
Automated and modular refinement reasoning for concurrent

programs

Chris Hawblitzel
Microsoft

Erez Petrank
Technion

Shaz Qadeer
Microsoft

Serdar Tasiran
Koç University

Abstract

We present civl, a language and verifier for concur-
rent programs based on automated and modular re-
finement reasoning. civl supports reasoning about
a concurrent program at many levels of abstraction.
Atomic actions in a high-level description are refined
to fine-grain and optimized lower-level implementa-
tions. A novel combination of automata theoretic
and logic-based checks is used to verify refinement.
Modular specifications and proof annotations, such
as location invariants and procedure pre- and post-
conditions, are specified separately, independently at
each level in terms of the variables visible at that
level. We have implemented civl as an extension to
the boogie language and verifier. We have used civl
to refine a realistic concurrent garbage collection al-
gorithm from a simple high-level specification down
to a highly-concurrent implementation described in
terms of individual memory accesses.

1 Introduction

We present a technique for verifying a refinement re-
lation between two concurrent, shared-memory mul-
tithreaded programs. Our work is inspired by step-
wise refinement [53], where a high-level description is
systematically refined, potentially via several inter-
mediate descriptions, down to a detailed implemen-
tation. Refinement checking is a classical problem in
verification and has been investigated in many con-
texts, including hardware verification [15] and veri-
fication of cache-coherence protocols and distributed
algorithms [39]. In the realm of sequential software,

notable successes using the refinement approach in-
clude the work of Abrial et al. [2] and the proof of full
functional correctness of the seL4 microkernel [37].
This paper presents the first general and automated
proof system for refinement verification of shared-
memory multithreaded software.

We present our verification approach in the context
of civl, an idealized concurrent programming lan-
guage. In civl, a program is described as a collection
of procedures whose implementation can use the stan-
dard features such as assignment, conditionals, loops,
procedure calls, and thread creation. Each procedure
accesses shared global variables only through invoca-
tions of atomic actions. A subset of the atomic ac-
tions may be refined by new procedures and a new
program is obtained by replacing the invocation of an
atomic action by a call to the corresponding proce-
dure refining the action. Several layers of refinement
may be performed until all atomic actions in the final
program are directly implementable primitives. Un-
like classical program verifiers based on Floyd-Hoare
reasoning [24, 34] that manipulate a program and an-
notations, the civl verifier manipulates multiple op-
erational descriptions of a program, i.e., several layers
of refinement are specified and verified at once.

To prove refinement in civl, a simulation rela-
tion between a program and its abstraction is in-
ferred from checks on each procedure, thus decom-
posing a whole-program refinement problem into per-
procedure verification obligations. The computation
inside each such procedure is partitioned into “steps”
such that one step behaves like the atomic specifica-
tion and all other steps have no effect on the vis-
ible state. This partitioning follows the syntactic

1

structure of the code in a way similar in spirit to
Floyd-Hoare reasoning. To be able to express the
per-procedure verification obligation in terms of a col-
lection of per-step verification tasks, the civl verifier
needs to address two issues. First, the notion of a
“step” in the implementation must be defined. The
definition of a step can deeply affect the number of
checks that need to be performed and the number of
user annotations. Second, it is typically not possible
to show the correctness of a step from an arbitrary
state. A precondition for the step in terms of shared
variables must be supplied by the programmer and
mechanically checked by the verifier.

To address the first problem, civl lets the pro-
grammer define the granularity of a step, allowing the
user to specify a semantics with larger atomic actions.
A cooperative semantics for the program is explicitly
introduced by the programmer through the use of a
new primitive yield statement; in this semantics a
thread can be scheduled out only when it is about
to execute a yield statement. The preemptive seman-
tics of the program is sequentially consistent execu-
tion; all threads are imagined to execute on a single
processor and preemption, which causes a thread to
be scheduled out and a nondeterministically chosen
thread to be scheduled in, may occur before any in-
struction.1 Given a program P , civl verifies that the
safety of the cooperative semantics of P implies the
safety of the preemptive semantics of P . This veri-
fication is done by computing an automata-theoretic
simulation check [30] on an abstraction of P in which
each atomic action of P is represented by only its
mover type [43, 21]. The mover types themselves are
verified separately and automatically using an auto-
mated theorem prover [10].

To address the second problem that refinement
verification for each step requires invariants about
the program execution, civl allows the programmer
to specify location invariants, attached either to a
yield statement or to a procedure as its pre- or post-
condition. Each location invariant must be correct
for all executions and must continue to hold in spite
of potential interference from concurrently executing

1In this paper, we focus our attention on sequential con-
sistency and leave consideration of weak memory models to
future work.

threads. We build upon classical work [48, 36] on
reasoning about non-interference with two distinct
innovations. First, we do not require the annota-
tions to be strong enough to prove program correct-
ness but only strong enough to provide the context
for refinement checking. Program correctness is es-
tablished via a sequence of refinement layers from an
abstract program that cannot fail. Second, to estab-
lish a postcondition of a procedure, we do not need
to propagate a precondition through all the yield an-
notations in the procedure body. The correctness of
an atomic action specification gives us a simple frame
rule—the precondition only needs to be propagated
across the atomic action specification. civl further
simplifies the manual annotations required for logical
non-interference checking by providing a linear type
system [52] that enables logical encoding of thread
identifiers, permissions [8], and disjoint memory [38].

Finally, civl provides a simple module system.
Modules can be verified separately, in parallel or at
different times, since the module system soundly does
away with checks that pertain to cross-module inter-
actions. This feature is significant since commutativ-
ity checks and non-interference checks for location in-
variants are quadratic, whole program checks involv-
ing all pairs of yield locations and atomic blocks, or
all pairs of actions from a program. Using the module
system, the number of checks is reduced; they become
quadratic in the number of yields and atomic blocks
within each module rather than the entire program.

We have implemented civl as a conservative ex-
tension of the boogie verifier. We have used it to
verify a collection of microbenchmarks and bench-
marks from the literature [7, 17, 18, 19, 23, 33]. The
most challenging case study with civl was carried
out concurrently with civl’s development and served
as a design driver. We verified a concurrent garbage
collector, through six layers of refinement, down to
atomic actions corresponding to individual memory
accesses. The level of granularity of the lowest-level
implementation distinguishes this verification effort
from previous attempts in the literature.

In conclusion, civl is the first automated verifier
for shared-memory multithreaded programs that pro-
vides the capability to establish a multi-layered re-
finement proof. This novel capability is enabled by

2

two important innovations in core verification tech-
niques for reducing the complexity of invariants sup-
plied by the programmer and the verification condi-
tions solved by the prover.

• Reasoning about preemptive semantics is re-
placed by simpler reasoning about cooperative
operational semantics by exploiting automata-
theoretic simulation checking. We are not aware
of any other verifier that combines automata-
based and logic-based reasoning in this style.

• A linear type system establishes invariants about
disjointness of permission sets associated with
values contained in program variables. These
invariants, communicated to the prover as free
assumptions, significantly reduce the overhead
of program annotations. We are not aware of
any other verifier that combines type-based and
logic-based reasoning in this style.

2 Overview

We present an overview of our approach to refinement
on the program in Figure 1, a simplified version of the
write barrier in a concurrent garbage collector (GC).
In a concurrent GC, a color (either WHITE, GRAY, or
BLACK) is associated with each object on the heap.
Before writing to an address addr, a mutator executes
a write barrier. It checks addr has color WHITE and
sets it to GRAY, indicating that the object at addr

and objects reachable from it should not be garbage
collected.

Procedure WB implements the write barrier. To
simplify exposition, we consider a single object
whose color is stored in the shared variable Color.
WB first reads Color without holding a lock, to avoid,
when possible, the cost of acquiring and releasing a
lock for each address encountered by a mutator. If
Color is WHITE, it calls the more expensive procedure
WBSlow to re-examines and possibly update Color

while holding the lock. civl simplifies reasoning
about WB and WBSlow by allowing us to compactly
express their specification as the following atomic
action:

var Color: int; // WHITE=1, GRAY=2, BLACK=3

procedure WB(linear tid:Tid)

atomic [if (Color == WHITE) Color := GRAY];

{

var cNoLock:int;

cNoLock := GetColorNoLock(tid);

yield Color >= cNoLock;

if (cNoLock == WHITE)

call WBSlow(tid);

}

procedure WBSlow(linear tid:Tid)

atomic [if (Color == WHITE) Color := GRAY];

{

var cLock:int;

call AcquireLock(tid);

cLock := GetColorLocked(tid);

if (cLock == WHITE)

call SetColorLocked(tid, GRAY);

call ReleaseLock(tid);

}

procedure GetColorNoLock(linear tid:Tid)

returns (cl:int) atomic [...];

procedure AcquireLock(linear tid:Tid)

right [...];

procedure ReleaseLock(linear tid:Tid)

left [...];

procedure GetColorLocked(linear tid:Tid)

returns (cl:int) both [...];

procedure SetColorLocked(linear tid:Tid,

cl: int) atomic [...];

Figure 1: Write barrier

Y R B L Y
 N

Figure 2: Abstraction of WBSlow

3

RM LMB,R

N,

Y B,LL

Figure 3: Yield sufficiency automaton (Y SA)

[if (Color == WHITE) Color := GRAY]

This specification indicates that regardless of the
different implementations of WB and WBSlow and re-
gardless of how the environment interferes with their
execution, to their respective callers it appears as if
they atomically execute the above code.

Per-procedure simulation, non-interference
via invariants. The correctness of WB is not ob-
vious, and its verification requires a combination of
techniques as discussed next. Consider the follow-
ing potential scenario. WB, not holding a lock, reads
Color and sets cNoLock to GRAY and then yields.
Another thread sets Color to WHITE. WB resumes,
but does nothing and exits, because the procedure-
local variable cNoLock is GRAY. In this scenario, the
atomic action specification of WB would not be satis-
fied. However, in the GC this scenario is not pos-
sible. The yield predicate (location invariant) ex-
presses the fact that other threads in the environment
of the thread running WB can only modify Color to a
higher (darker) value – civl verifies the correctness
of this location invariant. Using this location invari-
ant, civl then verifies atomicity refinement for WB

by verifying the existence of a particular simulation-
relation: for every control path through WB, exactly
one yield-to-yield execution fragment is simulated
by the atomic action specification and other frag-
ments do not modify global state. This proof re-
quires both correct modeling of environment inter-
ference in the yield predicate and the atomic action
specification for the called procedure WBSlow. The
civl verifier automatically computes a logical veri-
fication condition capturing these proof obligations
from the body and specification of WB.

Just as the verification of WB builds on the speci-

fication of WBSlow, the verification of WBSlow builds
on other refinement proofs (not shown) of the proce-
dures called in WBSlow; these procedures are shown
at the bottom of the figure. This example shows only
one procedure at this layer. In programs with many
procedures with atomic specifications at each layer,
civl combines the per-procedure refinement proofs
soundly into a whole-program refinement proof.

Reduction, preemptive vs collaborative se-
mantics. The verification of WBSlow highlights
reduction-related features in civl. Refinement check-
ing is performed on cooperative semantics in which
a yield-to-yield execution fragment of code is exe-
cuted atomically. However, in a real execution, con-
trol can switch between threads at any point in the
code. A naive modeling of a real execution would
put a yield statement before every instruction in the
code. The absence of a yield statement before ev-
ery instruction is justified by reasoning about mover
types [21]. The procedures called in WBSlow have
the mover types claimed in their declarations and
verified by civl. For example, the mover type of
Acquirelock is right which indicates that it com-
mutes later in time against concurrently executing
environment actions. These mover types are checked
by constructing verification conditions from each pair
of atomic actions.

The use of movers is entirely optional in civl, but
very beneficial in our experience. One can avoid
mover and commutativity reasoning, simply anno-
tating atomic action specifications with the mover
type atomic. However, without mover reasoning, a
yield statement and an accompanying predicate must
be inserted before every invocation of an atomic ac-
tion. It has been demonstrated in work in the litera-
ture that mover reasoning simplifies many proofs [17].
In our experience with civl, we have observed that
using more yield predicates rather than mover rea-
soning can make proofs difficult in two ways. First,
the annotation burden goes up because sophisti-
cated ghost variables may need to be introduced in
the program semantics.2 Second, the computational
cost of the pairwise mover reasoning is replaced by

2Well-scoped location invariants that cannot refer to the
state of other threads are known to be incomplete, both in
theory and in practice.

4

the cost of pairwise non-interference checks between
yield predicates and concurrently executing atomic
actions. civl does not force the use of mover rea-
soning but provides automation for this important
verification feature and its use in conjunction with
other techniques illustrated in this section.

Given verified mover types for actions, civl veri-
fies reduction, i.e., the correctness of the placement of
yields using a novel approach. A Yield Sufficiency
Automaton (YSA in Figure 3) encodes all sequences
of atomic actions and yields for which safety of coop-
erative semantics is sufficient for safety of preemptive
semantics. Each “transaction” starts with a sequence
of right movers (or both movers) and ends with a se-
quence of left movers (or both movers). In the mid-
dle, it can have at most one non mover. Transac-
tions must be separated by yields. civl then in-
terprets the control-flow graph of each procedure as
an automaton with mover types as edge labels. This
abstraction for WBSlow is shown in Figure 2. civl
verifies that this automaton is simulated by the yield-
sufficiency automaton using an existing algorithm for
computing simulation relations [30].

Linear variables. In Figure 1, thread identifier
(tid) variables are declared linear to indicate that
two threads cannot possess the same thread identifier
simultaneously. To enforce unique ownership of lin-
ear resources, the civl type checker prohibits dupli-
cation of linear resources [52]. Interference checking
and commutativity checking leverage this linearity by
automatically inserting assumptions about disjoint-
ness of linear resources into verification conditions,
making it easier to prove non-interference and com-
mutativity. Linearity is general enough to support
much more than just fixed thread identifiers: civl
also uses it to express separation of memory (in the
style of separation logic [49]; see [38]) and to express
permissions [8] that may be transferred but not du-
plicated between threads. Our verified GC, for exam-
ple, expresses mutual exclusion during initialization
and root scanning by temporarily transferring per-
missions from mutator threads to the GC thread.

Variable hiding. The atomic action specification
of WBSlow makes no reference to the lock variable,
although its implementation involves a lock. When
verifying refinement for WBSlow, the lock variable has

g ∈ Global ⊆ AllVar
tl ∈ ThreadLocal ⊆ AllVar
l ∈ Local ⊆ AllVar

x, y ∈ Var = Global ∪ ThreadLocal ∪ Local
v ∈ Value
σ ∈ Store = Var → Value
G ∈ GStore = Global → Value

TL ∈ TLStore = ThreadLocal → Value
L ∈ LStore = Local → Value

e, φ, ψ, ρ, le ∈ Expr = 2Store

α, β ∈ TransExpr = 2(Store,Store)

P ∈ Proc
A ∈ Action
m ∈ Mover = {B,R,L,N}
as ∈ Action → (Expr ,TransExpr ,Mover)

ps ∈ Proc → (Expr , 2ThreadLocal ,Expr ,Stmt)

λ ∈ LinearVar = 2Global∪ThreadLocal

ls ∈ (Action ∪ Proc)→ (LinearVar ,LinearVar)

a ∈ InsideABlock ::= a+ | a−
RS ∈ Proc ⇀ Action

HV ∈ 2Global

HA ∈ 2Action

HP ∈ 2Proc

Perm ∈ Value → 2Value

Figure 4: Definitions

been hidden. civl allows the programmer to both
introduce and hide variables in each refinement step,
thereby providing the capability to perform data re-
finement. The ability to introduce and hide variables
and write yield predicates specific to each refinement
step facilitates proofs spanning a large range of ab-
straction.

