
Chatty Tenants and the Cloud Network Sharing Problem

Hitesh Ballani† Keon Jang† Thomas Karagiannis†

Changhoon Kim‡ Dinan Gunawardena† Greg O’Shea†

†Microsoft Research ‡Windows Azure
Cambridge, UK USA

Abstract

The emerging ecosystem of cloud applications leads to
significant inter-tenant communication across a datacen-
ter’s internal network. This poses new challenges for
cloud network sharing. Richer inter-tenant traffic pat-
terns make it hard to offer minimum bandwidth guaran-
tees to tenants. Further, for communication between eco-
nomically distinct entities, it is not clear whose payment
should dictate the network allocation.

Motivated by this, we study how a cloud network
that carries both intra- and inter-tenant traffic should be
shared. We argue for network allocations to be dictated
by the least-paying of communication partners. This,
when combined with careful VM placement, achieves
the complementary goals of providing tenants with mini-
mum bandwidth guarantees while bounding their max-
imum network impact. Through a prototype deploy-
ment and large-scale simulations, we show that mini-
mum bandwidth guarantees, apart from helping tenants
achieve predictable performance, also improve overall
datacenter throughput. Further, bounding a tenant’s max-
imum impact mitigates malicious behavior.

1 Introduction

As cloud platforms mature, applications running in cloud
datacenters increasingly use other cloud-based applica-
tions and services. Some of these services are offered
by the cloud provider; for instance, Amazon EC2 offers
services like S3, EBS, DynamoDB, RDS, SQS, Cloud-
Search, etc. that tenants can use as application building
blocks [1]. Other services like CloudArray and Alfresco
are run by tenants themselves [2]. The resulting ecosys-
tem of applications and services means that, apart from
communication between virtual machines of the same
tenant, there is an increasing amount of tenant-tenant and
tenant-provider communication [3]. Indeed, examining
several datacenters of a major cloud provider, we find

that such inter-tenant traffic can amount up to 35% of
the total datacenter traffic. Looking ahead, we expect this
ecosystem to become richer, further diversifying network
traffic in the cloud.

The increasing importance and diversity of network
traffic in cloud datacenters is at odds with today’s
cloud platforms. While tenants can rent virtual machines
(VMs) with dedicated cores and memory, the underly-
ing network is shared. Consequently, tenants experience
variable and unpredictable network performance [4–6]
which, in turn, impacts both application performance and
tenant costs [5,7,8]. To tackle this, many network shar-
ing policies have been proposed [9–14]. In recent work,
FairCloud [14] presented a set of requirements for net-
work sharing: i). associate VMs with minimum band-
width guarantees, ii). ensure high network utilization,
and iii). divide network resources in proportion to tenant
payments. However, the proposals above focus only on
intra-tenant communication, and naively extending these
requirements to inter-tenant settings is problematic.

Inter-tenant traffic changes the network sharing prob-
lem both quantitatively and qualitatively, and leads to
two main challenges. First, offering (non-trivial) min-
imum bandwidth guarantees for inter-tenant traffic is
harder as the set of VMs that can possibly communi-
cate with each other is significantly larger. Second, traf-
fic flowing between distinct economic entities begs the
question– whose payment should the bandwidth alloca-
tion be proportional to? Extending intra-tenant propor-
tionality [14] to inter-tenant scenarios entails that band-
width should be allocated in proportion to the combined
payment of communicating partners. However, this is in-
adequate as tenants can increase their network allocation,
beyond what their payment dictates, by communicating
with more VMs of other tenants. Thus, the challenge is
how to achieve proportional yet robust network sharing
in inter-tenant scenarios.

Motivated by these challenges, we revisit the require-
ments for sharing a cloud network. To address the first

challenge of providing minimum bandwidth guarantees,
we propose relaxing the semantics of the guarantees of-
fered. For example, instead of targeting arbitrary com-
munication patterns, a VM is only guaranteed bandwidth
for intra-tenant traffic and for traffic to tenants it de-
pends upon. Such communication dependencies could
be explicitly declared or inferred. To address the second
challenge, we identify a new network sharing require-
ment, upper-bound proportionality, which requires that
the maximum bandwidth a tenant can acquire is in pro-
portion to its payment. This mitigates aggressive tenant
behavior and ensures robust network sharing. We show
this requirement can be met by allocating bandwidth to
flows in proportion to the least-paying communication
partner. We call this “Hose-compliant” allocation.

To illustrate these ideas, we design Hadrian, a network
sharing framework for multi-tenant datacenters. With
Hadrian, VMs are associated with a minimum band-
width. This minimum guarantee and tenant dependencies
guide the placement of VMs across the datacenter. Net-
work bandwidth is allocated using the hose-compliant al-
location policy. This, when combined with careful VM
placement, achieves the complementary goals of provid-
ing tenants with minimum bandwidth while achieving
upper-bound proportionality.

As a proof of concept, we have implemented a Hadrian
prototype comprising an end-host and a switch compo-
nent. Through testbed deployment and cross-validated
simulation experiments, we show that Hadrian benefits
both tenants and providers. Minimum VM bandwidth
yields predictable and better network performance for
tenants (at the 95th percentile, flows finish 3.6x faster).
For the provider, such guarantees improve datacenter
throughput up to 20% by avoiding outliers with very poor
network performance. Thus, providers can offer an im-
proved service at a lower price while remaining revenue
neutral.

Overall, our main contributions are–

• We provide evidence of the prevalence of inter-tenant
traffic through measurements from eight datacenters
of a major public cloud provider.

• We present a new definition of payment proportional-
ity that ensures robust network sharing in inter-tenant
scenarios. We also devise a bandwidth allocation pol-
icy that meets this proportionality.

• We present relaxed bandwidth guarantee semantics to
improve the multiplexing a provider is able to achieve.
Further, we design a novel VM placement algorithm
that uses a max-flow network formulation to satisfy
such guarantees.

• To illustrate the feasibility of the mechanisms above,
we present the design and implementation of Hadrian.

 0

 10

 20

 30

 40

 1 2 3 4 5 6 7 8

In
te

r-
te

n
a
n
t

 t
ra

ff
ic

 (
%

)

Datacenter

Figure 1: Inter-tenant traffic, as a % of the datacen-
ter’s total traffic, for eight production datacenters.

2 Motivation and challenges

With Infrastructure-as-a-Service, tenants rent VMs with
varying amount of CPU, memory and storage, and pay
a fixed flat rate per-hour for each VM [15,16]. However,
the cloud’s internal network is shared amongst the ten-
ants. The cloud network carries external traffic to and
from the Internet, intra-tenant traffic between a tenant’s
VMs and inter-tenant traffic. The latter includes traffic
between different customer tenants, and between cus-
tomer tenants and provider services. In the rest of this
paper, we use the term “tenant” to refer to both customer
tenants and provider services.

In this section, we show the prevalence of inter-tenant
traffic in datacenters, and use this to drive our design.

2.1 Inter-tenant communication
Today’s cloud providers offer many services that ten-
ants can use to compose their cloud applications. For ex-
ample, Amazon AWS offers sixteen services that result
in network traffic between tenant VMs and service in-
stances [1]. These services provide diverse functionality,
ranging from storage to load-balancing and monitoring.
Over a hundred cloud applications using such services
are listed here [17]. Beyond provider services, many ten-
ants run cloud applications that provide services to other
tenants. AWS marketplace [2] lists many such tenant ser-
vices, ranging from web analytics to identity and content
management. These result in tenant-tenant traffic too.
Chatty tenants. To quantify the prevalence of inter-
tenant traffic in today’s datacenters, we analyze aggre-
gate traffic data collected from eight geographically dis-
tributed datacenters operated by a major public cloud
provider. Each datacenter has thousands of physical
servers and tens of thousands of customer VMs. The
data was collected from August 1-7, 2012 and includes
all traffic between customer VMs. This does not include
traffic to and from provider services. The total volume
of such traffic in each datacenter was a few hundred
terabytes to a few petabytes. Figure 1 shows that the
percentage of inter-tenant traffic varies from 9 to 35%.
When external traffic to or from the Internet is excluded,
inter-tenant traffic varies from 10 to 40%.

