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ABSTRACT

This paper is concerned with the joint allocation of bid price
and campaign budget in sponsored search. In this applica-
tion, an advertiser can create a number of campaigns and
set a budget for each of them. In a campaign, he/she can
further create several ad groups with bid keywords and bid
prices. Data analysis shows that many advertisers are deal-
ing with a very large number of campaigns, bid keywords,
and bid prices at the same time, which poses a great chal-
lenge to the optimality of their campaign management. As
a result, the budgets of some campaigns might be too low to
achieve the desired performance goals while those of some
other campaigns might be wasted; the bid prices for some
keywords may be too low to win competitive auctions while
those of some other keywords may be unnecessarily high. In
this paper, we propose a novel algorithm to automatically
address this issue. In particular, we model the problem as a
constrained optimization problem, which maximizes the ex-
pected advertiser revenue subject to the constraints of the
total budget of the advertiser and the ranges of bid price
change. By solving this optimization problem, we can obtain
an optimal budget allocation plan as well as an optimal bid
price setting. Our simulation results based on the sponsored
search log of a commercial search engine have shown that by
employing the proposed method, we can effectively improve
the performances of the advertisers while at the same time
we also see an increase in the revenue of the search engine.
In addition, the results indicate that this method is robust
to the second-order effects caused by the bid fluctuations
from other advertisers.

∗This work was performed when the first and the second
authors were interns at Microsoft Research Asia.

Categories and Subject Descriptors

H.3.5 [Information Systems]: Information Storage and
Retrieval - Online Information Services; J.0 [Computer
Applications]: General

General Terms

Algorithms, Experimentation

Keywords

Budget allocation, Bid optimization, Sponsored search

1. INTRODUCTION
Sponsored search is a popular format of online advertising

and is also the main revenue source for search engine com-
panies. In sponsored search, a list of ads is displayed along
with the organic search results in response to a given query.
Sponsored search results are produced by a different mecha-
nism from that of organic search, though they are displayed
simultaneously and have similar appearance. Generally, the
organic search results are mainly generated based on the rel-
evance of each web page to the query, while the sponsored
search results are generated based on an auction process [20,
2, 13].

An advertiser can create a number of campaigns under an
account. In each campaign, he/she sets a campaign budget,
builds several groups of ad copies (creatives), and bids on
some keywords with their match types1 for each ad group.
Each keyword is an auction entry that is supposed to be trig-
gered by some user queries. When a user submits a query,
the search engine will first retrieve the most relevant ads as
candidates according to a matching function between the bid
keywords and the query. Then these candidate ads will par-
ticipate in an auction, and some ads (e.g., with the largest
expected revenue for the search engine) will win and be dis-
played on the search result page [13]. If an ad is clicked by
the user, the corresponding advertiser will be charged by the
search engine. Usually, the charged amount is determined by
the generalized second price (GSP) [11] auction mechanism,
which means that the advertiser’s cost of a click depends on
the bid price of the next ad in the ranking list of the auc-
tion. When a campaign runs out of budget, it will not be

1The match type might be exact match or broad match.
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permitted to participate in any auctions until the budget is
increased or the next budget period starts. For example, if
the campaign budget is set at a monthly basis, the campaign
will be re-involved in the auctions next month.
As can be seen above, besides creating ad groups and se-

lecting bid keywords, an advertiser should also carefully con-
sider two important problems as follows:
a) Bid Price Setting. Different keywords correspond to

different opportunities (e.g., search volumes) and different
degrees of competition. In many cases, the bids for some
keywords are too low to win the auctions while the bids for
some other keywords are unnecessarily high. Usually, the
optimal bid price setting is very difficult for an individual
advertiser to reach since he/she does not have the access to
the related information (e.g., the bids of other advertisers)
and his/her competitors are also adjusting their bid prices
dynamically.
b) Campaign Budget Allocation. Similar to the case

of keywords, different campaigns also have different oppor-
tunities and competition. As a result, under an account,
some campaigns may run out of budget very quickly, some
campaigns consume their budgets quite slowly, and the bud-
gets for other campaigns may never be used at all. This will
constrain the overall effectiveness for the advertiser to utilize
his/her budget.
Both of the above issues are critical for advertisers, how-

ever, most advertisers have not been doing well in them
according to our statistics (see Section 3). This is because
many advertisers are managing hundreds of campaigns and
tens of thousands of keywords, which makes it very difficult
for them to manually tune the campaign budget allocation
and keyword bid prices. There are some third-party tools to
help the advertisers tune their bids; some advertisers even
build tools themselves to manage the bids automatically.
However, the market information they can get is still very
limited, which restricts the effectiveness of the tools. In the
research community, there have also been some attempts on
preforming the task automatically (see Section 2). However,
these works are still not sufficient to satisfy the practical
requirements. For example, many works on keyword bid
price optimization only consider the bid price when ranking
the ads, but do not take relevance and position bias into
consideration. For another example, although people have
investigated keyword bid optimization, to the best of our
knowledge, there is no work on campaign budget allocation
yet in the literature.
In this paper, we propose a novel method to address the

aforementioned issues. In particular, we propose jointly op-
timizing the campaign budget allocation and bid price set-
ting. That is, for a given advertiser account with multiple
campaigns and an account-level budget, we try to find the
optimal allocation of the account-level budget into each cam-
paign, and to set the optimal price2,3 for each bid keyword
in the campaign simultaneously. Here we focus on the joint