3 A concurrent programming
language

In this paper, we will formalize our verification
method on a core concurrent programming language,
civl. In this section, we present the syntax and oper-
ational semantics of our language. Figure 4 contains
basic definitions. Figure 5 uses these definitions to
define the syntax of a civl program. Informally, a
civl program is comprised of threads each of which
has a stack, global variables shared across threads,
thread-local variables that are shared across proce-
dures, and local variables inside a procedure. Thus,
a program contains all information to represent not
only the static program written by the programmer
but also the dynamic state of the program as it ex-

5

s ∈ Stmt ::= skip | yield e, λ | call A | call P |
async P | ablock {e, λ} s | s; s |
if le then s else s | while {e, α} le do s

F ∈ Frame ::= (P,L, s)

T ∈ Thread ::= (TL,
−→
F)

SC ∈ StmtCtxt ::= []Stmt | SC ; s
FC ∈ FrameCtxt ::= (P, []LStore ,SC)

TC ∈ ThreadCtxt ::= ([]TLStore ,FC ·
−→
F)

PC ∈ ProgCtxt ::= (ps, as, ls, []GStore ,
−→
T · TC ·

−→
T)

Prog ∈ Program ::= PC [G][TL][L][s]

YT ∈ YieldingThread ::= (TL, (P,L,SC [yield e, λ]) ·
−→
F) |

::= (TL, (P,L,SC [call P ′]) ·
−→
F) |

::= (TL, (P,L, skip) ·
−→
F)

YProgram ::= (ps, as, ls, G,
−−→
YT · T · −−→YT)

CProgram ::= (ps, as, ls, G,
−−→
YT)

Figure 5: Syntax

PC [G][TL][L][s] = (, as, , ,)
as ` (G·TL·L, s) −→ (G

′ ·TL
′ ·L′, s′)

PC [G][TL][L][s] −→ PC [G
′
][TL

′
][L
′
][s
′
]

(Step)

PC [G][TL][L][s] = (, as, , ,)
as ` (G·TL·L, s) −→ error

PC [G][TL][L][s]) −→ error
(Fail)

ps(P) = (φ,M,ψ, s)
ls(P) = (λ, λ

′
) T

′
= (TL, (P,L, yield φ, λ; s))

−→
T =

−→
T1 · TC [TL][L][async P] ·

−→
T2−→

T
′

=
−→
T1 · TC [TL][L][skip] ·

−→
T2

(ps, as, ls, G,
−→
T) −→ (ps, as, ls, G,

−→
T
′ · T ′)

(Async)

T = (TL, ε)

(ps, as, ls, G,
−→
T · T ·

−→
T
′
) −→ (ps, as, ls, G,

−→
T ·
−→
T
′
)

(End)

ps(P) = (φ,M,ψ, s)

ls(P) = (λ, λ
′
) T = (TL, (P

′
, L,SC [call P]) ·

−→
F)

T
′

= (TL, (P,L, s) · (P ′, L,SC [skip]) ·
−→
F)

(ps, as, ls, G,
−→
T · T ·

−→
T
′
) −→ (ps, as, ls, G,

−→
T · T ′ ·

−→
T
′
)

(Call)

T = (TL, (P,L, skip) ·
−→
F) T

′
= (TL,

−→
F)

(ps, as, ls, G,
−→
T · T ·

−→
T
′
) −→ (ps, as, ls, G,

−→
T · T ′ ·

−→
T
′
)

(Return)

Figure 6: Operational semantics for program

as(A) = (ρ, α,m) σ 6∈ ρ
as ` (σ, call A) −→ error

(Atomic-False)

as(A) = (ρ, α,m) σ ∈ ρ (σ, σ
′
) ∈ α

as ` (σ, call A) −→ (σ
′
, skip)

(Atomic-True)

as ` (σ, yield e, λ) −→ (σ, skip)
(Yield)

as ` (σ, ablock {e, λ} s) −→ (σ, s)
(AtomicBlock)

as ` (σ, skip; s) −→ (σ, s)
(Seq)

σ 6∈ le

as ` (σ, if le then s1 else s2) −→ (σ, s2)
(If-False)

σ ∈ le

as ` (σ, if le then s1 else s2) −→ (σ, s1)
(If-True)

σ 6∈ le

as ` (σ,while {e, α} le do s) −→ (σ, skip)
(While-False)

σ ∈ le s
′

= while {e, α} le do s

as ` (σ, s
′
) −→ (σ, s; s

′
)

(While-True)

Figure 7: Operational semantics for statements

ecutes. The sets Global , ThreadLocal , and Local are
the names of global, thread-local, and procedure-local
variables respectively. These sets are mutually dis-
joint and Var denotes their union. There is an unin-
terpreted set Value of values that may be stored in
these variables. Store, GStore, TLStore, and LStore
are all sets of maps into Value from Var , Global ,
ThreadLocal , and Local respectively. We denote ele-
ments of Store, GStore, TLStore, and LStore by σ,
G, TL, and L respectively. Formally, a civl program

is a tuple (ps, as, ls, G,
−→
T) with the following compo-

nents.

Procedures. ps maps a procedure name P ∈ Proc
to a tuple (φ,M,ψ, s), where φ is the precondition of
P , M is the set of thread-local variables potentially
modified by P , ψ is the postcondition of P , and s is
the body of P . The predicates φ and ψ cannot refer
to procedure-local variables. Procedures do not have
parameters, but parameters may be modeled using
thread-local variables.

Actions. as maps an action name A ∈ Action to
a tuple (ρ, α,m). Actions are used inside proce-
dure bodies to access global and thread-local vari-

6

ables. The predicate ρ over Store is the gate and
the predicate α over Store × Store is the transition
relation of A. If the gate ρ does not hold on the cur-
rent state, the program fails; otherwise, the program
makes progress by executing the action A based on
the transition relation α. Finally, m is one of four
values in {B,R,L,N}; it denotes the commutativ-
ity type of the action, B for both mover, R for right
mover, L for left mover, and N for non mover [21].

Linear interfaces. ls maps each procedure and ac-
tion name in Proc ∪ Action to a linear interface [52]
(λ, λ′), where each of λ and λ′ is a set comprising
global and thread-local variables. To exploit linearity
during verification, the programmer provides a func-
tion Perm from Value to 2Value . The set Perm(v)
is the set of permissions associated with a value
v ∈ Value. The civl type checker (Section 4.1)
computes a set of available linear variables at each
control location such that the multiset union of the
permissions associated with the available variables is
guaranteed to be a set, i.e., permissions are never du-
plicated among linear variables. The linear interface
(λ, λ′) of a procedure (or action) indicates the avail-
able sets at its beginning (λ) and end (λ′), respec-
tively. Linear interfaces allow civl to reason about
each procedure separately.

Global store. G is the global store of the program.

Threads.
−→
T is a sequence of threads. Each thread

T in
−→
T is a pair (TL,

−→
F) where TL is the thread-

local store and
−→
F is a stack of frames comprising

the continuation of T . Each frame (P,L, s) in
−→
F

comprises a procedure P , its procedure-local store L,
and a statement s.

3.1 Operational semantics

Figures 6 and 7 together present the operational se-
mantics as a relation −→ between a pair of programs.
The rules for the relation extend the syntax of state-
ments with an embedded context [54]. A statement
context SC is either a context []Stmt or the sequential
composition of a statement context and a statement.
Thus, each statement context has a unique context
[]Stmt inside it; this context encodes the current posi-
tion of the execution of a thread. The result of sub-

stituting a statement s inside the statement context
SC is another statement and is denoted by SC [s].
Similarly, we define a frame context FC with two
contexts embedded inside it, []LStore for substituting
a procedure-local store and []Stmt for substituting a
statement. The result of substituting a procedure-
local store L and a statement s inside FC is a frame
and is denoted by FC [L][s]; here, L is the procedure-
local store for the procedure containing the currently
executed statement s. A thread context TC has three
contexts embedded inside it, []TLStore for substitut-
ing a thread-local store, []LStore for substituting a
procedure-local store, and []Stmt for substituting a
statement. The result of substituting a thread-local
store TL, a procedure-local store L, and a statement s
inside TC is a thread and is denoted by TC [TL][L][s].
Finally, the result of substituting a global store G, a
thread-local store TL, a procedure-local store L, and
a statement s inside PC is a program and is denoted
by PC [G][TL][L][s].

The operational semantics use the notation G·TL·
L to denote the concatenation of the stores G, TL,
and L. Rule Step in Figure 6 allows the program
PC [G][TL][L][s] to move to PC [G′][TL′][L′][s ′] if (G·
TL ·L, s) can move to (G′ ·TL′ ·L′, s) according to
any rule in Figure 7 except for rule Atomic-False.
Similarly, rule Fail allows PC [G][TL][L][s] to fail if
(G ·TL ·L, s) fails according to rule Atomic-False.
Rule Async describes the creation of a thread via
async P . The new thread is added to the sequence
of threads in the program. Rule End describes the
termination of a thread; the terminating thread is
removed from the sequence of threads in the program.
Rules Call and Return describe the call and return
of a procedure via call P .

The rules in Figure 7 provide the operational se-
mantics for the statements in civl. The statement
skip has no side effect and is used as a marker in
the formal operational semantics. The statement
yield e, λ contains a predicate e and the linear per-
missions λ. The yield predicate e is expected to be
established by the executing thread and preserved
by other threads; the linear permissions λ are ex-
pected to be available as long as the control of the
thread is at the yield statement. The yield statement
is the mechanism by which the programmer speci-

7

fies the cooperative semantics over which the refine-
ment check is performed. The statement call A in-
vokes the action A. Suppose as(A) = (ρ, α,m) and
ls(A) = (λ, λ′). If ρ does not hold, the statement
call A fails, otherwise the store is updated according
to the transition relation α. The permissions in λ
are expected to be available at the beginning and the
permissions in λ′ are guaranteed to be available at
the end. The statement call P invokes the procedure
P . Suppose ps(P) = (φ,M,ψ, s) and ls(P) = (λ, λ′).
It is expected that the precondition φ holds and the
permissions λ are available at the beginning. Then,
the statement s executes. When s terminates, the
postcondition ψ holds and the permissions λ′ are
available. The predicates φ and ψ are expected to
be preserved by other threads in the environment.
The statement async P creates a new thread that
begins by invoking the procedure P . The statement
ablock {e, λ} s is useful only for compactly encoding
non-interference checks (Section 4.2.2); the predicate
e is expected to hold and the permissions λ expected
to be available at the beginning of s. In civl, yield
predicates, preconditions, and postconditions are the
three sources of location invariants [48].

Finally, we have the standard primitives for se-
quencing, conditional execution, and looping. The
statement s1; s2 executes s1 followed by s2. The
statement if le then s1 else s2 executes s1 if le is
true and otherwise executes s2. The statement
while {e, α} le do s executes s repeatedly until le be-
comes false. The expression e is a loop invariant and
the expression α is a summary for failure-free exe-
cutions of the loop that do not go through a yield
statement (Section 4.2.2). The conditional expres-
sion le in if and while statements cannot refer to
global variables.

We formalize the preemptive operational semantics
of civl as a relation −→ with domain Program and
codomain Program∪{error}. We use four contexts—
SC , FC , TC , and PC —to formalize −→ as a struc-
tured operational semantics [54]. In this semantics,
a thread is chosen nondeterministically to execute a
single statement. The statement skip has no side ef-
fect. The statement yield e, λ contains a predicate e
and a set λ comprising global and thread-local vari-
ables. The yield predicate e is expected to be es-

tablished by the executing thread and preserved by
other threads; the variables λ are expected to be
available at the yield statement. The yield state-
ment is the mechanism by which the programmer
specifies the cooperative semantics (described later)
over which the refinement check is performed. In
civl, yield predicates, preconditions, and postcondi-
tions are the three sources of location invariants [48].
The statement call A invokes the action A. Suppose
as(A) = (ρ, α,m). If ρ does not hold, the statement
call A fails and the program evolves to error , other-
wise the store is updated according to the transition
relation α. The statement call P invokes the proce-
dure P . Suppose ps(P) = (φ,M,ψ, s). It is expected
that the precondition φ holds, then statement s ex-
ecutes, and finally the postcondition ψ holds. The
predicates φ and ψ are expected to be preserved by
other threads in the environment. The statement
async P creates a new thread that begins by invok-
ing the procedure P . The statement ablock {e, λ} s is
useful only for compactly encoding non-interference
checks; the predicate e is expected to hold and the
set λ is expected to be available at the beginning of
s. Finally, we have the standard primitives for se-
quencing, conditional execution, and looping.

We now define the cooperative operational seman-
tics induced by the presence of yield statements in
the program. A yielding thread (YieldingThread in
Figure 5) is one that is waiting to execute at a yield
statement, a call, or a return from a call. A pro-
gram in YProgram is one in which all threads except
at most one thread are yielding threads. A program
in CProgram is one in which all threads are yielding
threads. Thus, we have CProgram ⊆ YProgram ⊆
Program. Let ↪→ be the relation obtained by restrict-
ing the domain and codomain of −→ to YProgram.
In a ↪→-execution, the one (possibly) non-yielding
thread is the only one allowed to execute until it
reaches a yield statement and becomes a yielding
thread; at that point, all threads are yielding and
any one can be picked for execution. We define the
relation 7−→ with domain CProgram and codomain
CProgram ∪ {error} as follows:

1. Prog 7−→ Prog ′ if there is a ↪→-execution from
Prog to Prog ′ such that every program on the

8

execution except for Prog and Prog ′ is not in
CProgram.

2. Prog 7−→ error if there is a ↪→-execution from
Prog to error such that every program on the
execution except for Prog is not in CProgram.

Consider a program Prog ∈ CProgram. We
write Safe(Prog) if it is not the case that Prog −→
error . We write Safe∗(Prog) if Safe(Prog ′) for
all Prog ′ such that Prog −→∗ Prog ′. We write
CSafe(Prog) if it is not the case that Prog 7−→
error . We write CSafe∗(Prog) if CSafe(Prog ′) for
all Prog ′ such that Prog 7−→∗ Prog ′. We write
Cooperative(Prog) if for each infinite ↪→-execution
Prog ↪→ Prog0 ↪→ Prog1 ↪→ · · · starting from Prog ,
there is some i ≥ 0 such that Prog i ∈ CProgram. We
write Cooperative∗(Prog) if Cooperative(Prog ′) for all
Prog ′ ∈ CProgram such that Prog 7−→∗ Prog ′.

3.2 Definitions

We conclude this section by presenting a few defini-
tions of concepts that are used in Section 4 to formal-
ize our verification method. A predicate ρ is indepen-
dent of a variable x ∈ Var if for all σ ∈ Store and
v ∈ Value, if σ ∈ ρ then σ[x → v] ∈ ρ. A transition
relation α is independent of a variable x ∈ Var if for
all σ, σ′ ∈ Store and v, v′ ∈ Value, if (σ, σ′) ∈ α then
(σ[x → v], σ(x → v′)) ∈ α. We define Acc(ρ) to be
the smallest set X ⊆ Var such that ρ is independent
of x for all x ∈ Var \X. We also define Acc(α) simi-
larly. For any transition relation α, let ∃∃Local . α be
the transition relation

{(G·TL·L,G′·TL′·L′) | ∃L1, L2. (G·TL·L1, G
′·TL′·L2) ∈ α}.

For any X ⊆ Var , let Havoc(X), be the transition
relation {(σ, σ′) | ∀x ∈ Var \X. σ(x) = σ′(x)}.

Given ρ1, ρ2 ∈ Expr , we write ρ1∨ρ2 for the union
of ρ1 and ρ2, ρ1 ∧ ρ2 for the intersection of ρ1 and
ρ2, and ¬ρ1 for Expr \ ρ1. Similarly, given α1, α2 ∈
TransExpr , we write α1 ∨ α2 for the union of α1 and
α2, α1 ∧ α2 for the intersection of α1 and α2, and
¬α1 for TransExpr \ α1. We denote the relational
composition of α1 and α2 by α1 ◦α2. Given ρ ∈ Expr
and α ∈ TransExpr , we denote by ρ → α the set

{(σ, σ′) | σ ∈ ρ⇒ (σ, σ′) ∈ α}. We let ρ◦α denote the
relation obtained by restricting the domain of α to ρ.
Similarly, we let α◦ρ denote the relation obtained by
restricting the codomain of α to ρ. We also sometimes
use false to represent the empty set of states or the
empty set of transitions. Given a relation R (over a
pair of sets), we denote the domain of R by dom(R)
and the codomain of R by cod(R).

It is often convenient to collect the permissions in a
set of available variables. To that end, we define the
function Collect . Given a partial map π from AllVar
to Value and a set X ⊆ AllVar , let Collect(π,X) be
the multiset

⋃
{Perm(π(x)) | x ∈ X ∧ dom(π)}. For

any multiset Λ over Value, we also define IsSet(Λ) be
true iff Λ is a set.

4 Verification

Suppose a program Prog ′ has been proved to be safe.
However, it is implemented using atomic actions that
are too coarse to be directly implementable. To carry
over the safety of Prog ′ to a realizable implementa-
tion Prog , these coarse atomic actions must be refined
down to lower-level actions. During this refinement,
an invocation call A of a high-level atomic action A
is transformed into an invocation call P of a pro-
cedure that is implemented using low-level actions.
The main contribution of this paper is a verification
method that allows us to safely refine program Prog ′

to another program Prog (or abstract Prog to Prog ′)
so that safety properties proved on Prog ′ continue to
hold on Prog as well.

The safety of the program Prog , defined in Sec-
tion 3 as Safe∗(Prog), depends on the preemptive
semantics of Prog . Our overall goal is to conclude
Safe∗(Prog) from Safe∗(Prog ′); we decompose this
goal into two sub-goals:

1. We establish a simulation relation from the
cooperative semantics of Prog to the preemp-
tive semantics of Prog ′, which ensures that
Safe∗(Prog′) is sufficient for CSafe∗(Prog).

2. We exploit commutativity reasoning to compute
a simulation relation from Prog to YSA (Fig-

9

(Skip)

λ `l skip : λ

(Atomic)
ls(A) = (λ, λ

′
)

λ `l call A : λ
′

(Yield)
λy ⊆ λ

λ `l yield e, λy : λ

(Ablock)
λ `l s : λ

′
λa ⊆ λ

λ `l ablock {e, λa} s : λ
′

(Call)
ls(P) = (λ, λ

′
)

λ `l call P : λ
′

(Async)
λG ⊆ Global λ ∪ λP ∪ λ′P ⊆ ThreadLocal ls(P) = ((λG, λP), (λG, λ

′
P))

λG, λ, λP `l async P : λG, λ

(Seq)
λ `l s1 : λ

′
λ
′ `l s2 : λ

′′

λ `l s1; s2 : λ
′′

(Ite)
λ `l s1 : λ

′
λ `l s2 : λ

′

λ `l if le then s1 else s2 : λ
′

(While)
λ `l s : λ

λ `l while {e, α} le do s : λ

(Procedure)
ls(P) = (λ, λ

′
) ps(P) = (φ,M,ψ, s) λ `l s : λ

′

`l P

(Action)
ls(A) = (λ, λ

′
) λ ∩Global = λ

′ ∩Global as(A) = (ρ, α,m)
∀(σ, σ′) ∈ ρ ◦ α. Collect(σ

′
, λ
′
) ⊆ Collect(σ, λ)

`l A

(StackFrame)
λ `l s : λ

′

λ `l (P,L, s) : λ
′

(Thread)
∀1 ≤ i ≤ n. λi `l Fi : λi+1

λ1 `l (TL, F1 . . . Fn)

(Program)
∀P ∈ Proc. `l P ∀A ∈ Action. `l A λG ⊆ Global ∀1 ≤ i ≤ n. λi ⊆ ThreadLocal

∀1 ≤ i ≤ n. λG, λi `l Ti ∀1 ≤ i ≤ n. Ti = (TLi, . . .) IsSet(∪1≤i≤nCollect(TLi, λi) ∪ Collect(G, λG))

`l (ps, as, ls, G, T1 . . . Tn)

Figure 8: Linear variables

ure 3), which ensures that CSafe∗(Prog) is suffi-
cient for Safe∗(Prog)

Both sub-goals depend on the auxiliary judgment
`l Prog for checking that Prog uses linear variables
appropriately. This judgment computes available lin-
ear variables at each program location; this informa-
tion is encoded logically as free disjointness assump-
tions that increase precision of non-interference and
commutativity reasoning at low annotatation over-
head.