We also studied traffic between customer tenants and

a specific provider service, the storage service. Since the
local disk on a VM only provides ephemeral storage, for
persistent storage, all tenants rely on the storage service
which needs to be accessed across the network. The re-
sulting network traffic is inter-tenant too. By analyzing
application-level logs of the storage service, we found
that read and write traffic for the storage service is, on
average, equal to 36% and 70% of the total traffic be-
tween customer VMs respectively.

We complement these public cloud statistics with data
from a private cloud with ∼300 servers. This represents
a mid-size enterprise datacenter. The servers run over a
hundred applications and production services, most serv-
ing external users. In summary, we find that 20% of the
servers are involved in inter-tenant communication. For
these servers, the fraction of inter-tenant to total flows
is 6% at the median and 20% at the 95th percentile with
a maximum of 56% (3% at the median and 10% at the
95th percentile in terms of volume). A tenant communi-
cates with two other tenants in the median case and six at
the 95th percentile. Further, this inter-tenant traffic is not
sporadic as it is present even at fine timescales.

Overall we find that tenants are indeed chatty with a
significant fraction of traffic between tenants.

Impact of network performance variability. Sev-
eral studies have commented on variable network perfor-
mance in datacenters [4–6]. This impacts both provider
and tenant services. For example, the performance of the
cloud storage service varies both over time and across
datacenters [18,19]. Any of the resources involved can
cause this: processing on VMs, processing or disks at the
storage tier, or the cloud network. For large reads and
writes, the network is often the bottleneck resource. For
example, Ghosal et al. [18] observed a performance vari-
ability of >2x when accessing Amazon EBS from large
VMs (and far greater variability for small VMs), a lot of
which can be attributed to cloud network contention.

In summary, these findings highlight the significance
of inter-tenant traffic in today’s datacenters. As cloud ser-
vice marketplaces grow, we expect an even richer ecosys-
tem of inter-tenant relationships. Offering service-level
agreements in such settings requires network guarantees
for inter-tenant communication.

2.2 Cloud network sharing
The distributed nature of the cloud network makes it
tricky to apportion network bandwidth fairly amongst
tenants. Today, network bandwidth is allocated through
end host mechanisms such as TCP congestion control
which ensure per-connection fairness. This has a number
of drawbacks. For instance, misbehaving tenants can un-
fairly improve their network performance by using mul-
tiple TCP connections [12] or simply using UDP. Conse-
quently, the cloud network sharing problem has received

a lot of attention [9–14]. This section describes how
inter-tenant traffic adds a new dimension to this problem.

2.2.1 Network sharing requirements

We first discuss how a cloud network carrying only intra-
tenant traffic should be shared. FairCloud [14] presented
the following broad set of requirements for fairly sharing
the cloud network with a focus on intra-tenant traffic.
(1). Min-Guarantee: Each VM should be guaranteed
a minimum bandwidth. This allows tenants to estimate
worst-case performance and cost for their applications.
(2). High Utilization: Cloud datacenters multiplex phys-
ical resources across tenants to amortize costs and the
same should hold for the network. So, spare network
resources should be allocated to tenants with demand
(work conservation). Further, tenants should be incen-
tivised to use spare resources.
(3). Proportionality: Just like CPU and memory, the net-
work bandwidth allocated to a tenant should be propor-
tional to its payment.

However, inter-tenant traffic has important implica-
tions for these sharing requirements. As explained below,
such traffic makes it harder to offer minimum bandwidth
guarantees and necessitates a different kind of propor-
tionality. Overall, we embrace the first and second re-
quirements, and propose a new proportionality require-
ment suitable for inter-tenant settings.

2.2.2 Implications of inter-tenant traffic

Min-guarantee. Guaranteeing the minimum bandwidth
for a VM requires ensuring sufficient capacity on all net-
work links the VM’s traffic can traverse. For intra-tenant
traffic, this is the set of network links connecting a ten-
ant’s VMs. However, for inter-tenant traffic, the set ex-
pands to network links between VMs of all tenants that
may communicate with each other. If we assume no in-
formation about a tenant’s communication partners, the
minimum bandwidth for each VM needs to be carved on
all network links, and is thus strictly limited by the ca-
pacity of the underlying physical network. For instance,
consider a datacenter with a typical three-tier tree topol-
ogy with a 1:4 oversubscription at each tier (i.e., core
links are oversubscribed by 1:64). If each physical server
has 4 VMs and 1 Gbps NICs, such naive provisioning
would provide each VM with a minimum guarantee of a
mere 4 Mbps (≈ 1000/(4*64))! Hence, richer traffic pat-
terns resulting from inter-tenant communication make it
harder to guarantee minimum bandwidth for VMs.

Payment proportionality. Defining payment propor-
tionality for inter-tenant settings is tricky. Since traf-
fic can flow between different tenants, a key question
is whose payment should dictate the bandwidth it gets.
Intra-tenant proportionality requires that a tenant be allo-
cated bandwidth in proportion to its payment. A simple

p1

q1

r1

r2
r3

r4

Network
link

(a)

Allocation P Q R
per-flow 250 750 1000

per-src (→) 500 500 1000
per-src (←) 250 750 1000

PS-L 333 666 1000
PS-P 250 750 1000

(b)

Figure 2: Inter-tenant traffic: Tenants P, Q and R
have one (p1), one (q1) and four VMs respectively.

extension to inter-tenant settings entails that if a set of
tenants are communicating with each other, their com-
bined bandwidth allocation should be proportional to
their combined payment. Assuming tenants pay a fixed
uniform price for each VM, this means that a tenant’s
bandwidth should be in proportion to the total number of
VMs involved in its communication (its own VMs and
VMs of other tenants too).

As an example, consider the inter-tenant scenario
shown in Figure 2. Since the traffic for tenants P and
Q involves 2 and 4 VMs respectively, such proportional-
ity requires that tenant Q’s bandwidth be twice that of P,
i.e., BQ

BP
= 4

2 . Similarly, BR
BP

= 6
2 and BR

BQ
= 6

4 . Further, the
high utilization requirement entails that the link’s capac-
ity (1000 Mbps) should be fully utilized, i.e., BP +BQ =
BR = 1000. An allocation where BP = 333, BQ = 666 and
BR = 1000 satisfies these requirements.

While past proposals for network sharing have all fo-
cused on intra-tenant traffic, we consider how they would
fare in this inter-tenant scenario. Figure 2b shows the
bandwidth for tenants P, Q and R with different allo-
cation strategies. Per-flow allocation ensures each flow
gets an equal rate. Here, “flow” refers to the set of con-
nections between a given pair of VMs. Hence tenant P,
with its one flow, gets a quarter of the link’s capacity,
i.e., BP = 250. Per-source allocation [12] gives an equal
rate to each source, so the bandwidth allocated depends
on the direction of traffic. PS-L and PS-P are allocation
strategies that assign bandwidth in a weighted fashion
with carefully devised weights for individual flows [14].
As the table shows, only PS-L, which was designed
to achieve intra-tenant proportionality, satisfies the ex-
tended proportionality definition too.

However, such proportionality means that a tenant can
acquire a disproportionate network share by communi-
cating with more VMs of other tenants. For example, in
Figure 2b, all approaches result in a higher bandwidth for
tenant Q than P because Q is communicating with more
VMs, even though both P and Q pay for a single VM and
are using the same service R. Q could be doing this mali-
ciously or just because its workload involves more com-
munication partners. Further, Q can increase its share of
the link’s bandwidth by communicating with even more
VMs. This key property leads to two problems. First, this
makes it infeasible to guarantee a minimum bandwidth

for any VM. In effect, such proportionality is incompat-
ible with the min-guarantee requirement. Second, it al-
lows for network abuse. An aggressive tenant with even
a single VM can, simply by generating traffic to VMs
of other tenants, degrade the performance for any ten-
ants using common network links. The presence of many
cloud services that are open to all tenants makes this a
real possibility.