2Note that not all clicks are created equal. An advertiser
will give different bids for different keywords, for they have
different value per click (VPC). In this work, we estimate
the VPC of a keyword based on the idea proposed in [4, 20]
and use the VPC as the upper bound of the bid price.
3Usually an advertiser observes the ad campaign perfor-
mance and takes reactions to change the bid so as to ap-
proach the campaign goal. In this work, we find the optimal
bid by maximizing the campaign goal directly, so the opti-
mal bid is not a randomized value.

optimization instead of optimizing campaign budget alloca-
tion and keyword bid setting separately due to the following
reason. Suppose for some campaign, there are many high-
utility keywords (in other words, these keywords contain a
lot of opportunities of advertising). In order to achieve sig-
nificant performance regarding these keywords, one has to
put a lot of money on them. However, if we cannot increase
the budget for this campaign, we will miss a lot of these
opportunities.

We formulate the problem as a constrained optimization,
which takes the campaign budgets and the keyword bid
prices as variables and finds their optimal values by max-
imizing the advertiser revenue, with the constraint of the
account-level budget. To efficiently solve the optimization
problem, we employ the sequential quadratic programming
method. Simulation results on the sponsored search log from
a commercial search engine show that the proposed technol-
ogy can effectively help advertisers improve their campaign
performance under several metrics like click number, cost
per click, and advertiser revenue. At the same time, we can
also help the search engine obtain increased revenue. In ad-
dition, the proposed method is robust to the second-order
effects caused by the advertisers’ dynamical bid changes.

To sum up, the contributions of our work are listed as be-
low. (i) We performed a comprehensive data study on the
effectiveness of current campaign budget allocation and key-
word bid price setting in sponsored search, and pointed out
the importance and necessity of jointly optimizing them. (ii)
We proposed a novel method for jointly optimizing bid and
budget allocation. As far as we know, this is the first work
on campaign budget allocation in the literature of sponsored
search, and it is also the first work on consider keyword price
setting and campaign budget allocation simultaneously.

2. RELATED WORK
As mentioned in the introduction, we focus on the joint

optimization of campaign budget allocation and keyword bid
price setting in this paper. That is, given an advertiser
account with multiple campaigns and an account-level bud-
get, we determine the optimal allocation of the account-level
budget into each campaign, and set the optimal bid price for
each bid keyword in the campaign. As far as we know, there
is no work in the literature solving exactly the same prob-
lem. Instead, there is only some related work on keyword
bid price optimization. We will briefly review such work in
Section 2.1. Besides, there is some other work on budget
allocation across different keywords [3], different search en-
gines [8], or different online adverting markets [21], whose
problem definitions are totally different with what we con-
cern about in this paper.

2.1 Keyword Bid Price Setting
Chakrabarty et al [7] defined the weight and profit of each

bid keyword, and proposed a knapsack based algorithm to
find the optimal price setting that can maximize the adver-
tiser revenue in sponsored search. The algorithm considered
both single-slot and multi-slot auctions. Kitts et al [16] pro-
posed a revenue optimization model based on the marketing
factors that were related to ad slot positions, in order to
solve the problem of keyword bid price setting. In [12, 17],
a budget optimization problem was defined, in which the
target is to find an optimal bid price setting to maximize
the campaign performance under a given campaign budget.

1178



In particular, Feldman et al [12] defined the cost and click
functions considering the position of an ad and the average
click-through rate (CTR) on the position, and then devel-
oped a landscape algorithm to solve the optimization prob-
lem in approximation. Muthukrishnan et al [17] extended
the above algorithm using a stochastic model, in which each
keyword has a click distribution instead of an exactly known
click number, in the context of single-slot auction.
In addition, the following works also discuss the problem

of keyword bid price optimization, but in different scenarios
from the above ones. Dar et al [10] studied how to improve
the performance of broad match of bid keywords for a given
query. They defined the weight and utility function of each
bid keyword, and proposed a flow graph based algorithm to
work out the optimal setting for keyword bid prices. Broder
et al [6] pointed out that different matched queries for a bid
keyword in broad match had different utilities according to
their relevance to the bid keyword, and thus they should
have different bid prices. They proposed a statistical ap-
proach to generate the corresponding bid prices. Borgs et al
[5] studied the problem of keyword bid price setting given
the budget on each keyword, and proposed an method to
optimize the advertiser revenue across all keywords. More
parts of the work are discussing the perturbation and con-
vergence in their model.

3. DATA ANALYSIS ON SPONSORED

SEARCH
In this section, we report our data analysis on sponsored

search. We have used two kinds of data obtained from a
mainstream search engine in our study: the auction log that
records the detailed auction processes and the advertiser
database that includes the bid keywords, bid prices, and
the budget for each campaign. The data was collected in
half a month, which contains over ten billion auctions and
more than one hundred thousand advertiser accounts.

3.1 Campaign Budget
There can be several campaigns under the same advertiser

account. In general, each campaign contains a set of ads (or
ad groups) with the same campaign goal. Each campaign is
assigned a budget, indicating the expected expense in a pe-
riod of time (e.g., one month). In practice, due to the differ-
ences in the advertising settings and the market dynamics,
it is quite common that some of the campaigns run out of
budget while the other campaigns under the same account
do not. We call this kind of accounts partially-running-out-
of-budget accounts (or p-accounts for short). Here we give
some statistics about the p-accounts in Table 1.

Table 1: Statistic of partially-running-out-budget
accounts.