The first sub-goal is discharged by the

judgments RS ; HP ; HV ; HA;
−→
b ` Prog ;

Prog ′, RS ; HP ; HV ;
−→
b `r Prog , and

InterferenceSafe(Prog). The first judgment performs
a rewrite of Prog to Prog ′; the second judgment
checks each procedure separately against location
invariants and atomic action specifications; the third
judgment checks that the location invariants are sta-
ble against interference from concurrently-executing
threads. The map RS ∈ Proc ⇀ Action indicates for
a procedure P ∈ dom(RS) the action RS (P) that

abstracts it; in Prog ′, every occurrence of call P
is replaced by call RS (P). The sets HP ∈ 2Proc ,
HV ∈ 2Global , and HA ∈ 2Action are, respectively,
the procedure, the global variables, and atomic
actions that are introduced for refining Prog ′ to
Prog ; we can also think that these entities are hidden
in the abstract program Prog ′. The set HP includes
dom(RS) but may also contain other procedures
whose invocations are replaced by skip in Prog ′. The

vector
−→
b contains a Boolean value bi for each thread

Ti in Prog . If bi is true, it indicates that there is
a partially executed procedure on the stack of Ti
such that P ∈ dom(RS) but the code inside P that
corresponds to the execution of the atomic action
RS (P) has yet to be executed. The value of bi is
used to rewrite the stack of Ti while transforming
Prog to Prog ′.

The validity of the transformation from Prog to
Prog ′ depends on establishing a simulation relation
between them. The base case of the simulation must
check that CSafe(Prog); The inductive case must

10

check that if Prog can evolve to Prog1 (via cooper-
ative semantics) by executing from the current yield
statement to the next yield statement, then there
is Prog ′1 and b1 such that Prog ′ can evolve in zero

or more steps to Prog ′1 and RS ; HP ; HV ; HA;
−→
b1 `

Prog1 ; Prog ′1. The judgments RS ; HP ; HV ;
−→
b `r

Prog and InterferenceSafe(Prog) establish this prop-
erty via a collection of verification conditions, one for
each procedure and one for each pair of yield state-
ment and atomic block in the program.

The second sub-goal is discharged by the two judg-
ments RS `y Prog and CommutativitySafe(Prog).

Suppose Prog = (ps, as, ls, G,
−→
T). To justify that

CSafe∗(Prog) is sufficient for Safe∗(Prog), we ex-
ploit commutativity information available from the
mover types of atomic actions. The Yield Suffi-
ciency Automaton (YSA) from Figure 3 encodes all
sequences of atomic actions and yields for which rea-
soning about cooperative semantics is sufficient. For
example, the YSA automaton indicates that a yield
after a right mover or a yield before a left mover is
unnecessary. The judgment `y Prog checks that the
code of Prog can be simulated by YSA; it depends on
the judgment CommutativitySafe(Prog) which checks
that all mover annotations are correct.

Theorem 1 Let Prog ,Prog ′ ∈ CProgram be such
that Cooperative∗(Prog) and Safe∗(Prog ′). Let RS ∈
Proc ⇀ Action, HP ∈ 2Proc, HV ∈ 2Global , HA ∈
2Action , and

−→
b ∈

−−−−−→
Boolean be such that the following

hold:

1. `l Prog.

2. RS ; HP ; HV ; HA;
−→
b ` Prog ; Prog ′,

RS ; HP ; HV ;
−→
b `r Prog,

and InterferenceSafe(Prog).

3. `y Prog and CommutativitySafe(Prog).

Then, we have Safe∗(Prog).

Theorem 1 is our main soundness theorem; it con-
cludes the safety of Prog from the safety of Prog ′. In
general, the correctness proof of a large program is
obtained by chaining together multiple instances of
this theorem connecting a sequence of programs.

4.1 Using linear variables

In this section, we formalize the judgment `l Prog .
The goal of this judgment is to check that linear
variables and atomic blocks are used appropriately
in Prog . The judgment `l Prog enforces that linear
permissions are never duplicated during the execu-
tion of Prog . Rule Program checks that the dis-
jointness invariant holds in the initial state of Prog .
Rule Action checks that each action A preserves
the disjointness invariant. Consequently, the invari-
ant holds throughout the execution of Prog . There
are three conditions being checked by rule Action.
First, the set of global linear permissions does not
change. Second, if the disjointness invariant holds
for input permissions it also holds for output permis-
sions. Finally, the union of the sets constructed from
output permissions is a subset of the union of sets
constructed from input permissions. This last condi-
tion is important because it allows via local checking
to conclude that the disjointness invariant holds glob-
ally for linear permissions held by all threads. The
rule Async splits the thread-local permissions λ of
the caller of async P into λ and λP , passing λP to
the new thread and continuing with λ. Note that all
global permissions in λG are also made available to
the new thread; there is no duplication because all
threads refer to the same set of global variables.

The following lemma states that if a program is
well-typed it remains remains well-typed after exe-
cuting a step. By induction over execution steps, this
lemma indirectly ensures that all programs reaach-
able from a well-typed program are well-typed.

Lemma 1 Let Prog,Prog1 ∈ Program such that `l
Prog and Prog −→ Prog1. Then, we have `l Prog1.

Proof Sketch: Suppose Prog =
(ps, as, ls, G, T1 . . . Tn), Ti = (TLi, (Pi, Li,SC [s]) ·
−→
Fi), and thread Ti takes a step in going from Prog to
Prog1. Suppose the judgment `l Prog used available
sets λG and λ1, . . . , λi, . . . , λn to check Prog . To type
check Prog1 only the available set λi for the thread
Ti that took the step needs to change. To pick λi,
we perform a case analysis on s. Let us consider a
few cases. Suppose s = call A and ls(A) = (λ, λ′).
By rule Atomic, we have λ = λi and we pick λ′ for

11

typing Prog1. Suppose s = call P , ls(P) = (λ, λ′),
and ps(P) = (φ,M,ψ, s ′). Then we push the stack
frame (P,L, yield φ, λ; s ′) onto the stack of Ti. By
rule Call, we have λ = λi, We exploit the proof of
`l P (rule Procedure) to construct the proof for
the new stack. Suppose s = async P , ls(P) = (λ, λ′),
and ps(P) = (φ,M,ψ, s ′). Then we create a new
thread with a single stack frame (P,L, yield φ, λ; s ′).
By rule Async, we have λ ⊆ λi; we pick λ for the
new thread and λi \ λ for thread Ti. Other cases are
handled similarly. �

The following lemma states that in a well-typed
program that if two different threads are about to
execute a yield statement and an atomic block state-
ment, respectively, the available linear variables an-
notating these statements have disjoint permissions.
Together with Lemma 1, this lemma ensures the
soundness of the judgment InterferenceSafe(Prog).

Lemma 2 Let Prog ∈ Program such that
`l Prog. Suppose Prog = (ps, as, ls, G, T1 . . . Tn)
and i, j ∈ [1, n] such that Ti =

(TLi, (Pi, Li,SC [ablock {ei, λi}]) ·
−→
Fi) and

Tj = (TLj , (Pj , Lj ,SC [yield ej , λj]) ·
−→
Fj).

Then IsSet(Collect(G,λi) ∪ Collect(TLi, λi) ∪
Collect(TLj , λj)).

Proof Sketch: The proof follows from rules Pro-
gram, Ablock, and Yield. �

The following lemma states that in a well-typed
program that if two different threads are each
about to execute an atomic action, the available
linear variables at the input of these actions have
disjoint permissions. Together with Lemma 1,
this lemma ensures the soundness of the judgment
CommutativitySafe(Prog).

Lemma 3 Let Prog ∈ Program such that
`l Prog. Suppose Prog = (ps, as, ls, G, T1 . . . Tn)
and i, j ∈ [1, n] such that Ti =

(TLi, (Pi, Li,SC [call Ai]) ·
−→
Fi), ls(Ai) = (λi, λ

′
i),

Tj = (TLj , (Pj , Lj ,SC [call Aj]) ·
−→
Fj), and

ls(Aj) = (λj , λ
′
j). Then IsSet(Collect(G,λi) ∪

Collect(TLi, λi) ∪ Collect(TLj , λj)).

Proof Sketch: This proof follows from rules Pro-
gram, Action, and Atomic. �

4.2 Reasoning about cooperative se-
mantics

In this section, we attack the first sub-goal dis-
cussed earlier. We establish a simulation rela-
tion from the cooperative semantics of Prog to the
preemptive semantics of Prog ′, which ensures that
Safe∗(Prog′) is sufficient for CSafe∗(Prog). This ver-
ification depends on three judgments. The judgment

RS ; HP ; HV ; HA;
−→
b ` Prog ; Prog ′ is discussed

in Section 4.2.1. The judgments RS ; HP ; HV ;
−→
b `r

Prog and InterferenceSafe(Prog) are discussed in Sec-
tion 4.2.2.

4.2.1 Program transformation

In this section, we take a closer look at the judg-

ment RS ; HP ; HV ; HA;
−→
b ` Prog ; Prog ′. In this

judgment, RS ∈ Proc ⇀ Action is a partial function
from procedure names to action names, HP ∈ 2Proc

is a set of procedure names, HV ∈ 2Global is a set
of global variables, and HA ∈ 2Action is a set of ac-
tion names. The map RS indicates for a procedure
P ∈ dom(RS) the action RS (P) that abstracts it; in
the abstract program, every occurrence of call P is
replaced by call RS (P). The set HP contains all pro-
cedures that are hidden as a result of the abstraction.
This set must include dom(RS) but can also contain
other procedures whose invocations are replaced by
skip in the abstract program. The sets HV and HA
are the global variables and atomic actions, respec-
tively, that are hidden in the abstract program.3 The

vector
−→
b contains a Boolean value bi for each thread

Ti in Prog . If bi is true, it indicates that there is a
partially executed procedure on the stack of Ti such
that P ∈ dom(RS) but the code inside P that corre-
sponds to the execution of the atomic action RS (P)
has yet to be executed. The value of bi is used to
rewrite the stack of Ti.

We now discuss the transformation rules in Fig-
ure 9 starting from the bottom. Rule Program first
checks sanity conditions involving RS , HP , HV , and

3In our formalization, hiding a procedure, global variable,
or action simply means that the abstract program is forbidden
from using it. Technically, these hidden entities continue to
exist since the sets Proc, Global , and Action do not change.

12

(Skip)

RS ;HP ;HV ;HA ` skip ; skip

(Atomic)
A 6∈ HA

RS ;HP ;HV ;HA ` call A ; call A

(Yield)

RS ;HP ;HV ;HA ` yield e, λ ; yield e
′
, λ
′

(Ablock1)
RS ;HP ;HV ;HA ` s ; s

′

RS ;HP ;HV ;HA ` ablock {e, λ} s ; s
′

(Ablock2)
RS ;HP ;HV ;HA ` s ; s

′

RS ;HP ;HV ;HA ` s ; ablock {e, λ} s′

(Call1)
P 6∈ HP

RS ;HP ;HV ;HA ` call P ; call P

(Call2)
P ∈ HP \ dom(RS)

RS ;HP ;HV ;HA ` call P ; skip

(Call3)
P ∈ dom(RS)

RS ;HP ;HV ;HA ` call P ; call RS(P)

(Async1)
P 6∈ HP

RS ;HP ;HV ;HA ` async P ; async P

(Async2)
P ∈ HP \ dom(RS)

RS ;HP ;HV ;HA ` async P ; skip

(Seq)
RS ;HP ;HV ;HA ` s1 ; s

′
1 RS ;HP ;HV ;HA ` s2 ; s

′
2

RS ;HP ;HV ;HA ` s1; s2 ; s
′
1; s
′
2

(Ite)
RS ;HP ;HV ;HA ` s1 ; s

′
1 RS ;HP ;HV ;HA ` s2 ; s

′
2

RS ;HP ;HV ;HA ` if le then s1 else s2 ; if le then s
′
1 else s

′
2

(While)
RS ;HP ;HV ;HA ` s ; s

′

RS ;HP ;HV ;HA ` while {e, α} le do s ; while {e′, α′} le do s
′

(Procedure)
RS ;HP ;HV ;HA ` s ; s

′

RS ;HP ;HV ;HA ` (φ,M,ψ, s) ; (φ
′
,M
′
, ψ
′
, s
′
)

(StackFrame)
RS ;HP ;HV ;HA ` s ; s

′

RS ;HP ;HV ;HA ` (P,L, s) ; (P,L, s
′
)

(Thread1)
∀1 ≤ j ≤ n. Fj = (Pj , Lj , sj) 1 ≤ i ≤ n ∀1 ≤ j ≤ n. Pj ∈ HP ⇔ j ≤ i ∀i < j ≤ n. RS ;HP ;HV ;HA ` Fj ; F

′
j

RS ;HP ;HV ;HA; true ` (TL, F1 . . . Fi+1 . . . Fn) ; (TL, F
′
i+1 . . . F

′
n)

(Thread2)
∀1 ≤ j ≤ n. Fj = (Pj , Lj , sj) 1 < i ≤ n ∀1 ≤ j ≤ n. Pj ∈ HP ⇔ j < i ∀i < j ≤ n. RS ;HP ;HV ;HA ` Fj ; F

′
j

Pi−1 ∈ dom(RS) RS ;HP ;HV ;HA ` si ; s
′
i

RS ;HP ;HV ;HA; false ` (TL, F1 . . . Fn) ; (TL, (Pi, Li, call RS(Pi−1); s
′
i) · F

′
i+1 . . . F

′
n)

(Program)
dom(RS) ⊆ HP cod(RS) ∩ HA = {} ∀(ρ, α,m) ∈ cod((Action \ HA) ◦ as). (Acc(ρ) ∪ Acc(α)) ∩ HV = ∅

∀A ∈ Action \ HA. as(A) = as
′
(A) ∀P 6∈ HP. RS ;HP ;HV ;HA ` ps(P) ; ps

′
(P) ∀g ∈ Global \ HV . G(g) = G

′
(g)

∀(ρ, α,m) ∈ cod(RS ◦ as). (Acc(ρ) ∩ Local = ∅) ∧ (α = ((∃∃Local. α) ∧ Same(Local)))

∀1 ≤ i ≤ n. RS ;HP ;HV ;HA; bi ` Ti ; T
′
i T

′
1 . . . T

′
n ;

−→
T
′

RS ;HP ;HV ;HA; b1; . . . ; bn ` (ps, as, ls, G, T1 . . . Tn) ; (ps
′
, as
′
, ls
′
, G
′
,
−→
T
′
)

Figure 9: Program transformation

13

HA. These include checks that dom(RS) is a subset
of HP , cod(RS) is disjoint from HA, and the atomic
actions that are available in the abstract program do
not access any hidden variable in HV . Next, it con-
nects actions, procedure bodies, and global state in
the concrete and the abstract program; the hidden
procedures, global variables, and actions are uncon-
strained in the abstract program. Next, it checks
that every action in cod(RS) has a gate that is in-
dependent of procedure-local variables and a tran-
sition relation that leaves procedure-local variables
unchanged. This check is meaningful because the ac-
tion RS (P) is written from the perspective of the
caller of P . Since the procedure-local variables of the
caller of P are distinct from those of P , these vari-
ables are quantified out from the transition relation
of RS (P) when the body of P is being checked (see
Section 4.2.2). Finally, this rule rewrites the code of
each thread in the program using the auxiliary judg-

ment
−→
T ;

−→
T ′ that rewrites

−→
T by removing all empty

threads from it.

ε ; ε

−→
T ;

−→
T
′

−→
T · (TL, ε) ;

−→
T
′

−→
F 6= ε

−→
T ;

−→
T
′

−→
T · (TL,

−→
F) ;

−→
T
′ · (TL,

−→
F)

Rules Thread1 and Thread2 together rewrite
a thread using the judgment RS ; HP ; HV ; HA; bi `
Ti ; T ′i . The verification rules justifying the cor-
rectness of the program rewriting transformation, de-
scribed in Section 4.2.2, guarantee that any stack
frames for procedures in HP are located contigu-
ously at the top of the stack. Furthermore, this sub-
stack at the top either entirely consists of procedures
in HP \ dom(RS) or it has exactly one procedure
P ∈ dom(RS) at its bottom. Both these cases have
to be appropriately simulated by the rewritten pro-
gram. In the former case, there is certainly no pend-
ing atomic action in the abstraction. This case is
handled by Thread1 by erasing the sub-stack. In
the latter case, if bi is false then Thread1 erases
the sub-stack; otherwise, if bi is true then Thread2
replaces the sub-stack with call RS (P).

