
Beyond Open Source: The TouchDevelop
Cloud-based Integrated Development Environment

Thomas Ball, Sebastian Burckhardt, Jonathan de Halleux, Michał Moskal, Nikolai Tillmann
Microsoft Research

One Microsoft Way, Redmond WA 98052, USA
{tball,sburckha,jhalleux,micmo,nikolait}@microsoft.com

Abstract—Software engineering tools and environments are
migrating to the cloud, enabling more people to participate
in programming from many more devices. To study this phe-
nomenon in detail, we designed, implemented and deployed
TouchDevelop (www.touchdevelop.com), a cloud-based integrated
development environment (CIDE), which has been online for the
past three years.

TouchDevelop combines a cross-platform browser-based IDE
for the creation of mobile+cloud apps, an online program-
mer/user community, and an app store. A central feature of
TouchDevelop is to track all program edits, versions, runtime
information, bugs, as well user comments, questions and feedback
in a single cloud-based repository that is available publicly via
Web APIs.

In this paper, we examine a key feature of TouchDevelop that
should be relevant to others creating CIDEs, namely the seamless
integration of replicated workspaces, simplified version control
and app publishing. An analysis of the TouchDevelop repository
shows that this combination of capabilities allows users to easily
create new versions of apps from existing apps, make changes
to other users’ apps, and share their results from a variety of
devices, including smartphones, tablets and traditional PCs.

I. INTRODUCTION

Application (app) stores for mobile platforms such as tablets
and smartphones are very popular. Even though the majority
of apps available in these stores are conceptually very simple,
there can be a lot of friction in their development, deployment,
and maintenance. The hopeful app creator must first master
a complex set of technologies, including general purpose
programming languages, integrated development environments
(IDEs), and version control systems, to name a few. The next
step is understanding the deployment and update models of the
various app stores. Finally, many mobile apps require a cloud
back-end to store user data and telemetry data not provided
by the app store, which requires gaining mastery of cloud
infrastructure. For many people, this puts mobile app creation
out of reach.

Three years ago, we created a language and programming
environment called TouchDevelop [1] (www.touchdevelop.
com) to make it easy for non-experts to author mobile apps.
TouchDevelop integrates a client IDE, web-based version
control with a programmer community (as in GitHub [2]),
and an application store in a seamless experience, specialized
for a single programming language.

Over the past three years, the client IDE for TouchDevelop
expanded from a smartphone app for Windows Phones into a

CIDE
Designers

App
Authors

App 
Users

IDE,
updates

Telemetry, 
bugs, comments

Apps,
updates

Telemetry, 
bugs, comments

Fig. 1. Positive feedback cycles between CIDE designers, authors and users.

Web app running in all modern HTML5 browsers on phones,
tablets, and keyboard-equipped PCs (regardless of the operat-
ing system they may be running). The TouchDevelop cloud
back-end provides replicated workspaces for authenticated
users, a version control system with automated dependency
tracking, an app store, as well as a crash-logging system with
bucketization, and crowd-sourced coverage collection. All data
published by the community (apps, comments, bugs, etc.) is
available publicly via Web APIs.1

TouchDevelop is an instance of a cloud-based integrated
development environment (CIDE), bringing together three au-
diences, as shown in Figure 1:
• CIDE Designers are the authors of this paper. The

TouchDevelop IDE is delivered as a Web app. We
use the cloud to deliver multiple versions of the IDE
simultaneously; TouchDevelop users who have a high
experience score are prompted to use the beta version,
which includes new features not in the current version.
The IDE has a high level of instrumentation and telemetry
that sends data back to the cloud to help us understand
the stability of a new release and the usage of features.

1 See https://www.touchdevelop.com/help/cloudservices

www.touchdevelop.com
www.touchdevelop.com
www.touchdevelop.com
https://www.touchdevelop.com/help/cloudservices


Assertion failures and unhandled exceptions in the IDE
automatically generate bug reports, allowing us to quickly
see if a new feature is causing problems.

• App Authors use the TouchDevelop IDE to rapidly
build apps and iterate with their users, as well as with
the CIDE designers to get bugs fixed and/or questions
answered. Furthermore, just as the TouchDevelop IDE
contains instrumentation, the TouchDevelop compiler in-
serts instrumentation into apps to automatically collect
and store profile and coverage information in the cloud.
Runtime failures in a TouchDevelop app present users
with a dialog whereby they can submit a stack trace to
the app author via the cloud.