The root cause for these problems is that, with current
network sharing approaches in inter-tenant settings, there
is no limit on the fraction of a link’s bandwidth a VM can
legitimately acquire. To avoid such unbounded impact,
we propose a new network sharing requirement.
Requirement 3. Upper bound proportionality: The
maximum bandwidth each tenant and each VM can ac-
quire should be a function of their payment. Further, this
upper bound should be independent of the VM’s com-
munication patterns. Later we show that, apart from mit-
igating tenant misbehavior, this new proportionality defi-
nition is compatible with the min-guarantee requirement.
It actually facilitates offering minimum VM bandwidth.

3 Revisiting network sharing
Guided by the observations above, we study how a cloud
network that carries both intra- and inter-tenant traffic
should be shared. The sharing should meet three require-
ments: (i). Minimum bandwidth guarantees, (ii). High
Utilization, and (iii). Upper bound proportionality.

3.1 Minimum bandwidth guarantee
The cloud provider may allow tenants to specify the min-
imum bandwidth for individual VMs. So each VM p
is associated with a minimum bandwidth Bmin

p . Alterna-
tively, the provider may offer a set of VM classes with
varying guarantees (small, medium, and large, as is done
for other resources today). In either case, a VM’s mini-
mum guarantee should dictate its price.

Like past proposals [10,11,14,20,21], we use the hose
model to capture the semantics of the bandwidth guaran-
tees being offered. As shown in Figure 3, with this model
a tenant can imagine each of its VMs is connected to an
imaginary, non-blocking switch by a link whose capacity
is equal to the VM’s minimum bandwidth. For simplicity,
we assume all VMs for a tenant have the same minimum
bandwidth.

However, as described in §2.2.2, richer inter-tenant
communication patterns severely limit that the provider’s
ability to accommodate many concurrent tenants with
minimum bandwidth guarantees atop today’s oversub-
scribed networks. We show this in our experiments too.
To better balance the competing needs of tenants and
providers, we propose relaxing the bandwidth guaran-
tees offered to tenants; they should be reasonable for ten-
ants yet provider friendly. To achieve this, we rely on: i).

Switch

Tenant P VMs Tenant Q VMs Tenant R VMs

BP
min BP

min
BQ

min
BQ

min
BR

min
BR

min

Flow’s rate in hose model = min(BP
min

, BQ
min

)

VM qVM p

Figure 3: Hose model with three tenants.

communication dependencies, and ii). hierarchical guar-
antees. We elaborate on these below.

3.1.1 Communication dependencies

Allowing arbitrary VMs to communicate under guar-
anteed performance is impractical. Instead, our guaran-
tees apply only for “expected” communication. To this
end, we rely on communication dependencies. A tenant’s
communication dependency is a list of other tenants or
peers that the tenant expects to communicate with. Ex-
amples of such dependencies include: i) P: {Q}, ii) Q:
{P, R}, iii) R: {*}.

The first dependency is declared by tenant P and im-
plies that VMs of P, apart from sending traffic to each
other, should be able to communicate with VMs of tenant
Q. The second dependency is for Q and declares its peer-
ing with tenants P and R. Since a tenant running a service
may not know its peers a priori, we allow for wildcard de-
pendencies. Thus, the last dependency implies that ten-
ant R is a service tenant and can communicate with any
tenant that explicitly declares a peering with R (in this
example, tenant Q). Note however that since P has not
declared a peering with R, communication between VMs
of P and R is not allowed.

The provider can use these dependencies to determine
what inter-tenant communication is allowed and is thus
better positioned to offer bandwidth guarantees to ten-
ants. In the example above, the communication allowed
is P↔ Q and Q↔ R. An additional benefit is that this
makes the cloud network “default-off” [22] since traffic
can only flow between a pair of tenants if both have de-
clared a peering with each other. This is in contrast to the
“default-on” nature of today’s cloud network.

We admit that discovering communication dependen-
cies is challenging. While tenants could be expected to
declare their dependencies when asking for VMs, a better
option may be to infer them automatically. For example,
today tenants need to sign up for provider services, so
such tenant-provider dependencies are known trivially.
The same mechanism could be extended for third-party
services.

3.1.2 Hierarchical guarantees

With the hose model, each VM gets a minimum guar-
antee for all its traffic, irrespective of whether the traf-

Switch

BP
min

BP
min BQ

min
BQ

min BR
min

BR
min

Tenant P VMs Tenant Q VMs Tenant R VMs

Inter-tenant Switch

SwitchSwitch

BP
inter

BQ
inter

BR
inter

Figure 4: Hierarchical hose model gives per-VM min-
imum bandwidth for intra-tenant traffic and per-
tenant minimum for inter-tenant traffic.

fic is destined to the same tenant or not. However, when
accessing other tenants and services, tenants may find it
easier to reason about an aggregate guarantee for all their
VMs. Further, typical cloud applications involve more
communication between VMs of the same tenant than
across tenants. This was observed in our traces too. To
account for these, we introduce hierarchical guarantees.
Figure 4 shows the hierarchical hose model that captures
such guarantees. Each VM for tenant P is guaranteed a
bandwidth no less than Bmin

P for traffic to P’s VMs. Be-
yond this, the tenant also gets a minimum bandwidth
guarantee for its aggregate inter-tenant traffic, Binter

P .

Putting these modifications together, we propose offering
tenants hose-style guarantees combined with communi-
cation dependencies and hierarchy. Hence, a tenant re-
questing V VMs is characterized by the four tuple <V,
Bmin, Binter, dependencies>.1 We show in §5.1 how this
allows the provider to achieve good multiplexing while
still offering minimum bandwidth to tenants.

3.2 Upper bound proportionality
Upper bound proportionality seeks to tie the maximum
bandwidth a tenant can acquire to its payment. The same
applies for individual VMs. Since a VM’s minimum
bandwidth dictates its price, it can be used as a proxy
for payment. Thus, such proportionality requires that the
upper bound on the aggregate bandwidth allocated to a
VM should be a function of its minimum bandwidth. In
this section, we describe a bandwidth allocation policy
that achieves such proportionality.

3.2.1 Hose-compliant bandwidth allocation

Allocating bandwidth to flows in proportion to the com-
bined payment of communicating partners results in ten-
ants being able to get a disproportionate share of the net-
work. To avoid this, we argue for bandwidth to be al-
located in proportion to the least paying of communica-
tion partners. In other words, the bandwidth allocated to
a flow should be limited by both source and destination

1Typically Binter < V∗Bmin. If Binter = V∗Bmin, no hierarchy is used
and VMs simply get the same minimum bandwidth for all their traffic.

payment. For example, consider a flow between VMs p
and q belonging to tenants P and Q. The minimum band-
width for these VMs is Bmin

P and Bmin
Q , and they have a

total of Np and Nq flows respectively. Note that Bmin
P re-

flects the payment for VM p. Assuming a VM’s payment
is distributed evenly amongst its flows, p’s payment for
the p–q flow is Bmin

P /Np. Similarly, q’s payment for the
flow is Bmin

Q /Nq. Hence, this allocation policy says the
flow should be allocated bandwidth in proportion to the

smaller of these values, i.e., min(Bmin
P

Np
,

Bmin
Q
Nq

).2

To achieve this, we assign appropriate weights to flows
and allocate them network bandwidth based on weighted
max-min fairness. So the bandwidth for a flow between
VMs p and q, as determined by the bottleneck link along
its path, is given by

Bp,q =
wp,q

wT
∗C, where wp,q = min(

Bmin
P

Np
,

Bmin
Q

Nq
) (1)

Here, wp,q is the weight for this flow, C is the capacity of
the bottleneck link and wT is the sum of the weights for
all flows across the link. Note that the weight for a flow
is equal to the rate the flow would achieve on the hose
model. Hence, we call this allocation “Hose-compliant”.