We discuss the remainder of the rules starting from
the top of the figure. Rule Atomic ensures that the
abstract program only uses actions not in HA but
otherwise leaves call A unchanged. Rule Yield al-
lows the annotations associated with the yield state-

ment to be rewritten arbitrarily. Rules Ablock1
and Ablock2 together allow atomic blocks in the
concrete program to be eliminated and new atomic
blocks in the abstract programs to be created. Rules
Call1, Call2, and Call3 together handle call P ,
leaving the statement unchanged if P 6∈ HP , rewrit-
ing to skip if P ∈ HP \ dom(RS), and rewriting to
call RS (P) if P ∈ dom(RS). Rules Async1 and
Async2 together handle async P and are similar to
rules Call1 and Call2 respectively. Rules Seq,
Ite, and While rewrite the statement recursively;
the loop annotation in While may be rewritten arbi-
trarily. Rule Procedure rewrites the body of a pro-
cedure recursively and allows the procedure specifica-
tions to be rewritten arbitrarily. Rules StackFrame
rewrites only the statement in the stack frame and
leaves other components unchanged.

4.2.2 Refinement

In this section, we formalize the judgments

RS ; HP ; HV ;
−→
b `r Prog and InterferenceSafe(Prog).

Together these judgments check that the body of each
procedure P in dom(RS) behaves like the atomic ac-
tion RS (P). Our strategy for P is to check that
along all control paths in its body, there occurs ex-
actly one atomic block ablock {e, λ} s that is simu-
lated by the atomic action RS (P). All other atomic
blocks before or after this unique block are simu-
lated by the transition relation Havoc(HV ∪ Local)
which allows procedure-local and hidden global vari-
ables to be modified arbitrarily but requires that
other global variables and thread-local variables are
not modified. In addition, these judgments also
check that each atomic block inside a procedure in
HP \ dom(RS) is simulated by the transition rela-
tion Havoc(HV ∪Local). In general, the appropriate
simulation check may not be provable by examining
only the body s of the atomic block. Contextual in-
formation such as the predicate e that is expected
to hold when the atomic block begins execution may
also be required. Annotations such as preconditions
and postconditions, loop invariants, and yield predi-
cates are leveraged to prove such predicates through-
out the program.

The crux of the rules in Figure 10 is the statement-

14

(Skip)

RS ;HP ;HV ; ps; as;P ; a `r {b, φ}skip{b, φ}; {}

(Atomic)
as(A) = (ρ, α,m) M ⊆ ThreadLocal ∪ Local (φ ∧ ρ) ◦ α ⊆ Havoc(Global ∪M)

P ∈ HP ⇒ φ ⊆ ρ cod((φ ∧ ρ) ◦ α) ⊆ ψ
RS ;HP ;HV ; ps; as;P ; a

+ `r {b, φ}call A{b, ψ};M

(Yield)

RS ;HP ;HV ; ps; as;P ; a
− `r {b, e}yield e, λ{b, e}; {}

(Ablock1)
P 6∈ HP

RS ;HP ;HV ; ps; as;P ; a
+ `r {b, φ1 ∧ e}s{b, φ2};M

RS ;HP ;HV ; ps; as;P ; a
− `r {b, φ1 ∧ e}ablock {e, λ} s{b, φ2};M

(Ablock2)
P ∈ HP [s] ⊆ e→Havoc(HV ∪ Local)

RS ;HP ;HV ; ps; as;P ; a
+ `r {b, φ1 ∧ e}s{b, φ2};M

RS ;HP ;HV ; ps; as;P ; a
− `r {b, φ1 ∧ e}ablock {e, λ} s{b, φ2};M

(Ablock3)

P ∈ dom(RS) as(RS(P)) = (ρ, α,m) [s] ⊆ e→∃∃Local. α RS ;HP ;HV ; ps; as;P ; a
+ `r {b, φ1 ∧ e}s{b, φ2};M

RS ;HP ;HV ; ps; as;P ; a
− `r {false, φ1 ∧ e}ablock {e, λ} s{true, φ2};M

(Call)
P ∈ HP ⇒ P

′ ∈ HP \ dom(RS) ps(P
′
) = (φ,M,ψ, s)

RS ;HP ;HV ; ps; as;P ; a
− `r {b, φ}call P ′{b, ψ};M

(Async)
P ∈ HP ⇒ P

′ ∈ HP \ dom(RS) ps(P
′
) = (φ,M,ψ, s)

RS ;HP ;HV ; ps; as;P ; a
− `r {b, φ}async P ′{b, φ}; {}

(Seq)
RS ;HP ;HV ; ps; as;P ; a `r {b1, φ1}s1{b2, φ2};M1

RS ;HP ;HV ; ps; as;P ; a `r {b2, φ2}s2{b3, φ3};M2

RS ;HP ;HV ; ps; as;P ; a `r {b1, φ1}s1; s2{b3, φ3};M1 ∪M2

(Ite)
RS ;HP ;HV ; ps; as;P ; a `r {b, le ∧ φ1}s1{b′, φ2};M1

RS ;HP ;HV ; ps; as;P ; a `r {b,¬le ∧ φ1}s2{b′, φ2};M2

RS ;HP ;HV ; ps; as;P ; a `r {b, φ1}if le then s1 else s2{b′, φ2};M1 ∪M2

(While)
RS ;HP ;HV ; ps; as;P ; a `r {b, e ∧ le}s{b, e};M

RS ;HP ;HV ; ps; as;P ; a `r {b, e}while {e, α} le do s{b, e ∧ ¬le};M

(Weaken)
φ ⊆ φ′ ψ

′ ⊆ ψ
RS ;HP ;HV ; ps; as;P ; a `r {b, φ′}s{b′, ψ′};M
RS ;HP ;HV ; ps; as;P ; a `r {b, φ}s{b′, ψ};M

(Frame1)
RS ;HP ;HV ; ps; as;P ; a `r {b, φ}s{b′, ψ};M

Acc(ρ) ∩ (Global ∪M) = {}
RS ;HP ;HV ; ps; as;P ; a `r {b, ρ ∧ φ}s{b′, ρ ∧ ψ};M

(Frame2)
RS ;HP ;HV ; ps; as `r {b, φ}F{b′, ψ};M

Acc(ρ) ∩ (Global ∪ Local ∪M) = {}
RS ;HP ;HV ; ps; as `r {b, ρ ∧ φ}F{b′, ρ ∧ ψ};M

(Procedure)
ps(P) = (φ,M,ψ, s) (Acc(φ) ∪ Acc(ψ)) ∩ Local = {}

M
′ ∩ ThreadLocal ⊆M

RS ;HP ;HV ; ps; as;P ; a
− `r {P 6∈ dom(RS), φ}s{true, ψ};M ′

RS ;HP ;HV ; ps; as `r P

(StackFrame)

RS ;HP ;HV ; ps; as;P ; a
− `r {b, φ′}s{b′, ψ};M

∀G,TL, L
′
. G·TL·L′ ∈ φ⇒ G·TL·L ∈ φ′

RS ;HP ;HV ; ps; as `r {b, φ}(P,L, s){b′, ψ};M ∩ ThreadLocal

(Thread)
∀1 ≤ i ≤ n. Acc(φi) ∩ Local = {} ∀L′. G·TL·L′ ∈ φ1

∀1 ≤ i ≤ n. RS ;HP ;HV ; ps; as `r {bi, φi}Fi{bi+1, φi+1};Mi

RS ;HP ;HV ; ps; as;G; b1 `r (TL, F1 . . . Fn)

(Program)
∀P ∈ Proc. RS ;HP ;HV ; ps; as `r P

∀1 ≤ i ≤ n. RS ;HP ;HV ; ps; as;G; bi `r Ti

RS ;HP ;HV ; b1; . . . ; bn `r (ps, as, ls, G, T1 . . . Tn)

Figure 10: Refinement

15

level judgment RS ; HP ; HV ; ps; as;P ; a `r
{b, φ}s{b′, ψ};M . In this judgment, P is the
procedure being checked. The argument a is either
a− which indicates that s is outside any atomic block
or a+ which indicates that s is inside some atomic
block. This information enables the verification rules
to check two properties. First, each atomic block
must not contain any other atomic block, yield,
or (ordinary and asynchronous) call statements
inside it, ensuring that the computation of each
ablock {e, λ} s ′ can be summarized by a transition
relation, denoted by [s ′]. Second, any invocation of
an atomic action (the only computation that can
modify the store) must occur inside an atomic block.
This check ensures that checking non-interference of
a yield predicate against all atomic blocks concur-
rently executing in the environment will preserve the
yield predicate across the entire computation that
happens in the environment during a context switch.

On the right side of the judgment, we have a gen-
eralization of the Floyd-Hoare triple—{b, φ}s{b′, ψ}.
It indicates that s is being verified assuming it ex-
ecutes from a state in φ and ensuring it ends in
a state satisfying ψ. The Boolean values b and b′

are used to track refinement checking, which is per-
formed only if P ∈ HP . If b is true, then each
atomic block in s is expected to be simulated by
Havoc(HV ∪Local) and b′ remains true. A statement
in which all atomic blocks refine Havoc(HV ∪ Local)
is said to stutter. If b is false, then it must be the
case that P ∈ dom(RS), at most one atomic block
in s is simulated by RS (P) and all other blocks are
simulated by Havoc(HV ∪ Local). The value of b′

is allowed to be true if some atomic block in s is
simulated by RS (P). In the discussion below, we
will refer to the pair (b, φ) as the precondition and
(b′, ψ) as the postcondition of s, respectively. Finally,
the set M contains thread-local and procedure-local
variables that are potentially modified by s; this in-
formation is useful in the frame rules, Frame1 and
Frame2, explained later.

We now examine the rules for the the judgment

RS ; HP ; HV ;
−→
b `r Prog in Figure 10, starting from

the bottom. In this judgment, the vector
−→
b contains

a Boolean value bi for each thread Ti. Rule Pro-

gram checks each thread and each procedure sepa-
rately. The value bi is passed to the judgment for
checking a thread. The rule Thread checks each
frame on the stack of a thread modularly using a
sequence of b1, . . . , bn+1 of Boolean values and a se-
quence φ1, . . . , φn+1 of predicates that may not refer
to procedure-local variables. The pair (bi, φi) acts as
the precondition to the i-the stack frame (from the
top) of the thread. The rule StackFrame checks a
stack frame (P,L, s) by checking s recursively. The
precondition φ of the stack frame may be specialized
to the local state L to obtain the precondition for s.
The rule Procedure checks the body of the proce-
dure P with the precondition (P 6∈ dom(RS), φ) and
postcondition (true, ψ), where φ and ψ are the pre-
condition and postconditions of P respectively. This
check ensures that if P has an atomic action speci-
fication, the body refines it appropriately. The rule
also checks that the body of P modifies only those
thread-local variables mentioned in the specification
of P and that the precondition and postcondition of
P does not refer to procedure-local variables.

The rules Weaken, Frame1, and Frame2 are
standard. The rules While, Ite, and Seq extend the
analogous Floyd-Hoare rules with refinement check-
ing. The rule While checks that the body of the
loop stutters and concludes that the loop itself stut-
ters. The rule Ite checks that both branches behave
in the same way. The rule Seq for s1; s2 chains the
refinement behavior of s1 with that of s2.

Rules Call and Async handle procedure calls.
Both rules require that if the procedure P being
checked is in dom(RS), then the called procedure P ′

must be in HP \ dom(RS). Thus, the call relation
over the set of procedures being introduced during
refinement (or hidden during abstraction) must be
a subset of HP × (HP \ dom(RS)). This check is
important for ensuring that call P can be rewritten
either to call RS (P) if P ∈ dom(RS) or to skip if
P ∈ HP \ dom(RS).

Rules Ablock1, Ablock2, and Ablock3 han-
dle an atomic block ablock {e, λ} s. Rule Ablock1
considers the case when P 6∈ HP and performs only
the standard sequential correctness check. Rules
Ablock2 and Ablock3 consider the two cases
when P ∈ HP and handle the refinement of

16

HavocHV ∪ Local and the atomic action RS (P), re-
spectively. Rule Yield handles the yield statement;
only the yield predicate is available in the postcondi-
tion of the statement.

Rule Atomic handles the call of an atomic ac-
tion. It computes in M the set of thread-local and
procedure-local variables possibly modified by the ac-
tion. It checks that the gate of the action holds but
only when the call occurs inside the body of a pro-
cedure in HP . In other words, a gate of an atomic
action A, the only source of safety assertions in our
operational semantics, is discharged only when A is
invoked inside a procedure that is hidden as a result
of abstraction. Since we are only interested in prov-
ing a simulation relation between the concrete and
abstract semantics, it is safe to leave unverified the
gates at all other invocations of atomic actions which
are present in both the concrete and abstract pro-
gram. Finally, this rule verifies the postcondition ψ
from the precondition φ using the semantics of the
atomic action.

We now move on to discuss the judg-
ment InterferenceSafe(Prog), where Prog =

(ps, as, ls, G,
−→
T). Let Yields(Prog) be the union of

the following sets:

• {(φ, λ) | yield φ, λ appears in Prog}.

• {(φ, λ) | P ∈ Proc ∧ ps(P) = (φ,M,ψ, s) ∧
ls(P) = (λ, λ′)}.

• {(ψ, λ′) | P ∈ Proc ∧ ps(P) = (φ,M,ψ, s) ∧
ls(P) = (λ, λ′)}.

Let Ablocks(Prog) be the set of atomic blocks in
Prog . The program Prog is interference-free, de-
noted by InterferenceSafe(Prog), if for each predi-
cate (φ, λy) ∈ Yields(Prog) and for each atomic block
ablock {e, λ} s ∈ Ablocks(Prog), we have

∀G,TL, L,G′,TL′, L′,TLy, Ly.
let Λ = ∪ Collect(G, λ)

∪ Collect(TL, λ)
∪ Collect(TLy, λy)

in

∧ IsSet(Λ)
∧ G·TL·L ∈ e
∧ (G·TL·L,G′ ·TL′ ·L′) ∈ [s]
∧ G·TLy ·Ly ∈ φ

⇒ G′ ·TLy ·Ly ∈ φ.

We summarize the contributions of the judgments
discussed in this section in Lemma 4 and Lemma 5.

Both lemmas talk about Prog and its abstraction
Prog ′ and assume that Prog ′ is safe. Lemma 4 states
that Prog cannot fail while executing from the cur-
rent yield point to the next. Lemma 5 states that the
yield-to-yield step taken by Prog to get to Prog1 can
be simulated by zero or more steps taken by Prog ′ to
get to Prog ′1 such that Prog1 is abstracted by Prog ′1.
Together, these lemmas establish the simulation re-
lation between Prog and Prog ′, and allows us to con-
clude CSafe ∗ (Prog).

Lemma 4 Let Prog ∈ CProgram, Prog ′ ∈ Program,
RS ∈ Proc ⇀ Action, HP ∈ 2Proc, HV ∈
2Global , HA ∈ 2Action , and

−→
b ∈

−−−−−→
Boolean be such

that `l Prog, Safe∗(Prog ′), RS ; HP ; HV ; HA;
−→
b `

Prog ; Prog ′, RS ; HP ; HV ;
−→
b `r Prog, and

InterferenceSafe(Prog). Then, we have CSafe(Prog).

Proof idea: Let us pick an arbitrary thread to exe-
cute from Prog . Since Prog ∈ CProgram, this thread
is waiting to execute at a yield point, i.e., yield state-
ment or a call or a return. As it executes from the
current yield point to the next yield point, it exe-
cutes a sequence of atomic blocks, all which must be
inside the same procedure, say P , by our definition
of yield point. Since each invocation of an atomic
action must reside inside an atomic block, failure can
only occur during the execution of one of these atomic
blocks. We need to prove that there is no failure dur-
ing this execution. If P 6∈ HP , the execution in Prog
can be simulated by an identical execution in Prog ′.
Since Safe∗(Prog ′), we conclude that CSafe(Prog). If
P ∈ HP , we note from rule Atomic for call A that
the gate of A is discharged. Therefore, in this case
also we conclude that CSafe(Prog). �

Lemma 5 Let Prog ,Prog1 ∈ CProgram, Prog ′ ∈
Program, RS ∈ Proc ⇀ Action, HP ∈ 2Proc, HV ∈
2Global , HA ∈ 2Action , and

−→
b ∈

−−−−−→
Boolean be such

that `l Prog, Safe∗(Prog ′), RS ; HP ; HV ; HA;
−→
b `

Prog ; Prog ′, RS ; HP ; HV ;
−→
b `r Prog,

InterferenceSafe(Prog), and Prog 7−→ Prog1. Then,

there exists Prog ′1 ∈ Program and
−→
b1 ∈

−−−−−→
Boolean

such that RS ; HP ; HV ; HA;
−→
b1 ` Prog1 ; Prog ′1,

RS ; HP ; HV ;
−→
b1 `r Prog1, InterferenceSafe(Prog1),

and Prog ′ −→∗ Prog ′1.

17

Proof idea: Suppose thread i executed from a yield
point to the next yield point in moving from Prog
to Prog1, executing a sequence of atomic blocks all
which were in the same procedure, say P . We first

show how to pick the values
−→
b1 . For threads j other

than i, we pick
−→
b (j). For thread i, we perform a

case analysis. If the next yield point is a yield state-
ment, we pick the first component of the precondition
(b, φ) of the yield statement from the proof tree for

RS ; HP ; HV ;
−→
b `r Prog . If the next yield point is

call P ′ and P ′ ∈ dom(RS), we pick false. If the next
yield point is call P ′ and P ′ 6∈ dom(RS), we pick the
first component of the precondition (b, φ) of the call

statement from the proof tree for RS ; HP ; HV ;
−→
b `r

Prog . If the next yield point is return from a proce-
dure P ∈ dom(RS), we pick true. If the next yield
point is return from a procedure P 6∈ dom(RS), we

pick
−→
b (i).