• App Users can provide feedback to authors in comments
and bug reports, as mentioned above. But, more impor-
tantly, app users are empowered to become app authors
as the editing functionality is only one tap away when
running the app and re-publication of modified apps takes
just a few seconds. TouchDevelop tracks the provenance
of apps, so that the author of an app that is subsequently
changed and re-published by others receives an increased
ranking.

In this paper, we present the design of TouchDevelop’s
cloud back-end and how it simplifies the creation, maintenance
and publication of apps. In particular, we believe that for
beginning app authors, fully featured version control systems
together with app store publication models are too complex.
The TouchDevelop cloud seamlessly integrates the three ser-
vices of (1) automated workspace replication, (2) version
control with automated dependency tracking, and (3) an app
store. Workspace replication provides authors with a private
and consistent view of the apps that they are working on,
no matter which device they connect to TouchDevelop from.
Version control with dependency tracking means that authors
need not worry about which set of files/resources form a
consistent snapshot of an app - the system ensures that when
an author publishes an app to the public version control, that
all transitive dependencies are published as well. Finally, the
app store makes it easy for authors to update their apps and
deliver updates to users.

The evaluation of the data we have collected, including over
150,000 published apps and associated information publicly
available via Web APIs, shows TouchDevelop to be successful
in various ways: apps derived from previously published apps,
either by the same or different author, are more popular than
apps with no version history. Most importantly, the popularity
of apps created on mobile devices is on par or better than
the ones created on desktop devices. Moreover, those who use
TouchDevelop to author from both mobile and desktop devices
(which is enabled by workspace replication) create the most
popular apps.

The evaluation presented in this paper is based solely on the
published data accessible via the TouchDevelop cloud APIs,
which also are the same APIs used by the TouchDevelop
IDE itself. The data analysis scripts used for our evalua-
tion are available at http://research.microsoft.com/∼moskal/

touchdevelop-stats.zip.
As a running example to illustrate much of the data collected

by TouchDevelop, we feature a math education app created by
a TouchDevelop author (not from our team). The app is named
“Quick Math” and is available via any modern browser at:

https://www.touchdevelop.com/app/#script:hhuc

Your reading of this paper will be greatly enhanced by five
minutes spent exploring this app and the TouchDevelop IDE.

In the remainder of this paper, we first present background
on the design of the TouchDevelop IDE and programming
language (§ II) to provide context for the contributions of
this paper. Section § III describes how TouchDevelop defines
a general notion of publication to store a wide variety of
entities in the cloud, including apps, art resources, comments,
reviews, and documentation. We then describe the integration
of workspace replication, version control and app store (§ IV),
and present an evaluation of three years of artifacts and apps
published by our user community (§ V). We finish with a
discussion of related work (§ VI) and conclusions (§ VII).

II. TOUCHDEVELOP BACKGROUND

This section describes the history of the TouchDevelop
project and the fundamental design decisions relating to code
representation, the IDE and programming language that have,
for the most part, remained unchanged through the project’s
lifetime.

A. History

The first release of the TouchDevelop IDE was in April
2011 as a native C# Windows Phone app, six months after the
project started. Publishing and version control was added in
August 2011, comments and reviews were added in November
2011, and libraries in February 2012. The rewrite of the IDE
as a TypeScript (a typed superset of JavaScript [3]) Web app
took place in 2012 and was released in October of that year. A
debugger, crash logging, and coverage collection were added
in July 2013. Interactive tutorials premiered in November
2013.

B. Code Representation and IDE

In traditional IDEs, programmers edit the raw text of a pro-
gram directly. TouchDevelop uses the syntax-directed editing
paradigm pioneered in the late 1970’s and early 1980’s (as
prominently featured in the Cornell Program Synthesizer [4])
to support editing of scripts using touch, with no reliance on
a traditional QWERTY keyboard, physical or virtual.

TouchDevelop uses syntax-based (tree-based) editing at the
level of statements, but token-based editing at the level of
expressions. Such “semi-structured” editing prevents syntax
errors that span several lines of code (which are difficult to
fix on a tiny screen) and enables editing expressions with
an adaptive on-screen keyboard at the token level, avoiding
the restrictiveness of a fully structured editor (in the vein of
Scratch [5]).