Below we discuss how hose-compliance leads to upper
bound proportionality and can also meet the other two
network sharing requirements.
Req 3. Upper-bound Proportionality. Hose-compliant
bandwidth allocation satisfies upper bound proportional-
ity. The intuition here is that since the weight for each
flow is limited by both the source and destination pay-
ments, the aggregate weight for a VM’s flows and hence,
its aggregate bandwidth has an upper bound. Formally,
the aggregate weight for a VM p’s flows–

waggregate
p = ∑

q∈dst(p)
wp,q = ∑

q
min(

Bmin
P

Np
,

Bmin
Q

Nq
)

⇒ waggregate
p ≤∑

q

Bmin
P

Np
=

Bmin
P

Np
∗Np = Bmin

P (2)

So the aggregate weight for a VM’s flows cannot ex-
ceed its minimum bandwidth. This aggregate weight, in
turn, dictates the VM’s aggregate bandwidth. This means
that a tenant cannot acquire bandwidth disproportionate
to its payment. More precisely, this yields the following
constraint for a VM’s total bandwidth on any link–

Bp = ∑
q∈dst(p)

wp,q

wT
∗C =

waggregate
p

wT
∗C ≤ Bmin

P

Bmin
P +wT ′

∗C

where Bp is the total bandwidth for VM p on the link,
wT ′ is the sum of weights for all non-p flows and C is

2A VM may favor some flows over others and choose to distribute
its payment unevenly across its flows. This can be used by service
providers to offer differentiated services to their clients. The allocation
policy can accommodate such scenarios.

the link capacity. Hence, hose-compliant allocation re-
sults in an upper bound for a VM’s bandwidth on any
link. This upper bound depends on the VM’s minimum
bandwidth (and hence, its payment).

To understand this, let’s revisit the inter-tenant sce-
nario in Figure 2. Assume a minimum bandwidth of
100 Mbps for all VMs. With hose-compliant allocation,
the weight for the p1–r1 flow is min(100

1 , 100
1) = 100

while the weight for q1–r2 flow is min(100
3 , 100

1) = 100
3 .

Similarly, the weight for the q1–r3 and q1–r4 flow is
100

3 too. Hence, the actual bandwidth for the p1–r1 flow
is 500, while the other three flows get 500

3 each. Note
that even though tenant Q has three flows, their aggre-
gate weight is the same as the weight for P’s single flow.
Hence, both tenants get the same bandwidth. This is de-
sirable as both of them pay for a single VM. Even if ten-
ant Q were to communicate with more VMs, the aggre-
gate weight of its flows will never exceed 100. Thus, by
bounding the aggregate weight for a VM’s traffic, we en-
sure an upper bound for the impact it can have on any
network link and hence, on the datacenter network.

Req 1. Min-guarantee. Minimum guarantees for VMs
can be used to determine the minimum bandwidth that
their flows should achieve. For example, in Figure 3, if
VMs p and q communicate with Np and Nq VMs each,
then the bandwidth for a p–q flow should be at least

min(Bmin
P

Np
,

Bmin
Q
Nq

). With hose-compliant allocation, this is
also the flow’s weight wp,q. This observation simplifies
ensuring that flows do get their minimum bandwidth.

To ensure a flow’s actual bandwidth always exceeds its
guarantee, the total weight for all traffic that can traverse
a link should not exceed its capacity. Formally, to ensure
Bp,q ≥ wp,q, we need wT ≤C (see equation 1). This con-
dition can be used to design a VM placement algorithm
that ensures the condition holds across all links in the
datacenter. §4.1 presents such an algorithm.

Req 2. High utilization. Hose-compliant allocation is
work conserving. Since flows are assigned bandwidth in
a weighted fashion, any VM with network demand is al-
lowed to use spare capacity on network links. Beyond
work conservation, high utilization also requires that ten-
ants not be disincentivised to use spare bandwidth. This
can be achieved by making the flow weights vary from
link-to-link, as proposed in [14]. However, for brevity,
we omit this extension in the rest of the paper.

4 Hadrian

Apart from a policy for bandwidth allocation, a complete
network sharing solution has to include an admission
control and VM placement mechanism to achieve proper
network sharing. Guided by this, we design Hadrian, a

network sharing framework for multi-tenant datacenters
that caters to both intra- and inter-tenant communication.
Hadrian relies on the following two components.
• VM Placement. A logically centralized placement

manager, upon receiving a tenant request, performs ad-
mission control and maps the request to datacenter
servers. This allocation of VMs to physical servers ac-
counts for the minimum bandwidth requirements and
communication dependencies of tenants.
• Bandwidth Allocation. Hose-compliant allocation is

used to assign network bandwidth to flows.

4.1 VM placement
VM placement problems are often mapped to multi-
dimensional packing with constraints regarding vari-
ous physical resources [23]. Our setting involves two
resources– each tenant requires empty VM slots on phys-
ical servers and minimum bandwidth on the network
links connecting them. The key novelty in our approach
is that we model minimum bandwidth requirements and
communication dependencies of tenants as a max-flow
network. This allows us to convert our two-dimensional
placement constraints into a simple set of constraints re-
garding the number of VMs that can be placed in a given
part of the datacenter.

The placement discussion below focuses on tree-like
physical network topologies like the multi-rooted tree
topologies used today. Such topologies are hierarchi-
cal, made up of sub-trees at each level. Also, it as-
sumes that if the topology offers multiple paths be-
tween VMs, the underlying routing protocol load bal-
ances traffic across them. This assumption holds for fat-
tree topologies [24,25] that use multi-pathing mecha-
nisms like ECMP, VLB [24] and Hedera [26].

4.1.1 Characterizing bandwidth requirements
Hose-compliant bandwidth allocation simplifies the
problem of ensuring minimum VM bandwidth. As ex-
plained in §3.2.1, to satisfy the minimum guarantees of
VMs, the provider needs to ensure the total weight for all
traffic that can traverse any network link should not ex-
ceed the link’s capacity. Thus, we need to quantify the to-
tal weight for traffic across any given link. To explain our
approach, we use an example scenario involving three
tenants, P, Q and R across any network link. The link
has p VMs for tenant P to the left and the remaining p′

VMs to the right. Similarly, there are q and r VMs for Q
and R on the left, and q′ and r′ VMs on the right.

With hose-compliant bandwidth allocation, the ag-
gregate weight for any VM’s traffic cannot exceed its
minimum guarantee (equation 2). So the total weight
for traffic from all VMs on the left of the link can-
not exceed the sum of their minimum bandwidths, i.e.,
∑(pBmin

P +qBmin
Q + rBmin

R). The same holds for VMs on

1

p’

…
.

1

q’

…
.

1

r’

…
.

1

p

…
.

1

q

…
.

1

r

…
.

BP
min

BP
min

BQ
min

BQ
min

BR
min

BR
min

BP
min

BP
min

BQ
min

BQ
min

BR
min

BR
min

BP
inter

BQ
inter

BR
inter

BP
inter

BQ
inter

BR
inter

SRC DST

Figure 5: Flow network to capture the bandwidth
needed on a link that connects p VMs of tenant P on
the left to p′ VMs on the right, and so on for tenants
Q and R. Circles represent VMs, solid rectangles are
intra-tenant nodes and shaded rectangles are inter-
tenant nodes.

the right of the link. Further, since the weight for any
given flow is limited by both its source and destination,
the total weight for all traffic across the link is limited by
both the total weight for VMs on the left and for VMs on
the right of the link.

