ;

assume (n != 0) ;
assume ! (n > 65535) ;
assert (outname != n u l l) ;
∗outname =

a l l o c a r r a y (char , n) ;
assume (∗ outname != 0) ;
r e s u l t = true ;

outcome InitName 0:
guards: n == 0
results: result == true

outcome InitName 1:
guards: n > 0 ∧ n <= 65535
constraints: outname != null
results: result == false

outcome InitName 2:
guards: n > 0 ∧ n <= 65535
constraints: outname != null
results: result == true;

is alloc array(char, n, *outname)

Fig. 1.1. Procedure summaries for InitName. Each block on the left corresponds to
a path.

Summaries

Figure 1.1 covers the symbolic execution paths of InitName on the left and
the corresponding guarded transitions on the right. The guarded transitions
on the right represent the symbolic paths. Branch conditions that are recorded
as assumptions along the path are represented as guards. The assertions, that
come from run-time checks, are represented as constraints. Finally, the effect
and return value of InitName is recorded as results.

For example, the first path represents the statement

if (n == 0) return true;.

The second path represents the case where allocation fails. It asserts that
outname is a valid pointer, such that the dereferencing *outname is safe.
The guards represent different execution paths and are therefore mutually
exclusive. In the last two transitions, the guards don’t imply the constraints
outname != null, so it is possible to produce inputs that makes InitName
encounter a run-time error. It depends on the context where InitName is
used whether this is the case. Instead of flagging a warning outright, an inter-
procedural static analysis method can check the constraints in context of the
calling procedures, including GetName. This particular call site ensures that
the pointer is valid.

Note that the symbolic execution path that calls exit does not correspond
to a call that returns from InitName, so it is not included.

22 1 Applications of SMT Solvers

Checking Path Feasibility

The problem of checking whether a path is feasiable can be automatically
reduced to checking the satisfiability of formulas derived from the source code,
with the help of an SMT solver. We illustrate this process by checking path
feasibility for the case of GetName.

The strcpy function requires that the source denotes a valid location in
memory that has been initialized with a 0-terminated string. Similarly, name
contains a valid memory allocation. So callers of strcpy must at the very
least satisfy:

init(source) ∧ is alloc array(name) .

Yet, the following path through GetName is feasiable because the transition
relation corresponding to InitName 0 does not initialize name when n = 0.
Feasibility can be checked by examining the symbolic path in Figure 1.2 (left).
The extracted formula is on the right side. In the formula we have summarized
the guarded transitions relations and taken their disjunction. Each transition
relation is given as a conjunction of the guard and effect. The local result
variable is returned, so we include an equality success = result.

s u c c e s s = InitName(&name , n) ;
assume s u c c e s s ;
assume ! i n i t (name) ;

n = 0 ∧ result

∨ n > 0 ∧ n ≤ 65535 ∧ ¬result
∨ n > 0 ∧ n ≤ 65535 ∧ result∧

is alloc array(char, n, name)

∧
success = result ∧
success ∧
¬init(name)

Fig. 1.2. A feasible path through GetName with a contract violation.

1.5.4 Interfacing with SMT Solvers

Our application to static analysis uses similar features as dynamic symbolic ex-
ecution. The example also illustrated that the summary for InitName could
be formulated as a disjunction, which is natively handled by SMT solvers.

1.5.5 Industrial Adoption

We presented static analysis from the point of view of Microsoft’s PREfix
tool [3]. It is used to analyze millions of lines of Microsoft source code on a
routine basis. PREfix relies on a constraint solver to check for path feasibility.
In this context Yannick Moy integrated Z3 as a bit-precise constraint solver.
There are many other static analyzers, but we will only mention a few here.

1.6 Program Verification 23

The Coverity [11] analyzer contains analogous techniques as PREfix, including
bit-precise analysis, as does GrammaTech’s CodeSonar tool 3. A common trait
with these tools is that they don’t aim to give strong guarantees about absence
of runtime errors. They are bug-hunting tools. This contrasts with another
class of static analysis methods based on abstract interpretation that have the
ability to give strong guarantees for absence of a class of runtime errors. These
tools rely on representing and propagating sets of reachable states as logical
formulas or using specialized representations. The ASTREÉ [6] tool checks
properties of numerical computations for floating point numbers. AdaCore’s
tool CodePeer 4 is also sound as it exhaustively checks for absence of runtime
errors. In addition it detects some logical errors including dead code tests that
always evaluate to true/false, and so on.