For expression editing, IDE keyboard buttons represent to-
kens, not characters, and can change dynamically based on the

http://research.microsoft.com/~moskal/touchdevelop-stats.zip
http://research.microsoft.com/~moskal/touchdevelop-stats.zip
https://www.touchdevelop.com/app/#script:hhuc


Fig. 2. Adaptive keyboard (minimal context; statement level)
.

Fig. 3. Adaptive keyboard (cursor positioned inside for loop)
.

cursor context. Experiments by colleagues in the PocketCode
project show that the mix of tree-based and token-based editing
is more effective than solely tree-based editing [6].

Given all the possible options and names to choose from, it
is essential that TouchDevelop’s onscreen keyboard adapt to
the context, which generally is specified by the cursor position
in the abstract syntax tree (AST), the expected type at that
position in the tree, the most recently inserted tokens, and
visible declarations. Figure 2 shows the keyboard when the
cursor is position in an empty action (minimal context). The
buttons on the top-row list the possible statements that can
be inserted at this point. The second and third rows list the
various namespaces in TouchDevelop’s API set.

Figure 3 shows the keyboard after the addition of a “for”
loop and positioning of the cursor inside the loop body.
The TouchDevelop IDE creates the loop iteration variable
“i” automatically; notice how the variable now appears as an
option in the keyboard. The editor is aware of the context of
the cursor and that the variable “i” is in scope in this context.
Also notice that the IDE shows that the loop is missing an
upper bound. Should we insert “i”, the keyboard would change
again to show operators defined on numbers.

The AST foundation underlying TouchDevelop creates nu-
merous opportunities for improving the experience further.
First, because the editing of the AST takes place via a
specialized editor, the edit operations can be tracked much
more precisely. For example, identity of statements can be
preserved when they are moved, allowing for a more precise
diff and better merge semantics [7]. Second, code can be

rendered automatically, using colors, indentation, and fonts
consistently. Finally, IDE plugins can easily manipulate ASTs
directly, simplifying both code analysis and modification.

The basic IDE functionality (including code editing with
temporary storage, compilation, running, debugging, and pro-
filing) is fully available offline as it is implemented completely
on the client side.

C. Programming Language

The simplification of the IDE alone is not sufficient to
enable the convenient development of applications on mobile
devices. Because screen space is limited, it is important to keep
code as simple and concise as possible, even when it comes
at the expense of some flexibility or performance. Towards
this end, TouchDevelop defines an imperative language with a
static type system, standard block-structured control flow con-
structs (such as procedures–called actions in TouchDevelop–
loops, and conditionals), as well as built-in and user-defined
types.

Instead of using separate specialized languages like HTML,
CSS, or SQL, the TouchDevelop language contains special
abstractions for graphical user interface [8] and replicated data
types [9]. A TouchDevelop script consists of a set of top-
level declarations, which can be actions, user interface pages,
types, variables, art resources, as well as references to user-
defined libraries (another special kind of TouchDevelop script).
The interested reader can refer to the TouchDevelop book
for a more detailed description of the language [10]. For the
purposes of this paper, the essential points of the language are
as follows:

• Strong typing allows us to use the type of an expression
to reconfigure the adaptive keyboard to display the most
likely next choices in the IDE, as previously explained.

• APIs: We provide numerous platform- and browser-
independent APIs for accessing sensors (such as location,
microphone, camera, gyroscope), media libraries (music,
pictures), and Web services. This ensures that concep-
tually simple apps (e.g. pick a random song and play
it, or take a picture and post it online) take 3 lines of
code rather than 300. TouchDevelop provides over 1,500
functions in its API set.

• User-defined Libraries. It is impossible to anticipate
all user needs in a built-in API set, so libraries can be
authored in TouchDevelop itself and appear just as APIs
do in the IDE.

III. CLOUD PUBLICATIONS

Besides serving up the code of the TouchDevelop IDE to a
browser, the main purpose of the TouchDevelop cloud back-
end is to store and serve up various kinds of publications
created directly by authors or indirectly through various user
actions (such as running an app).2

2The TouchDevelop cloud provides many other useful services such as
search, RSS feeds, application export, etc.



A. Publications

Scripts are the most important among various types of
immutable publications that TouchDevelop authors can create.
Scripts contain the TouchDevelop code that makes up an app.
One TouchDevelop author (not an author of this paper) created
an education game entitled Quick Math, available at

https://www.touchdevelop.com/app/#script:hhuc

This overview page allows any (unauthenticated) TouchDeve-
lop user to edit or run the script and also presents information
about the script author and other script meta-data.

