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ABSTRACT
This paper presents two techniques for language model (LM)
adaptation. The first aims to build a more general LM. We propose a
distribution-based pruning of n-gram LMs, where we prune n-grams
that are likely to be infrequent in a new document. Experimental
results show that the distribution-based pruning method performed
up to 9% (word perplexity reduction) better than conventional cutoff
methods. Moreover, the pruning method results in a more general n-
gram backoff model, in spite of the domain, style, or temporal bias
in the training data.

The second aims to build a more task-specific LM. We propose an
n-gram distribution adaptation method for LM training. Given a
large set of out-of-task training data, called training set, and a small
set of task-specific training data, called seed set, we adapt the LM
towards the task by adjusting the n-gram distribution in the training
set to that in the seed set. Experimental results show non-trivial
improvements over conventional methods.

1. INTRODUCTION
Statistical language modeling (SLM) has been successfully applied
to many domains such as speech recognition [1], information
retrieval [2], and spoken language understanding [3]. In particular,
n-gram LM has been demonstrated to be highly effective for these
domains.

In constructing an n-gram LM intended for general text, one is faced
with the following two problems.

(1) For the general domain, more training data will always improve
a LM. However, as training data size increases, LM size increases,
which can lead to models that are too large for practical use.
Furthermore, training data is usually biased by its mixture of
domain and style, so that the LM will also be biased.

Count cutoff [1] is widely used to prune language models. The
method deletes from the LM those n-grams that occur infrequently
in the training data, assuming that they will be equally infrequent in
test data. However, in the real world, training data rarely matches
test data perfectly. Worse still, the count cutoff intensifies the bias
of the training data.

(2) On the other hand, for specific domains, it usually suffers from
sparse-data problems, because large amounts of task-specific data
(i.e. training data of specific domain or style, etc) are usually not
available.

To deal with the problem, LM is adapted to topic/domain by mixing
up LMs that are built for specific and general domains separately [4,
5, 6, 7]. The interpolation weight, which is used to combine the
models, is optimized so as to minimize perplexity. However, in the

case of combined LM, perplexity has been shown to correlate
poorly with recognition performance, i.e. word error rate. Therefore,
in many cases, topic adaptation by combining LMs only leads to
trivial performance improvements of target systems.

In this paper, we propose a new approach to LM adaptation, which
leads to a general LM of limited size whose parameters could be
automatically tuned according to the topic/domain of text it is
attempting to model.

Two methods of achieving this will be presented.

The first is a distribution-based cutoff method for general LM
pruning. This approach estimates if an n-gram is “likely to be
infrequent in test data”. We developed a criterion for pruning
parameters from n-gram models, based on the n-gram distribution
i.e. the probability that an n-gram occurs in a document. All n-grams
with the probability less than a threshold are removed. Experimental
results show that the distribution-based pruning method performed
up to 9% (word perplexity reduction) better than conventional cutoff
methods. Furthermore, the pruning method results in a more general
n-gram backoff model, in spite of the domain, style and temporal
bias of training data.

The second method aims to solve the sparse-data problem of
specific domains. We use large amounts of data from other
tasks/domains, called training set, to improve the task-specific LM.
We propose an n-gram distribution adaptation method for LM
training. Given a set of task-specific training data, called seed set,
we adapt the LM towards the task by adjusting the n-gram
distribution in the training set to that in the seed set. Experiments
show non-trivial improvements over conventional methods (e.g.
model interpolation approaches).

2. GENERAL LANGUAGE MODELS

2.1 Basic Approach
As described in the previous section, LM pruning is necessary for
practical use. But previous cutoff methods are not perfect, and
intensify the bias of the training data. For example, if we use
newspaper in training, a name like “Lewinsky” may have high
frequency in certain years but not others; if we use Gone with the
Wind in training, “Scarlett O’Hara” will have disproportionately
high probability and will not be cutoff.

We propose another approach to pruning. We aim to keep n-grams
that are more likely to occur in a new document. We therefore
propose a new criterion for pruning parameters from n-gram
models, based on the n-gram distribution i.e. the probability that an
n-gram will occur in a new document. All n-grams with the
probability less than a threshold are removed.



We estimate the probability that an n-gram occurs in a new
document by dividing training data into partitions, called subunits,
and use a cross-validation-like approach. In the remaining part of
this section, we firstly investigate the method for n-gram
distribution modeling. Then we discuss various ways to divide a
training set into subunits. Experiments show that our method
outperforms conventional count cutoff by up to 9% word perplexity
reduction. Furthermore, it also results in a more general n-gram
model, in spite of the domain, style, or temporal bias of training
data.

For simplicity, in the remaining of this paper, we restrict our
discussion to bigram, p(wn|wn-1), which assumes that the probability
of a word depends only on the identity of the immediately preceding
word. But our approaches extends to any n-gram.

2.2 Measure of Generality Probability
In this section, we will discuss in detail how to estimate the
probability that a bigram occurs in a new document. For simplicity,
we define a document as the subunit of the training corpus. In the
next sub-section, we will loosen this constraint.

