
Outatime: Using Speculation to Enable Low-Latency Continuous Interaction
for Cloud Gaming

Kyungmin Lee� David Chu† Eduardo Cuervo† Johannes Kopf†

Sergey Grizan‡ Alec Wolman† Jason Flinn�
�Univeristy of Michigan †Microsoft Research ‡Siberian Federal University

Abstract
Gaming is very popular. Cloud gaming – where re-

mote servers perform game execution and rendering on
behalf of thin clients that simply send input and display
output frames – promises any device the ability to play
any game any time. Unfortunately, the reality is that
wide-area network latencies are often prohibitive; cel-
lular, Wi-Fi and even wired residential end host round
trip times (RTTs) can exceed 100ms, a threshold above
which many gamers tend to deem responsiveness unac-
ceptable.

In this paper, we present Outatime, a speculative ex-
ecution system for mobile cloud gaming that is able to
mask up to 250ms of network latency. Outatime pro-
duces speculative rendered frames of future possible out-
comes, delivering them to the client one entire RTT
ahead of time; clients perceive no latency. To achieve
this, Outatime combines: 1) future input prediction; 2)
state space subsampling and time shifting; 3) mispredic-
tion compensation; and 4) bandwidth compression.

To evaluate the prediction and speculation techniques
in Outatime, we use two high quality, commercially-
released games: a twitch-based first person shooter,
Doom 3, and an action role playing game, Fable 3.
Through user studies and performance benchmarks, we
find that players overwhelmingly prefer Outatime to tra-
ditional thin-client gaming where the network RTT is
fully visible, and that Outatime successfully mimics
playing across a low-latency network.
1 Introduction

Gaming is a popular activity. Recently, cloud gam-
ing – where datacenter servers execute the games on be-
half of thin clients that merely transmit UI input events
and display output rendered by the servers – has emerged
as an interesting alternative to traditional client-side exe-
cution. Cloud gaming offers several advantages. First,
every client can enjoy the high-end graphics provided
by powerful server GPUs. This is especially appealing
for devices such as down- and mid-market phones, basic
tablets, TVs and other displays lacking high-end GPUs.
Second, with cloud gaming, developers avoid two long-
standing challenges that arise with the vexing diversity
of devices: platform compatibility headaches and per-

platform performance tuning [35, 30, 24]. Third, server
management (e.g., for bug fixes, software updates, hard-
ware upgrades, content additions, etc.) is far easier than
modifying clients. Finally, players can select from a vast
library of titles and instantly play any of them. Sony,
Nvidia and Amazon are among the providers that have
released or announced cloud gaming services [1, 2, 3].

However, cloud gaming faces a key technical
dilemma: how can players attain real-time interactivity
in the face of wide-area latency? Real-time interactivity
means client input events should be quickly reflected on
the client display. User studies have shown that players
are sensitive to as little as 60 ms latency, and are aggra-
vated at latencies in excess of 100 ms [10, 25, 6]. A
further delay degradation from 150 ms to 250 ms lowers
user engagement by 75% [9].

One way to address latency is to move servers closer
to clients. Not only are decentralized edge servers more
expensive to build and maintain, local spikes in demand
cannot be routed to remote servers which further magni-
fies costs. Most importantly, high latencies are often at-
tributed to the networks’s last mile. Recent studies have
found that the 95th percentile of network latencies for
3G, Wi-Fi and LTE are over 600 ms, 300 ms and 400 ms,
respectively [16, 15, 27]. In fact, even well-established
residential wired last mile links tend to suffer from laten-
cies in excess of 100ms when under load [28, 5]. Unlike
non-interactive video streaming, buffering is not possible
for interactive gaming.

Instead, we propose to mitigate wide-area latency via
speculative execution. We present Outatime,1 a system
that delivers real-time gaming interactivity as fast as tra-
ditional local client-side execution, despite latencies up
to 250 ms. Outatime’s basic approach combines input
prediction with speculative execution to render mulitple
possible frame outputs which could occur RTT millisec-
onds in the future. Outatime employs the following tech-
niques to accomplish this.
Future Input Prediction: Given the user’s historical
tendencies and recent behavior, we show that some cate-
gories of user actions are highly predictable. We develop

1Outatime : a car so fast that it can time travel, enabling one to take
action in the past based on possible futures.

1

a Markov-based prediction model that examines recent
user input to forecast expected future input. We use two
techniques to improve prediction quality: supersampling
of input events, and constructing a Kalman filter to im-
prove users’ perception of smoothness.
State Space Subsampling and Time Shifting: Certain
user inputs (e.g., firing a gun) cannot be easily predicted.
For these, we use parallel speculative executions to ex-
plore multiple outcomes. However, the set of all possible
frames over long RTTs can be very large due to state
space explosion. To address this, we use two techniques:
state space subsampling, and event stream time shifting.
These greatly reduce possible outcomes with minimal
impact on the quality of interaction, thereby permitting
speculation within a reasonable budget.
Misprediction Compensation: When mispredictions
occur, Outatime enables the client to execute error com-
pensation on the (mis)predicted frame. The resulting
frame is very close to what the client ought to see. Our
misprediction compensation uses view interpolation, a
graphics technique that transforms pre-rendered images
from one viewpoint to a different viewpoint using only
a small amount of additional 3D metadata. Furthermore,
to prevent past prediction errors from propagating for-
ward, Outatime uses checkpoint/restore to recover from
speculative state.
Bandwidth Compression: The transmission of pos-
sible outcome frames from server to client consumes
added bandwidth. To reduce this overhead, we develop a
video encoding scheme which provides better compres-
sion than standard encoding by taking advantage of the
visual similarity of speculated frames.

To punctuate our emphasis on fast interaction, we
evaluate Outatime’s prediction techniques using two fast
action games where even small latencies are disadvan-
tageous. Doom 3 is a twitch-based first person shooter
where responsiveness is paramount. Fable 3 is a role
playing game with frequent fast action combat. Both are
high-quality, commercially-released games, and are very
similar to mobile games in the first person shooter and
role playing genres, respectively.

Through interactive gamer testing, we found that
players perceived only minor differences in responsive-
ness on Outatime when operating at up to 250 ms RTT
when compared head-to-head to a system with no la-
tency. Moreover, unlike in standard cloud gaming sys-
tems, Outatime players’ in-game skills performance and
task completion times did not drop off as RTT increased
up to 250 ms. Overall, player surveys indicated posi-
tive reception of gameplay on Outatime. Speculation’s
latency reduction benefits do come with a cost. We show
that while several of our compression techniques are able
to dampen increased bandwidth costs, Outatime exhibits

a bitrate that is a factor of 1.5− 4.5× higher than stan-
dard cloud gaming systems. On the whole, we believe
this is a reasonable trade-off for service providers who
are otherwise unable to offer users low-latency interac-
tivity.

The remainder of the paper is organized as follows.
§2 provides background on game architectures and the
impact of latency. §3 presents an overview of the Outa-
time architecture. §4 and §5 detail our two main methods
of speculation. §7 discusses how we reduce bandwidth
overhead. §8 covers the implementation. §9 evaluates
Outatime via user study and performance benchmarks.
§10 covers related work and §11 discusses implications
of the work.

2 Background & Impact of Latency
The vast majority of game applications are structured

around the game loop, a repetitive execution of the fol-
lowing stages: 1) read user input; 2) update game state;
and 3) render and display frame. Each iteration of this
loop is a logical tick of the game clock and corresponds
to 32ms of wall-clock time for an effective frame rate of
30 frames per second (fps).2 The time taken for one iter-
ation of the game loop is the frame time. Frame time is a
key metric for assessing interactivity since it corresponds
to the delay between a user’s input and observed output.

Network latency has an acute effect on interaction
for cloud gaming. In standard cloud gaming, the frame
time must include the additional overhead of the network
RTT, as illustrated in Figure 1a. Let time be discretized
into 32ms clock ticks, and let the RTT be 4 ticks (128ms).
At t5, the client reads user input i5 and transmits it to the
server. At t7, the server receives the input, updates the
game state, and renders the frame, f5. At t8, the server
transmits the output frame to the client, which receives
it at t10. Note that the frame time incurs the full RTT
overhead. In this example, an RTT of 128ms results in a
frame time of 160 ms.