1.6 Program Verification

1.6.1 The Application

The symbolic exeuction, bounded model-checking, static analysis and software
model checking methods we have examined so far have been relying on capa-
bilities of automated search algorithms. They are automatic and scalable, but
they handle typically only a class of specific properties or they may produce
inconclusive results. Methods developed for program verification stand in con-
trast as they provide frameworks for establishing general logical specifications
of programs. The downside is that one needs to find additional intermediary
assertions in order to establish inductive invariants. The benefit is of course
that non-trivial functional correctness can be established using program ver-
ification.

1.6.2 An Example

Consider the binary search program in Program 1.6.1.

3 http://www.grammatech.com/products/codesonar
4 http://www.adacore.com/home/products/codepeer

24 1 Applications of SMT Solvers

Program 1.6.1 A Binary Search program.

1 int BinarySearch (int [] a , int len , int key)
2 {
3 int low = 0 ;
4 int high = len ;
5 while (low < high)
6 {
7 // Find middle v a l u e
8 int mid = low + (high − low) / 2 ;
9 int va l = a [mid] ;

10 i f (key < va l) {
11 low = mid + 1 ;
12 } else i f (va l < key) {
13 high = mid ;
14 } else {
15 return mid ;
16 }
17 }
18 return −1;
19 }

We wish to establish partial correctness of the procedure. In other words,
we should like to show that the procedure finds the index where the key
resides. Partial correctness means that we here do not address the question
whether the procedure terminates; it does but we will not be proving it here.
Checking partial correctness means that given a set of pre-conditions that
capture assumptions for the parameters, the program is free of runtime errors
(such as illegal array access) and whenever the procedure terminates then
either the key does not belong to the array and the procedure returns -1, or
the key does belong to a and the procedure returns an index result within
the bounds of the array such that a[result] = key. The assumptions are
that the array a is sorted, and the interval from low until high is within the
bounds of a. This contract can be formalized as pre- and post-conditions.

pre :
0 ≤ len ≤ |a|∧
∀i ∈ [0..len − 2], j ∈ [i+ 1..len − 1] . a[i] ≤ a[j]

(1.4)

post :
(0 ≤ result =⇒ a[result] = key)∧
(result < 0 =⇒ ∀i ∈ [0..len − 1] . a[i] 6= key)

(1.5)

The program contains a loop and we will apply techniques that apply to
general purpose loops without unrolling them into straight-line code. To es-
tablish the post-condition we will therefore need a loop invariant that gets

1.6 Program Verification 25

established the first time the loop is entered and is sufficiently strong to imply
the post-condition. There are many techniques to infer loop invariants, includ-
ing predicate abstraction and interpolation that were discussed in Section 1.4.
Many of these techniques use SMT solvers in essential ways, but a description
is beyond the scope of this chapter. We will here be content with using a loop
invariant that our verification later establishes is sufficient.

inv :
0 ≤ low ≤ high ≤ len ≤ |a|
∧ ∀i ∈ [0..low − 1] . a[i] < key

∧ ∀i ∈ [high..len − 1] . a[i] > key

(1.6)

1.6.3 Methodolgy

We here describe an approach of veriyfing pre, post-conditions and loop in-
variants using predicate transformers. This approach converts an imperative
program annotated with logical formulas into a logical formula. Note that
there are other styles, such as proof rules in the style of Hoare [16], that
produce several logical formulas from a given program.

We reduce a program annotated with assertions, pre, post-conditions and
loop invariants into a core of program statements. We then use a weakest
pre-condition calculus over these statements. The core consists of statements
of the form

S, T ::= x = t | havoc x | assert ϕ | assume ϕ | S;T | S [] T .