Number proportion 2.6%
Revenue proportion 31.6%

Potential revenue proportion 164.5%
Average campaign budget use ratio 45.1%

Total budget use ratio 11.5%
Average campaign number 15
Max campaign number 2,423

Average keyword number 10,735
Max keyword number 1,818,285

From Table 1 we have the following observations. (i)
Although the number of the p-accounts is relatively small
(2.6%), their contribution to the search engine revenue is

considerably large (31.6%). It is clear that the individual
contribution of each p-account is much larger than that of
other accounts. (ii) The potential revenue of the p-accounts4

is as much as 164.5% of the total revenue of sponsored
search. This shows that improving p-accounts can result in a
significant impact on the entire advertising system. (iii) The
average campaign-level budget use ratio of the p-accounts
is about 45.1%, and the total budget use ratio of the p-
accounts is 11.5%. The potential of further increasing the
budget use ratio for the p-accounts is higher than for the
other accounts. This is because the p-accounts have at least
one campaign (but not all campaigns) running out of bud-
get, thus we can further improve their budget use ratio by
simply reallocating the residual budget to that campaign(s).
However, for other accounts this strategy will not help. (iv)
For a p-account, the average campaign number is 15 and the
maximum campaign number is 2,423. These large numbers
suggest that it is difficult to manually adjust the campaign
budget.

3.2 Bid Price
Bid price setting is also a non-trivial task. For a p-account,

the average number of bid keywords is 10,735 and the max-
imum is 1,818,285. It is clearly infeasible to manually set
keyword bid prices for the p-accounts. Instead, automatic
keyword bid price setting is desired. The tools from the
third-party usually cannot have adequate market informa-
tion to aid the bid tuning. For example, we may need to con-
sider the following information. (i) First, according to the
commonly-used auction mechanisms in commercial search
engines, higher bid prices will increase the probability of win-
ning more auctions and obtaining higher ranking positions.
Figure 1 shows the percentage of ads that will get at least
one position up if we increase their corresponding keyword
bid prices to a certain degree. In particular, 57.36% ads will
get position up if their keyword bid prices are increased by
10%, and 78.84% ads will get position up if their keyword
bid prices are increased by 40%. (ii) Second, higher ranking
positions usually mean more attention and clicks [15], ac-
cording to Figure 2, which shows the relative CTR5 of the
top ad slots in the commercial search engine. As a result, if
an advertiser increases the bid price, the ad will have more
opportunities to be clicked and the campaign goal of the
advertiser will be better realized.

However, given the constraint of campaign budget, usually
we cannot increase the bid prices for all the keywords. In-
stead, we have to balance between different keywords. Note
that the utility of keywords are different from each other,
and the return of lifting prices on some low-utility keywords
might be very small. Therefore, we should consider the key-
word utility when adjusting the keyword bid prices. For
those keywords with low utility, the best choice may be to
decrease their bid prices and instead put more money on the
high utility keywords.

3.3 Joint Optimization
The data statistics reported in the previous section show

that both campaign budget allocation and bid price setting
are important to advertisers, but they are non-trivial to op-

4The potential revenue is calculated by summing up all the
unused budgets of the p-accounts.
5The relative CTR is normalized by dividing the CTR on
each position by the CTR on the first position.
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Figure 1: The proportion of ad volume ranking one
position up with the increased bid price.
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Figure 2: The relative CTR of each ad slot.

timize. If we want to jointly optimize them, the task may
become even more difficult. However, we would like to point
out that it is necessary to perform the joint optimization.
On one hand, if we only perform bid price optimization,

each campaign will be optimized independently. For cam-
paigns that have run out of budget, the help from bid price
optimization will be limited because the potential capacity of
these campaigns is constrained. For campaigns that have a
lot of unused budget, bid price optimization can help achieve
better performance, but it is hard to take full use of the bud-
get due to the constraint of the value per click (VPC) of the
bid keywords. On the other hand, if we only perform budget
optimization, the unused budget will be reallocated to the
campaigns that have already or tend to run out of budget,
and thus their performance will be improved. However, the
campaigns (no matter they run out of budget or not) will
lose the opportunity to further improve their performance
since their current bid price settings might not be optimal.
Therefore, we had better consider both bid price optimiza-
tion and campaign budget allocation simultaneously. In this
way, the unused budget can be moved to the appropriate
campaigns and can be effectively used on the best keyword
candidates.
Note that in terms of optimizing the performances of ad-

vertisers, other efforts such as ad copy improvement, bid
keyword selection, behavior and demography targeting, and
landing page optimization are also important and effective.
However, we will not discuss them as they are not in the
scope of this paper.

4. JOINT OPTIMIZATION OF BID AND

BUDGET ALLOCATION
In this section, we introduce the proposed method for joint

optimization of bid price setting and campaign budget allo-
cation. The key idea is to maximize the account-level ad-

vertiser revenue subject to the constraints of account-level
budget. To better illustrate this idea, we first give some
necessary notations including the definition of winning price
interval, which serves as a basis of the following discussions.
Then we adopt a probabilistic model to approximate the
probability of winning a certain ad position given a bid price.
After that, we define an optimization problem based on the
probability model, and convert the problem to be a sequen-
tial quadratic programming problem. By solving the prob-
lem, we can get the optimal solution to campaign budget
allocation and bid price setting.