3 Goals and System Architecture
For Outatime, responsiveness is paramount; Outa-

time’s goal is to consistently deliver low frame times
(< 32ms) at high frame rate (> 30fps) even in the face of
long RTTs and large jitter. In exchange, we are willing to
transmit a higher volume of data and potentially even in-
troduce (very small and very ephemeral) visual artifacts,
ideally sufficiently minor that most players rarely notice.

The basic principle underlying Outatime is to spec-
ulatively generate possible output frames and transmit
them to the client a full RTT ahead of the client’s ac-
tual corresponding input. As shown in Figure 1b, the
client sends input as before; at t0, the client sends the in-
put i0 which happens to be the input generated more than
one RTT interval prior to t5. The server receives i0 at t2,

2 1
30 f ps ≈ 32ms for mathematical convenience.

2

Client

t7 t8 t9

t0 t1 t2

…. ….

Server

TICK = 33ms

t5 t6 t7 t10 t11 t12

i
5

=> f
5
: rendering for t5

f
5
: frame for t5

i
5
: input for t5

frame time

…. ….

(a) Standard cloud gaming: Frame time depends on net latency.

i
0

=> i’1, i’2, …, i’5 => f’
5
: prediction for t5

Client

f’
5
: frame for t5i

5

t2 t3 t4

t0 t1 t2

…. ….

Server

i
0
: input for t0

frame time

TICK = 33ms

t5 t6 t7 t10 t11 t12

…. ….

(b) Outatime: Frame time is negligible.
Fig. 1: Comparison of frame delivery time lines. RTT= 4 ticks, server processing time = 1 tick.

RX InputRX Input

Navigation Impulse

Supersampled Markov

Prediction

Kalman Shake

Reduction

Partial Cube Map +

Depth Map Rendering

Parallel Timeline

Speculation

Event Subsampling +

Time Shifting

Joint Video Encoding

RTT < threshold?RTT < threshold?

View

Interpolation

Decode

Bitstream

Decode

Bitstream

Display FrameDisplay Frame

TX InputTX Input

Client Server

TX BitstreamTX Bitstream

RX BitstreamRX Bitstream

YES NO

Fig. 2: The Outatime Architecture. Bold boxes represent the
main areas of this paper’s technical focus.

computes a sequence of probable future input up to one
RTT later as i′1, i

′
2, ..., i

′
5 (we use ′ to denote speculation),

renders its respective frame f ′5, and sends these to the
client. Upon reception at the client at time t5, the client
verifies that its actual input sequence recorded during the
elapsed interval matches the server’s predicted sequence:
i1 = i′1, i2 = i′2, ..., i5 = i′5. If the input sequences match,
then the client can safely display f ′5 without modification
because we ensure that the game output is deterministic
for a given input [33]. If the input sequence differs, the
client applies error compensation to f ′5 and displays a
corrected frame. We describe error compensation in de-
tail in §4. Unlike in standard cloud gaming where clients
wait more than one RTT for a response, Outatime im-
mediately delivers response frames to the client after the
corresponding input.

Speculation performance in Outatime depends upon
being able to accurately predict future input and generate
its corresponding output frames. Outatime does this by
identifying two main classes of game input, and building
speculation mechanisms for each, as illustrated in Fig-
ure 2. The first class, navigation, consists of input events
that control view (rotation) and movement (translation)
and modify the player’s field of view. Navigation inputs
tend to exhibit continuity over short time windows, and
therefore Outatime makes effective predictions for navi-
gation. The second class, impulse, consists of events that
are inherently sporadic such as firing a weapon or acti-

vating an object, yet are fundamental to the player’s per-
ception of responsiveness. For example, in first person
shooters, instantaneous weapon firing is core to game-
play. Unlike navigation inputs, the sporadic nature of im-
pulse events makes them less amenable to prediction. In-
stead, Outatime generates parallel speculations for mul-
tiple possible future impulse time lines. To tame state
space explosion, Outatime subsamples the state space
and time shifts impulse events to the closest speculated
timeline. This enables Outatime to provide the player the
perception that impulse is handled instantaneously. Be-
sides navigation and impulse, we classify other input that
is slow relative to RTT as delay tolerant. One example of
delay tolerant input in Doom is the command that shows
the heads-up display. Delay tolerant input is not subject
to speculation, and we discuss how it is handled in §5.

Figure 2 also shows that Outatime, like standard cloud
gaming systems, makes minimal assumptions about
client capabilities. Namely, the client must perform
standard operations such as decode a bitstream, dis-
play frames and transmit standard input such as button,
mouse, keyboard and touch events. An additional re-
quirement for Outatime is that the client should be able
to execute view interpolation, a misprediction compen-
sation procedure which consists of basic graphics oper-
ations that can be performed efficiently on any device
with a GPU. In contrast, high-end games that run solely
on a client device demand much more powerful CPU and
GPU processing.

4 Speculation for Navigation
Navigation speculation entails predicting a sequence

of future navigation input events at discrete time steps.
Hence, we use a discrete time Markov chain for naviga-
tion inference. We experimented with more sophisticated
time series models [26], including neural network time-
series prediction as well as linear and polynomial re-
gression models, yet we observed that the Markov chain
performed comparably to these others for our task. We
first describe how we applied the Markov model to in-
put prediction, and our use of supersampling to improve
the inference accuracy. Next, we refine our prediction
in one of two ways, depending on the severity of the
expected error. We determine the expected error as a

3

function of RTT using an offline per-user training step.
When errors are sufficiently low (typically correspond-
ing to RTT< 40ms), we apply an additional Kalman filter
to reduce video “shake”). Otherwise, we use mispredic-
tion compensation on the client to post-process the frame
rendered by the server.
Basic Markov Prediction. We construct a Markov
model for navigation. Time is quantized, with each dis-
crete interval representing a game tick. Let the random
variable navigation vector Nt represent the change in 3-D
translation and rotation at time t:

Nt = {δx,t ,δy,t ,δz,t ,θx,t ,θy,t ,θz,t}
Each component above is quantized. Let nt represent
an actual empirical navigation vector received from the
client. Our state estimation problem is to find the maxi-
mum likelihood estimator N̂t+λ where λ is the RTT.

Using the Markov model, the probability distribution
of the navigation vector at the next time step is dependent
only upon the navigation vector from the current time
step: p(Nt+1|Nt). We predict the most likely navigation
vector N̂t+1 at the next time step as:

N̂t+1 = E[p(Nt+1|Nt = nt)]

= argmax
Nt+1

p(Nt+1|Nt = nt)

where Nt = nt indicates that the current time step has
been assigned a fixed value by sampling the actual user
input nt . In many cases, the RTT is longer than a sin-
gle time step (32ms). To handle this case, we predict the
most likely value after one RTT as:
N̂t+λ = argmax

Nt+λ

p(Nt+1|Nt = nt) ∏
i=1..λ−1

p(Nt+i+1|Nt+i)

where λ represents the RTT latency expressed in units of
clock ticks.

Our results indicate that the Markov assumption holds
up well in practice: namely, Nt+1 is memoryless (i.e., in-
dependent of the past given Nt). In fact, additional his-
tory in the form of longer Markov chains did not show
a measurable benefit in terms of prediction accuracy.
Rather than constructing a single model for the entire
navigation vector, instead we treat each component of
the vector N independently, and construct six separate
models. The benefit of this approach is that less training
is required when estimating N̂, and we observed that this
assumption of treating the vector components indepen-
dently does not hurt prediction accuracy. Below in §4,
we discuss the issue of training in more detail.
Supersampling. We further refine our navigation pre-
dictions by supersampling: sampling input at a rate that
is faster than the game’s usage of the input. We dis-
covered that supersampling helps with prediction accu-
racy empirically. Our hypothesis is that supersampling
provides a benefit because prediction accuracy degrades
non-linearly over time. To construct a supersampled

Markov model, we first poll the input device at the fastest
rate possible. This rate is dependent on the specific in-
put device. It is at least 100Hz for touch digitizers and at
least 125Hz for standard mice. With a 32ms clock tick,
we can often capture at least four samples per tick. We
then build the Markov model as before. The inference is
similar to the equation above, with the main difference
being the production operator incrementing by i +

= 0.25.
A summary of navigation prediction accuracy from the
user study described in §9 is shown in Figure 3. Most
dimensions of rotational and translational displacement
exhibit little performance degradation with longer RTTs.
Yaw (θx) exhibits the most error, and we show its perfor-
mance in detail in Figure 4 for user traces collected from
both Doom 3 and Fable 3 at various RTTs from 40ms to
240ms. Doom 3 exhibits greater error than Fable 3 due to
its more frenetic gameplay. Based on subjective assess-
ment, prediction error below 4◦ is under the threshold at
which output frame differences are perceivable.