When this script was published (publication requires authen-
tication), TouchDevelop assigned the permanent and unique
identifier hhuc to this (now immutable) script. Basic infor-
mation about this script is available via the Web API

http://www.touchdevelop.com/api/hhuc

which returns a JSON object. The Web API /stats 3 returns
up-to-date statistics on the script’s popularity: as of September
3, 2014, this script had a total of 2,216 runs and 744 total
installations by 603 unique users (a user can install/uninstall
an script from their device multiple times).

The publication types in TouchDevelop include:
• scripts are programs that can be published and shared

with others. The identity of the script author and the id of
the (base) script from which the new script was derived,
if any, is included in the script meta-data at the moment
of publication. As of September 3, 2014, the overview
page of script hhuc shows that its base script is yjvv
and the insight tab for hhuc shows that it is the base
script of thirteen other published scripts (successors of
hhuc). The up-to-date set of direct successors for script
hhuc is available at /successors, which yields a JSON
document with the relevant information.

• comments are free-form pieces of text attached to other
publications. Comments attached to another comment
form a thread of discussion. Comments can be also tagged
as bugs or feature requests (/comments).

• reviews are much like star-ratings in an app store—
they provide a quantifiable measure of the quality of a
publication (eg., a script, a comment, or an art resource).
In TouchDevelop a user can express that they like a
publication by giving it a “heart” (/reviews).

• art resources: Apps usually use images and sounds in
addition to source code. Much like scripts, these can
published as immutable entities, and have comments and
reviews attached later (/art). They also can be reused by
other scripts.

Associated with a script are various interesting static and
dynamic metadata, such as:
• abstract syntax tree: via the Web API /webast, the AST

of a script (as a JSON document) can be retrieved;

3From now on, when we reference a TouchDevelop Web
API specific to the script hhuc we’ll omit the prefix
http://www.touchdevelop.com/api/hhuc.

• crash reports: When a script crashes, the user is given
an option to inform the author by posting a crash report
(including free-form text). These reports are then auto-
matically bucketized by stack trace and provided in the
insights tab of a script’s overview page. The script crash
reports are available via the /runbuckets API.

• profile and coverage information: Some script runs are
randomly selected for profiling or coverage collection. All
such information is automatically aggregated and attached
to the script for everyone to see via the “insights” tab in
the overview page for the script. The raw coverage data
is available via the /coverage API.

TouchDevelop supports several special kinds of scripts:
• libraries are scripts that can be used as components

by other scripts; libraries implicitly define an abstract
interface that hides details of the library implementation
from the library consumer;

• documents are a special kind of script that use the
popular markdown text formatting language enhanced
with constructs to refer to script elements to provide
a form of literate programming. Document scripts are
rendered specially by TouchDevelop. For an example, see
the documentation on TouchDevelop’s “move to library”
refactoring.

• interactive tutorials build on top of document scripts and
are supported by a tutorial engine that gently guides an
author-to-be through the process of creating a script with
the IDE (for an example, see https://www.touchdevelop.
com/pydja).

• plugins are scripts that let TouchDevelop authors extend
the IDE. Plugins can be invoked from various points in
the IDE and operate on the AST of the current script.
They run locally in the IDE, but can invoke Web services
to do the actual work (§ III-C gives more details).

• forums: Comment sections of a few designated empty
scripts serve as general forums for the users. As else-
where, nested comments can be attached forming discus-
sion threads.

B. Ranking of scripts and authors

Scripts are ranked according to the number of hearts they
receive, and the number of times they are installed and run.
This score decays over time to let newer scripts rise to the top.
Additionally, authors are assigned a score based on the number
of hearts their publications receive, the number of followers
they have, the number of different features of TouchDevelop
they have used, and the number of days they have been active.
The score is displayed prominently in the IDE and we have
anecdotal evidence of authors taking their score very seriously.