4.1 Notations and Definitions
In the joint optimization of bid price setting and cam-

paign budget allocation the input is an advertiser account
A = {C1, C2, . . . , Cm}, where m is the number of campaigns
under account A and Ci(i = 1, 2, . . . ,m) is the i-th cam-
paign. For simplicity, we will not distinguish ad group and
ad in the following discussions.6 Accordingly, we can denote

campaign Ci as Ci = {g(0)i , Di,Ki} (i = 1, . . . ,m), where

g
(0)
i denotes the original periodical (e.g., monthly) budget
set by the advertiser, Di denotes the set of ads, and Ki de-
notes the set of bid keywords7 in campaign Ci, respectively.

The ad set Di can be written as Di = {di,1, di,2, . . . , di,li},
where li is the number of ads in campaign Ci and di,s (s =
1, 2, . . . , li) denotes the s-th ad in the campaign. The bid

keyword set Ki can be written as Ki = {(ki,1, b
(0)
i,1 , vi,1),

(ki,2, b
(0)
i,2 , vi,2), . . . , (ki,ni , b

(0)
i,ni

, vi,ni)} where ni is the num-

ber of bid keywords8 in campaign Ci, ki,t (t = 1, 2, . . . , ni)

denotes the t-th bid keyword, b
(0)
i,t (t = 1, 2, . . . , ni) denotes

the original bid price for ki,t, and vi,t (t = 1, 2, . . . , ni) de-
notes the VPC that ki,t brings. We approximately estimate
the VPC based on the idea proposed in [4, 20], and regard

it as the upper bound of b
(0)
i,t [2, 11]. In addition, we denote

the minimum reserve price as ǫb, which serves as the lower
bound of the valid bids.

In sponsored search, the advertiser can associate several
keywords to his/her ad. When a query is issued, an auc-
tion might be triggered. If one of the associated keywords of
an ad matches the query by the corresponding match func-
tions to the match types of the keywords, the ad (together
with the matched keyword) will be involved in the auction.
Therefore, the candidates in the auction is actually a tuple

as ωi,s,t = (di,s, (ki,t, b
(0)
i,t , vi,t)), where s = 1, 2, . . . , li and

t = 1, 2, . . . , ni. We call the tuple order item. For ease of
reference, for an order item ω, we also use (·)w to denote the
attribute associate with it, such as its keyword kω, bid price
bω, and VPC vω.

We use Φ to denote the maximum number of ad slots
in each search result page of the sponsored search system.
Suppose the ads are ranked in the auction according to their
rank scores, then we have the following definitions.

Definition 1 (Winning Score). For an auction θ, its
winning score at position ρφ (denoted by µφ,θ, φ = 1, 2, . . . ,Φ)

6In practice, the most relevant ad in an ad group will par-
ticipate in the auction.
7A keyword may have different match types and different
bid prices accordingly. For simplicity, we regard them as
different keywords.
8The same keyword with different match types are regarded
as different keywords in Ki.
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is the least rank score that can make an order item get the
φ-th ad slot ρφ in the auction. Let µ0,θ = +∞, then we have
µ0,θ ≥ µ1,θ ≥ . . . ≥ µΦ,θ.

Definition 2 (Winning Score Interval). For an auc-
tion θ, its winning score interval at position ρφ is [µφ,θ, µφ−1,θ)
(φ = 1, 2, . . . ,Φ), which is the range of the rank score that
can make an order item exactly get the φ-th ad slot ρφ in
the auction.

Mainstream search engines use the product of the bid price
and the quality score as the rank score in their auctions
[13]. Suppose the quality score of an order item ω in an
auction θ is rω,θ, which can be calculated based on a group of
features such as the query-ad similarity, semantic similarity,
taxonomy, user query time, user query location and so on
[14, 15, 19]. As indicated by the subscript, the quality score
rω,θ of an order item can be different in different auctions,
due to some contextual information related to time, location,
and user for the triggering query [14]. Usually such a quality
score indicates the probability that an ad will be clicked after
it is noticed by users. In this context, we have the following
definitions of winning price and winning price interval.

Definition 3 (Winning Price). Given an order item
ω in an auction θ with its quality score rω,θ, its winning
price at position ρφ (denoted by βω,φ,θ, φ = 1, 2, . . . ,Φ) is
µφ,θ

rω,θ
, which is the least bid price that can make ω get the

φ-th ad slot ρφ in the auction. Let βω,0,θ = +∞, and we
have βω,0,θ ≥ βω,1,θ ≥ . . . ≥ βω,Φ,θ.

Definition 4 (Winning Price Interval). Given an
order item ω in an auction θ with its quality score rω,θ,
its winning price interval at position ρφ is [βω,φ,θ, βω,φ−1,θ)
(φ = 1, 2, . . . ,Φ), which is the range of the bid price that can
make ω exactly get the φ-th ad slot ρφ in the auction.

4.2 Probabilistic Model for Ad Ranking
In order to compute the expected advertiser revenue, we

need to get the probability for an order item ω with bid
price bω to be ranked at position ρφ in the auctions.9 More
specifically, we define a probability distribution Pω(bω) as,

Pω(bω) = (pω(ρ1|bω), pω(ρ2|bω), . . . , pω(ρΦ|bω), pω(ρΦ+1|bω)),

where pω(ρφ|bω) (φ = 1, 2, . . . ,Φ) denotes the probability
for ω to be ranked in slot ρφ when its bid price is bω, and
pω(ρΦ+1|bω) denotes the probability for ω to lose the auction
(i.e., to be ranked lower than ρΦ). It is clear that,

∑Φ+1
φ=1 pω(ρφ|bω) = 1.