Based on these results, we make two observations.
First, for RTT ≤ 40ms (where 98% and 93% of errors
are less than 4◦ for Doom 3 and Fable 3 respectively),
per frame errors are sufficiently minor and infrequent.
Note that the client can always detect the magnitude of
the error (because it knows the ground truth), and drop
any frames with excessive error. A frame rate drop from
30fps to 30× 0.95 = 28.5fps is unlikely to affect most
players’ perceptions. For RTT > 40ms, we require addi-
tional misprediction compensation mechanisms. Before
discussing both of these cases in turn, we first address the
question of how much training is needed for successful
application of the predictive model.
Bootstrap Time. Construction of a reasonable Markov
Model requires sufficient training data collected during
an observation period. It is important that the observation
period is of sufficient duration to accurately reflect the
distribution of transition probabilities during extended
gameplay. Otherwise, mispredictions due to inaccurate
transition probabilities are severe. Figure 5 shows that
prediction error improves as observation time increases
from 30 seconds to 300 seconds, after which the pre-
diction error distribution remains stable. Compared to
the average player session length (which varies by game
genre; for an RPG similar to Fable 3 the authors of [9]
report four hours), 300 seconds is a modest bootstrap pe-
riod. Currently, training is performed once per user and
is independent of the game level or map.
Shake Reduction with Kalman Filtering. While the
Markov model yields high prediction accuracy for RTT<
40ms, minor mispredictions can introduce a distracting
visual effect that we describe as video shake. As a sim-
ple example, consider a single dimension of input such as
yaw. The ground truth over three frames may be that the

4

Fig. 3: Doom 3 Navigation
Prediction Summary. Roll (θz)
is not an input in Doom 3 and
need not be predicted.

0 20 400

0.2

0.4

0.6

0.8

1

Prediction Error (degree)

C
D

F
(%

)

RTT 40ms
RTT 80ms
RTT 160ms
RTT 240ms

(a) Doom 3

0 20 400

0.2

0.4

0.6

0.8

1

Prediction Error (degree)

C
D

F
(%

)

RTT 40ms
RTT 80ms
RTT 160ms
RTT 240ms

(b) Fable 3
Fig. 4: Prediction for Yaw (θx), the navigation component with
the highest variance. Error under 4◦ is imperceptible.

0 50 1000

0.2

0.4

0.6

0.8

1

Prediction Error (degree)

C
D

F
(%

)

30 seconds
60 seconds
90 seconds
150 seconds
300 seconds
450 seconds

Fig. 5: Error Decreases with
More Observation Time. Data
is for Fable 3 at RTT= 160ms.

yaw remains unchanged, but the prediction error might
be +2◦,−3◦,+3◦. Unfortunately, the user would per-
ceive a shaking effect because the frames would jump by
5◦ in one direction, and then 6◦ in another. From our ex-
perience with early prototypes, the manifested shakiness
was sufficiently noticeable so as to reduce playability.

We apply a Kalman filter [19] in order to compensate
for video shake. The filter’s advantage is that it weighs
estimates in proportion to sample noise and prediction
error. Conceptually, when errors in past predictions are
low relative to sample noise, predictions are given greater
weight for state update. Conversely, when measurement
noise is low, samples make greater contribution to the
new state. For space, we omit technical development of
the filter for our problem. One interesting filter modifica-
tion we make is that we extend the filter to support error
accumulation over variable RTT time steps; samples are
weighed against an RTT’s worth of prediction error. Be-
fore and after video clips at http://1drv.ms/1koGZ1p
show that shake is largely eliminated by Kalman filter.
Misprediction Compensation with View Interpola-
tion. When RTT > 40ms, a noticeable fraction of navi-
gation input is mispredicted, resulting in users perceiving
lack of motor control. Our goal in misprediction com-
pensation is for the server to generate auxiliary view data
f ∆ alongside its predicted frame f ′ such that the client
can reconstruct a frame f ′′ that is a much better approxi-
mation of the desired frame f than f ′.
View Interpolation. We compensate for mispredictions
with view interpolation. View interpolation was origi-
nally developed as a means to derive novel camera view-
points from a fixed number of initial cameras. It operates
by having initial cameras capture depth information (f ∆)
in addition to 2D RGB color information (f ′). It then
interpolates to create a new 2D image (f ′′) from f ′ and
f ∆ [29]. Figure 6 illustrates an example whereby an orig-
inal image and its depth information is used to generate
a new image from a novel viewpoint. Note that the new
image is both translated and rotated with respect to the
original, and contains some visual artifacts in the form

Input Image Input Depth Output Image

,

Fig. 6: View Interpolation Example w/ Fable 3. Forward trans-
lation and leftward rotation is applied. The dog (indicated by
green arrow) is closer and toward the center after interpolation.

LEFT

RIGHT

BOTTOM

TOP

CLIP

FRONT

(BACK

not shown)

Fig. 7: Cube Map Exam-
ple w/ Doom 3. Clip region
shown.

0 100 200 300
0

50

100

150

200

250

300

RTT (ms)

99
%

 E
rro

r C
ov

er
ag

e
(d

eg
re

e)

Doom 3, yaw
Doom 3, pitch
Fable 3, yaw
Fable 3, pitch

Fig. 8: Angular coverage of 99%
of prediction errors is much less
than 360◦ even for high RTT.

of blurred pixels when interpolation is inaccurate.
For effective interpolation, two requirements must be

satisfied. First, the depth information must accurately re-
flect the 3D scene. Fortunately, the graphics pipeline’s
z-buffer precisely contains per-pixel depth information
and is already a byproduct of standard rendering. Sec-
ond, the original 2D scene must be sufficiently large
so as to ensure that any interpolated view is bounded
within the original. To handle this case, instead of ren-
dering a normal 2D image by default, we render a cube
map [13] centered at the player’s position. As shown
in Figure 7, the cube map draws a panoramic 360◦ im-
age on the six sides of a cube. In this way, the cube
map ensures that any interpolated image is within its
bounds. A video clip demonstrating view interpolation
is at http://1drv.ms/1kpb5lp.

Unfortunately, naı̈ve use of the depth map and cube
map can lead to significant overhead. The cube map’s

5

http://1drv.ms/1koGZ1p
http://1drv.ms/1kpb5lp

six faces are approximately3 six times the size of the
original image. The z-buffer is the same resolution as
the original image, and depth information is needed for
every cube face. Taken together, the total overhead is
nominally 12×. This cost is incurred at multiple points
in the system where data size is the main determinant
of resource utilization, such as server rendering, encod-
ing, bandwidth and decoding. We use the following tech-
nique to reduce this overhead.
Clipped Cube Map. For the cube map, we observe that it
is unlikely that the player’s true view will diverge egre-
giously from the most likely predicted view; transmitting
a cube map that can compensate for errors in 360◦ is gra-
tuitous. Therefore, we render a clipped cube map rather
than a full cube map. The percentage of clipping de-
pends on the expected variance of the prediction error. If
the variance is high, then we render more of the cube.
On the other hand, if the prediction variance is low, we
render less of the cube. The dotted line in Figure 7 marks
the clip region for an example rendering.