However, this analysis assumes all VMs can talk to
each other and the same guarantees apply to both intra-
and inter-tenant traffic. Accounting for communication
dependencies and hierarchical guarantees leads to even
more constraints regarding the total weight for the link’s
traffic. To combine these constraints, we express them
as a flow network. A flow network is a directed graph
where each edge has a capacity and can carry a flow not
exceeding the capacity of the edge. Note that this flow
is different from “real” flows across the datacenter net-
work. Hereon, we use “link” to refer to physical network
links while “edge” corresponds to the flow network.

Figure 5 shows the flow network for the link in our
example and is explained below. All unlabeled edges
have an infinite capacity. Each VM to the left of the
physical link is represented by a node connected to the
source node, while each VM to the right of the link
is represented by a node connected to the destination.
The VM nodes for any given tenant are connected to
“intra-tenant” nodes (solid rectangles) by edges whose
capacity is equal to the minimum bandwidth for the VM.
These edges represent the constraint that the weight for
a VM’s traffic cannot exceed its minimum bandwidth.
The two intra-tenant nodes for each tenant are connected
by an edge of infinite capacity (long-dashed edge). Fur-
ther, the two intra-tenant nodes for each tenant are con-
nected to “inter-tenant” nodes (shaded rectangles) by
edges whose capacity is equal to the tenant’s minimum
inter-tenant bandwidth. This constrains the total weight
for inter-tenant traffic that each tenant can generate. Fi-
nally, based on the tenant communication dependencies,
the appropriate inter-tenant nodes are connected to each

other (short-dashed edges). For our example, tenant Q
can communicate with P and R, so inter-tenant nodes of
Q are connected to those of P and R.

The max-flow for this flow network gives the total
weight for all traffic across the link. This, in turn, is the
bandwidth required on the physical link to ensure that
the bandwidth guarantees of VMs are met.

4.1.2 Finding Valid Placements
Given a tenant request, a valid placement of its VMs
should satisfy two constraints. First, VMs should only be
placed on empty slots on physical hosts. Second, after the
placement, the bandwidth required across each link in the
datacenter should not exceed the link’s capacity. The VM
Placement problem thus involves finding a valid place-
ment for a tenant’s request. We designed a greedy, first-
fit placement algorithm that we briefly sketch here. A
formal problem definition, algorithm details and pseudo
code are available in [27].

Instead of trying to place VMs while satisfying con-
straints across two dimensions (slots and bandwidth), we
use the flow-network formulation to convert the band-
width requirements on each physical link to constraints
regarding the number of VMs that can be placed inside
the sub-tree under the link, i.e., in the host, rack or pod
under the link. Hence, given a tenant request, its place-
ment proceeds as follows. We traverse the network topol-
ogy in a depth-first fashion. Constraints for each level of
the topology are used to recursively determine the maxi-
mum number of VMs that can be placed at sub-trees be-
low the level, and so on till we determine the number of
VMs that can be placed on any given host. VMs are then
greedily placed on the first available host, and so on un-
til all requested VMs are placed. The request is accepted
only if all VMs can be placed.

A request can have many valid placements. Since data-
center topologies typically have less bandwidth towards
the root than at the leaves, the optimization goal for the
placement algorithm is to choose placements that reduce
the bandwidth needed at higher levels of the datacen-
ter hierarchy. To achieve this, we aim for placement lo-
cality which comprises two parts. First, a tenant’s VMs
are placed close to VMs of existing tenants that it has
communication dependencies with. Second, the VMs are
placed in the smallest sub-tree possible. This heuristic
reduces the number and the height of network links that
may carry the tenant’s traffic. It preserves network band-
width for future tenants, thus improving the provider’s
ability to accommodate them.

4.2 Bandwidth allocation
Hadrian uses hose-compliant bandwidth allocation. This
can be achieved in various ways. At one end of the spec-
trum is an end-host only approach where a centralized

controller monitors flow arrivals and departures to calcu-
late the weight and hence, the rate for individual flows.
These rates can then be enforced on physical servers. At
the other end is a switch-only approach where switches
know the VM bandwidth guarantees and use weighted
fair queuing to achieve weighted network sharing. Both
these approaches have drawbacks. The former is hard to
scale since the controller needs to track the utilization of
all links and all flow rates. The bursty nature of cloud
traffic makes this particularly hard. The latter requires
switches to implement per-flow fair queuing.

We adopt a hybrid approach involving end-hosts and
switches. The goal here is to minimize the amount of net-
work support required by moving functionality to trusted
hypervisors at ends. Our design is based on explicit con-
trol protocols like RCP [28] and XCP [29] that share
bandwidth equally and explicitly convey flow rates to
end hosts. Hose-compliance requires weighted, instead
of an equal, allocation of bandwidth. We provide a de-
sign sketch of our bandwidth allocation below.

To allow VMs to use any and all transport protocols,
their traffic is tunneled inside hypervisor-to-hypervisor
flows such that all traffic between a pair of VMs counts
as one flow. Traffic is only allowed to other VMs of the
same tenant and to VMs of peers. The main challenge
is determining the rate for a flow which, in turn, is dic-
tated by the flow’s weight. The weight for a p–q flow

is min(Bmin
P

Np
,

Bmin
Q
Nq

). The source hypervisor hosting VM

p knows Bmin
P and Np while the destination hypervisor

knows Bmin
Q and Nq. Thus, the source and destination hy-

pervisor together have all the information to determine a
flow’s weight. For each flow, the hypervisor embeds Bmin

and N into the packet header, and over the course of the
first round trip, the hypervisors at both ends have all the
information to calculate the weights.

Packet headers also contain the flow weight. For the
first round trip, hypervisors set the weight to a default
value. Switches along the path only track the sum of the
weights, S, for all flows through them. For a flow with
weight w, its rate allocation on a link of capacity C is
w
S ∗C. Each switch adds this rate allocation to the packet
header. This reaches the destination and is piggybacked
to the source on the reverse path. The source hypervisor
enforces the rate it is allocated, which is the minimum of
the rates given by switches along the path. To account for
queuing or under-utilization due to insufficient demand,
switches adjust C using the RCP control equation.

This basic design minimizes switch overhead; they do
not need to maintain per-flow state. However, it does
not support hierarchical guarantees. With such guaran-
tees, the weight for a flow between different tenants de-
pends on the total number of inter-tenant flows each of
them have. Hence, hypervisors at the end of a flow do

not have enough information to determine its weight.
Instead, switches themselves have to calculate the flow
weight. In this extended design, the hypervisor also em-
beds the VM-id, the tenant-id, the inter-tenant band-
width guarantee for the source and destination VM in
the packet header. Each switch maintains a count of the
number of inter-tenant flows for each tenant traversing
it. Based on this, the switch can determine the weight
for any flow and hence, its rate allocation. Thus switches
maintain per-tenant state. The details for this extended
design are available in [27].

4.3 Implementation
Our proof-of-concept Hadrian implementation com-
prises two parts.

(1). A placement manager that implements the place-
ment algorithm. To evaluate its scalability, we measured
the time to place tenant requests in a datacenter with
100K machines. Over 100K representative requests, the
median placement time is 4.13ms with a 99th percentile
of 2.72 seconds. Note that such placement only needs to
be run when a tenant is admitted.

(2). For bandwidth allocation, we have implemented
an extended version of RCP (RCPw) that distributes net-
work bandwidth in a weighted fashion, and is used for
the hypervisor-to-hypervisor flows. This involves an end-
host component and a switch component.

Ideally, the end-host component should run inside the
hypervisor. For ease of prototyping, our implementation
resides in user space. Application packets are intercepted
and tunneled inside RCPw flows with a custom header.
We have a kernel driver that binds to the Ethernet inter-
face and efficiently marshals packets between the NIC
and the user space RCPw stack. The switch is imple-
mented on a server-grade PC and implements a store and
forward architecture. It uses the same kernel driver to
pass all incoming packets to a user space process.