To get the above probability distribution, we apply the
Bayes theorem to each element of it.

pω(ρφ|bω) =
pω(bω|ρφ)pω(ρφ)

∑Φ+1

j=1
pω(bω |ρj)pω(ρj)

Here pω(ρφ) is the probability of any ad being displayed at
position ρφ in the auctions that ω participates in, which can
be approximately obtained by simple counting in the histor-
ical auction log. pω(bω|ρφ) is the probability of observing bω
in the winning price interval at position ρφ in the auction

9Note that we compute this probability at the order item
level but not for each individual auction, mainly because of
the concern of data sparseness.

θ that ω participates in. A straightforward way is also to
obtain this value by simple counting in the historical auction
log. That is, for each auction θ of ω (θ = 1, 2, . . . ,Θω, where
Θω denotes the number of auctions ω participates in.), we
calculate the winning price interval [βω,φ,θ, βω,φ−1,θ) for po-
sition ρφ from the auction log. If bω ∈ [βω,φ,θ, βω,φ−1,θ), we
say that there is an observation of price bω. However, the
problem with this approach is that we need to go through
the entire log for every possible value of bω, which will be
too costly when we performing the optimization. Therefore
we propose a new approach as described below that can be
much more efficient without revisiting the entire auction logs
during the optimization process.
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Figure 3: A case of Gaussian fitting for the bound
of the winning price intervals.

For all auctions of ω, we can calculate their winning price
intervals at position ρφ. As mentioned above, the lower
bound and upper bound of the winning price interval are
actually in fluctuation in different auctions. For simplicity,
we use the following Gaussian distributions10 to model the
fluctuation of the bounds.

q
(L)
ω (x|ρφ) = 1

√

2πσ2
ω,φ

e−(x−β̄ω,φ)2/2σ2
ω,φ

q
(U)
ω (y|ρφ) = 1

√

2πσ2
ω,φ−1

e−(y−β̄ω,φ−1)
2/2σ2

ω,φ−1

Here x and y are the random variables for the lower bound
and upper bound of the winning price interval of ω at posi-
tion ρφ, and the superscripts L and U stand for lower bound
and upper bound respectively. In addition, β̄ω,φ and σω,φ

are the mean and standard deviation for the lower bounds
of the winning price intervals at position ρφ for all auctions
of ω. That is,

β̄ω,φ = 1
Θω

∑Θω

θ=1 βω,φ,θ

σ2
ω,φ = 1

Θω

∑Θω

θ=1 (βω,φ,θ −
1

Θω

∑Θω

θ=1 βω,φ,θ)
2

Similarly, β̄ω,φ−1 and σω,φ−1 are the mean and standard
deviation for the upper bounds of the winning price intervals
at position ρφ for all auctions of ω.

10We have tested several possible distributions including
Gaussian, Beta, and Gamma distributions, and found Gaus-
sian is one of the best choices. Due to space limit, we will
not show the parameter fitting for the distributions, but we
can show an running example like Figure 3. As this is an
approximation for the real data, we will ignore the negative
values from the Gaussian distribution, just like what we usu-
ally do when we assume the heights of a group of people are
sampled from a Gaussian distribution.
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Thus pω(bω|ρφ) can be computed as below.

pω(bω|ρφ) = pω(x ≤ bω < y|ρφ)
= pω(x ≤ bω|ρφ)pω(bω < y|ρφ)

=
∫ bω
−∞

q
(L)
ω (x|ρφ)dx

∫∞

bω
q
(U)
ω (y|ρφ)dy

= ∅(
bω−β̄ω,φ

σω,φ
)(1− ∅(

bω−β̄ω,φ−1

σω,φ−1
))

(φ = 2, . . . ,Φ)

Here ∅(·) represents the cumulative distribution function
of the standard normal distribution. In particular, for the
first ad slot ρ1, the upper bound y is infinity. Hence pω(bω <

y|ρ1) ≡ 1, and then,

pω(bω|ρ1) = pω(x ≤ bω|ρ1) = ∅(
bω−β̄ω,1

σω,1
).

Similarly, for ρΦ+1, the lower bound x is zero. Hence
pω(x ≤ bω|ρΦ+1) ≡ 1, and then,

pω(bω|ρΦ+1) = pω(bω < y|ρΦ+1) = 1− ∅(
bω−β̄ω,Φ

σω,Φ
).

Figure 4 uses an example to explain the calculation of the
probability pω(bω|ρφ). Suppose the bid of an observation
is 28 (cents), then the probability pω(bω|ρφ) equals to the
product of the area of the left shadow (probability of lower
bound < 28) and the area of the right shadow (probability
of upper bound > 28).
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Figure 4: An example of the probability density dis-
tribution of the upper bound and lower bound of a
winning price interval.

So far we have discussed our probabilistic model for ad
ranking based on the ad auction log data. Compared with
the conventional ranking models, the probabilistic model is
smooth and easy to be directly optimized. Note that this
model can be designed in other forms with different data
formats in different scenarios.