Next, we show how to simulate the execution from
Prog to Prog1 with an execution from Prog ′ to Prog ′1.

Suppose
−→
b (i) = true. In this case, rule Thread1

must have been used. Then it must be the case that
in rule Thread, the precondition of all stack frames
of thread i must have the Boolean value true. Sup-
pose the topmost stack frame is (P,L, s). If P ∈ HP ,
then the execution from Prog to Prog1 must not have
modified any variables except those in Local and HV ,
Prog ′ does not have to move, and Prog ′ = Prog ′1. If
P 6∈ HP , then the stacks of thread i in Prog and
Prog ′ look the same except for the subsitution ap-
plied to calls; the execution from Prog to Prog1 can
be simulated by an identical execution from Prog ′ to
Prog ′1.

Suppose
−→
b (i) = false. In this case, rule Thread2

must have been used. Suppose the topmost stack
frame is (P,L, s); we know that P ∈ HP . If P ∈
HP\dom(RS), then the execution from Prog to Prog1

must not have modified any variables except those in
Local and HV , Prog ′ does not have to move, and
Prog ′ = Prog ′1. If P ∈ dom(RS), then there are
two cases for picking the Boolean value for thread i
(see first paragraph). If we picked false, the execu-
tion from Prog to Prog1 must not have modified any
variables except those in Local and HV , Prog ′ does

not have to move, and Prog ′ = Prog ′1. If we picked
true, some atomic block in the execution must have
behaved like the atomic action RS (P). We can sim-
ulate this behavior by stepping through call RS (P)
inserted in the stack frame just below the top. �

4.3 From preemptive to cooperative
semantics

In this section, we outline the verification required
for justifying that it suffices to reason about the
cooperative semantics of Prog , which ensures that
CSafe∗(Prog) is sufficient for Safe∗(Prog) Let Prog =

(ps, as, ls, G,
−→
T) be a program. The map as maps

each atomic action to a triple (ρ, α,m), the last com-
ponent of which denotes type of atomic action—B
for both mover, R for right mover, L for left mover,
and N for non mover. Informally, an action labeled
N does not commute with other concurrent actions,
an action labeled L commutes to the left (or ear-
lier in time) of other concurrent actions, an action
labeled R commutes to the right (or later in time)
of other concurrent actions, and an action labeled
B commutes both to the left and the right of other
concurrent actions. The Yield Sufficiency Automa-
ton (YSA) from Figure 3 encodes all sequences of
atomic actions and yields for which reasoning about
cooperative semantics is sufficient. For example, the
YSA automaton indicates that a yield after a right
mover or a yield before a left mover is unnecessary.
The judgment `y Prog checks that the code of Prog
can be simulated by YSA; it depends on the judg-
ment CommutativitySafe(Prog) which checks that all
mover annotations are correct.

The essence of the rules in Figure 11 is to capture
the effect of a computation as a pair (x, y) where
x, y ∈ {RM ,LM }; the meaning is that to simulate
the computation the automaton moves from state x
to state y. Rule Program performs checking for
all threads and for all procedures. Rules Thread,
StackFrame, and Procedure are straightforward.
Rule While checks that the body of the loop leaves
the state of the automaton unchanged. Rule Ite
checks that the effect both branches is the same. Rule
Seq composes the effect of s1 with the effect of s2.

18

(Skip)

as `y skip : (x, x)

(Both)
as(A) = (ρ, α,B)

as `y call A : (x, x)

(Right)
as(A) = (ρ, α,R)

as `y call A : (RM ,RM)

(Left)
as(A) = (ρ, α, L)

as `y call A : (x,LM)

(Non)
as(A) = (ρ, α,N)

as `y call A : (RM ,LM)

(Yield)

as `y yield e, λ : (x,RM)

(Ablock)
as `y s : (x, y)

as `y ablock {e, λ} s : (x, y)

(Call)

as `y call P : (x,RM)

(Async)

as `y async P : (x,LM)

(Seq)
as `y s1 : (x, y) as `y s2 : (y, z)

as `y s1; s2 : (x, z)

(Ite)
as `y s1 : (x, y) as `y s2 : (x, y)

as `y if le then s1 else s2 : (x, y)

(While)
as `y s : (x, x)

as `y while {e, α} le do s : (x, x)

(Procedure)
ps(P) = (φ,M,ψ, s) as `y s : (x, y)

as `y P

(StackFrame)
as `y s : (x, y)

as `y (P,L, s) : (x, y)

(Thread)
∀1 ≤ i ≤ n. as `y Fi : (xi, xi+1)

as `y (TL, F1 . . . Fn)

(Program)
∀P ∈ Proc. as `y P ∀1 ≤ i ≤ n. as `y Ti

`y (ps, as, ls, G, T1 . . . Tn)

Figure 11: Yield sufficiency

Rule Async is interesting because it treats an asyn-
chronous call as a left mover. Rules Yield and Call
treat their statements as a yield. Rule Ablock cal-
culates the effect of the body of the block. Rules
Both, Right, Left, and Non essentially examine
the available edges in the automaton to validate the
statement and calculate its effect. Rule Skip leave
the state of the automaton unchanged.

The judgment `y Prog is not quite enough to check
the sufficiency of yields soundly. Consider the follow-
ing program with a global variable x and two threads.

[x := 0];

[assert x == 0];

|| [x := x + 1];

while (true) ;
This program violates the assertion in it. The first
thread sets x to 0 in the atomic action indicated [x

:= 0]; the second thread preempts the first thread
and changes x to 1; the first thread preempts the
second thread and fails the assert x == 0. However,
the program does not fail if the second thread is ex-
ecuted without preemption, even though the code of
the second thread satisfies the yield sufficiency check
described earlier. Our verification method is appli-

cable to a program Prog only if Cooperative∗(Prog)
holds, which is false for the program in the example
above. Verifying this condition is similar to proving
termination and is orthogonal to the contribution of
this paper.

Of course, the judgment `y Prog depends on
the mover annotations on the atomic actions be-
ing correct. We capture this requirement in
the judgmen CommutativitySafe(Prog). Formally,
the program Prog is commutativity-safe, denoted
by CommutativitySafe(Prog), if for all A1, A2 ∈
Action such that as(A1) = (ρ1, α1,m1), as(A2) =
(ρ2, α2,m2), ls(A1) = (λ1, λ

′
1), and ls(A2) = (λ2, λ

′
2),

then all of the following conditions are satisfied:

• Commutativity. This condition checks that if
action A1 is a right mover or action A2 is a left
mover, then the effect of executing A1 followed
by A2 in two different threads can be achieved
by executing A2 followed by A1. Formally, if

19

m1 ∈ {B,R} or m2 ∈ {B,L}, then

∀G−, G,G+,TL1, L1,TL′1, L
′
1,TL2, L2,TL′2, L

′
2. ∃G

′.

let Λ = ∪ Collect(G−, λ1)
∪ Collect(TL1, λ1)
∪ Collect(TL2, λ2)

in
∧ IsSet(Λ)

∧ G− ·TL1 ·L1 ∈ ρ1
∧ G− ·TL2 ·L2 ∈ ρ2
∧ (G− ·TL1 ·L1, G·TL′1 ·L

′
1) ∈ α1

∧ (G·TL2 ·L2, G
+ ·TL′2 ·L

′
2) ∈ α2

⇒
∧ (G− ·TL2 ·L2, G

′ ·TL′2 ·L
′
2) ∈ α2

∧ (G′ ·TL1 ·L1, G
+ ·TL′1 ·L

′
1) ∈ α1

• Forward preservation. This condition checks
that if A1 is a right mover or A2 is a left mover,
the failure of A2 immediately after the execution
of A1 is sufficient to imply that A2 must also
fail before the exection of A1. This condition is
equivalent to forward preservation of the gate of
A2 by the execution of A1. Formally, if m1 ∈
{B,R} or m2 ∈ {B,L}, then

∀G,G′,TL1, L1,TL′1, L
′
1,TL2, L2.

let Λ = ∪ Collect(G, λ1)
∪ Collect(TL1, λ1)
∪ Collect(TL2, λ2)

in
∧ IsSet(Λ)
∧ G·TL1 ·L1 ∈ ρ1
∧ (G·TL1 ·L1, G

′ ·TL′1 ·L
′
1) ∈ α1

∧ G·TL2 ·L2 ∈ ρ2

⇒ G′ ·TL2 ·L2 ∈ ρ2

• Backward preservation. This condition
checks that if A1 is a left mover and A2 is an
arbitrary action, then the failure of A2 immedi-
ately before the execution of A1 is sufficient to
imply that A2 must also fail immediately after
the execution of A1. This condition is equivalent
to backward preservation of the gate of A2 by the
execution of A1. Formally, if m1 ∈ {B,L}, then

∀G,G′,TL1, L1,TL′1, L
′
1,TL2, L2.

let Λ = ∪ Collect(G, λ1)
∪ Collect(TL1, λ1)
∪ Collect(TL2, λ2)

in
∧ IsSet(Λ)
∧ G·TL1 ·L1 ∈ ρ1
∧ (G·TL1 ·L1, G

′ ·TL′1 ·L
′
1) ∈ α1

∧ G′ ·TL2 ·L2 ∈ ρ2

⇒ G·TL2 ·L2 ∈ ρ2

• Nonblocking. This condition checks that if A1

is a left mover, then it must be non-blocking. If
m1 ∈ {B,L}, then ∀σ ∈ ρ1. ∃σ′. (σ, σ′) ∈ α1.

Finally, we summarize the results of this section in
the following lemma connecting the safety of preemp-
tive and cooperative semantics of Prog .

Lemma 6 Let Prog ∈ CProgram be such that
`l Prog, CommutativitySafe(Prog), and `y Prog.
If Cooperative∗(Prog) and CSafe∗(Prog), then
Safe∗(Prog).

Proof idea: The proof of this lemma is similar to other
such proofs done in the literature [21, 17]. We have
to show that if Cooperative∗(Prog) and a preemptive
−→-execution from Prog ends in error , then there is a
cooperative 7−→-exection from Prog ending in error .
We know that every thread in Prog starts execution
from a yield point (yield statement or call or return)
By checking simulation against YSA, it is also the
case that any execution of a thread from a yield point
to another yield point is a (possibly empty) sequence
of right movers and local actions, followed by zero or
one non mover, followed by a (possibly empty) se-
quence of left movers and local actions. A successful
simulation check against YSA labels each statement
with either RM or LM .

We pick a preemptive −→-execution leading to
error such that there is no shorter such execution.
Starting from this execution, it is possible to swap
adjacent steps by different threads while preserving
the failure at the end of the execution. Each swap
is one of the following: (1) moving an RM -labeled
step by one thread after a step of another thread, or
(2) moving an LM -labeled step by one thread before
a step of another thread. Eventually, when no more
swaps are possible, the final execution is such that all
context switches from thread i to a different thread
j happen at a yield point, but for the possible excep-
tion of the unique switch subsequent to which thread
i never executes. If there exists such a switch from
thread i, then it is also the case that the statement
at which the switch happened is labeled with LM .
This implies that it is possible to continue executing
thread i via a sequence of left-moving steps.

In the next step, we patch these exceptional
switches one by one. To patch the switch from thread
i, we extend the execution of thread i at the end of the
execution by a left mover and then commute it ear-
lier by repeated swaps until it reaches the exceptional

20

context switch. We repeat this process until thread
i reaches a yield point; it is guaranteed to reach a
yield point because of the Cooperative∗(Prog) prop-
erty. This process is continued until all switches are
patched resulting in an execution in which all context
switches happen at yield points. �

5 Implementation

We have implemented the method described in this
section as a conservation extension of the Boogie [5]
language and verifier. Our implementation provides
new language primitives for linear variables, asyn-
chronous and parallel procedure calls, yields, atomic
actions as procedure specifications, expressing refine-
ment layers, and hiding of global variables and pro-
cedures.

At its core, Boogie is an unstructured language
comprising code blocks and goto statements. Our im-
plementation handles the complexity of unstructured
control flow. To simplify the exposition, our formal-
ization uses Floyd-Hoare triples to present sequen-
tial correctness and annotated atomic code blocks
to present refinement and non-interference checks.
However, our implementation is considerably more
automated. All the annotations, except those at
yields, loops, and procedure boundaries, are auto-
matically generated using the technique of verifica-
tion conditions [6]. Annotated atomic code blocks
are also inferred automatically.

Unlike the formalization in which non-interference
checks are performed separately, our implementation
inserts the non-interference checks for all yield state-
ments inside the body of each source procedure. This
strategy increases the precision of the verification
since the entire context of the source procedure is
available in the verification condition.

The judgment `y Prog from Section 4.3 is fully
automated. We adapted an algorithm by Henzinger
et al.[30] for computing the similarity relation of la-
beled graphs to check that the control flow graph of a
procedure is simulated by the YSA automaton. The
complexity of the algorithm is O(n∗m), where n and
m are the number of control-flow graph nodes and
edges. In practice, this part of the verification is fast.

var x:int;

procedure p()

requires x >= 5;

ensures x >= 8;

{

yield x >= 5; x := x + 1;

yield x >= 6; x := x + 1;

yield x >= 7; x := x + 1;

}

procedure q() { x := x + 3; }

Figure 12: Program 1

A large proof usually comprises multiple layers of
refinement chained together. Our implementation al-
lows the specification of multiple views of a program
in a single file by using the mechanism of layers. The
programmer may attach a positive layer number to
each annotation and procedure; version i of the pro-
gram is constructed from annotations labeled i and
procedures labeled at least i. We have implemented
a type checker to make sure that layer numbers are
used appropriately, e.g., it is illegal for a procedure
with layer i to call a procedure with layer j greater
than i.

Our implementation also provides knobs for selec-
tively verifying certain refinement layers or only the
commutativity checks. The verification is fast in gen-
eral; the presence of these knobs further reduces ver-
ification time to facilitate interactive program verifi-
cation and development.

6 Examples

In this section, we present a collection of examples
that illustrate specification and verification features
supported by the civl verifier.

6.1 Reasoning about interference

We present an overview of the civl language and
verifier through a sequence of examples. Figure 12
shows Program 1 containing a procedure p executing

21

procedure yield_x(n:int)

requires x >= n;

ensures x >= n;

{

yield x >= n;

}

procedure p()

requires x >= 5;

ensures x >= 8;

{

call yield_x(5); x := x + 1;

call yield_x(6); x := x + 1;

call yield_x(7); x := x + 1;

}

Figure 13: Program 2

concurrently with another procedure q. As explained
earlier, a civl program is verified with respect to
its cooperative semantics; a thread explicitly yields
control to the scheduler via the yield statement fol-
lowing which execution continues on a nondetermin-
istically chosen thread. The yield statement has
a predicate ϕ attached to it. The yielding thread
must establish ϕ when it yields and the execution
of other threads must preserve ϕ; these two require-
ments in Owicki-Gries-style reasoning [48] are usually
known as sequential correctness and non-interference,
respectively. To check these requirements, the civl
verifier creates verification conditions, whose number
is at most quadratic in the number of yield state-
ments in the program. For example, in Program 1
each yield predicate in p must be checked against the
action x := x + 3 in q.

From quadratic to linear verification condi-
tions. Figure 13 shows Program 2, a variation of
Program 1 in which the procedure yield x contains
a single yield statement and p calls yield x instead
of yielding directly. If the calls to yield x are inlined
in Program 2, then we will get Program 1. Both Pro-
gram 1 and 2 are verifiable in civl but the cost of
verifying Program 2 is less because it has fewer yield
statements. In fact, if it is possible to capture all in-
terference in a concurrent program in a single yield
predicate, then the trick in Program 2 can be used to

procedure yield_x()

ensures x >= old(x);

{

yield x >= old(x);

}

procedure p()

requires x >= 5;

ensures x >= 8;

{

call yield_x(); x := x + 1;

call yield_x(); x := x + 1;

call yield_x(); x := x + 1;

}

Figure 14: Program 3

verify the program with a linear number of verifica-
tion conditions.

Encoding rely-guarantee specifications. Fig-
ure 14 shows Program 3, yet another variation of
Programs 1 and 2 which shows how to encode a rely-
guarantee-style [36] (two-state invariant) proof using
civl’s one-state yield statements. The standard rely-
guarantee specification to prove the assertions in p is
that the environment of p may only increase x. We
can encode this in civl by factoring out the yield
statement in a separate procedure and then referring
old(x), the value of x when yield x is entered.

Parallel calls. Program 4 in Figure 15 illus-
trates parallel calls, supported by Boogie based on
the standard Owicki-Gries rules for parallel compo-
sition of threads. The statement call incr x() |

yield y() | yield z() in p creates three threads
executing incr x, yield y, and yield z respectively,
yields control to the scheduler, and blocks until all
three threads have terminated. For a procedure to be
invoked in a parallel call, its preconditions and post-
conditions must be stable against interference. This
requirement ensures that it is safe to assume the pre-
condition in the callee and the postcondition in the
caller.