Term distribution models, which are widely used in IR [8], estimate
the probability Pi(k), the proportion of times that of a word wi

appears k times in a document. In bigram distribution models, we
wish to model the probability that a word pair (wi-1 ,wi) occurs in a
new document. The probability can be expressed as the measure of
the generality of a bigram. Thus, in what follows, it is denoted by
Pgen(wi-1,wi). The higher the Pgen(wi-1,wi) is, for one particular
document, the less informative the bigram is, but for all documents,
the more general the bigram is.

The standard probabilistic model for the distribution of a certain
type of event over units of a fixed size (such as periods of time or
volumes of liquid) is the Poisson distribution [9]. As stated in [8],
the Poisson estimates are good for non-content words, but not for
content words. Several improvements over Poisson have been
proposed. These include two-Poisson Model [10] and Katz’s K
mixture model [11]. The K mixture is better. It is also a simpler
distribution that fits empirical distributions of content words as well
as non-content words. Therefore, we use K mixture for bigram
distribution modelling. According to [11], K mixture model
estimates the probability that word wi appears k times in a document
as follows:

k
ki kP )

1
(

1
)1()( 0, ++

+−=
β

β
β

αδα (1)

where δk,0=1 iff k=0 and δk,0=0 otherwise. α and β are parameters
that can be fit using the observed mean λ and the observed inverse
document frequency IDF as follow:
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where again, cf is the total number of occurrence of word wi in the
collection, df is the number of documents in the collection that wi

occurs in, and N is the total number of documents.

The bigram distribution model is a variation of the above K mixture
model, where we estimate the probability that a word pair (wi-1,wi) ,
occurs in a document by:
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where K is dependent on the size of the subunit, the larger the
subunit, the larger the value (in our experiments, we set K from 1 to
2), and Pi(k) is the probability of word pair (wi-1,wi) occurs k times
in a document. Pi(k) is estimated by equation (1), where α , and β
are estimated by equations (2) to (5). Accordingly, cf is the total
number of occurrence of a word pair (wi-1,wi) in the collection, df is
the number of documents that contain (wi-1,wi), and N is the total
number of documents.

2.3 Partitioning the training data
In conventional approaches, a document is defined as the subunit of
training data for term distribution estimating. But for a very large
training corpus that consists of millions of documents, the
estimation for the bigram distribution is very time-consuming. To
cope with this problem, we use a cluster of documents as the
subunit. As the number of clusters can be controlled, we can define
an efficient computation method, and optimise the clustering
algorithm. For example, in experiments stated in [12], documents
are clustered in three ways: by similar domain, style, or time.

2.4 Results
Figure 1 shows the results when we define a document as the
subunit. We used approximately 450 million characters of People’s
Daily training data (1996), which consists of 39,708 documents. The
test data consists of 15 million characters that have been proofread
and balanced among domain, style and time. As shown in figure 1,
although as the size of LM is decreased, the perplexity rises sharply,
the models created with the bigram distribution based pruning have
consistently lower perplexity values than for the count cutoff
method. Further analysis shows that a lot of domain, style or time
specific bigrams are pruned using our pruning method. Thus our
pruning method results in a more general n-gram model, which
resists to domain, style or temporal bias of training data.
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Figure 1: Word perplexity comparison of cutoff pruning and
distribution based bigram pruning.



3. TASK-SPECIFIC LANGUAGE MODELS

3.1 Basic Approach
As described in the previous section, previous LM combination
methods assume that perplexity reduction will definitely lead to
performance improvements. Unfortunately, in the case of combined
LM, it is not true.

We find that it is the n-gram distribution that characterizes the task-
specific training data. Therefore, in this paper, we investigate an
alternative approach to using out-of-task/domain training data. We
propose an approach based on n-gram distribution adaptation for
LM training. Given a large set of out-of-task/domain training data,
called training set, and a small set of task-specific training data,
called seed set, we adapt the LM towards the task by adjusting the
n-gram distribution in the training set to that in the seed set.

Instead of combining bigram models built on training set and seed
set, respectively. We directly combine bigram counts C(w1,w2) with
an adaptation weight W(w1, w2) in the form of
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where Wi(w1, w2) is the adaptation weight of the ith training set, it is
estimated by
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where α is the adaptation coefficient, and p(w1,w2) is the frequency
of the bigram (w1,w2) in the seed set, and pi(w1,w2) is the frequency
of the bigram (w1,w2) in the ith training set, which is estimated by
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The key points of the n-gram distribution adaptation are the
selection of α, and the seed set, which will be described below.

3.2 Seed Set and Overfitting
The task-specific training data is usually defined as the seed set. The
seed set is not large enough, so it almost never covers real task data.
This can lead to the overfitting problem.

To avoid overfitting, we divide the seed set into partitions, and use a
cross-validation-like approach. In what follows, we will describe
what we do in our experiments.