4.3 Optimization Problem
Given the definition of the probabilistic model described

in the previous subsection, we can define the expected adver-
tiser revenue. To ease the illustration, we further introduce
two notations as below. (i) τφ - the position bias at slot
ρφ. As discussed in Section 3.2, the relative CTR (shown
in Figure 2) indicates the probability of ads in the position
ρφ being noticed. Further considering the definition of qual-
ity score rω,θ, the actual probability of an ad being clicked
when ranked on the slot ρφ will be τφrω,θ [15]. (ii) cω,φ,θ -
the cost for a click on ω in an auction θ where it is ranked
on position ρφ. According to the GSP system, the cost can

be calculated as cω,φ,θ =
bω′rω′,θ

rω,θ
, where ω′ is the order item

that is ranked one slot lower than ω in the auction θ, and
bω′ is its bid price.

The objective of the optimization problem is to maximize
the total revenue of the advertiser account, which reflects
the final profit the advertiser can make from the sponsored
search. The constraints are the bounds of the bid prices and
the campaign budget.

For all the campaigns in an advertiser account, the total
expected click number can be written as

∑m
i=1

∑
ω∈Ci

∑Θω

θ=1

∑Φ
φ=1 pω(ρφ|bω)τφrω,θ.

where the factor
∑Φ

φ=1 pω(ρφ|bω)τφrω,θ is the probability of
click on ω in one auction when the bid price is bω.

Considering the cost of click and the VPC of each bid key-
word, we can get the expected advertiser revenue as follows,

∑m
i=1

∑
ω∈Ci

∑Θω

θ=1

∑Φ
φ=1 pω(ρφ|bω)τφrω,θ(vω − cω,φ,θ).

Given the above objective function, we can formulate the
joint optimization as below, where gi (i = 1, 2, . . . ,m) and
bω denote the variables of campaign budgets and keyword
bid prices respectively. The minimum campaign budget is
ǫg, for the advertiser might not like to entirely close a cam-
paign by letting gi = 0.

maxgi,bω

∑m
i=1

∑
ω∈Ci

∑Θω

θ=1

∑Φ
φ=1 pω(ρφ|bω)τφrω,θ(vω − cω,φ,θ)

s.t.
∑m

i gi =
∑m

i g
(0)
i

0 ≤
∑

ω∈Ci

∑Θω

θ=1

∑Φ
φ=1 pω(ρφ|bω)τφrω,θcω,φ,θ ≤ gi

(i = 1, 2, . . . ,m)
ǫg ≤ gi (i = 1, 2, . . . ,m)
ǫb ≤ bω ≤ vω (ω ∈ Ci, i = 1, 2, . . . ,m)

4.4 Efficient Solution
The above optimization problem is a typical constrained

optimization problem. It can be approximately solved by
means of sequential quadratic programming (SQP) [9] in an
efficient manner.

Suppose ξ1 = {bω} (ω ∈ Ci, i = 1, 2, . . . ,m) denotes the
vector of bid prices for all the order items in an advertiser
account, and ξ2 = {gi} ( i = 1, 2, . . . ,m) denotes the vector
of campaign budgets. Then ξ = (ξT1 , ξ

T
2 )

T is the vector of
all variables. We can rewrite the optimization problem as
the following form.

minξ f(ξ)
s.t. h0(ξ) = 0

hi(ξ) ≥ 0 (i = 1, 2, . . . , 5)

The functions f(ξ) and hi(ξ) (i = 0, 1, . . . , 5) are written
in the following forms,

f(ξ) = −
∑m

i=1

∑
ω∈Ci

∑Θω

θ=1

∑Φ
φ=1 pω(ρφ|bω)τφrω,θ(vω − cω,φ,θ)

h0(ξ) =
∑m

i gi −
∑m

i g
(0)
i = 0

h1(ξ) =
∑

ω∈Ci

∑Θω

θ=1

∑Φ
φ=1 pω(ρφ|bω)τφrω,θcω,φ,θ ≥ 0

h2(ξ) = gi −
∑

ω∈Ci

∑Θω

θ=1

∑Φ
φ=1 pω(ρφ|bω)τφrω,θcω,φ,θ ≥ 0

(i = 1, 2, . . . ,m)
h3(ξ) = gi − ǫg ≥ 0 (i = 1, 2, . . . ,m)
h4(ξ) = bω − ǫb ≥ 0 (ω ∈ Ci, i = 1, 2, . . . ,m)
h5(ξ) = vω − bω ≥ 0 (ω ∈ Ci, i = 1, 2, . . . ,m)

The above problem can be approximately solved by SQP.
In SQP, a quadratic programming (QP) subproblem is solved
in each iteration which is obtained by linearizing the con-
straints and approximating the following Lagrangian func-
tion L(ξ, η) quadratically.
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L(ξ, η) = f(ξ)−
∑5

i=0 ηihi(ξ)

Here η = {ηi} is the Lagrangian multiplier. The opti-

mization may start from any initial ξ(0). Suppose ξ(j) is the
solution in the j-th iteration, η(j) is the corresponding La-
grangian multipliers, and H(j) = H(ξ(j), η(j)) is the Hessian
of the Lagrangian function, then the following QP subprob-
lem should be solved in the (j + 1)-th iteration.

minz
1
2
zTH(j)z +∇L(ξ, η)T z

s.t. ∇h0(ξ
(j))T z + h0(ξ

(j)) = 0

∇hi(ξ
(j))T z + hi(ξ

(j)) ≥ 0 (i = 1, . . . , 5)

Here ∇ denotes gradient calculus. If z(j) is the solution
of the above QP subproblem and w(j) is the correspond-
ing multiplier of this subproblem, then we use the following
formulas to update the solution of the SQP problem.