Notice that there are no while loops, no if-then-else conditions or return state-
ments. On the other hand there is a new (non-deterministic) choice operator
[]. The operational meaning of S [] T is that computation is allowed to proceed
non-deterministically either with S or T . We will later show how to reduce
while loops and other constructs into this core. The core admits a straight-
forward logical semantics using the weakest liberal pre-condition predicate
transformer wp.

wp(x = t, ϕ) = ϕ[x 7→ t]
wp(havoc x, ϕ) = ∀x . ϕ
wp(assert ψ,ϕ) = ψ ∧ ϕ
wp(assume ψ,ϕ) = ψ =⇒ ϕ
wp(S;T, ϕ) = wp(S,wp(T, ϕ))
wp(S [] T, ϕ) = wp(S, ϕ) ∧ wp(T, ϕ)

Programs like the binary search program in Program 1.6.1 can be trans-
lated into this core using the transformations that eliminate conditional state-
ments and while-loops. The conditional statement

i f (cond) S ; else T;

is transformed into

26 1 Applications of SMT Solvers

{ assume cond ; S ; } [] { assume ! cond ; T; }

and we can check that it preserves the logical semantics.
We translate while loops annotated with invariants of the form

while (cond) inv S [x ,y] ;

where, for illustrative purposes, we assume that S only modifies the two pro-
gram variables x and y. The result is a loop-free program.

assert inv ; // check inv at loop entry
havoc x , y ; // f a s t forward to an a r b i t r a r y
assume inv ; // i t e r a t i o n o f the loop
{

assume guard ;
S ;
assert inv ; // check t h a t inv i s maintained
assume fa l se ;

[]
assume ! guard ; // e x i t the loop

}

Return statements can be converted into assertions about the post-
condition, such that the procedure body

τ2 p(τ1 x) { S ; return t ; T; }

becomes

τ2 p(τ1 x) { S ; post [r e s u l t := t] ; assume fa l se ; T; }

Notice how using the statement assume false; allows the transformed pro-
gram to ignore control flow after the return statement.

Program 1.6.2 shows the BinarySearch program transformed into the core
language.

The result of applying the weakest pre-condition transformer is a pure
formula. Let us show the weakest pre-condition transformer in action and
extract it:

1.6 Program Verification 27

Program 1.6.2 Core representation of the Binary Search program.

int BinarySearchC (int [] arr , int len , int key)
{

l 1 : assume pre
l 2 : int low = 0 ;
l 3 : int high = len ;
l 4 : assert inv ;
l 5 : havoc low , high ;
l 6 : assume inv ;
l 7 :
{

m1: assume (low < high) ;
// Find middle v a l u e
int mid = low + (high − low) / 2 ;
int va l = a [mid] ;
m2: {

n1 : assume (key < va l) ;
n2 : low = mid + 1 ;

[]
n3 : assume ! (key < va l) ;
n4 : assume (va l < key) ;
n5 : high = mid ;

[]
n6 : assume ! (key < va l) ;
n7 : assume ! (va l < key) ;
n8 : assert post [r e s u l t := mid]
n9 : assume fa lse

}
m3: assert inv ;
m4: assume fa lse ;

[]
m5: assume ! (low < high) ;

}
l 8 : assert post [r e s u l t := −1];

}

wp(BinarySearchC(a, len, key), true)
≡ {expand BinarySearchC}

wp(`1; `2; `3; `4; `5; `6; `7; `8, true)
≡ {`1 : assume pre}

pre =⇒ wp(`2`3; `4; `5; `6; `7; `8, true)
≡ {`2 : int low = 0; }

pre =⇒ let low = 0 wp(`3; `4; `5; `6; `7; `8, true)
≡ {`3 : int high = len; }

pre =⇒ let low = 0, high = len wp(`4; `5; `6; `7; `8, true)
≡ {`4 : assert inv}

pre =⇒ let low = 0, high = len inv ∧ wp(`5; `6; `7; `8, true)
≡ {`5 : havoc low , high}

pre =⇒ let low = 0, high = len inv ∧ ∀low , high . wp(`6; `7; `8, true)
≡ {`6 : assume inv}

pre =⇒ let low = 0, high = len inv ∧ ∀low , high . inv =⇒ wp(`7; `8, true)
≡ {`8 : assert post [result ← −1]}

pre =⇒ let low = 0, high = len inv ∧ ∀low , high . inv =⇒ wp(`7, post [result ← −1])