In our implementation, switches allocate rate to flows
once every round trip time. To keep switch overhead
low, we use integer arithmetic for all rate calculations.
Although each packet traverses the user-kernel space
boundary, we can sustain four 1Gbps links at full duplex
line rate. Futher, experiments in the next section show
that we can achieve a link utilization of 96%. Overall,
we find that our prototype imposes minimal overhead on
the forwarding path.

4.4 Design discussion
Other placement goals. Today, placement of VMs in
datacenters is subject to many constraints like their CPU
and memory requirements, ensuring fault tolerance, en-
ergy efficiency and even reducing VM migrations [30].
Production placement managers like SCVMM [31] use
heuristics to meet these constraints. Our flow network

formulation maps tenant network requirements to con-
straints regarding VM placement which can be added to
the set of input constraints used by existing placement
managers. We defer an exploration of such extensions
to future work. We do note that our constraints can be
at odds with existing requirements. For example, while
bandwidth guarantees entail placement locality, fault tol-
erance requires VMs be placed in different fault domains.

Hose-compliant allocation. Allocating bandwidth in
proportion to the least paying of communication partners
has implications for provisioning of cloud services. A
service provider willing to pay for VMs with higher min-
imum bandwidth (and higher weight) will only improve
the performance of its flows that are bottlenecked by the
weight contributed by the service VMs. Performance for
flows bottlenecked by client VMs will not improve. This
is akin to network performance across the Internet today.
When clients with poor last mile connectivity access a
well-provisioned Internet service, their network perfor-
mance is limited by their own capacity. Allocating band-
width based on the sum of payments of communicating
partners avoids this but at the expense of allowing net-
work abuse.

5 Evaluation
We deployed our prototype implementation across a
small testbed comprising twelve end-hosts arranged
across four racks. Each rack has a top-of-rack (ToR)
switch, and the ToR switches are connected through a
root switch. All switches and end-hosts are Dell T3500
servers with a quad core Intel Xeon 2.27GHz proces-
sor, 4GB RAM and 1 Gbps interfaces, running Win-
dows Server 2008 R2. Given our focus on network per-
formance, the tenants are not actually allocated VMs
but simply run as a user process. With 8 VM slots per
host, the testbed has a total of 96 slots. We complement
the testbed experiments with large-scale simulations. For
this, we developed a simulator that models a multi-tenant
datacenter with a three tier network topology. All simula-
tion results here are based on a datacenter with 16K hosts
and 4 VMs per host, resulting in 64K VMs. The network
has an oversubscription of 1:10.

Overall, our evaluation covers three main aspects: (i)
We combine testbed and simulation experiments to illus-
trate that Hadrian, by ensuring minimum VM bandwidth,
benefits both tenants and providers, (ii) We use simula-
tions to quantify the benefits of relaxing bandwidth guar-
antee semantics, and (iii) We use testbed experiments to
show hose-compliance mitigates aggressive behavior in
inter-tenant settings.

5.1 Cloud emulation experiments
We emulate the operation of a cloud datacenter on our
testbed (and in the simulator) as follows. We generate

Placement→ Greedy Dependency Hadrian’s
B/w Allocation -aware placement

Per-flow Baseline Baseline+ –
Hose-compliant – – Hadrian

Reservations – – Oktopus [11]
Per-source Seawall [12] – Seawall

PS-L FairCloud [14] – FairCloud

Table 1: Solution space for cloud network sharing

a synthetic workload with tenant requests arriving over
time. A placement algorithm is used to allocate the re-
quested VMs and if the request cannot be placed, it is
rejected. The arrival of tenants is a Poisson process. By
varying the rate at which tenants arrive, we control the
target VM occupancy of the datacenter. This is the frac-
tion of datacenter VMs that, on average, are expected to
be occupied. As for bandwidth guarantees, tenants can
choose from three classes for their minimum bandwidth–
50, 150 and 300 Mbps. By varying the fraction of tenant
requests in each class, we control the average minimum
bandwidth for tenants.

Tenants. We model two kinds of tenants– service ten-
ants that have a wildcard (*) communication dependency
and client tenants that depend on zero or more service
tenants. Tenants request both VMs (V) and a minimum
bandwidth (Bmin). Each tenant runs a job involving net-
work flows; some of these flows are intra-tenant while
others are to VMs of service tenants. A job finishes when
its flows finish. The fraction F ∈ [0,1] of a tenant’s flows
that are inter-tenant allows us to determine the minimum
bandwidth required by the tenant for inter-tenant com-
munication. Overall, each tenant request is characterized
by <V, Bmin, V*Bmin*F, dependencies>.

By abstracting away non-network resources, this sim-
ple workload model allows us to directly compare vari-
ous network sharing approaches. While the workload is
synthetic, we use our datacenter measurements to ensure
it is representative of today’s datacenters. For instance,
the fraction of client tenants with dependencies (20%),
the average number of dependencies (2), the fraction of
inter-tenant flows (10-40%), and other workload param-
eters are as detailed in §2.1.

In the following sections, we compare Hadrian against
alternate network sharing solutions. Since a complete
network sharing framework ought to include both care-
ful VM placement and bandwidth allocation, we consider
various state of the art solutions for both–

VM Placement. We experiment with three place-
ment approaches. (i) With Greedy placement, a ten-
ant’s VMs are greedily placed close to each other. (ii)
With Dependency-aware placement, a tenant’s VMs are
placed close to each other and to VMs of existing ten-
ants that the tenant has a dependency on. (iii) Hadrian’s
placement, described in §4.1, which is aware of tenant
minimum bandwidths and their dependencies.

Bandwidth allocation. Apart from Per-flow, Per-

 0

 25

 50

 75

 100

Baseline Baseline+ Hadrian

A
cc

e
p
te

d

re
q
u
e
st

s
(%

) Testbed Simulations

Figure 6: Accepted requests in testbed and simulator.

source and PS-L sharing, we evaluate two other poli-
cies. (i) With hose-compliant allocation, bandwidth is
allocated as described in §3.2. (ii) With “Reservations”,
VMs get to use their guaranteed bandwidth but no more.
Hence, this allocation policy is not work conserving.

Table 1 summarizes the solution space for cloud net-
work sharing. Note that by combining Hadrian’s place-
ment with Reservations, we can extend Oktopus [11] to
inter-tenant settings. We begin by focussing on the ap-
proaches in the first two rows. The approach of placing
tenant VMs greedily combined with the Per-flow sharing
of the network reflects the operation of today’s datacen-
ters, and is thus used as a Baseline for comparison.

5.1.1 Testbed experiments
The experiment involves the arrival and execution of 100
tenant jobs on our testbed deployment. The average min-
imum bandwidth for tenants is 200 Mbps and requests ar-
rive such that target VM occupancy is 75%. Note that op-
erators like Amazon EC2 target an average occupancy of
70-80% [32]. Since our prototype uses weighted RCP, we
emulate various bandwidth allocation policies by setting
flow weights appropriately; for example, for Per-flow al-
location, all flows have the same weight. Figure 6 shows
that Baseline only accepts 35% of the requests, Base-
line+ accepts 55%, while Hadrian accepts 72%. This is
despite the fact that Hadrian will reject a request if there
is insufficient bandwidth while the other approaches will
not. To show that Hadrian leads to comparable benefits
at datacenter scale, we rely on large-scale simulations.

However, we first validate the accuracy of our simu-
lator. To this end, we replayed the same set of jobs in
the simulator. The figure also shows that the percentage
of accepted requests in the testbed is similar to those ac-
cepted in the simulator; the difference ranges from 0-2%.
Further, the completion time for 87% of the requests is
the same across the testbed and simulator; at the 95th per-
centile, requests are 17% faster in the simulator. This is
because the simulator achieves perfect network sharing
(e.g., no overheads). This gives us confidence in the fi-
delity of the simulation results below.