ξ(j+1) = ξ(j) + z(j)

η(j+1) = w(j)

The above iterations lead to a local approximation of the
solution. The algorithm can be stabilized by line search. By
solving this SQP problem, we can get the optimal campaign
budgets as well as the optimal bid price for each order item.

5. EXPERIMENTAL EVALUATION
In this section, we first introduce our experimental set-

tings, including the datasets, baseline algorithms, and eval-
uation measures. Then we report the experimental results
on our proposed algorithm and make analysis and discus-
sions.

5.1 Experimental Settings

5.1.1 Datasets

The data used in our experiments came from a main-
stream commercial search engine. There are basically two
types of data: auction log and advertiser database. The auc-
tion log was collected in a month of 2011, containing over
one billion auction events. The log was partitioned into two
parts, one for training and the other for testing. The train-
ing data was used as historical data to get the probability
model for ad rank and the empirical values used in our algo-
rithms. The test data was used for simulation [1] in order to
evaluate the performance of each algorithm. The advertiser
database is a snapshot in the same month, which contains
about 150 thousand sponsored search accounts.
We sampled 400 p-accounts to study in our experiments.

Accordingly, over 1.2 million related auction events were ex-
tracted from the auction log. We also got the bid price for
each keyword and the budget for each campaign in these
accounts from the advertiser database.

5.1.2 Baseline Algorithms

The proposed algorithm jointly optimizes the bid price
and campaign budget. In order to understand the benefit of
performing joint optimization, we will also investigate how
it works if we only optimize bid price or campaign budget.
This leads to two natural simplified methods for our algo-
rithm. We also compare our algorithm with two state-of-
the-art algorithms for bid price optimization. In addition,

using the original bid prices and campaign budget is the
pure baseline. Furthermore, we adopt a bidding strategy to
mimic the second order effect by the bid fluctuations, and
test the robustness of our proposed method. Therefore, as
a whole, we have the following seven algorithms in our ex-
periments.

Original Bid Price and Campaign Budget (ORI).
This algorithm uses the original keyword bid prices and cam-
paign budgets in the experiment. This is the pure baseline
in the experiments.

Joint Optimization of Bid and Budget (JO). This
is our proposed algorithm. Note that we approximately cal-
culate the VPC according to the idea in [4], i.e., we ran a
simulation on the auction log to get the incremental cost per
click (ICPC) [4] for each keyword and use it as the estimated
value for the VPC of the keyword.

Bid Price Only (BID). This algorithm uses our pro-
posed algorithm, but only optimizes the keyword bid prices,
without changing the campaign budgets. By comparing this
method with JO, we can see the impact of joint optimiza-
tion. This method can also be used to directly compare with
other algorithms for bid optimization.

Campaign Budget Only (BGT). This algorithm uses
our proposed algorithm, but only optimizes the campaign
budget, without changing the keyword bid prices. By com-
paring this method with JO, we can also see the impact of
joint optimization.

Knapsack Problem (KS). This algorithm is the multi-
slot auction model proposed in [7], which adapts the problem
of keyword bid price setting into a multi-choice knapsack
problem. We set the t in the model as one day. That is,
we will change the bid price daily according to remaining
budget of each campaign.

Market Optimal Bid (MOB). This algorithm refers
to the optimal bid model proposed in [16]. This model is
an optimization framework that maximizes the advertiser
revenue. Position is also considered in this model. The
difference between this model and the BID model lies in
that MOB captures the best position with fixed bid prices
in each position to approach the observation instead of using
a probability distribution for positions.

Joint Optimization with Advertiser Modeling (JO-
AM). In the real online traffic, the advertisers would dy-
namically tune their bid prices in response to the changes of
their campaign performances, and thus the changes of the
bid prices will lead to the changes of the action outputs.
Therefore, the optimal budget allocation and bid prices cal-
culated from the historical log might not be so effective as
expected in the real online experiment. We adopt a bidding
strategy [18] by the advertisers to mimic the dynamic bid
changes, and check whether the proposed JO method can
still be robust with the possible bid changes by the adver-
tisers.

Note that we do not compare with the algorithms in [12,
17], for their objective is to maximize the expected click
number. The number of clicks can be a good measure for
the campaign performance, but it may not be a good ob-
jective to optimize for the advertisers. They may care more
about the quality of clicks or the value they desire from each
click. In other words, the revenue might be more meaning-
ful for the advertisers to optimize. We do not compare with
the algorithms in [5, 6, 10] either, for they are in different
scenarios with our setting.
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5.1.3 Evaluation Measures

We used the following evaluation measures in our experi-
ments.
Ad Impressions. After simulation on the test data, we

can get the impressions for an advertiser account.
Expected Clicks. We use the adPredictor model [14] to

calculate the probability of click, and transform the impres-
sions to expected ad clicks.11 More expected clicks mean
better performance of an advertiser.
Advertiser Revenue. Since there is a cost and a VPC

associated with each click, the advertiser revenue for each
click can be calculated as the difference between the VPC
and the cost. By summing up the advertiser revenue for all
the clicks obtained by an advertiser account, we can get the
overall advertiser revenue.
Search Engine Revenue. While the above measures

mainly describe the performances of advertisers, this mea-
sure corresponds to the performance of the search engine.
Note that the search engine revenue does not equal the ex-
pense of the target advertiser accounts. If the keyword auc-
tion is highly competitive and there is no empty ad slot,
the impression of a new ad might not increase the expected
search engine revenue since there is another ad losing the
auction.