In order to size the clip, we define a cut plane c such
that the clipped cube bounds the output image with prob-
ability 1− ε. The cut plane then is a function of the vari-
ance of the prediction, and hence the partial cube map
approaches a full cube when player movement exhibits
high variance over the subject RTT horizon. To calculate
c, we choose not a single predicted Markov state, but
rather a set N of k states such that the set covers 1−ε of
the expected probability density:

N = {ni
t+1| ∑

i=1..k
p(Nt+1 = ni

t+1|Nt = nt)≥ 1− ε}

The clipped cube map then only needs to cover the range
represented by the states in N . For a single dimension
such as yaw, the range is then simply the largest distance
difference, and the cut plane along the yaw axis is defined
as follows:

cyaw = max
ni

t+1∈N
yaw(ni

t+1)− min
n j

t+1∈N
yaw(n j

t+1)

This suffices to cover 1− ε of the probable yaw states.
In practice, error ranges are significantly less than

360◦ and therefore the size of the cube map can be sub-
stantially reduced. Figure 8 shows the distribution of
cyaw and cpitch in Fable 3 and Doom 3 for ε = 0.01,
meaning that 99% of mispredictions are compensated.
Doom 3’s pitch range is very narrow (because play-
ers hardly look up or down), and both Fable 3’s yaw
and pitch ranges are modest at under 80◦ even for RTT
≥ 300ms. Even for Doom 3’s pronounced yaw range,
only 225◦ of coverage is needed at 250 ms. The clip pa-
rameters are also applied to the depth map in order to
similarly reduce its size.

In theory, compounding translation error on top of ro-

3The original image is not square but rather 16:9 or 4:3.

tation error can further expand the clip region. It turns
out that translation accuracy (see Figure 3) is sufficiently
high to obviate consideration of accumulated translation
error for the purposes of clipping.

5 Speculation for Impulse Events
The prototypical impulse events are FIRE for first per-

son shooters, and INTERACT (with other characters or
objects) for role playing games. We define an impulse
event as being registered when its corresponding user in-
put is activated. For example, a user’s button activation
may register a FIRE event.

The objective for impulse speculation is to respond
quickly to player’s impulse input while avoiding any
visual inconsistencies. For example, in a first person
shooter, weapons should fire quickly when triggered, and
enemies should not reappear shortly after dying. The lat-
ter type of visual (and semantic) inconsistency is discon-
certing to players, yet may occur when mispredictions
occur in a prediction-based approach. Therefore, we em-
ploy a speculation technique for impulse that differs sub-
stantially from navigation speculation – rather than at-
tempt to predict impulse events, instead we explore mul-
tiple outcomes in parallel.

An overview of Outatime’s impulse speculation is as
follows. The server creates a speculative input sequence
for all possible event sequences that may occur within
one RTT, executes each sequence, renders the final frame
of each sequence, and sends the set of speculative in-
put sequences and frame pairs to the client. Upon recep-
tion, the client chooses the event sequence that matches
the events that actually transpired, and displays its corre-
sponding frame.

As RTT increases, the number of possible sequences
grows exponentially. Consider an RTT of 256ms, which
is 8 clock ticks. An activation may lead to an event reg-
istration at any of the 8 ticks, leading to an overwhelm-
ing 28 possible sequences. In general, 2λ sequences are
possible for an RTT of λ ticks. We introduce two con-
cepts to tame state space explosion: subsampling and
time-shifting.
Subsampling. We reduce the number of possible se-
quences by only permitting activations at the subsam-
pling periodicity σ which is a periodicity greater than one
clock tick. The benefit is that the state space is reduced
to 2

λ
σ . The drawback is that subsampling alone would

cause activations not falling on the sampling periodicity
to be lost, which would be counter-intuitive to users.
Time-Shifting. To address the shortcomings of subsam-
pling, time-shifting causes activations to be registered ei-
ther earlier or later in time in order to align them with the
nearest subsampled tick. Time shifting to an earlier time
is feasible using speculation because the shift occurs on
a speculative sequence at the server – not an actual se-

6

t0 t1 t2 t3 t4 t5 t6 t7

14

Speculative Sequences

Impulse Timeline
RTT = 8 ticks

shift forward shift backward shift forward

f’,18

f’,28

f’,38

f’,48

Speculative

frames

t8

X: activation

~X: no activation

?,?

~X,?

X,?

~X,~X~X,~X

~X,X

X,~X

X,X

33ms

(a) Speculative timeline and state branches

(b) ∼X, ∼X (c) ∼X, X (d) X,∼X (e) X,X
Fig. 9: Subsampling and time-shifting impulse events allows
the server to bound speculation to a maximum of four se-
quences even for RTT= 256ms. Screenshots (b) – (e) show
speculative frames corresponding to four activation sequences
of weapon fire and no fire.

quence that has already been committed by the client.
Put another way, as long as the client has not yet dis-
played the output frame at a particular tick, it is always
safe to shift an event backwards to that tick.

Specifically, for any integer k, an activation issued be-
tween tσ∗k− σ

2
and tσ∗k−1 is deferred until tσ∗k. An activa-

tion issued between tσ∗k+1 and tσ∗k+ σ

2−1 is treated as if
it had arrived earlier in time at tσ∗k. Figure 9a illustrates
combined subsampling and time-shifting, where the ac-
tivations that occur at t1 through t2 are shifted later to
t3 and activations that occur at t4 are shifted earlier to
t3. The corresponding state tree in Figure 9a shows the
possible event sequences and four resulting speculative
frames, f ′18 , f ′28 , f ′38 and f ′48 . Note that it is not neces-
sary to handle activations at t0 within the illustrated 8
tick window because speculations that started at earlier
clock ticks (e.g. at t−1) would have covered them.

The ability to time-shift both forward and backward
allows us to further halve the subsampling rate to dou-
ble σ without impacting player perception. Using 60ms
as the threshold of player perception [25, 6], we note
that time-shifting forward alone permits a subsampling
period of σ = 2 (64ms) with an average shift of 32ms.
With the added ability to time-shift backward as well, we
can support a subsampling period of σ = 4 (128ms) yet
still maintain an average shift of only 32ms. For σ = 4
and RTT≤ 256ms, we generate a maximum of four spec-
ulative sequences as shown in Figure 9a. When RTT
> 256ms, we further lower the subsampling frequency
sufficiently to ensure that we bound speculation to a max-

imum of four sequences. Specifically, σ = λ

2 . While this
can potentially result in users noticing the lowered sam-
ple rate, it allows us to cap the overhead of speculation.
Ternary and Quaternary Impulse Events. While bi-
nary impulse events are the most common, some games
provide more options. For example, a Fable 3 player may
cast a magic spell either directionally or unidirectionally
which is a ternary impulse event due to mutual exclu-
sion. Some first person shooters support primary and
secondary fire modes (Doom 3 does not) which is also
a ternary impulse event. With a ternary (or quaternary)
impulse event, the state branching factor is three (or four)
rather than two at every subsampling tick. With four par-
allel speculative sequences and a subsampling interval of
σ = 128ms, Outatime is able to support RTT ≤ 128ms
for ternary and quaternary impulse events without lower-
ing the subsampling frequency.
Delay Tolerant Events. We classify any input event that
is slow relative to likely RTTs as delay tolerant. We
use a practical observation to simplify handling of delay
tolerant events. According to our measurements on Fa-
ble 3 and Doom 3, delay tolerant events exhibited very
high cool down times that exceeded 256ms. The cool
down time is the period after an event is registered dur-
ing which no other impulse events can be registered. For
example, in Doom 3, weapon reloading takes anywhere
from 1000ms to 2500ms during which time the weapon
reload animation is shown. Weapon switching takes even
longer. Fable 3 delay tolerant events have even higher
cool down times. We take the approach that whenever a
delay tolerant input is activated at the client, it is permis-
sible to miss one full RTT of the event’s consequences,
as long as we can compress time after the RTT. The time
compression procedure works as follows: for a delay tol-
erant event which displays τ frames worth of animation
during its cool down (e.g. a weapon reload animation
which takes τ frames), we may miss λ frames due to
the RTT. During the remaining τ−λ frames, we choose
to compress time by sampling τ− λ frames uniformly
from the original animation sequence τ. The net effect
is that delay tolerant event animations appear to play at
fast speed. In return, we are assured that any subsequent
events are properly processed because the delay tolerant
event’s cool down is greater than the RTT. For example,
weapon switching or reloading immediately followed by
firing is handled correctly.