28 1 Applications of SMT Solvers

Continuing with the inner-most formula:

wp(`7, post [result ← −1])
≡ {`7 : {m1;m2;m3;m4} [] m5}

wp({m1;m2;m3;m4} [] m5, post [result ← −1])
≡ {by semantics of []}

wp(m1;m2;m3;m4, post [result ← −1]) ∧ wp(m5, post [result ← −1])
≡ {m5 : assume ¬(low < high)}

wp(m1;m2;m3;m4, post [result ← −1]) ∧ (¬(low < high) =⇒ post [result ← −1])
≡ {m4 : assume false}

wp(m1;m2;m3, true) ∧ (¬(low < high) =⇒ post [result ← −1])
≡ {m3 : assert inv}

wp(m1;m2, inv) ∧ (¬(low < high) =⇒ post [result ← −1])
≡ {m1 : assume low < high}

(low < high =⇒ wp(m2, inv)) ∧ (¬(low < high) =⇒ post [result ← −1])
≡ {by a full unfolding of wp(m2, inv)}

low < high =⇒
let mid = low + (high − low)/2
let val = a[mid]

(key < val =⇒ inv [low 7→ mid + 1])∧
(¬(key < val) ∧ (val < key) =⇒ inv [high 7→ mid])∧
(¬(key < val) ∧ ¬(val < key) =⇒ post [result 7→ mid])

∧
(¬(low < high) =⇒ post [result ← −1])

We have now enough information to extract the full formula corresponding
to partial correctness of the program:

pre =⇒
let low = 0
let high = len
inv∧

∀low , high . inv =⇒
¬(low < high) =⇒ post [result 7→ −1]

∧

low < high =⇒

let mid = low + (high − low)/2
let val = a[mid]

(key < val =⇒ inv [low 7→ mid + 1])∧
(¬(key < val) ∧ (val < key) =⇒ inv [high 7→ mid])∧
(¬(key < val) ∧ ¬(val < key) =⇒ post [result 7→ mid])

When we plug in the definitions for pre, post and inv from (1.4), (1.5) and
(1.6) we obtain a valid first-order formula.

1.6.4 Bit-precise reasoning

Bit-vectors can be used to accurately encode the semantics of machine in-
teger operations. SMT solvers support directly a theory of bit-vectors that

1.7 Bibliographical notes 29

corresponds to machine integer semantics. As an illustration of the impor-
tance of bit-precise analysis, consider line 8 in Program 1.6.1. It contains the
conspicuous assignment int mid = low + (high - low) / 2;. If low
and high were genuine integers, then the usual arithmetical laws would tell us
that the assignment is equivalent to int mid = (low + high)/2;. How-
ever, the two assignments are not interchangeable when int ranges over 32-bit
integers even when we know that low <= high. Namely, take the value 230

for both high and low, then in two-complements arithmetic high+low eval-
uates to −231 (the most significant bit is 1, which produces the negative sign),
and therefore (high+low)/2 is −230. On the other hand low + (high -
low)/2 evaluates to 230, which is what we would like.

1.6.5 Industrial Adoption

The ideal of verified programs is a long-running quest since the advent of
program verification [17]. While the ideals are especially pursued in a sci-
entific context, there has also been a steady pursuit in the context of of
civil and defense industry. Some of the most significant recent advances have
been in verification of compilers and operating systems code. The CompCert
project [20] has pionered formal verification of compilers using the interactive
Coq system based on the calculus of constructions. The LLVM operating sys-
tem kernel [19] was also verified using the Isabelle theorem prover for higher-
order logic. From the perspective of automation, SMT solvers have found their
way from extended type checking style verification from the Extended Static
Checker (ESC) tool using the Simplify SMT solver [8] towards verification of
mainstream programming languages C# and C using the tool Boogie [7] that
maps low level imperative programs to first-order logic in the form we demon-
strated and the verifying C compiler (VCC) [10] and HAVOC [5] that convert
C programs into the Boogie intermediary language format. The VCC tool was
used to verify functional correctness of large portions of Microsoft’s Viridian
Hyper-V. The SPARK-ADA tools similarly map program verification tasks
for ADA programs into first-order verification conditions that are solved us-
ing a variety of theorem provers, and Frama-C [2] uses the Why intermediary
format for bridging verification conditions from C into first-order logic formu-
las. SMT solvers have thanks to their integration of first-order with theory
reasoning over domains used in programming languages been instrumental for
program verification. The quest for verified software goes on and the area of
verifying termination, asymptotic runtime characteristics, heap manipulating
and multi-threaded programs is an active area of research.