The threads created by p for yield y and yield z

are not doing any interesting computation; their only
purpose is to make available to their parent the con-
junction of their respective postconditions (following

22

var x:int, y:int, z:int;

procedure incr_x()

ensures x >= old(x) + 1;

{

yield x >= old(x);

x := x + 1;

yield x >= old(x) + 1;

}

procedure yield_y()

ensures y >= old(y);

{

yield y >= old(y);

}

procedure yield_z()

ensures z >= old(z);

{

yield z >= old(z);

}

procedure p()

requires x == 3 && y == 5 && z == 7;

{

call incr_x() | yield_y() | yield_z();

assert x >= 4 && y >= 5 && z >= 7;

}

Figure 15: Program 4

Owicki-Gries rules for parallel composition). In this
example, the postconditions of yield y and yield z

preserve information about variables y and z that
would otherwise be lost during the call to incr x,
whose postcondition only supplies information about
x even though its yield statements potentially cause
all global variables, including y and z, to change.
This example demonstrates modular proof structur-
ing by factoring out yield assertions into a collection
of procedures; the declaration of incr x can focus on
changes to x, without having to explicitly preserve
invariants about all other variables in the program.

type Tid;

const nil:Tid;

procedure Allocate()

returns (linear tid:Tid);

ensures tid != nil;

var a:[Tid]int;

procedure main()

{

while (true) {

var linear tid:Tid := Allocate();

async call P(tid);

yield true;

}

}

procedure P(linear tid: Tid)

requires tid != nil;

ensures a[tid] == old(a)[tid] + 1;

{

var t:int := a[tid];

yield t == a[tid];

a[tid] := t + 1;

}

Figure 16: Program 5

6.2 Linear variables

Program 5 in Figure 16 introduces linear variables,
a feature of civl that is useful for encoding disjoint-
ness among values contained in different variables.
This example uses this feature for encoding the con-
cept of an identifier that is unique to each thread.
Program 5 contains a shared global array a indexed
by an uninterpreted type Tid representing the set of
thread identifiers. A collection of threads are exe-
cuting procedure P concurrently. The identifier of
the thread executing P is passed in as the parameter
tid. A thread with identifier tid owns a[tid] and
can increment it without danger of interference. The
yield predicate t == a[tid] in P indicates this ex-
pectation, yet it is not possible to prove it unless the
reasoning engine knows that the value of tid in one
thread is distinct its value in a different thread.

23

type lmap = LMap(dom:[int]bool,

map:[int]int);

const empty:lmap;

axiom empty.dom == {};

procedure Load(linear l:lmap, i:int)

returns(v:int);

requires l.dom[i];

ensures v == l.map[i];

procedure Store(linear_in l_in:lmap,

i:int, v:int)

returns(linear l:lmap);

requires l_in.dom[i];

ensures l.dom == l_in.dom;

ensures l.map == l_in.map[i := v];

procedure Move(linear_in l1_in:lmap)

returns(linear l1:lmap, linear l2:lmap);

ensures l1 == empty && l2 == l1_in;

procedure Transfer(linear_in l1_in:lmap,

linear_in l2_in:lmap,

i:int)

returns(linear l1:lmap, linear l2:lmap);

ensures l1.dom == l1_in.dom - {i};

ensures l1.map == l1_in.map;

ensures l2.dom == l2_in.dom + {i};

ensures l2.map == l2_in.map[i:=l1.map[i]];

Figure 17: Encoding linear maps

Instead of building a notion of thread identifiers
into civl, we provide a more primitive and general
notion of linear variables. The civl type system en-
sures that values contained in linear variables cannot
be duplicated. Consequently, the parameter tid of
distinct concurrent calls to P are known to be dis-
tinct; the civl verifier exploits this invariant while
checking for non-interference.

Linear maps. Figure 17 illustrates how linear
maps [38] can be encoded in civl. A linear map
l is a pair comprising l.map), an array of integers,
and l.dom, a set of integers representing the locations
where it is legal to access l.map. In the parlance

var linear g:lmap;

var b:bool;

procedure P()

{

var t: int;

var linear l:lmap;

while (b) { call Yield(); }

b := true;

call g, l := Move(g);

call Yield(); call t := Load(l, p);

call Yield(); call l := Store(l, p, t+1);

call Yield(); call t := Load(l, p+4);

call Yield(); call l := Store(l, p+4, t+1);

call Yield(); call l, g := Move(l);

b := false;

call Yield();

}

procedure Yield()

{

yield b || (g.dom == {p,p+4} &&

g.map[p] == g.map[p+4]);

}

Figure 18: Program 6

of separation logic, a linear map can be thought of
as a collection of points-to facts partitioned by sepa-
rating conjunction; furthermore, there is an implicit
separating conjuction between the values contained
in two distinct linear maps. Figure 17 shows the
primitive operations on linear maps. (The notation
linear in indicates that a procedure consumes an
argument, making it unavailable to the caller after
the call, while a parameter marked linear is only
borrowed from the caller and remains available to the
caller after the call.) If a program is written using
only these primitive operations, it is guaranteed all
occurrences of Load and Store can be erased to loads
and stores, respectively, to a single global memory. In
addition, all occurrences of Move and Transfer can
be erased completely. Thus, linear maps provide a
mechanism to program functionally yet execute im-
peratively. At the same time, as is evident from the

24

specifications of the primitive operations, linear maps
can be encoded using classical logic and verification
of programs using them can benefit seamlessly from
advances in first-order automated theorem proving.

Program 6 uses a linear map g to represent two ad-
jacent memory location starting at offset p. The vari-
able g is protected by a lock encoded with a boolean
variable b. The procedure P acquires the lock b us-
ing atomic test-and-set, moves the content of g into
a local linear map l, increments both memory loca-
tions in l, and then moves l back into g. The yield
statement is encapsulated in the Yield procedure;
it amounts to a simple global invariant asserting that
whenever the lock b is not held, the domain of g must
contain the two adjacent address p and p+4 and the
values stored in these addresses are identical. This
program captures the essence of programming with
monitors [35] and demonstrates that this reasoning
can be encoded easily in civl.

Permissions. Because linear variables cannot be
duplicated, linear variables can safely express exclu-
sive access to a resource, such as a section of memory.
Boyland [8] generalized linear type systems with a
notion of fractional permissions: although linear vari-
ables still cannot be duplicated, fractions of a linear
resource may be shared among multiple linear vari-
ables, as long as the fractions are all greater than 0
and always add up to 100%. For example, two vari-
ables could possess 50% of a resource, or one variable
could possess 100% of a resource. The latter case
(100%) corresponds to the exclusive access in tra-
ditional linear type systems. Fractional permissions
are useful for distinguishing exclusive access, such as
exclusive read-write access to memory, from shared
access, such as shared read-only access to memory.
civl’s linear variables can encode fractional per-

missions. As an example of this encoding, Figure 19
extends Figure 17’s linear map type with a frac-
tion indicating partial access to the linear map. For
soundness, the Store operation still requires exclu-
sive access (fraction = 100%), as in Figure 17, but
Load now allows shared access (fraction may be
anything), since multiple concurrent loads do not in-
terfere with each other. The Split procedure splits
a single linear map into two subfractions, while the
Combine procedures combines two fractions into a

single linear map.
Rather than using real-number or rational-number

fractions, as in [8], we can also use sets in place of
fractions, as shown in Figure 20. Set union then re-
places numerical addition, and set difference replaces
numerical subtraction. The type of the set doesn’t
matter much; Figure 20 uses sets of real numbers.
With sets of real numbers, we can use the real inter-
val [0, 1) to indicate exclusive access, in analogy to
the 100% fraction, and subintervals like [0, 0.5) and
[0.5, 1) to indicate shared access, in analogy to 50%
fractions.

This extra level of detail allows civl to exploit
disjointness of the subintervals: we know that two
threads can’t both contain a linear map with the
same domain and the same subinterval (one thread
might have subinterval [0, 0.5) and another [0.5, 1),
but they can’t both have [0, 0.5)). Section 8.2 de-
scribes how the GC verification uses this strategy
to transfer fractions of thread identifiers between
threads and global variables in order to aid verifi-
cation of non-interference.

7 Modules

Section 6 used many small examples to illustrate var-
ious verification techniques supported by civl. Nev-
ertheless, it’s also important to show that civl’s fea-
tures can scale up to larger programs in a modular
way: we should be able to check a large program
by breaking it into smaller pieces and checking the
pieces independently. Many languages built on Boo-
gie, including Dafny [41] and BoogieX86 [27], encode
modules in Boogie, so it’s important that concurrent
extensions to Boogie continue to support modular
programming. This section describes a simple mod-
ule system built on civl that allows separate veri-
fication of modules, allowing programmers to make
changes to the private implementation of one module
without disturbing the verification of other modules.
Although the focus is on separate verification, this
module system can easily be extended with other tra-
ditional module features, such as abstraction of types
and hiding of definitions.

A key challenge for modular verification in civl

25

type lmap = LMap(dom:[int]bool,

map:[int]int,

fraction:real);

procedure Split(linear_in l:lmap, f1:real)

returns(linear l1:lmap, linear l2:lmap)

requires 0.0 < f1 && f1 < l.fraction;

ensures l1.dom == l.dom && l1.map == l.map;

ensures l2.dom == l.dom && l2.map == l.map;

ensures l1.fraction == f1;

ensures l2.fraction == l.fraction - f1;

procedure Combine(linear_in l1:lmap,

linear_in l2:lmap)

returns (linear l:lmap)

requires l1.dom == l2.dom;

ensures l.dom == l1.dom && l.map == l1.map;

ensures l.fraction == l1.fraction

+ l2.fraction;

procedure Load(linear l:lmap, i:int)

...

procedure Store(linear_in l_in:lmap,

i:int, v:int)

...

requires l_in.fraction == 1.0;

...

procedure Move(linear_in l1_in:lmap)

...

procedure Transfer(linear_in l1_in:lmap,

linear_in l2_in:lmap,

i:int)

...

requires l1_in.fraction == l2_in.fraction;

...

Figure 19: Fractional permissions

type lmap = LMap(dom:[int]bool,

map:[int]int,

fraction:[real]bool);

procedure Split(linear_in l:lmap, f1:set)

returns(linear l1:lmap, linear l2:lmap)

requires f1 != {} && f1 != l.fraction;

requires f1 isSubsetOf l.fraction;

ensures l1.dom == l.dom && l1.map == l.map;

ensures l2.dom == l.dom && l2.map == l.map;

ensures l1.fraction == f1;

ensures l2.fraction == l.fraction - f1;

procedure Combine(linear_in l1:lmap,

linear_in l2:lmap)

returns (linear l:lmap)

requires l1.dom == l2.dom;

ensures l.dom == l1.dom && l.map == l1.map;

ensures l.fraction == l1.fraction

+ l2.fraction;

Figure 20: Subset permissions

is the CommutativitySafe and InterferenceSafe judg-
ments. Section 4 defines these as whole-program
judgments, quadratically checking all pairs of actions
or all pairs of yields and atomic blocks from an en-
tire program. To achieve separate verification for
civl, we must be able to check these judgments on
a per-module basis. To achieve this, we observe that
CommutativitySafe and InterferenceSafe are trivially
true for operations that act on disjoint sets of global
variables. If an atomic block modifies only variables
g1 and g2, it will not interfere with a yield that refers
only to variables g3 and g4. More generally, let each
module M own a set of global variables, such that
each global variable is owned by exactly one module,
and decree that only M ’s procedures and actions can
access M ’s global variables. Formally, define owner-
ship for global variables, procedures and actions as:

M ∈ Module
ownGlobal ∈ Global → Module

ownProc ∈ Proc → Module
ownAction ∈ Action → Module

If ownProc(P) = M , then P ’s preconditions, postcon-

26

module Lock1

var lock1:Tid;

procedure Acq1(linear tid:Tid)

right [assume lock1 == none;

lock1 := tid;]

{...}

procedure Rel1(linear tid:Tid)

left [assert lock1 == tid;

lock1 := none;]

{...}

...

module Lock2

var lock2:Tid;

procedure Acq2(linear tid:Tid)

right [assume lock2 == none;

lock2 := tid;]

{...}

procedure Rel2(linear tid:Tid)

left [assert lock2 == tid;

lock2 := none;]

{...}

...

Figure 21: Lock modules

ditions, and statements only refer to global g where
ownGlobal(g) = M . Similarly, if ownProc(A) = M ,
then A’s gate and transition relation can depend only
on g where ownGlobal(g) = M . With this restric-
tion, CommutativitySafe and InterferenceSafe can be
checked for each module M in isolation; no other
module M ′ could interfere with any of the global vari-
ables owned by M .

As a more concrete example, suppose modules
Lock1 and Lock2 independently implement locks, ex-
pressed as atomic actions on variables lock1 and
lock2 (Figure 21).

By defining ownGlobal(lock1) = Lock1 and
ownGlobal(lock2) = Lock2, the Lock1 and Lock2

modules can be verified independently.
Nevertheless, a fixed ownership assignment is too

inflexible to allow effective sharing of global state
between modules. Therefore, it’s also important to
notice that ownGlobal , ownProc , and ownAction can

change across refinement layers. For example, sup-
pose that in the first (lowest) layer, we verify Lock1

and Lock2, replacing the Acq1, Acq2, Rel1, and Rel2

procedures with Acq1, Acq2, Rel1, and Rel2 actions,
and hiding the implementations of the bodies of these
procedures. Then suppose that in the second layer,
we want to use Lock1 and Lock2 in a module Counter
(Figure 22).
Counter uses Lock1 and Lock2 to implement an

atomic counter supporting increment and decrement,
using only primitive increment operations Inc1 and
Inc2 to access its variables x1 and x2. Since Inc1 and
Inc2 refer to lock1 and lock2, the owner of Inc1 and
Inc2 must also own lock1, and lock2. Fortunately,
ownership is free to migrate between layers, so in the
second layer we define ownGlobal(lock1) = Counter

and ownAction(Acq1) = Counter and so on. (Note
that ownProc(Acq1) doesn’t matter in the second
layer, since the procedure Acq1 was hidden in the
first layer.)

After verifying Counter in the second layer, we
hide the lock1 and lock2 variables entirely, along
with the Inc1, Inc2, Acq1, Acq2, Rel1, and Rel2

actions and the IncCnt, DecCnt, and ReadCnt proce-
dures. This leaves just the x1 and x2 variables and
the IncCnt, DecCnt, and ReadCnt atomic actions.

We then repeat this process, transferring own-
ership of x1, x2, IncCnt, DecCnt, and ReadCnt

to another module in a third layer of refine-
ment/abstraction:

module Client

..call IncCnt..call DecCnt..call ReadCnt..

7.1 Functors

For the sake of explicitness, the example above used
two replicas of a lock module (Lock1 and Lock2), and
verified each replica separately. In practice, we only
want to want to write and verify such modules once.
Borrowing from Standard ML [46], we introduce a
notion of functors that generate modules:

functor LockFunctor()

var lock:Tid;

procedure Acq(linear tid:Tid) right [...]

27

module Counter

var x1:int, x2:int;

...

procedure Inc1(linear tid:Tid)

returns(n1:int)

both [assert lock1 == tid;

n1 := x1; x1 := x1 + 1;]

procedure Inc2(linear tid:Tid)

returns(n2:int)

both [assert lock2 == tid;

n2 := x2; x2 := x2 + 1;]

procedure IncCnt(linear tid:Tid)

atomic [...]

{ call Acq1(tid);

call _ := Inc1(tid);

call Rel1(); }

procedure DecCnt(linear tid:Tid)

atomic [...]

{ call Acq2(tid);

call _ := Inc2(tid);

call Rel2(); }

procedure ReadCnt(linear tid:Tid)

returns(n:int)

atomic [...]

{ call Acq1(tid);

call Acq2(tid);

var n1 := Inc1(tid);

var n2 := Inc2(tid);

n := n1 - n2;

call Rel2();

call Rel1(); }

Figure 22: Counter module

procedure Rel() left [...]

...

module Lock1 := LockFunctor();

module Lock2 := LockFunctor();

Following Standard ML’s approach, the Lock1 and
Lock2 modules each get their own copies of the lock

variable (named Lock1.lock and Lock2.lock) and
their own copies of Acq and Rel. Nevertheless, we
only have to verify LockFunctor once, rather than
verifying each instantiation of LockFunctor sepa-
rately (similar to Standard ML, which only has to
type-check a functor once, rather than type-checking
each functor instantiation separately).

In some situations, we might want to create an un-
bounded number of locks at run-time; static instanti-
ation of a bounded number of modules doesn’t suffice
for this. Instead, without adding any new features to
civl, we can simply change the lock variable to rep-
resent an array of locks (as an array of Tids), and
implement acquire/release operations on elements of
the array. Note that the functor approach and array
approach are complementary and can be combined.
The functor approach has the advantage of creating
multiple independent lock variables, whose owner-
ship can be independently transferred to other mod-
ules. This allows, say, module M1 to own one lock

variable replica, while M2 owns a different lock vari-
able replica, so that M1’s lock variable cannot inter-
fere with M2’s lock variable. The array approach, on
the other hand, is useful for supporting dynamically
allocated locks within a single module.