6 Multiplayer
Thus far, we have described Outatime from the per-

spective of a single user. Outatime works in a straight-
forward manner for multiplayer as well, though it is use-
ful to clarify some nuances. As a matter of background,
we briefly review distributed consistency in multiplayer
systems. The standard architecture of a multiplayer gam-

7

ing system is composed of traditional thick clients at the
end hosts and a state coordination game server which
reconciles distributed state updates to produce an eventu-
ally consistent view of events. For responsiveness, each
client may perform local dead reckoning [12, 8]. As
an example, player one locally computes the position of
player two based off of last reported trajectory. If player
one should fire at player two who deviates from the
dead-reckoned path, whether a hit is actually scored de-
pends on the coordination server’s reconciliation choice.
Reconciliation can be crude and disconcerting when lo-
cal dead-reckoned results are overridden; users perceive
glitches such as: 1) an opponent’s avatar appears to tele-
port if the opponent does not follow the dead-reckoned
path, 2) a player in a firefight fires first yet still suffers a
fatality, 3) “sponging” occurs – a phenomenon whereby
a player sees an opponent soak up lots of damage without
getting hurt [4].

With multiplayer, Outatime applies the architecture
of Figure 2 to clients without altering the coordination
server: end hosts run thin clients and servers run end
hosts’ corresponding Outatime server processes. The co-
ordination server – which need not be co-located with
the Outatime server processes – runs as in standard mul-
tiplayer. Outatime’s multiplayer consistency is equiva-
lent to standard multiplayer’s because dead-reckoning is
still used for opponents’ positions; glitches can occur,
but they are no more or less frequent than in standard
multiplayer. As future work, we are interested in extend-
ing Outatime to remedy glitches. Techniques that selec-
tively process other players as AI-controlled (and thereby
deterministic) opponents may be insightful in mitigating
state space explosion [7].

7 Bandwidth and Encoding
Navigation and impulse speculation generate addi-

tional frames to transmit from server to client. As an
example, consider impulse speculation which for RTT of
256ms transmits four speculative frames for four possi-
ble worlds. Nominally, this bandwidth overhead is four
times that of transmitting a single frame.

We can achieve a large reduction in bandwidth by ob-
serving that frames from different speculations share sig-
nificant spatial and temporal similarity. Using Figure 9a
as an example, f ′18 and f ′28 are likely to look very sim-
ilar, with the only difference being two frames’ worth
of a weapon discharge animation in f ′18 . Corresponding
screenshots Figure 9b–9e show that the surrounding en-
vironment is largely unchanged, and therefore the spatial
similarity is often high. In addition, when Outatime spec-
ulates for the next four frames, f ′19 - f ′19 , f ′19 is likely to
look similar not only to f ′18 , but also to f ′28 , and therefore
the temporal similarity is also often high. Similarly, navi-
gation speculation’s clipped cube map faces often exhibit
both temporal and spatial similarity.

Outatime takes advantage of temporal and spatial sim-
ilarity to reduce bandwidth by joint encoding of spec-
ulative frames. Encoding is the server-side process of
compressing raw RGB frames into a compact bitstream
which are then transmitted to the client where they are
decoded and displayed. A key step of standard codecs
such as H.264 is to divide each frame into macroblocks
(e.g., 64×64 bit). A search process then identifies mac-
roblocks that are equivalent (in some lossy domain) both
intra-frame and inter-frame. In Outatime, we perform
joint encoding by extending the search process to be
inter-speculation; macroblocks across streams of differ-
ent speculations are compared for equivalence. When an
equivalency is found, we need only transmit the data for
the first macroblock, and use pointers to it for the other
macroblocks.

The addition of inter-speculation search does not
change the client’s decoding complexity but does intro-
duce more encoding complexity on the server. Fortu-
nately, modern GPUs are equipped with very fast hard-
ware accelerated encoders [23, 17]. These hardware ac-
celerated capabilities, which otherwise sit idle, are repro-
grammable for our speculation’s joint encoding.

8 Implementation
To prototype Outatime, we modified Doom 3 (orig-

inally 366,000 lines of code) and Fable 3 (originally
959,000 lines of code). Doom 3 was released in 2004
and open sourced in 2011. Fable 3 was released in 2011.
While both games are several years old, we note that the
core gameplay of first person shooters and role playing
games upon which Outatime relies has not fundamen-
tally changed in newer games. The following section’s
discussion is with respect to Doom 3. Our experience
with Fable 3 was similar and suggests that the essential
developer modifications needed to support efficient spec-
ulation are similar across commercial titles. We also ex-
amined UDK [12], one of several widely used commer-
cial game engines upon which many games are built, and
verified that the modifications described below are gen-
eral and feasible in UDK as well.4 Therefore, we suggest
that the techniques proposed below are broadly applica-
ble and can be systematized.

Doom 3 is structured as a frontend executable, known
as the game engine, and a content library. The Doom 3
engine (also known as idTech4), doom3.exe, performs
generic game routines such as capturing user input and
rendering graphical content. The Doom 3 content library,
gamex86.dll, involves everything specific for the game
running on top of the engine, in this case Doom 3. The
content library is responsible for performing game spe-
cific logic and handling the simulation of the game state.
As a preliminary step to permit deterministic replay, we

4UDK source was only publicly released recently in April 2014.

8

made changes according to [33] such as de-randomizing
the random number generator.

We have made the following key modifications to
Doom 3. To support impulse speculation, we spawn
up to four Doom 3 slaves, each of which is a modi-
fied instance of the original game (i.e., doom3.exe and
gamex86.dll). Each slave accepts the following com-
mands: advance consumes an input sequence and simu-
lates game logic accordingly; render produces a frame
corresponding to the current simulation state; undo dis-
cards any uncommitted state; commit makes any input
applied thus far permanent. Each slave receives instruc-
tions from our master process regarding the speculation
(i.e., input sequence) it should be executing, and returns
framebuffers as encoded bitstream packets to the master
using shared memory. To support navigation speculation,
we add an additional slave command: rendervi, which
produces the cubemap and depth maps necessary for in-
terpolation. The number of slaves spawned depends on
the network latency. When RTT> 128ms, four slaves can
cover four speculative state branches. Otherwise, three
slaves suffice. The client is a simple thin client with the
ability to perform view interpolation [29].

As with other systems that perform speculation [22,
32], Outatime uses checkpoint and restore to play for-
ward a speculative sequence, and roll back the sequence
if it turns out to be incorrect. In contrast to these pre-
vious systems, our continuous 30fps interactivity per-
formance constraints are qualitatively much more de-
manding, and we highlight how we have managed these
requirements. As a point of comparison, the built-in
save/load game “checkpoint” feature takes 20 seconds,
which would yield 0.05fps.

Unique among speculation systems, we use a com-
bination of page-level checkpointing and object-level
checkpointing. This is because whereas page-level
checkpointing is application agnostic and efficient when
most objects need checkpointing, object-level check-
pointing is higher performance when few objects need
checkpointing. In general, it is only necessary to check-
point Game State Objects (GSOs): those non-constant
objects which reproduce the world state. Checkpoint-
ing objects which have no bearing on the game state or
are constant, such as already converted raw user input
data or stateless rendering handlers, only cause runtime
overhead. gamex86.dll consists almost exclusively of
GSOs whereas doom3.exe has a mix of GSOs and other
objects for handling user input and output. Therefore, we
use object-level checkpointing for doom3.exe and page-
level checkpointing for gamex86.dll.

To implement page-level checkpointing for
gamex86.dll, we intercept calls to the default
libc memory allocator with a version that implements
page-level copy-on-write. At the start of a speculation

(at every clock tick for navigation and at each σ clock
ticks for impulse), the allocator marks all pages read-
only. When a page fault occurs, the allocator makes a
copy of the original page and sets the protection level of
the faulted page to read-write. When new input arrives,
the allocator invalidates and discards some speculative
sequences which do not match the new input. For
example in Figure 9a, if no event activation occurs at
t3, then the sequences corresponding to f ′18 and f ′28 are
invalid. State changes of the other speculative sequences
up until t3 are committed. In order to correctly roll
back a speculation, the allocator copies back the original
content of the dirty pages using the copies that it created.
The allocaltor also tracks any pages created as a result
of new object allocations since the last checkpoint.
Any such pages are discarded. During speculation, the
allocator also defers page deallocation resulting from
object delete until commit because deleted objects may
need to be restored if the speculation is later invalidated.