1.7 Bibliographical notes

Floyd’s approach associated a proposition with each connection in a control
flow graph. Hoare logic uses triples of a program statement and pre and post

30 1 Applications of SMT Solvers

conditions. Dijkstra [9] introduced the perspective that statements in imper-
ative programs correspond to predicate transformers. These are used to map
a post-condition assertion to a weakest pre-condition formula that has to be
satisfied in order for the post-condition to be entailed. King [18] introduced
symbolic execution in the context of program testing. Manna and Pnueli [21]
developed methods for establishing temporal properties of reactive and con-
current programs.

Our use of a substrate of the C, C++, C# and Java languages was inspired
by the C0 language by Frank Pfenning. It is used for teaching imperative
programming for freshmen at CMU5. Rigorous verification of properties of C
programs requires an equally rigorous formalization of the relevant semantics.
In the context of verified compilers into C6. The VCC [10] system formalizes
and implements a significant portion of the C semantics.

5 http://www.cs.cmu.edu/˜fp/courses/15122-f10/misc/
c0-reference.pdf

6 http://gallium.inria.fr/˜xleroy/publi/Clight.pdf

References

1. T. Ball and S. Rajamani. Automatically validating temporal safety properties
of interfaces. In SPIN 2001 Workshop on Model Checking of Software, volume
2057 of Lecture Notes in Computer Science, 2001. SLAM.

2. P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto.
ACSL: ANSI/ISO C Specification Language, 2008. http://frama-c.cea.
fr/download/acsl_1.4.pdf.

3. W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dynamic
programming errors. Softw., Pract. Exper., 30(7):775–802, 2000.

4. C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In R. Draves and
R. van Renesse, editors, OSDI, pages 209–224. USENIX Association, 2008.

5. J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer. Unifying type checking
and property checking for low-level code. In Z. Shao and B. C. Pierce, editors,
POPL, pages 302–314. ACM, 2009.

6. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. The ASTREÉ analyzer. In European Symposium on Programming
(ESOP), 2005.

7. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for
checking object-oriented programs. Technical Report 2005-70, Microsoft Re-
search, 2005.

8. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program
checking. Journal of the ACM, 52(3):365–473, May 2005.

9. E. W. Dijkstra. A discipline of programming. Prentice Hall, 1976.
10. E. Cohen and M. Dahlweid and M. Hillebrand and D. Leinenbach and M. Moskal

and T. Santen and W. Schulte and S. Tobies. VCC: A Practical System for
Verifying Concurrent C. In TPHOL, 2009.

11. D. R. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent behavior: A
general approach to inferring errors in systems code. In SOSP, pages 57–72,
2001.

12. R. Floyd. Assigning meanings to programs. Proceedings of the Symposia in
Applied Mathematics, 19:19–32, 1967.

13. P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani, W. Schulte, N. Till-
mann, and M. Y. Levin. Automating Software Testing Using Program Analysis.
IEEE Software, 25(5):30–37, 2008.

32 References

14. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In
Computer-Aided Verification (CAV ’97), LNCS 1254, June 1997.

15. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In Symposium on Principles of Programming Languages, pages 58–70, 2002.
BLAST.

16. C. Hoare. An axiomatic basis for computer programming. Comm. ACM,
12(10):576–580, 1969.

17. T. Hoare. The verifying compiler: A grand challenge for computing research.
Journal of the ACM, 50(1):63–69, January 2003.

18. J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

19. G. Klein. Operating system verification — an overview. Sādhanā, 34(1):27–69,
Feb. 2009.

20. X. Leroy. The compcert project.
21. Z. Manna and A. Pnueli. Verification of concurrent programs: The temporal

framework. In The Correctness Problem in Computer Science, pages 215–273.
Academic Press, London, 1981.

22. A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur. The Yogi Project:
Software Property Checking via Static Analysis and Testing. In S. Kowalewski
and A. Philippou, editors, TACAS, volume 5505 of Lecture Notes in Computer
Science, pages 178–181. Springer, 2009.