5.1.2 Large-scale simulations
We simulate a stream of 25K jobs on a datacenter with
16K servers. Figure 7(left) shows that, with Hadrian, the

 0

 20

 40

 60

 80

 100

Baseline
Baseline+

Oktopus
Hadrian

A
cc

e
p
te

d
 r

e
q
u
e
st

s
(%

)

 0

 20

 40

 60

 80

 100

Baseline
Baseline+

Oktopus
Hadrian

V
M

-l
e
v
e
l
o
cc

u
p
a
n
cy

 (
%

)

Figure 7: Provider can accept more requests with
Hadrian. (average Bmin = 200 Mbps)

 0
 20
 40
 60
 80

 100

 0 1 2 3 4 5

C
D

F
(%

)

Actual/Worse-case Completion Time

Baseline
Baseline+

Oktopus
Hadrian

Figure 8: With Baseline (and Baseline+), many ten-
ants receive poor network performance and finish
past the worst-case completion time estimate.

provider is able to accept 20% more requests than both
Baseline and Baseline+. We also simulate the use of hard
reservations for allocating bandwidth (Oktopus), and find
that Hadrian can still accept 6% more requests. Further,
figure 7(right) shows the average VM occupancy during
the experiment. With Hadrian, the average VM utiliza-
tion is 87% as compared to 99.9% with Baseline and
90% with Oktopus. This is because jobs finish earlier
with Hadrian. Thus, Hadrian allows the provider to ac-
commodate more requests while reducing the VM-level
utilization which, in turn, allows more future requests to
be accepted.

To understand this result, we examine the perfor-
mance of individual requests. Since tenants are associ-
ated with minimum bandwidths, each tenant can estimate
the worst-case completion time for its flows and hence,
its job. Figure 8 shows the CDF for the ratio of a job’s
actual completion time to the worst-case estimate. With
Hadrian, all requests finish before the worst-case esti-
mate. With Oktopus, tenants get their requested band-
width but no more, so most requests finish at the worst-
case estimate.3 As a contrast, with Baseline, many ten-
ants get very poor network performance. The completion
time for 15% tenants is 1.25x the worst-case estimate and
for 5% tenants, it is 3.4x the worst-case. These outliers
occupy VMs longer, thus driving up utilization but reduc-
ing actual throughput. By ensuring minimum bandwidth
for VMs and thus avoiding such outliers, Hadrian allows
the provider to accept more requests.

3Requests that finish earlier with Oktopus have all their flows be-
tween co-located VMs in the same physical machine, hence achieving
bandwidth greater than their reservation, so the job can finish early.

 40

 60

 80

 100

Per-Flow PS-L Per-Source HoseA
cc

e
p

te
d

 r
e
q

u
e
st

s
(%

)

Bandwidth allocation strategy

Greedy Placement Hadrian Placement

Figure 9: With non-aggressive tenants, Hadrian’s
placement provides most of the gains.

Beyond this, we also experimented with other val-
ues for the simulation parameters– the average mini-
mum bandwidth, the target occupancy, the network over-
subscription and the percentage of inter-tenant traffic.
The results are along expected lines so we omit them
for brevity but they are available in [27]. For exam-
ple, Hadrian’s gains increase as inter-tenant traffic in-
creases and network oversubscription increases. Further,
Hadrian can offer benefits even when there is no oversub-
scription. While it accepts the same number of requests
as Baseline, 22% of requests are outliers with Baseline.

Cost analysis. Today’s cloud providers charge tenants
a fixed amount per hour for each VM; for instance, Ama-
zon EC2 charges $0.08/hr for small VMs. Hence, the
improved tenant performance with Hadrian has implica-
tions for their cost too. For the experiment above, the av-
erage tenant would pay 34% less with Hadrian than Base-
line. This is because there are no outliers receiving very
poor network performance. From the provider’s perspec-
tive though, there are two competing factors. Hadrian
allows them to accommodate more tenants but tenants
finish faster and hence, pay less. We find the provider’s
revenue with Hadrian is 82% of that with Baseline. This
reduction in revenue can be overcome by new pricing
models that account for the added value Hadrian offers.
Since Hadrian provides tenants with VMs that have min-
imum bandwidth, the provider can increase the price of
VMs. We repeat the cost analysis to determine how much
tenants would have to pay so that the provider remains
revenue neutral and find that the average tenant would
still pay 19% less. Overall, the results above show that
Hadrian allows the provider to offer network guarantees
while reducing the average tenant cost.

Importance of relaxed guarantee semantics. In the
experiments above, we find that with simple hose guar-
antees where all tenants are assumed to speak to each
other, the provider is only able to accept 1% of the re-
quests! However, when the provider is aware of tenant
dependencies, it can accept 85% of the requests. This is
because bandwidth constraints need to enforced on far
fewer links. Hierarchical guarantees allow the provider
to accept a further 5% requests. These results highlight
the importance of relaxed guarantee semantics.

Top of Rack
(ToR) Switch

Switch

qp
other

tenants
VM

slots

0

100

200

300

400

500

1 3 5 7 9 11 13 15

T
h
ro

u
g
h
p

u
t

fo
r

V
M

 p
 (

M
b

p
s)

Number of flows for VM q

PS-P/Flow/Src(In)
Src(out)
PS-L
Hose Compliant

(a) Testbed

0

100

200

300

400

500

1 3 5 7 9 11 13 15

T
h
ro

u
g
h
p

u
t

fo
r

V
M

 p
 (

M
b

p
s)

Number of flows for VM q

PS-P/Flow/Src(In)
Src(Out)
PS-L
Hose Compliant

(b) Simulator

Figure 10: By sending and receiving more flows, q can
degrade p’s network performance.

Importance of placement. We now also consider the
Per-source and PS-L allocation, and compare their per-
formance, when coupled with Greedy and Hadrian’s
placement. Figure 9 shows that Hadrian’s placement pro-
vides gains irrespective of how bandwidth is being allo-
cated. Here, the allocation policy does not have much
impact because all tenants have the same traffic pattern.
Hence, under scenarios with well-behaved tenants, VM
placement dictates the datacenter throughput. However,
as we show in the next section, when some tenants are
aggressive, the allocation policy does matter.

5.1.3 Benefits of hose-compliant allocation
To illustrate the benefits of hose-compliance relative to
alternate bandwidth allocation policies, we focus on a
simple scenario that captures aggressive tenant behavior.
The experiment involves two tenants, each with one VM
(p and q). As shown in Figure 10 (top), VM p has one
flow while VM q has a lot of flows to VMs of other ten-
ants. All flows are bottlenecked at the same link. VM q
could be acting maliciously and initiating multiple flows
to intentionally degrade p’s network performance. Alter-
natively, it could just be running a popular service that
sends or receives a lot of traffic which, in turn, can hurt
p’s performance. All VMs, including destination VMs,
have a minimum bandwidth of 300 Mbps.

Figures 10a and 10b show the average bandwidth for
VM p on the testbed and in the simulator respectively.
With hose-compliant allocation, VM p’s bandwidth re-
mains the same throughout. As a contrast, with other
policies, p’s bandwidth degrades as q has more flows.
This is because, with these approaches, there is no limit
on the fraction of a link’s bandwidth a VM can grab. This
allows tenants to abuse the network at the expense of oth-
ers. By bounding tenant impact, hose-compliant alloca-

tion addresses this. Note that with Per-source allocation,
p’s bandwidth does not degrade if both VMs are sending
traffic (labelled as “out”) but it does if they are receiving
traffic (labelled as “in”). Instead, hose-compliant alloca-
tion is not impacted by the traffic direction.