5.2 Experimental Results
We study the performances of the algorithms ORI, BID,

BGT, KS, MOB, JO, and JO-AM which all take the ad-
vertiser revenue as the objective function. We report the
performance of these algorithms with respect to ad impres-
sions, expected clicks, advertiser revenue, and search engine
revenue. Note that we normalized the values under each
evaluation metric by dividing them by the maximum value
in the corresponding results, to protect the business secrets
of the search engine.

5.2.1 Ad Impressions
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Figure 5: The average ad impressions among p-
accounts.

The average ad impressions of each algorithm are shown
in Figure 5. From the figure we have the following observa-
tions. (i) All the algorithms successfully achieve a lot more
impressions as compared to ORI. This demonstrates that
the p-accounts have large potential to improve their perfor-
mance by tuning the bid prices or budget allocation. (ii) JO
performs better than BID and BGT. Therefore, although
BID and BGT can help improve the ad impressions, jointly
optimizing both bid and budget will help achieve more. This
shows the necessity of adopting our proposed method. (iii)

11The adPredictor model performs quite well on our data and
has a predict error of less than 10%.

The performance of JO-AM is hurt by the advertiser dynam-
ics on bid changes. However, it is still comparable with the
second highest performer KS. It shows the proposed method
is robust against the second-order effects from the advertiser
dynamics.

5.2.2 Expected Clicks
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Figure 6: The average expected clicks among p-
accounts.

Figure 6 depicts the number of expected clicks in the sim-
ulation period for the seven algorithms. From the figure we
have the following observations. (i) BID, BGT, KS, MOB,
JO and JO-AM all improve the click number as compared
to ORI. This shows that using advertiser revenue as the op-
timization objective can also help improve the click number.
(ii) BID performs better than MOB, indicating that our pro-
posed ways of optimizing bid prices is more effective than
some previous work. (iii) Further considering the budget al-
location, JO performs the best. (iv) JO-AM is comparable
with the second highest performer KS, again showing the
robustness of the proposed method against the second-order
effects.

5.2.3 Advertiser Revenue
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Figure 7: The average advertiser revenue among p-
accounts.

In Figure 7, we evaluate the advertiser revenue, which is
just the optimization objective of these algorithms. From
the figure we have the following observations. (i) All the al-
gorithms improve the advertiser revenue significantly. Though
BID and BGT perform slightly worse than KS and MOB,
by combining the advantages of BID and BGT, JO achieves
better performance as compared to KS and MOB. It shows
that the advertisers can benefit a lot from the joint optimiza-
tion of bid price setting and budget allocation. (ii) JO-AM
gets the second highest position in advertiser revenue. It
even outperforms KS, showing that the proposed method is
a good choice for the advertisers in practice when facing the
bid dynamics.
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Figure 8: The average search engine revenue among
p-accounts.

5.2.4 Search Engine Revenue

The performances in terms of search engine revenue are
shown in Figure 8. From the figure, we can see that search
engine can earn more money by using all the algorithms
as compared to ORI. Among these algorithms, and JO still
performs the best. Therefore, the joint optimization method
can in return help the search engine improve the income.
To sum up all the aforementioned experimental results,

we can get the following conclusions. (i) Bid price optimiza-
tion (BID) can lead to high improvement on the ad impres-
sions and expected clicks, and thus can largely increase both
the advertiser revenue and the search engine revenue. (ii)
Campaign budget optimization itself (BGT) seems not to
perform as well as bid prices optimization (BID) in terms of
the evaluation measures like expected clicks and advertiser
revenue, however, it can ensure that only a very small num-
ber of advertisers will have worse performance than before
after the optimization. (iii) By jointly optimizing both bid
prices and budget allocation, JO perform the best among
all the algorithms in all evaluation measures. This clearly
demonstrates the effectiveness of our proposal for both the
advertisers and the search engine.

6. CONCLUSION AND FUTURE WORK
In this paper, we studied the joint optimization of cam-

paign budget allocation and bid price setting. For this pur-
pose, we proposed a probability model for ad ranking, and
proposed an integer optimization problem to maximize the
expected advertiser revenue. We show that the problem
can be approximately solved by means of alternately work-
ing on a binary integer optimization problem and another
constraint optimization problem. Experimental results have
shown that our proposed algorithm can increase the perfor-
mance of advertisers in terms of several evaluation measures,
as well as the search engine revenue.
For future work, we plan to further study like the following

problems. For example, we will refine our model to perform
the optimization for multiple accounts simultaneously. For
this purpose, we need to consider the inter-competition be-
tween accounts, which will make the optimization problem
much harder to solve. Furthermore, we want to apply the
proposed method in online traffic to test its performance.
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Budget optimization in search-based advertising auctions.
In Proceedings of the 8th ACM conference on Electronic
commerce, 2007.

[13] J. Feng, H. Bhargava, and D. Pennock. Comparison of
allocation rules for paid placement advertising in search
engines. In Proceedings of the 5th international conference
on Electronic commerce, pages 294–299. ACM ICEC, 2003.

[14] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich.
Web-scale bayesian click-through rate prediction for
sponsored search advertising in microsoft’s bing search
engine. In Proceedings of the 27th International Conference
on Machine Learning. ACM ICML, 2010.

[15] D. Hillard, S. Schroedl, and E. Manavoglu. Improving ad
relevance in sponsored search. In Proceedings of WSDM’10.

[16] B. Kitts and B. Leblanc. Optimal bidding on keyword
auctions. Electronic Markets, 14(3):186–201, 2004.
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