To implement object-level checkpointing for
doom3.exe, we track lifetimes of object rather than
pages. Conveniently, doom3.exe objects are stateless,
and therefore checkpoint bypasses saving state with
copy-on-write. To discard a speculation, we delete any
object that did not exist at the checkpoint, and restore
any objects that were deleted during speculation.

We implemented the server-side joint video encode
pipeline and client-side decode pipeline as Nvidia CUDA
kernel functions executing on the GPU with support from
dedicated codec accelerators [23]. The encode pipeline
consists of raw frame capture, color space conversion
and H.264 bitstream encoding. The decode pipeline con-
sists of H.264 bitstream decoding and color space con-
version to raw frames. We implemented the client’s
view interpolation as an OpenGL GLSL shader which
consumes decoded raw frames and produces a compen-
sated final frame for display. For any reasonable inter-
active performance target, CPU processing of any of the
above steps is infeasible since the PCI-E bus is easily
saturated during high frequency data transfer of uncom-
pressed video frames between GPU and CPU. Moreover,
codec processing and view interpolation are inherently
parallel and therefore well-suited for the GPU.

9 Evaluation
We use both user studies and performance bench-

marking to characterize the cost and benefits of Outa-
time. User studies are useful to assess perceived respon-
siveness and visual quality degradation, and how macro-
level system behavior impacts gameplay. Our primary
tests are on Doom 3 because twitch-based gaming is very
sensitive to latency. We confirm the results with limited
secondary tests on Fable 3. A summary of our findings
are as follows.
• Based on subjective assessment, users rate Outatime’s

9

impulse speculation playable with minor responsive-
ness impairment up to 256ms.

• Users rate Outatime’s navigation speculation playable
with minor visual quality impairment up to 256ms.

• Users experience very little in-game performance
degradation with Outatime as compared to a standard
cloud gaming system.

• Speculation imposes increased demands on resource.
Bandwidth consumption is 1.5− 4.5× higher than
standard cloud gaming depending on the RTT.

Experimental Setup. We tested Outatime against the
following baselines. Standard Fat Client consists of out-
of-the-box Doom 3 which is a traditional client-only ap-
plication. Standard Thin Client emulates the traditional
cloud gaming architecture shown in Figure 1a, where
Doom 3 is executed on a server without speculation, and
the player submits input and views output frames on a
client. The server consists of an HP z420 server with
quad core Intel i7, 16GB memory, and an Nvidia GTX
680 GPU w/ 4GB memory. For Thin Client and Outa-
time, we emulated a network with a defined RTT. The
emulation consisted of delaying input processing and
output frames to and from server and client by a fixed
RTT. The client process was hosted on the same machine
as the server in order to finely control network RTT. We
also used the same machine to run the Fat Client. User
input was issued via mouse and keyboard. We configured
Doom 3 for a 1024×768 output resolution.

We divided the user study evaluation into an assess-
ment of impulse and navigation speculation in order to
precisely assess the impact of each. Twenty three partic-
ipants consisting of coworkers and colleagues were re-
cruited based on their interest in a call for participation
in a gaming study. No compensation was offered. All
participants except one were males. The age range was
24 – 42. Prior to engagement, they were provided an
overview of the study, and consented to participate in ac-
cordance with institutional ethics and privacy policies.
They also made a self-assessment regarding their own
video game skill at three granularities: 1) overall video
game experience, 2) experience with the first person
shooter genre, and 3) experience with Doom 3 specif-
ically. While all participants reported either Beginner
(score=2) or No Experience (score=1) for Doom 3, par-
ticipants exhibited a range of overall and genre-specific
skill levels from Expert (score=5) to Beginner, with an
average self-assessment of Experienced (score=4).
Impulse Speculation Performance. We evaluated Im-
pulse Speculation according to three criteria.
• Mean Opinion Score (MOS): Participants assign a sub-

jective 1–5 score on their experience where 5 indi-
cates no difference from reference, 4 indicates minor
differences, 3 indicates acceptable differences, 2 indi-

cates annoying differences and 1 indicates unplayable.
MOS is a standard metric in the evaluation of video
and audio communication services.

• Skill Impact: We use the decrease in players’ in-game
health as a proxy for the skill degradation resulting
from higher latency.

• Task Completion Time: Participants are asked to fin-
ish an in-game task in the shortest possible time under
varying latency conditions.
Each participant first played a reference level on the

fat client system, during which time they had an opportu-
nity to familiarize themselves with game controls, as well
as experience best-case responsiveness and visual qual-
ity. Next, they re-played the level eight to ten times with
either Outatime or Thin Client and an RTT selected ran-
domly from {0ms,64ms,128ms,256ms,384ms}. Among
the multiple replays, they also played once on fat client as
a control. Participants were blind to the system configu-
ration during re-plays. Some of the participants repeated
the entire process for a second level. We configured the
level so that participants only had access to the fastest
firing weapon so that any degradations in responsiveness
would be more readily apparent.

After each re-play, participants were asked to rank
their experience relative to the reference on an MOS
scale according to three questions: (1) How was your
overall user experience? (2) How was the responsiveness
of the controls? (3) How was the graphical visual qual-
ity? We also solicited free-form comments and recorded
in-game vocal exclamations which turned out to be illu-
minating. Lastly, we recorded general player statistics
during play, such as player health, enemies eliminated
and time to finish the level.
Mean Opinion Score. Figure 10 summarizes overall
MOS when playing on Outatime, Thin Client and Fat
Client at various RTTs. Fat client is not MOS= 5 due
to a placebo effect. Thin Client MOS follows a sharp
downward trajectory, indicating that the game becomes
increasingly frustrating to play as early as 128ms. Free
form participant comments strongly reinforced this as-
sessment.
• Thin Client @ 64ms: “OK, can play. Not acceptable

for expert.”
• Thin Client @ 128ms: “Felt slow. Needed to guess

actions to play.”
• Thin Client @ 256ms: “I hated it. Too difficult to play.

It overreacts.”
For Outatime, the MOS stays relatively high with

scores between 4 to 4.5 up through 256ms, with a slight
drop off at 384ms. Comments are shown below.
• Outatime @ 256ms: “I think I was playing the origi-

nal. If it was not the reference, that was a good one.”
• Outatime @ 384ms: “A little delay. Not annoying.”

10

0 100 200 300 400

1

2

3

4

5

RTT (ms)

M
ea

n
O

pi
ni

on
 S

co
re

DeLorean w/ Speculation
Standard Thin Client
Standard Fat Client

Fig. 10: Impulse Speculation Fig. 11: Remaining Health

0 100 200 300 4000

20

40

60

80

100

120

RTT (ms)

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(s

)

DeLorean w/ Speculation
Standard Thin Client
Standard Fat Client

Fig. 12: Task Completion Time

0 50 100 150 2000

0.2

0.4

0.6

0.8

1

Frame Time (ms)

C
D

F
(%

)

Fat Client
DeLorean Kalman Client @256ms
DeLorean VI Client @128ms
DeLorean VI Client @256ms
Standard Thin Client @128ms
32ms Deadline

Fig. 13: Client Frame Time
Overall, players with high prior experience (“expert”

or “experienced”) tended to assign lower MOS ranks
though it was not statistically significant. Responsive-
ness MOS ratings were very similar to overall MOS rat-
ings. Ratings for visual quality were similar, which was
expected since impulse speculation does not introduce
visual artifacts. The results are elided for space.
Skill Impact. We found that longer latencies also hurt
performance on in-game skills such as avoiding enemy
attacks. We instructed participants to eliminate all ene-
mies in a level while preserving as much health as possi-
ble. Figure 11 shows the participants’ remaining health
after finishing the level. Interestingly, even though par-
ticipants playing on Thin Client reported only modest
degradation in MOS at 64ms, participant health dropped
off sharply from over 70/100 to under 50/100, suggest-
ing that in-game skills were impaired. Outatime exhib-
ited no significant drop off for RTT≤ 256ms.