The figures also show that the testbed results closely
match simulation results for all policies. With hose-
compliance, VM p’s bandwidth on the testbed is
480 Mbps as compared to the ideal 500 Mbps. This
shows our weighted RCP implementation is performant
and can achieve a link utilization of 96%.

6 Related work
Many recent efforts tackle the cloud network sharing
problem. They propose different sharing policies, includ-
ing reservations [9,11], time-varying reservations [33],
minimum bandwidth reservations [10,14,34], per-source
fairness [12] and per-tenant fairness [13]. Mogul et
al. [35] present a useful survey of these proposals. How-
ever, as detailed in this paper, none of these proposals
explicitly target inter-tenant communication which poses
its own challenges.

To achieve desirable network sharing, we have bor-
rowed and extended ideas from many past proposals. The
hose model [20] has been used to capture both reserva-
tions [11] and minimum bandwidth guarantees [14,21].
We extend it by adding communication dependencies
and hierarchy. The use of hierarchy means that Hadrian
offers aggregate, “per-tenant” minimum guarantees for
inter-tenant traffic. This is inspired by Oktopus [11]
and NetShare [13] that offer per-tenant reservations and
weights respectively. CloudPolice [3] argues for network
access control in inter-tenant settings. However, many
cloud services today are open to tenants. Hence, network
access control needs to be coupled with a robust network
sharing mechanism like Hadrian.

7 Concluding remarks
Inter-tenant communication plays a critical role in to-
day’s datacenters. In this paper, we show this neces-
sitates a rethink of how the cloud network is shared.
To ensure provider flexibility, we modify the kind of
bandwidth guarantees offered to tenants. To ensure ro-
bust yet proportional network sharing, we argue for cou-
pling the maximum bandwidth allocated to tenants to
their payment. Tying these ideas together, we propose
Hadrian, a network sharing framework that uses hose-
compliant allocation and bandwidth-aware VM place-
ment to achieve desirable network sharing properties for
both intra- and inter-tenant communication. Our evalua-
tion shows that Hadrian’s mechanisms are practical. Fur-
ther, apart from improving the performance of both ten-
ants and providers, it ensures robust network sharing.

References

[1] “Amazon AWS Products,” http://aws.amazon.com/
products/.

[2] “Amazon AWS Marketplace,” http://aws.amazon.
com/marketplace/.

[3] L. Popa, M. Yu, S. Ko, S. Ratnasamy, and I. Sto-
ica, “CloudPolice: Taking access control out of the
network,” in Proc. of ACM HotNets, 2010.

[4] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloud-
Cmp: comparing public cloud providers,” in Proc.
of ACM IMC, 2010.

[5] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Run-
time measurements in the cloud: observing, ana-
lyzing, and reducing variance,” in Proc. of VLDB,
2010.

[6] “Measuring EC2 performance,” http:
//tech.mangot.com/roller/dave/entry/
ec2 variability the numbers revealed.

[7] A. Iosup, N. Yigitbasi, and D. Epema, “On the Per-
formance Variability of Cloud Services,” Delft Uni-
versity, Tech. Rep. PDS-2010-002, 2010.

[8] E. Walker, “Benchmarking Amazon EC2 for high
performance scientific computing,” Usenix Login,
vol. 33, October 2008.

[9] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong,
P. Sun, W. Wu, and Y. Zhang, “SecondNet: A Data
Center Network Virtualization Architecture with
Bandwidth Guarantees,” in Proc. of ACM CoNEXT,
2010.

[10] P. Soares, J. Santos, N. Tolia, and D. Guedes,
“Gatekeeper: Distributed Rate Control for Virtual-
ized Datacenters,” HP Labs, Tech. Rep. HP-2010-
151, 2010.

[11] H. Ballani, P. Costa, T. Karagiannis, and A. Row-
stron, “Towards Predictable Datacenter Networks,”
in Proc. of ACM SIGCOMM, 2011.

[12] A. Shieh, S. Kandula, A. Greenberg, and C. Kim,
“Sharing the Datacenter Network,” in Proc. of
Usenix NSDI, 2011.

[13] T. Lam, S. Radhakrishnan, A. Vahdat, and
G. Varghese, “NetShare: Virtualizing Data Cen-
ter Networks across Services,” University of Cali-
fornia, San Diego, Tech. Rep. CS2010-0957, May
2010.

[14] L. Popa, G. Kumar, M. Chowdhury, A. Krishna-
murthy, S. Ratnasamy, and I. Stoica, “FairCloud:
Sharing the Network In Cloud Computing,” in Proc
of ACM SIGCOMM, 2012.

[15] “Windows Azure Pricing,” http://www.
windowsazure.com/en-us/pricing/details.

[16] “Amazon EC2 Pricing,” http://aws.amazon.com/
ec2/pricing/.

[17] “Amazon Case Studies,” http://aws.amazon.com/
solutions/case-studies/.

[18] D. Ghoshal, R. S. Canon, and L. Ramakrishnan,
“I/O performance of virtualized cloud environ-
ments,” in Proc. of DataCloud-SC, 2011.

[19] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and
M. Humphrey, “Early observations on the perfor-
mance of Windows Azure,” in Proc. of HPDC,
2010.

[20] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra,
K. K. Ramakrishnan, and J. E. van der Merive, “A
flexible model for resource management in virtual
private networks,” in Proc. of ACM SIGCOMM,
1999.

[21] H. Ballani, P. Costa, T. Karagiannis, and A. Row-
stron, “The Price Is Right: Towards Location-
independent Costs in Datacenters,” in Proc. of ACM
HotNets, 2011.

[22] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe,
and S. Shenker, “Off by Default!” in Proc. of ACM
HotNets, 2005.

[23] S. Lee, R. Panigrahy, V. Prabhakaran, V. Rama-
subramanian, K. Talwar, L. Uyeda, and U. Wieder,
“Validating Heuristics for Virtual Machines Con-
solidation,” MSR, Tech. Rep. MSR-TR-2011-9,
2011.

[24] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-
gupta, “VL2: a scalable and flexible data center net-
work,” in Proc. of ACM SIGCOMM, 2009.

[25] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scal-
able, commodity data center network architecture,”
in Proc. of ACM SIGCOMM, 2008.

[26] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat, “Hedera: Dynamic Flow
Scheduling for Data Center Networks,” in Proc. of
Usenix NSDI, 2010.

[27] H. Ballani, D. Gunawardena, and T. Karagiannis,
“Network Sharing in Multi-tenant Datacenters,”
MSR, Tech. Rep. MSR-TR-2012-39, 2012.

[28] N. Dukkipati, “Rate Control Protocol (RCP): Con-
gestion control to make flows complete quickly,”
Ph.D. dissertation, Stanford University, 2007.

[29] D. Katabi, M. Handley, and C. Rohrs, “Congestion
Control for High Bandwidth-Delay Product Net-
works,” in Proc. of ACM SIGCOMM, Aug. 2002.

[30] A. Rai, R. Bhagwan, and S. Guha, “Generalized
Resource Allocation for the Cloud,” in Proc of
ACM SOCC, 2012.

[31] “Microsoft System Center Virtual Machine
Manager,” http://www.microsoft.com/en-us/
server-cloud/system-center/default.aspx.

[32] “Amazon’s EC2 Generating 220M,”
http://cloudscaling.com/blog/cloud-computing/
amazons-ec2-generating-220m-annually.

[33] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The
Only Constant is Change: Incorporating Time-
Varying Network Reservations in Data Centers,” in
Proc of ACM SIGCOMM, 2012.

[34] V. Jeyakumar, M. Alizadeh, D. Mazires, B. Prab-
hakar, and C. Kim, “EyeQ: Practical Network Per-
formance Isolation for the Multi-tenant Cloud,” in
Proc. of Usenix HotCloud, 2012.

[35] J. C. Mogul and L. Popa, “What we talk about when
we talk about cloud network performance,” ACM
CCR, Oct. 2012.