C. Openness and plug-ins

Scripts are in the public domain from the point of publica-
tion on and can be freely forked by any TouchDevelop user. As
we have demonstrated above, all TouchDevelop publications
(scripts, comments, art resources, crashes, etc.) are available
via Web APIs. The full set of Web APIs is documented at:

https://www.touchdevelop.com/app/#script:hhuc
http://www.touchdevelop.com/api/hhuc
https://www.touchdevelop.com/api/hhuc/stats
https://www.touchdevelop.com/api/hhuc/successors
https://www.touchdevelop.com/api/hhuc/comments
https://www.touchdevelop.com/api/hhuc/reviews
https://www.touchdevelop.com/api/hhuc/art
https://www.touchdevelop.com/api/hhuc/webast
https://www.touchdevelop.com/api/hhuc/runbuckets
https://www.touchdevelop.com/api/hhuc/coverage
https://www.touchdevelop.com/app/#topic:movetolibrary
https://www.touchdevelop.com/pydja
https://www.touchdevelop.com/pydja


https://www.touchdevelop.com/help/cloudservices

We emphasize that the TouchDevelop IDE itself uses these
APIs.

Plugins are authored as TouchDevelop scripts, avoiding
security issues with foreign JavaScript code running under the
domain of TouchDevelop and dramatically lowering the barrier
to entry for plugin authors. For example, a script to rename
top-level declarations while updating the references (eg., to
enforce a naming convention) is six statements long (script
/rmaf). Additionally, since plugins also are scripts, they can
be forked, reviewed, and commented on as usual.

Technically, the TouchDevelop AST maps to a JSON object,
which can be inspected and modified using regular JSON
APIs. This enables processing of the data on a different server,
not affiliated with TouchDevelop. Such cloud plugins can
alleviate problems with limited computational capabilities of
the phone, for example to run various static analysis of the
code. As an example, researchers at ETH developed a static
analysis plugin backed by a server in Zurich [11].

IV. INTEGRATING WORKSPACE, VERSION CONTROL AND
APP STORE

This section describes how TouchDevelop integrates repli-
cated workspaces with version control and app publication. In
this section, we drop the distinction between “authors” and
“users” of TouchDevelop scripts and refer to them just as
“users”.

A. Replicated Workspace

Users no longer rely on a single device for running ap-
plications. Often, they have multiple PCs and/or laptops (at
work and/or at home), they carry a smartphone at all times,
and they use a tablet on the go or in recreational spaces.
Thus, they are likely to frequently switch between devices,
or even use multiple devices at the same time. As they do,
they expect continuity. In particular, they expect that their data
and preferences (their personal workspace) are synchronized
between devices, and backed up in the cloud so that they
remain continuously available even if some or all of the
devices are powered off.

TouchDevelop provides a workspace in its cloud for each
authenticated user The workspace maintains a set of scripts
and this set is replicated on any device the user signs into
TouchDevelop from, ensuring that the user has access to their
most recent (private) changes to scripts. The state of the
workspace is automatically synchronized between different
devices of the same user.

In more detail, a workspace consists of a set of “slots”.
Each slot is identified by a unique GUID, and contains
mutable fields for: a version identifier; the script contents;
other metadata about the script. Each user can have multiple
workspaces — typically, one per device or browser. Each
user also has a (single) persisted workspace in the cloud.
Every time an authenticated user connects to the cloud via the
TouchDevelop client, the latest version of each slot is synced
from or to the cloud.

Each workspace features a per-slot history feature which
periodically snapshots all modified slots in the workspace and
saves the history to the cloud, so that the user can back up
in time regardless of which device they are working from.
The workspace history feature is separate from the version
control system and private to each user. Both synchronization
and history are common features of modern cloud file storage
services (eg., DropBox) and are thus well-understood by users.

B. Version Control and Dependency Management

The TouchDevelop version control system stores a forest of
immutable scripts, where each script has an associated user
id (the authenticated user who published the script), and the
base script (the script’s parent in the tree) from which it was
derived. A script with no base is called a root script. The base
chain of a script S is the sequence of scripts from S to the
root script of its tree (via the parent pointers). The IDE makes
it easy for users to navigate up the base chain of a script to
visit its tree ancestors (via the overview page).

A published script S from the TouchDevelop cloud is
installed into a user’s workspace when a user edits or runs
S; more specifically, script installation creates a private fork
of script S (recall that published scripts are immutable) in the
user’s workspace that can be modifed and ultimately published
as a new script S′, derived from S. When a user publishes
script S′, TouchDevelop records that script S is the base of
script S′.

The immutability of scripts plays a critical role in depen-
dency management. Just before script S′ is published, all
its dependencies (other scripts used by S′, as libraries, and
art resources used by S′) are automatically published as well
(if they have been modified) and their resulting identifiers are
stored in S′. This way, every script has a transitive consistent
snapshot of its dependencies. The dependencies of a script are
defined by the static semantics of the TouchDevelop language
and exposed via the TouchDevelop compiler to the version
control system. This makes it impossible to create dangling
references.