We randomly divide the task-specific training data into 5 partitions,
each of the same size. Each time, we pick one partition as a testing
set and combine the other 4 partitions as a seed set. Then we set α
from 0.0 to 2.5, and combine bigram counts by equations (7) to (9).
Finally, a series of bigram models are estimated. As shown in figure
2, as α increases, the perplexity to the seed set is reduced, and the
perplexity to the testing set is firstly reduced and then raised
sharply. Thus, we pick the value of α, where the perplexity to the
testing set just begins to rise. We call the value at this point of α.the
critical value of α. We redo the above experiment by defining
different pairs of testing set and seed set, and obtained the average
critical value of α.
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Figure 2: N-gram distribution adaptation for LM training

3.3 Training Data Optimization
In applying an SLM, more training data will usually improve a LM.
While it is possible to collect large amount of training data (such as
from websites), the majority of the data is likely to be irrelevant to
the given task. Thus a method of training data optimization such as
suggested in [7] can be used to select relevant text materials to build
a more task-specific LM. Moreover, there is never infinite memory,
the method is also subject to a memory constraints.

Our approach here is to take the available task-specific data, called
the seed set, and a large variety of data (e.g. data collected from the
web), called the training set, and train a language model which not
only satisfies the memory constraint but also has the best
performance. The basic approach involves following steps:

1. Take the large training set, and divided it up into units, so that
we can decide whether to keep each unit, and how much to
trust each unit.

2. Assign a score to each unit using perplexity as the metric. We
train a LM from our seed set, and measure each training data
unit’s test-set perplexity against this LM.

3. Add the best 5% or more units of the training set to the seed
set, train a LM on the seed set while keeping its size to meet
the memory constraint by a relative entropy based cut-off
method.

4. Repeat step 3 until the improvement of perplexity of the LM is
less than a pre-set threshold.

As shown in the next sub-section, training set optimization give
improved perplexity and recognition performance over more
simplistic methods of using out-of-domain data.

3.4 Results
Perplexity and recognition experiments were run on the input
method editor (IME – a software layer that converts keystrokes into
Chinese characters) task. The in-domain training data includes 40
million characters from available application documents of IME
(IME). The out-of-domain training data includes 300 million
characters of variety text collected from Chinese websites (WEB).
The test data consists of 15 million characters that have been
proofread.

The recognition results are obtained using the system of pinyin-to-
character conversion. This is a similar problem to speech
recognition. The system we use is MSPY2.0, developed by IME



group in Microsoft, which is one of the best products and delivers
the best accuracy today in spite of minimal memory usage.

Table 1 compares our n-gram distribution based LM adaptation and
training data optimization techniques described above, and provides
the results obtained using only an IME trigram model (trained from
IME data only) as a baseline. The first column contains the training
data components, the second column shows the techniques we use,
the third and the fourth columns show the word perplexity (PPW)
and the word error rate (WER) of pinyin-to-character conversion,
respectively, and the fifth column shows the percentage reduction in
word error rate (RED-WER) from the baseline.

Row 3 shows that simply adding out-of-domain training data, called
brute-force (BF) technique, results in 8.08 % word error rate
reduction. When we simply interpolate the IME trigram and the LM
trained from out-of-domain training data, called single interpolation
(SI) scheme, a slight improvement, say 10.5% word error rate
reduction, can be obtained. Most previous methods [4, 5, 6] are
based on BF and SI. We then combine BF and SI with the training
data optimization method described in the last sub-section. They are
denoted by OBF and OSI in table 1, respectively. Further
improvements are obtained, as shown in rows 5 and 6. Row 7 shows
that the best results are obtained using the n-gram distribution based
LM adaptation (DBA) method. Moreover, that fact that perplexity
decreases are associated with the worse recognition results suggests
that test set perplexity may not be a good criterion for estimating
model interpolation weights.

LM Training Technique PPW WER RED-WER

IME Baseline 645.24 7.05 %

IME+WEB BF 432.71 6.48 % 8.08 %

IME+WEB SI 388.34 6.31 % 10.50 %

IME+WEB OBF 411.77 6.21 % 11.91 %

IME+WEB OSI 382.46 6.26 % 11.21 %

IME+WEB DBA 389.87 5.80 % 17.73 %

Table 1: Perplexity and recognition results.

4. CONCLUSION
This paper presents two techniques for LM adaptation. The first
aims to build a more general LM. We propose a distribution-based
pruning of n-gram LMs, where we prune n-grams that are likely to
be infrequent in a new document. Experimental results show that the
distribution-based pruning method performed up to 9% (word
perplexity reduction) better than conventional cutoff methods.
Moreover, the pruning method results in a more general n-gram
backoff model, in spite of the domain, style, or temporal bias in the
training data.

The second aims to build a more task-specific LM. We propose an
n-gram distribution adaptation method for LM training. Given a
large set of out-of-task training data, called training set, and a small
set of task-specific training data, called seed set, we adapt the LM
towards the task by adjusting the n-gram distribution in the training

set to that in the seed set. We present a method to avoid overfitting.
A method of training data optimization is also described briefly.
Experiments show non-trivial improvements over conventional
methods (e.g. model interpolation approaches).
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