In the free form comments, several participants men-
tioned that they consciously changed their style of play
to cope with higher Thin Client latencies. For example,
they remained in defensive positions more often, and did
not explore as aggressively as they would have other-
wise. Outatime elicited no such comments.
Task Completion Time. Lastly, we measured participants’
level completion time. Participants were instructed to
eliminate all enemies from a level as quickly as possi-
ble. Figure 12 shows that RTT ≥ 256ms lowered Thin
Client completion times, but had little impact on Outa-
time completion times.
Navigation Speculation Performance. To evaluate the
speculation performance for navigation, we again used
MOS. Because the visual differences were often sub-
tle, we had participants watch recorded traces of either
their own or other participants’ gameplay. Each par-
ticipant was presented videos for each latency setting
{0ms, 64ms, 128ms, 256ms, 384ms}. At each latency,
we tested: 1) navigation speculation with view interpo-
lation, 2) with Kalman shake correction, and 3) with nei-
ther view interpolation nor Kalman correction. Videos
were shown side-by-side with the Reference so that it
was easier for participants to spot differences. Lastly,
we also included a control of Standard Fat Client. Over-

Fig. 16: Server Processing
Time Breakdown Per Frame

0 2 4 6 80

0.2

0.4

0.6

0.8

1

Bitrate (Mbps)

C
D

F
(%

)

Standard Thin Client
DeLorean w/ VI+Indep. Encode @256ms
DeLorean w/ VI+Joint Encode @256ms
DeLorean w/ VI+Joint+Cube Clip @ 256ms
DeLorean w/ Kalman+Joint @256ms
DeLorean w/ VI+Joint+Clip @ 128ms

Fig. 17: Bandwidth Overhead

all, participants assessed videos of two different settings:
exploration mode without enemies present, and com-
bat mode with enemies. Figure 14 shows participants’
MOS scores. For Outatime w/ view interpolation in ex-
ploration mode, user experience is above 4.5 up until
RTT= 256ms. In combat mode, MOS decreases sharply
past 256ms. This is due to the visual artifacts appearing
near enemies. In comparison, Outatime w/ Kalman per-
forms somewhat reasonably at low RTT= 64ms across
both settings, and therefore is useful when saving band-
width is important (as we show in the following sec-
tion), but is noticeably worse for many high RTT set-
tings, ranking just above non-annoying most of the time.
Lastly, Outatime w/o Kalman does not perform well due
to excessive video shake.
Fable 3 Verification. We setup Fable 3 for similar test-
ing to Doom 3. We recruited twenty three additional
subjects (age 20–34, 4 females, 19 males) who were un-
familiar with the Doom 3 experiments. Figure 15a and
Figure 15b show that the MOS impact of impulse specu-
lation and navigation speculation are similar in Fable 3.
System Performance and Overhead. We measure
client, server and bandwidth utilization. During server
testing, we use a trace-driven client for repeatability.
Similarly, we use a trace-driven server during client tests.
Client Performance. In Figure 13, Outatime and Fat
Client both achieve the target frame time of 32ms, which
directly leads to players’ perceptions of low latency. The
bulk of the time is spent on decoding, which we have not
optimized. View interpolation accounts for < 2ms, even
when run on a 2010 notebook’s Nvidia GT 320M, which
is 21× less powerful than the GTX 680. In contrast, thin

11

0

1

2

3

4

5

0 100 200 300 400

M
ea

n
O

pi
ni

on
 S

co
re

RTT (ms)

Delorean w/o Kalman
Delorean w/ Kalman
Delorean w / VI
Standard Fat Client

(a) Exploration

0

1

2

3

4

5

0 100 200 300 400

M
ea

n
O

pi
ni

on
 S

co
re

RTT (ms)

Delorean w/o Kalman
Delorean w/ Kalman
Delorean w / VI
Standard Fat Client

(b) Combat
Fig. 14: Navigation Speculation

0 50 100 150 200 2500

1

2

3

4

5

RTT (ms)

M
ea

n
O

pi
ni

on
 S

co
re

Standard Thin Client
DeLorean w/ Speculation
Standard Fat Client

(a) Impulse Speculation

0 50 100 150 200 2500

1

2

3

4

5

RTT (ms)

M
ea

n
O

pi
ni

on
 S

co
re

DeLorean w/o VI
DeLorean w/ VI
Standard Fat Client

(b) Navigation Speculation
Fig. 15: Fable 3 MOS

Client’s frame time is clearly vulnerable to RTT.
Server Utilization. We quantify the server load in Fig-
ure 16. Outatime with Kalman incurs overhead on top
of Thin Client due to impulse speculation, checkpoint,
restore and rollback. Outatime with View Interpolation
brings further overhead due to cube and depth map ren-
dering and frame transfer. Overhead is higher at 256ms
than at 128ms due to the need to run extra slaves to ser-
vice more speculative branches. At 256ms, server pro-
cessing time is sufficient on average to keep up with a
32ms frame time.
Bitrate. While our prototype uses hardware acceler-
ated codec pipeline for efficiency, we conducted com-
pression testing using ffmpeg and libx264, two pub-
licly available codec libraries, for easier repeatability.
Figure 17 shows the bitrate of Thin Client and vari-
ous Outatime configurations. The baseline Thin Client
median bitrate is 0.53Mbps. When running Outatime
with View Interpolation-based Navigation Speculation
and Impulse Speculation with RTT= 256ms, transmis-
sion of all speculative frames (cube map faces, depth
map faces and speculative impulse frames) with indepen-
dent encoding consumes a median of 4.01Mbps. After
joint encoding, transmission drops to 3.33Mbps. Ou-
tatime’s use of clipped cube map with joint encoding
consumes 2.41Mbps, which is 4.54× the bitrate of Thin
Client. Finally, when RTT≤ 128ms, joint encoding and
clipping consumes only 1.04Mbps, which is only 1.97×
more than Thin Client. The savings are due to lower
prediction error over a shorter time horizon (Figure 8)
and transmitting half as many speculative branch frames.
When running Outatime with Kalman-based Navigation
Speculation and Impulse, the bitrate is further lowered to
0.8Mbps, or 1.51× Thin Client.

10 Related Work
Speculative execution is a general technique for re-

ducing perceived latency. In the domain of distributed
systems, Crom [21] allows Web browsers to specu-
latively execute javascript event handlers (which can
prefetch server content, for example) in temporary
shadow contexts of the browser. Mosh provides a more

responsive remote terminal experience by permitting the
client to speculate on the terminal screen’s future con-
tent, by leveraging the observation that most keystrokes
for a terminal application are echoed verbatim to the
screen [34]. The authors of [20] show that by speculating
on remote desktop and VNC server responses, clients can
achieve lower perceived response latency, albeit at the
cost of occasional visual artifacts on misprediction. A
common theme of this prior work is to build core spec-
ulation (e.g. state prediction, state generation) into the
client. In contrast, Outatime performs speculation at the
server. This is because client vs. server graphical render-
ing capabilities can differ by orders of magnitude, and
clients cannot be reliably counted on to render (regular
or speculative) frames. Time Warp [18] improved dis-
tributed simulation performance by speculatively execut-
ing computation on distributed nodes. However, to sup-
port speculation, it made many assumptions that would
be inappropriate for game development, e.g., processes
cannot use heap storage. Outatime is a specific instance
of application-specific speculation, defined by Wester et
al. [32] and applied to the Speculator system. According
to the taxonomy of Wester et al., Outatime implements
novel application-specific policies for creating specula-
tions, speculative output, and rollback.

We share a similar goal with the authors of [31] in
aiming to reduce latency for cloud-hosted gaming. Their
complementary approach looks at adapting bitrate to
available bandwidth. Additional efforts to mitigate net-
work latency for multiplayer games are discussed in §6.
Alternative app distribution avenues such as HTML5 are
intriguing, though interactive games have had stronger
performance demands than what current browsers offer.
Even with native client execution [11, 14], the benefits of
cloud-hosting and Outatime still apply.