7.2 Module invariants

Modules often need to maintain invariants about
their variables. For example, the module in Figure 23
maintains an invariant x >= 0 that is true after ini-
tialization. Other modules may need to maintain X’s
invariant to call X’s procedures. However, if X owns
x, mentioning x from another module is prohibited:

module Y

procedure P()

{

28

module X

var x:int;

procedure Init()

ensures x >= 0;

{ x := 0; }

procedure Inc()

requires x >= 0;

ensures x >= 0;

{ x := x + 1; }

procedure Yield()

ensures old(x) >= 0 ==> x >= 0;

{ yield old(x) >= 0 ==> x >= 0; }

Figure 23: Module with invariant

call Init();

...

yield x >= 0; // not allowed

...

call Inc();

}

Instead, following the approach from Figure 14, the
other module calls a procedure in module X that
yields, since that procedure can refer to x:

module Y

procedure P()

{

call Init();

...

call Yield(); // allowed

...

call Inc();

}

Intuitively, module X is responsible for declaring its
invariants in Yield, and these invariants are checked
when verifying X. Other modules then maintain these
invariants indirectly through Yield. To maintain in-
variants from multiple modules (say, X1 and X2), we
use parallel calls to multiple yield procedures simul-
taneously, as in Figure 15:

module X1 ...

module X2 ...

module Y

procedure P()

{

call Init1();

...

// parallel call:

call Yield1() | Yield2();

...

call Inc2();

}

8 Case study: a verified con-
current GC algorithm

The civl verifier has been under development for
around two years. Over that period, we have devel-
oped a collection of 32 benchmarks, ranging in size
from 17 to 539 LOC, to illustrate various features
of civl and for regression testing as we evolved the
verifier. In addition to microbenchmarks, this col-
lection also includes standard benchmarks from the
literature such as a multiset implementation [18], the
ticket algorithm [19], Treiber stack [33], work-stealing
queue [7], device cache [17], and lock-protected incre-
ment [23]. The civl verifier is fast; the entire bench-
mark set verifies in 20 seconds on a standard 4-core
Windows PC (2.8GHz, 8GB) with no benchmark re-
quiring more than a few seconds.

In addition to these 32 small benchmarks, we also
verified a larger algorithm: a concurrent mark-sweep
garbage collector (GC). The rest of this section dis-
cusses the GC and its verification in detail.

8.1 Garbage collector

We demonstrate the verification methodology and
tool on a realistic modern concurrent garbage col-
lector algorithm (available at [29]). Our algorithm
builds on the concurrent collector of Dijkstra et
al. [11]. Dijkstra’s collector is attractive for verifica-
tion because it maintains a simple tri-color invariant
on the heap objects (in contrast to snapshot-oriented

29

MarkAllGrays(linear tid:Tid) {
while (true) {

var isEmpty:bool, node:int := GraySetChoose(tid);
if (isEmpty) { break; }
for (var f:int := 0; f < numFields; f++) {

var child:int := ReadFieldInMark(tid, node, f);
if (memAddr(child)) {

call GraySetInsertChildIfWhite(tid, node, child);
} }

call GraySetRemove(tid, node);
} }

WriteBarrier(linear tid:Tid, y:idx) {
var rootVal:int := ReadRoot(tid, y);
if (memAddr(rootVal)) {

if (ReadMutatorPhase(tid) == MARK) {
call GraySetInsertIfWhite(tid, rootVal);

} }
}

Mark(linear tid:Tid) {
call ResetSweepPtr(tid);
while (true) {

if (ScanRoots(tid)) { return; }
call MarkAllGrays(tid);

} }

Alloc(consume tid_in:Tid, y:idx)
returns(linear tid:Tid) {

call tid := TestRootScanBarrier(tid_in);
call UpdateMutatorPhase(tid);
var ptr:int, absPtr:obj := AllocRaw(tid, y);

}
assert mutatorTidWhole(tid_in)

&& rootAddr(y) && tidOwns(tid_in, y);
var o:obj;
assume (memAddrAbs(o) && !allocSet[o]);
allocSet[o] := true;
rootAbs[y] := o;
memAbs[o] := ...initial fields...;
tid := tid_in;

// x.f := y
WriteField(linear tid:Tid, x:idx, f:fld, y:idx) {

call WriteBarrier(tid, y);
call WriteFieldRaw(tid, x, f, y);

}
assert mutatorTidWhole(tid)

&& fieldIndex(f)
&& rootAddr(x) && tidOwns(tid, x)
&& rootAddr(y) && tidOwns(tid, y)
&& memAddrAbs(rootAbs[x]);

memAbs[rootAbs[x]][f] := rootAbs[y];

// y := x.f
ReadField(linear tid:Tid, x:idx, f:fld, y:idx) {

call ReadFieldRaw(tid, x, f, y);
}

assert mutatorTidWhole(tid)
&& fieldIndex(f)
&& rootAddr(x) && tidOwns(tid, x)
&& rootAddr(y) && tidOwns(tid, y)
&& memAddrAbs(rootAbs[x]);

rootAbs[y] := memAbs[rootAbs[x]][f];

Initialize(consume gcTid:Tid,
linear mutatorTids:[int]bool) {

...
async call GarbageCollect(gcTid);

}

Eq(linear tid:Tid, x:idx, y:idx) // x == y
returns (eq:bool) {...}

assert ...
eq := rootAbs[x] == rootAbs[y];

phase 6
interface

GarbageCollect(linear tid:Tid) {
while (true) {

call WaitForMutators(tid, Handshake(tid));
call Mark(tid);
call WaitForMutators(tid, Handshake(tid));
call Sweep(tid);
call Handshake(tid);

} }

phase 6
internals

ScanRoots(linear tid:Tid) returns (done:bool) {
call CollectorRootScanBarrierStart(tid);
call CollectorRootScanBarrierWait(tid);
for (var i:int := 0; i < numRoots; i++) {

var obj:int := ReadRootInRootScanBarrier(tid, i);
if (memAddr(obj)) {

call GraySetInsertIfWhite(tid, obj);
} }

call done := IsGraySetEmpty(tid);
call CollectorRootScanBarrierEnd(tid);

}

WriteFieldRaw(linear tid:Tid, x:idx, f:fld, y:idx) {
var valx:int := ReadRoot(tid, x);
var valy:int := ReadRoot(tid, y);
call WriteFieldGeneral(tid, valx, f, valy);

}

assert tid == GcTid;
Color := ...;
done := (forall v:int :: memAddr(v) ==>

Color[v] != GRAY);

assert mutatorTidWhole(tid)
&& rootAddr(x) && tidOwns(tid, x)
&& rootAddr(y) && tidOwns(tid, y)
&& fieldIndex(f)
&& memAddr(root[x])
&& memAddrAbs(rootAbs[x]);

memAbs[rootAbs[x]][f] := rootAbs[y];
mem[root[x]][f] := root[y];

assert mutatorTidWhole(tid)
&& rootAddr(y) && tidOwns(tid, y);

if (memAddr(root[y])
&& Color[root[y]] == WHITE
&& mutatorPhase[tid] == MARK) {

Color[val] := GRAY; }

phase 5

Sweep(linear tid:Tid) { ...
for (var i:int:= memLo; i < memHi; i++) {

call SweepOneObject(tid);
} }

Figure 24: Verified garbage collector phases 5, 6 (pseudocode excerpts in solid boxes; atomic action specs in
dashed boxes)

30

collectors [13, 12, 14, 4] whose tri-color invariants are
more subtle). By itself, though, Dijkstra’s collector
is not a modern or performant collector. First, it
becomes incorrect in the presence of more than one
program thread (mutator). Second, it requires that
the write-barrier be run not only on updates of heap
pointers, but also on modifications of root pointers,
i.e., on modifications of the runtime stacks and the
registers; modern high-performance collectors avoid
this overhead.

Therefore, our algorithm (shown inside the solid
boxes in Figure 24) extends and modifies Dijkstra’s
collector to make it work with parallel programs
and to not require a write-barrier on root modifica-
tions. Like Dijkstra’s collector, our algorithm first
marks all objects reachable from roots (registers and
stacks), shown in Figure 24’s Mark procedure, and
then sweeps away all unreached objects, shown in
Figure 24’s Sweep procedure. As in Dijkstra’s col-
lector, our algorithm employs a tri-color abstraction
to describe the trace of the reachable objects. Ob-
jects are said to be white if the collector has not seen
them yet during the trace. Objects that the collec-
tor encounters become gray and remain gray until
the collector scans their children. Once all the chil-
dren of an object are noted (meaning that none of
them are white), the object becomes black. The col-
lector works by choosing a node from the set of gray
objects (GraySetChoose, called from MarkAllGrays
in Figure 24), shading all its white children to gray
(GraySetInsertChildIfWhite), and then removing the
object from the gray set by making the object black
(GraySetRemove). The shading operation grays a
node if it is white, and does nothing otherwise. The
trace terminates when all roots point to black ob-
jects (according to ScanRoots) and there are no more
gray objects (according to IsGraySetEmpty, called by
ScanRoots). Termination is guaranteed because ob-
jects can only get darker. Correctness is guaranteed
using an invariant that a black object never points
to a white object during the trace (black objects can
only point to gray objects or black objects). At the
end of the trace, objects pointed by the roots must
be black, and since no gray objects remain, black ob-
jects only point to black objects, so the entire set of
objects reachable from the roots must be black.

Concurrent mutator operations on objects (Read-
Field and WriteField in Figure 24) could potentially
break the no-black-to-white invariant, because a mu-
tator’s WriteField operation could potentially redi-
rect a pointer of a black object to point to a white
object. Therefore, coordination between the pro-
gram and the concurrent collector is required: before
each raw pointer update (WriteFieldRaw), the Write-
Field procedure executes a write-barrier (WriteBar-
rier). Before pointer field x.f is set to reference an
object y, WriteBarrier shades y, ensuring that even
if x is black, a pointer from x to y will not violate the
no-white-to-black invariant.

The write barrier should shade objects only while
the collector is in its mark phase, not when the collec-
tor is sweeping or is idle, and the collector may only
switch between phases (mark, sweep, or idle) when no
mutator is in the middle of a WriteField or Alloc op-
eration. To achieve this (and thereby support correct
and efficient support for multiple mutator threads),
we extend Dijkstra’s collector with explicit tracking
of phases, via a handshaking mechanism [13, 12].
A shared variable, collectorPhase, contains the cur-
rent collector phase. The collector initiates a hand-
shake by incrementing collectorPhase (in Handshake,
called by GarbageCollect). Each mutator thread
keeps cached copy of collectorPhase, and periodically
checks to see if the cached copy mismatches the cur-
rent collectorPhase, and if so, updates the cached
copy with the most recent value (in our algorithm, a
mutator’s call to the allocator, Alloc, checks this in
UpdateMutatorPhase, but the exact location of the
check is not critical to correctness). The GarbageCol-
lector waits until all cached copies equal collector-
Phase (WaitForMutators in GarbageCollect), and
then executes a phase (Mark, Sweep, or, for the idle
phase, nothing). Note that each mutator thread can
read its own cached phase without acquiring a lock
(ReadMutatorPhase in WriteBarrier), leading to ef-
ficient WriteBarrier performance.

Dijkstra’s collector requires a write barrier on mod-
ifications to roots as well as modifications to objects.
We eliminate this overhead by employing repeated
tracing phases until all objects referenced by roots
are black. A tracing phase starts by stopping all mu-
tators and marking their roots. The process of stop-

31

ping the mutators is similar to a handshake and is
done using the CollectorRootScanBarrierStart, Col-
lectorRootScanBarrierWait, and CollectorRootScan-
BarrierEnd procedures on the collector side and Te-
stRootScanBarrier procedure on the mutator side.
At the end of the root scan (before the mutators
reawaken), all roots point to gray or black objects.
If no gray objects remain (IsGraySetEmpty), then
all roots point to black objects, and marking is com-
plete. Otherwise, we trace from gray objects until
completion and start a new tracing phase (by stop-
ping the mutators and checking the roots again). In
a worst-case theoretical scenario we may need to run
many root scans and discover more and more white
root descendants to trace each time. But in prac-
tice we usually finish after a small number of scans,
so we obtain correctness and termination in all sce-
narios and we obtain good performance in real-world
scenarios.

8.2 Collector Verification in Boogie

We have implemented and verified our algorithm in
Boogie, including initialization (Initialize), the GC
(GarbageCollect), the allocator (Alloc), and the mu-
tator operations (ReadField, WriteField, and Eq),
and all the lower-level operations required to imple-
ment them (some of these appear in Figure 24; others
are omitted from the figure to save space). To make
the verification as realistic as possible, our Boogie
code implements everything in terms of individual
CPU operations, such as load, store, atomic incre-
ment/decrement, and CAS (compare-and-swap); in
contrast to some previous work [26], we do not as-
sume any built-in higher-level operations. To ease
verification, we make some simplifications: we use a
naive allocator (sequential search for free space), we
assume a sequentially consistent memory model, and
we assume that all objects have the same number of
fields. (Except for the assumption of sequential con-
sistency, none of these substantially alter the nature
of the proof.)

Overall, our implementation consists of about 2100
lines of Boogie code. The GC verification takes 60
seconds on the same PC used for microbenchmarks.
The bulk of this time, 54 seconds, is taken by the ver-

ification of the refinement checks from Section 4.2.2.
The linear type checking, the yield safety checks, and
the commutativity checks take the rest of the time
and are insignificant in comparison.

Our verification takes advantage of all techniques
in civl: refinement, assertions, reduction, and linear-
ity. Refinement gives us extremely simple high-level
action specifications for Initialize, ReadField, Write-
Field, Eq, and Alloc, shown in their entirety in Fig-
ure 24’s dashed boxes. (Initialize and GarbageCol-
lect have empty actions; the GarbageCollector itself
is just an internal implementation detail inside Ini-
tialize, which serves only to set up the global GC in-
variant needed by the other high-level actions.) Cru-
cially, ReadField, WriteField, Eq, and Alloc appear
atomic to mutators, even though internally, Write-
Field and Alloc involve many interleaved operations
on shared GC data structures. Figure 24 shows only
shows phases 5 and 6, the two most abstract phases of
refinement; phases 1-4 fill in the implementation de-
tails, such as implementing the set of gray objects as
an explicit stack (an array of elements with a pointer
to the stack top, in phase 4), handshaking (phase
3), locks (phase 2), and wrapping the primitive CPU
operations in left/right/non-moving atomic actions
(phase 1). Ultimately, the phases are built on trusted
CPU-level atomic actions, such as reading and writ-
ing roots directly:

procedure PrimitiveWriteRoot(i:idx, v:int)

atomic [assert rootAddr(i); root[i] := v;]

procedure PrimitiveReadRoot(i:idx)

returns (v:int)

atomic [assert rootAddr(i); v := root[i];]

We write the highest-level action specifications in
terms of an abstract view of memory, as in ear-
lier work on sequential garbage collector verifica-
tion [44, 28]. (Abstract memory is infinite and eter-
nal: once allocated, an abstract object lives forever.
Deallocation is an underlying implementation detail,
not exposed in the abstract interface.) Our abstract
view describes a machine as consisting of just three
variables: abstract memory memAbs:[obj][fld]obj,
mapping object identifiers and fields to other objects,

32

abstract root values rootAbs:[idx]obj, mapping root
names to objects, and allocSet:[obj]bool, the set of
objects allocated so far. At this high layer of ab-
straction, we use Boogie’s hiding to hide all other
variables (such as the concrete root set, “root”, the
concrete memory, “mem”, and the colors, “Color”,
used by lower-level procedures).

All operations are relative to root names of type
idx. ReadField, for example, reads an object field
from an object pointed to by root x into a root y.
The predicates rootAddr and tidOwns establish that
x and y are valid root names, owned by a particu-
lar mutator tid. (We assume that each root is pri-
vate to a single mutator stack or register file; sharing
between mutator threads takes place through shared
pointers to objects.) The predicates fieldIndex(f) and
memAddrAbs(o) establish that x.f is a valid field of a
valid object. Allocation establishes memAddrAbs(o)
for newly allocated objects so that they may be used
by subsequent ReadField and WriteField operations.
It also establishes o’s unique identity by ensuring that
it did not previously belong to the allocated object
set.

In addition to atomic action specifications, the ver-
ification establishes invariants using assertion rea-
soning (omitted from Figure 24 to save space).
For example, Initialize establishes a global mapping
toAbs:[int]obj from physical memory mem and ab-
stract memory memAbs:

(forall x:int, f:fld ::

memAddr(x)

&& toAbs[x] != nil

&& fieldIndex(f)

==> toAbs[mem[x][f]]

== memAbs[toAbs[x]][f])

and Mark maintains the no-black-to-white invari-
ant:

(forall x:int, f:fld ::

memAddr(x)

&& Black(Color[x])

&& fieldIndex(f)

&& memAddr(mem[x][f])

==> Gray(Color[mem[x][f]])

|| Black(Color[mem[x][f]]))

Finally, linearity plays a key role in establish-
ing mutual exclusion. The GC thread has its own
thread id gcTid, and each mutator has its own thread
id. The Initialize procedure consumes gcTid (writ-
ten here as “consume”) and borrows all the mutator
thread ids (written as “linear”, as in Section 2), so
that it’s clear that no other concurrent actions are
allowed during initialization. This allows all the in-
ternal initialization actions to be both-movers, with-
out requiring any explicit locking. Initialize must
consume gcTid because it passes gcTid to the newly
spawned GarbageCollector thread; since gcTid is con-
sumed, it’s impossible to call Initialize twice in an
attempt to spawn two parallel GC threads (which
naturally expresses how the algorithm is only safe for
a single GC thread).

Because civl’s linearity is based on sets of values,
we can represent thread identifiers as sets that can
be subdivided into subsets (similar to how fractional
permissions may be divided into fractions). During
root scanning, each mutator thread places a fraction
of its thread id in a global variable, and reclaims the
fraction from the global variable after root scanning
completes; a collector invariant tracks that the global
variable contains non-empty fractions from all muta-
tors during root scanning. Thus, during root scan-
ning, civl’s rules for linearity prove that no inter-
ference occurs between the collector and any muta-
tor operations that require the whole mutator thread
id (“mutatorTidWhole”, used in Figure 24’s Read-
Field, WriteField, Alloc, and most other mutator op-
erations).

8.3 Discussion

We now put atomicity refinement techniques from the
literature and civl in context. The refinement proof
spans six levels of abstraction. Each of refinement
proof relating two consecutive levels is made feasible
by a different blend of the techniques in civl.

The topmost-level description of the garbage col-
lector provides an idealized, abstract view of memory.
At this level, none of the lowest-level implementa-
tion variables are visible – variable hiding has been
used to project them away. In the top few levels
of the garbage collector proof, invariant-based non-

33

interference reasoning was our primary tool, while
reduction simplified verification by enabling us to use
coarser atomic actions and fewer location invariants.
Linear variables were used throughout the proof to
model the distinct thread identifiers for the garbage
collector thread and mutator threads, but were most
instrumental in encoding single-threaded execution in
the initialization phase of the program. For these top
few levels of our proof, rely-guarantee and separation-
logic-based approaches would have also performed
well, as demonstrated by the garbage collector proof
of Liang et al. [42], where the atomicity of actions
in the lower levels our proof is assumed but not veri-
fied. An important distinguishing capability in civl
is being able to use location invariants rather than
pure rely-guarantee reasoning. This helped interac-
tive proof at the top levels significantly. For the mark
phase of the garbage collector, we made critical use of
different invariants at different locations in procedure
bodies. While the same non-interference argument
could have been encoded in rely-guarantee reason-
ing, as we had done ourselves in an earlier version of
our proof, it would have required the use of several
additional auxiliary shared variables. Invariants, rely
and guarantee conditions referring to such auxiliary
variables throughout the program made interactive
invariant reasoning more difficult to manage.

In the lower levels of the garbage collector proof,
where correctness of concurrent data structures and
synchronization primitives were proven, we made rel-
atively little use of location invariants, and made
heavier use of linear variables and reduction. We
also used variable hiding heavily to hide low-level
implementation variables. For lower-level refinement
tasks, for instance, when verifying the correctness of
a lock-protected concurrently-accessed stack, owner-
ship arguments, separation logic, or qed-style atom-
icity would have been sufficient. But, at the higher
levels of our proof, where non-interference reasoning
via invariants and linear variables was indispensable,
atomicity alone, or ownership or separation logic ar-
guments alone would have run into difficulty.

While existing techniques in the literature have as
their “sweet spot” a few of the refinement proofs in
our garbage collector proof, they run into difficulty in
others. More critically, they do not facilitate layering

refinement proofs, which is required for stepwise re-
finement. Using a realistic top-down proof as civl’s
design driver led us to combine in one tool and con-
sistent theory, the verification techniques of linearity,
reduction and non-interference reasoning in the ser-
vice of a modular refinement proof directed by the
syntactic structure of the imperative concurrent pro-
gram.

9 Related work

Our work is the first to provide tool and theory to
support automated, modular whole-program refine-
ment through multiple layers, as distinct from exist-
ing work on single-layer atomicity refinement between
procedure implementations and specifications. While
many of the verification techniques used within civl
appear in the literature, civl is the first to make
sound, joint use of them to decompose the refinement
task following the syntactic structure of a program.
In the following, we first contrast civl with refine-
ment verification techniques, and then with tools and
techniques for reasoning about concurrent programs
in general.

9.1 Refinement-oriented verification

Atomic action specifications have been explored by
the calvin [22, 25] verifier previously. civl makes
a distinction between preemptive and cooperative se-
mantics, and carries out refinement verification on
a procedure body with cooperative semantics as en-
abled by movers types and reduction. calvin at-
tempts to verify refinement directly on the preemp-
tive semantics, making only limited use of movers at
the lowest-level representation. calvin, unlike civl,
does not support location invariants and linear vari-
ables but incorporates rely-guarantee reasoning. The
same non-interference reasoning can be carried out
using location invariants or rely-guarantee reason-
ing, and civl supports both. However, in certain
cases, rely-guarantee reasoning requires use of auxil-
iary (shared) variables and makes interactive proofs
difficult as was the case in our GC proof. We find lo-
cation invariants to be a powerful verification device.

34

qed [17] is a simplifier for concurrent programs and
is close in spirit to the refinement-oriented approach
of civl. A key distinction between civl and qed is
the fact that a proof step in qed is a small rewrite
in the concurrent program that must be justified by
potentially expensive reduction and invariant reason-
ing. In qed, procedures can be proven atomic only
one procedure at a time, and only by transforming
their bodies by reduction to be yield free. The num-
ber of small proof steps directly affect both program-
mer and computer effort. By contrast, civl supports
large proof steps, in each of which the bodies of sev-
eral procedures are automatically replaced by atomic
actions, thereby lowering the cost of both interac-
tion and automation. The non-interference reason-
ing in qed is even more limited than calvin. qed
supports only global invariants and does not support
rely-guarantee reasoning or linear variables.

Liang et al. [42] present a method for verifying that
procedure bodies refine atomic specifications The key
verification approach is rely-guarantee reasoning and
the refinement (simulation) relation between a proce-
dure and its specification is constrained so it is pre-
served under parallel composition. No tool support
is provided. Authors present a (paper) GC proof,
which is limited in scope compared to ours, as their
proof corresponds to a few layers of our proof. In
particular, the GC is not refined down to individual
atomic memory accesses. Since this work uses differ-
ent languages to describe the high-level and low-level
programs, it is not immediately possible to carry out
a multi-level stepwise refinement proof.

Turon and Wand [50] use ownership disciplines and
separation logic to verify refinement of atomic spec-
ifications by concurrent data structure implemen-
tations. Rely-guarantee reasoning is supported to
provide compositionality and non-interference argu-
ments. This work targets a single refinement step
between atomic specifications for methods and their
implementations. No tool support for this verifica-
tion method is provided.

Verifying linearizability of concurrent data struc-
tures (see, e.g., [16, 31]) can be viewed as an instance
of one-level of refinement in our setting. civl can be
used for mechanical verification of linearizability, as
we did for the Treiber stack. Tools and techniques

specific to verifying linearizability cannot be easily
generalized for stepwise refinement proofs through
multiple levels.

Refinement proofs between implementations and
specifications of protocols have been investigated us-
ing the TLA+ [39] specification language. Compo-
sitional proofs between specifications and implemen-
tations consisting of modules [1] have been investi-
gated in this context. Modular refinement proofs for
hardware systems have been investigated extensively
(e.g., [32, 15]) using the SMV [45] and Mocha [3]
model checking tools. To verify a concurrent, shared-
memory program using such tools, one must encode
the program semantics as a state-transition system
and express verification goals in terms of this sys-
tem. For concurrent, shared-memory software, civl
enables reasoning on the structured, imperative mul-
tithreaded program text rather than a logic descrip-
tion of the program’s state-transition relation.

9.2 Reasoning about concurrency

In this section, we discuss foundational techniques for
combating the complexity of concurrent program ver-
ification. civl and refinement techniques discussed
in the previous section have common ideas with tools
and formalisms discussed in this section, however, the
latter primarily target verification of a single program
rather than refinement. Refinement in civl is orthog-
onal to these techniques, which can be aided by civl’s
ability to connect a complex concurrent program to
a simpler abstraction.

VCC [9] is a tool for verifying concurrent C pro-
grams. Chalice [40] is a language and modular veri-
fication tool for concurrent programs. VCC does not
support refinement and Chalice does so only for se-
quential programs. VCC and Chalice base their in-
variant reasoning on objects, object ownership, and
type invariants. Invariant reasoning in civl is more
primitive and based on predicates in yield statements.
Although the approach in VCC and Chalice is more
convenient when applicable, civl’s approach is more
flexible. VCC and Chalice can reason sequentially
about objects exclusively owned by a thread; civl
accomplishes the same using linear variables. Nei-
ther VCC nor Chalice support movers and reduction

35

reasoning.
Concurrent separation logic [47] reasons about

concurrency without explicitly checking for non-
interference between threads. Recently, tools based
on this logic that blend in explicit non-interference
reasoning (but without support for reduction and
mover reasoning) have been developed [20, 51].
civl’s combination of interference checking and lin-
ear variables is an extreme example of this trend, is
very general and technique-agnostic. We supply very
primitive abstractions and let programmers mix and
match these abstractions freely to encode the non-
interference reasoning style of their choice.

References

[1] M. Abadi and L. Lamport. Composing spec-
ifications. ACM Trans. Program. Lang. Syst.,
15(1):73–132, Jan. 1993.

[2] J.-R. Abrial, M. Butler, S. Hallerstede, T. S.
Hoang, F. Mehta, and L. Voisin. Rodin: an open
toolset for modelling and reasoning in Event-B.
STTT, 12(6):447–466, 2010.

[3] R. Alur, T. A. Henzinger, F. Y. C. Mang,
S. Qadeer, S. K. Rajamani, and S. Tasiran.
MOCHA: modularity in model checking. In
Computer Aided Verification, 10th International
Conference, CAV ’98, Vancouver, BC, Canada,
June 28 - July 2, 1998, Proceedings, pages 521–
525, 1998.

[4] H. Azatchi, Y. Levanoni, H. Paz, and E. Pe-
trank. An on-the-fly mark and sweep garbage
collector based on sliding views. In OOPSLA,
2003.

[5] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Ja-
cobs, and K. R. M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. In
FMCO, pages 364–387, 2005.

[6] M. Barnett and K. R. M. Leino. Weakest-
precondition of unstructured programs. In
PASTE, 2005.

[7] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. J.
ACM, 46(5):720–748, Sept. 1999.

[8] J. Boyland. Checking interference with frac-
tional permissions. In Static Analysis: 10th In-
ternational Symposium, 2003.

[9] E. Cohen, M. Dahlweid, M. A. Hillebrand,
D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A prac-
tical system for verifying concurrent C. In
TPHOLs, 2009.

[10] L. M. de Moura and N. Bjørner. Z3: An efficient
SMT solver. In TACAS, pages 337–340, 2008.

[11] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S.
Scholten, and E. F. M. Steffens. On-the-fly
garbage collection: An exercise in cooperation.
Commun. ACM, 21(11), Nov. 1978.

[12] D. Doligez and G. Gonthier. Portable, unob-
trusive garbage collection for multiprocessor sys-
tems. In POPL, 1994.

[13] D. Doligez and X. Leroy. A concurrent genera-
tional garbage collector for a multi-threaded im-
plementation of ML. In POPL, 1993.

[14] T. Domani, E. K. Kolodner, and E. Petrank.
A generational on-the-fly garbage collector for
Java. In PLDI, 2000.

[15] A. T. Eiŕıksson. The formal design of 1m-gate
asics. Form. Methods Syst. Des., 16(1):7–22,
Jan. 2000.

[16] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and
S. Tasiran. Simplifying linearizability proofs
with reduction and abstraction. In Tools and
Algorithms for the Construction and Analysis of
Systems, volume 6015 of Lecture Notes in Com-
puter Science, pages 296–311. Springer Berlin
Heidelberg, 2010.

[17] T. Elmas, S. Qadeer, and S. Tasiran. A calculus
of atomic actions. In POPL, pages 2–15, 2009.

36

[18] T. Elmas, S. Tasiran, and S. Qadeer. VYRD:
verifying concurrent programs by runtime
refinement-violation detection. In Proceedings of
the ACM SIGPLAN 2005 Conference on Pro-
gramming Language Design and Implementa-
tion, Chicago, IL, USA, June 12-15, 2005, pages
27–37, 2005.

[19] A. Farzan, Z. Kincaid, and A. Podelski.
Proofs that count. In The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, pages
151–164, 2014.

[20] X. Feng, R. Ferreira, and Z. Shao. On the re-
lationship between concurrent separation logic
and assume-guarantee reasoning. In ESOP,
2007.

[21] C. Flanagan, S. N. Freund, M. Lifshin, and
S. Qadeer. Types for atomicity: Static checking
and inference for java. ACM Trans. Program.
Lang. Syst., 30(4), 2008.

[22] C. Flanagan, S. N. Freund, S. Qadeer, and S. A.
Seshia. Modular verification of multithreaded
programs. Theor. Comput. Sci., 338(1-3):153–
183, 2005.

[23] C. Flanagan and S. Qadeer. Thread-modular
model checking. In Model Checking Software,
10th International SPIN Workshop. Portland,
OR, USA, May 9-10, 2003, Proceedings, pages
213–224, 2003.

[24] R. Floyd. Assigning meaning to programs. In
Symposia in Applied Mathematics, volume 19,
pages 19–32. American Mathematical Society,
1967.

[25] S. N. Freund and S. Qadeer. Checking concise
specifications for multithreaded software. Jour-
nal of Object Technology, 3(6):81–101, 2004.

[26] G. Gonthier. Verifying the safety of a practical
concurrent garbage collector. In CAV, 1996.

[27] C. Hawblitzel, J. Howell, J. R. Lorch,
A. Narayan, B. Parno, D. Zhang, and B. Zill.
Ironclad apps: End-to-end security via auto-
mated full-system verification. In 11th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

[28] C. Hawblitzel and E. Petrank. Automated verifi-
cation of practical garbage collectors. In POPL,
2009.

[29] C. Hawblitzel, E. Petrank, S. Qadeer, and
S. Tasiran. Verified concurrent garbage col-
lector. http://singularity.codeplex.com/

SourceControl/latest#base/Imported/

Bartok/runtime/verified/GCs/concur/GC.

bpl.

[30] M. R. Henzinger, T. A. Henzinger, and P. W.
Kopke. Computing simulations on finite and in-
finite graphs. In FOCS, 1995.

[31] T. Henzinger, A. Sezgin, and V. Vafeiadis.
Aspect-oriented linearizability proofs. In CON-
CUR 2013—Concurrency Theory, volume 8052
of Lecture Notes in Computer Science, pages
242–256. Springer Berlin Heidelberg, 2013.

[32] T. A. Henzinger, X. Liu, S. Qadeer, and S. K.
Rajamani. Formal specification and verifica-
tion of a dataflow processor array. In Pro-
ceedings of the 1999 IEEE/ACM International
Conference on Computer-aided Design, ICCAD
’99, pages 494–499, Piscataway, NJ, USA, 1999.
IEEE Press.

[33] M. Herlihy and N. Shavit. The Art of Multipro-
cessor Programming. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2008.

[34] C. A. R. Hoare. An axiomatic basis for computer
programming. COMMUNICATIONS OF THE
ACM, 12(10):576–580, 1969.

[35] C. A. R. Hoare. Monitors: an operating
system structuring concept. Commun. ACM,
17(10):549–557, Oct. 1974.

37

[36] C. B. Jones. Tentative steps toward a devel-
opment method for interfering programs. ACM
TOPLAS, 5(4):596–619, 1983.

[37] G. Klein, J. Andronick, K. Elphinstone, T. Mur-
ray, T. Sewell, R. Kolanski, and G. Heiser. Com-
prehensive formal verification of an OS microker-
nel. ACM Transactions on Computer Systems,
32(1):2:1–2:70, feb 2014.

[38] S. K. Lahiri, S. Qadeer, and D. Walker. Linear
maps. In PLPV, pages 3–14, 2011.

[39] L. Lamport. Specifying Systems: The TLA+
Language and Tools for Hardware and Software
Engineers. Addison-Wesley Professional, 2004.

[40] K. R. Leino and P. Müller. A basis for verifying
multi-threaded programs. In ESOP, pages 378–
393, 2009.

[41] K. R. M. Leino. Dafny: An automatic program
verifier for functional correctness. In Proceedings
of the 16th International Conference on Logic for
Programming, Artificial Intelligence, and Rea-
soning (LPAR), 2010.

[42] H. Liang, X. Feng, and M. Fu. Rely-guarantee-
based simulation for compositional verification
of concurrent program transformations. ACM
Trans. Program. Lang. Syst., 36(1):3:1–3:55,
Mar. 2014.

[43] R. J. Lipton. Reduction: A method of proving
properties of parallel programs. Commun. ACM,
18(12):717–721, 1975.

[44] A. McCreight, Z. Shao, C. Lin, and L. Li. A gen-
eral framework for certifying garbage collectors
and their mutators. In PLDI, 2007.

[45] K. L. McMillan. A methodology for hardware
verification using compositional model checking.
Sci. Comput. Program., 37(1-3):279–309, 2000.

[46] R. Milner, M. Tofte, and D. Macqueen. The
Definition of Standard ML. MIT Press, 1997.

[47] P. W. O’Hearn. Resources, concurrency, and
local reasoning. Theor. Comput. Sci., 375(1-
3):271–307, 2007.

[48] S. S. Owicki and D. Gries. An axiomatic proof
technique for parallel programs i. Acta Inf.,
6:319–340, 1976.

[49] J. C. Reynolds. Separation logic: A logic for
shared mutable data structures. In LICS, pages
55–74, 2002.

[50] A. J. Turon and M. Wand. A separation logic for
refining concurrent objects. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages,
POPL ’11, pages 247–258, New York, NY, USA,
2011. ACM.

[51] V. Vafeiadis and M. Parkinson. A marriage of
rely/guarantee and separation logic. In CON-
CUR, 2007.

[52] P. Wadler. Linear types can change the world!
In Programming Concepts and Methods. North,
1990.

[53] N. Wirth. Program development by stepwise re-
finement. Commun. ACM, 14(4):221–227, Apr.
1971.

[54] A. K. Wright and M. Felleisen. A syntac-
tic approach to type soundness. Inf. Comput.,
115(1):38–94, 1994.

38