11 Conclusion
Games, by their very nature of being virtual environ-

ments, are well-suited for speculation, roll back and re-
play. We demonstrated Outatime on Doom 3, a twitch-
based first person shooter, and Fable 3, an action role-
playing game because they belong to popular game gen-
res with demanding response times. This leads us to be

12

optimistic about the work of applying Outatime to other
genres. We found that players overwhelmingly favor Ou-
tatime’s masking of high RTT times over naked expo-
sure to long latency. In turn, this enables cloud gaming
providers to reach a much larger community while main-
taining a high level of user experience.
References

[1] Amazon appstream. http://aws.amazon.com/

appstream.

[2] Nvidia grid cloud gaming. http://shield.

nvidia.com/grid.

[3] Sony playstation now streaming. http://us.

playstation.com/playstationnow.

[4] Sponging is no longer a myth. http://youtu.be/
Bt433RepDwM.

[5] M. Allman. Comments on bufferbloat. SIGCOMM
Comput. Commun. Rev., 43(1):30–37, Jan. 2012.

[6] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett,
E. Agu, and M. Claypool. The effects of loss and
latency on user performance in unreal tournament
2003. In NetGames’04, pages 144–151, New York,
NY, USA, 2004. ACM.

[7] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Mosci-
broda, J. Pang, S. Seshan, and X. Zhuang. Don-
nybrook: Enabling large-scale, high-speed, peer-
to-peer games. In SIGCOMM’08, pages 389–400,
New York, NY, USA, 2008. ACM.

[8] A. Bharambe, J. Pang, and S. Seshan. Colyseus:
A distributed architecture for online multiplayer
games. In NSDI’06, pages 12–12, Berkeley, CA,
USA, 2006. USENIX Association.

[9] K.-T. Chen, P. Huang, and C.-L. Lei. How sensitive
are online gamers to network quality? Commun.
ACM, 49(11):34–38, Nov. 2006.

[10] M. Dick, O. Wellnitz, and L. Wolf. Analysis of fac-
tors affecting players’ performance and perception
in multiplayer games. In NetGames’05, pages 1–7,
New York, NY, USA, 2005. ACM.

[11] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch.
Leveraging legacy code to deploy desktop applica-
tions on the web. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Im-
plementation, OSDI’08, pages 339–354, Berkeley,
CA, USA, 2008. USENIX Association.

[12] Epic Games. Unreal networking architec-
ture. http://udn.epicgames.com/Three/

NetworkingOverview.html.

[13] R. Fernando. GPU Gems: Programming Tech-
niques, Tips and Tricks for Real-Time Graphics.
Addison-Wesley Professional, 2007.

[14] Google. Native client. http://youtu.be/

Bt433RepDwM.

[15] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen,
and O. Spatscheck. A close examination of per-
formance and power characteristics of 4g lte net-
works. In MobiSys’12, pages 225–238, New York,
NY, USA, 2012. ACM.

[16] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M.
Mao, S. Sen, and O. Spatscheck. An in-depth study
of lte: effect of network protocol and application
behavior on performance. In SIGCOMM’13, pages
363–374, New York, NY, USA, 2013. ACM.

[17] Intel. QuickSync Programmable Video Proces-
sor. http://www.intel.com/content/www/

us/en/architecture-and-technology/

quick-sync-video/

quick-sync-video-general.html.

[18] D. Jefferson, B. Beckman, F. Wieland, L. Blume,
M. DiLoreto, P.Hontalas, P. Laroche, K. Sturde-
vant, J. Tupman, V. Warren, J. Weidel, H. Younger,
and S. Bellenot. Time Warp operating system.
In SOSP’87, pages 77–93, Austin, TX, November
1987.

[19] R. E. Kalman. A new approach to linear fil-
tering and prediction problems. Transactions of
the ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

[20] J. R. Lange, P. A. Dinda, and S. Rossoff. Experi-
ences with client-based speculative remote display.
In ATC’08, pages 419–432, Berkeley, CA, USA,
2008. USENIX Association.

[21] J. Mickens, J. Elson, J. Howell, and J. Lorch. Crom:
Faster web browsing using speculative execution.
In NSDI’10, pages 9–9, Berkeley, CA, USA, 2010.
USENIX Association.

[22] E. B. Nightingale, P. M. Chen, and J. Flinn. Spec-
ulative execution in a distributed file system. ACM
Trans. Comput. Syst., 24(4):361–392, Nov. 2006.

[23] Nvidia. Video codec sdk. https://developer.

nvidia.com/nvidia-video-codec-sdk.

[24] PCWorld. Popcap games ceo: Android still
too fragmented. http://bit.ly/1hQv8Mn, Mar
2012.

13

http://aws.amazon.com/appstream
http://aws.amazon.com/appstream
http://shield.nvidia.com/grid
http://shield.nvidia.com/grid
http://us.playstation.com/playstationnow
http://us.playstation.com/playstationnow
http://youtu.be/Bt433RepDwM
http://youtu.be/Bt433RepDwM
http://udn.epicgames.com/Three/NetworkingOverview.html
http://udn.epicgames.com/Three/NetworkingOverview.html
http://youtu.be/Bt433RepDwM
http://youtu.be/Bt433RepDwM
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
http://bit.ly/1hQv8Mn

[25] P. Quax, P. Monsieurs, W. Lamotte, D. D.
Vleeschauwer, and N. Degrande. Objective and
subjective evaluation of the influence of small
amounts of delay and jitter on a recent first per-
son shooter game. In W. chang Feng, editor,
NETGAMES, pages 152–156. ACM, 2004.

[26] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste,
B. Delyon, P.-Y. Glorennec, H. Hjalmarsson, and
A. Juditsky. Nonlinear black-box modeling in sys-
tem identification: a unified overview. Automatica,
31(12):1691–1724, 1995.

[27] J. Sommers and P. Barford. Cell vs. wifi: on the
performance of metro area mobile connections. In
IMC’12, pages 301–314, New York, NY, USA,
2012. ACM.

[28] S. Sundaresan, W. de Donato, N. Feamster, R. Teix-
eira, S. Crawford, and A. Pescapè. Broadband in-
ternet performance: A view from the gateway. In
Proceedings of the ACM SIGCOMM 2011 Confer-
ence, SIGCOMM ’11, pages 134–145, New York,
NY, USA, 2011. ACM.

[29] R. Szeliski. Computer Vision: Algorithms and Ap-
plications. Springer, 2011.

[30] TechHive. Game developers still
not sold on android. http://www.

techhive.com/article/2032740/

game-developers-still-not-sold-on-android.

html, Apr 2013.

[31] S. Wang and S. Dey. Addressing response time and
video quality in remote server based internet mo-
bile gaming. In WCNC, pages 1–6, 2010.

[32] B. Wester, P. M. Chen, and J. Flinn. Operating sys-
tem support for application-specific speculation. In
EuroSys’11, pages 229–242. ACM, April 2011.

[33] D. Who. Citation anonymized.

[34] K. Winstein and H. Balakrishnan. Mosh: An Inter-
active Remote Shell for Mobile Clients. In USENIX
Annual Technical Conference, Boston, MA, June
2012.

[35] Wired. As android rises, app mak-
ers tumble into google’s matrix of pain.
http://www.wired.com/business/2013/

08/android-matrix-of-pain/, Aug 2013.

14

http://www.techhive.com/article/2032740/game-developers-still-not-sold-on-android.html
http://www.techhive.com/article/2032740/game-developers-still-not-sold-on-android.html
http://www.techhive.com/article/2032740/game-developers-still-not-sold-on-android.html
http://www.techhive.com/article/2032740/game-developers-still-not-sold-on-android.html
http://www.wired.com/business/2013/08/android-matrix-of-pain/
http://www.wired.com/business/2013/08/android-matrix-of-pain/

	Introduction
	Background & Impact of Latency
	Goals and System Architecture
	Speculation for Navigation
	Speculation for Impulse Events
	Multiplayer
	Bandwidth and Encoding
	Implementation
	Evaluation
	Related Work
	Conclusion