Stated another way, if a script compiles successfully and
then is immediately published to the TouchDevelop cloud
(with script id I) then any user that installs the script with
id I from the TouchDevelop cloud will find that it compiles
successfully. However, it is possible for a user to publish a
script that does not compile successfully. As TouchDevelop
is a vehicle for learning programming, we opt for maximal
sharing, even of ill-formed scripts.

Given that we make it easy for a user A to publish buggy
script B, a very common scenario is for a user other than A
make a bug fix to B, which user A would then like to inspect
and potentially merge back into B. Rather than create a whole
new mechanism for patches, we simply require that users share
updates via script publication mechanism and provide a new
(3-way) AST-based merge operation.

The merge functionality is exposed in TouchDevelop as
follows: every published script has a merge button associated
with it; when a user clicks the merge button for script

https://www.touchdevelop.com/help/cloudservices
https://www.touchdevelop.com/app/#script:rmaf
https://www.touchdevelop.com/app/#list:showcase-scripts:script:hhuc:overview


S, TouchDevelop presents the set of scripts in the user’s
workspace that have a (least) common ancestor Base with
S in the version control tree. The user selects a script T
from this set and TouchDevelop performs a 3-way merge of
(Base, S, T ) into script T . Most often, it will be the case
that Base = S (as in the common scenario of the previous
paragraph).

To support a precise 3-way merge operation, the Touch-
Develop IDE generates unique identifiers for each AST node
(hidden from the user) that are stored in the script. Further-
more, when a merge operation takes place, a record of the
merge operation is inserted into the meta-data of the target
script so that duplicate merges can be prevented and the
provenance of the target script can be reconstructed after its
publication.

C. App Store and Updates

The TouchDevelop app store layers a different notion of
“version” on top of the version control system for the purposes
of identifying the preferred version of a script, which will be
displayed in TouchDevelop as an “app” for others to download.

A TouchDevelop app is identified (named) by a primary key
consisting of a script’s name N and a user id I . The secondary
keys are script id S (whose’ associated name and user id are
N and I , respectively) and a timestamp T (the time at which
S was published by user I). Among all the tuples (N, I, S, T )
with primary key (N, I), TouchDevelop chooses the S with
the most recent timestamp T as the “current version” of the
app (N, I) to feature.

Thus, if user I updates any script with the primary key
(N, I) and publishes it as S′ then S′ will become the “current”
app. This allows a user to easily revert an app to a previously
published script by republishing it.

Any user who has an (unmodified) published script with
name N and user id I in their workspace receives a notification
(in the IDE) that there is an update available. The user can
choose whether or not they want to update.

Some of the meta-data associated with a script publication
(such as comments, reviews, etc) is aggregated by TouchDeve-
lop and presented for the “current” app in the overview page
of its associated script. Other information, like crash dumps
are specific to a version of a script and are not aggregated or
presented in the “current” app, but only in the overview page
of the associated script.

V. EVALUATION

This section presents an evaluation of TouchDevelop and
the two feedback cycles from Figure 1. § V-A discusses the
IDE itself and interaction of the authors of this paper with app
authors and users, while the remaining subsections focus on
app authors, their creations, and interactions with app users.

A. TouchDevelop itself

TouchDevelop consists of a cloud back-end comprising
about 100KLOC of C# running in Windows Azure, and a
client running in HTML5 Web browsers. The IDE part of

the client (AST operations, compiler, editor, debugger etc.)
is implemented in about 75KLOC of TypeScript; the runtime
libraries are 70KLOC.

Every source code check-in to the client is built auto-
matically and uploaded to the cloud back-end generating a
uniquely named release. At any time there is one release
labeled “current” and (a possibly different) one named “beta”.
The “current” release is moved about every other week, and
the “beta” is moved several times per week. Users with a high
score are encouraged to try the beta version.

In case of an unexpected exception or assertion failure in
the client, we log a crash report in the cloud. The client
also streams instrumentation telemetry data to the cloud. As
of September 2014, we collect about 200 crash reports and
35,000 telemetry reports per day, from about 1500 users.

We found the crash reports to be tremendously useful. The
cloud back-end automatically bucketizes crash reports by stack
trace and type, and sorts them by number of occurrences.
This lets us focus on the crashes occurring frequently and
impacting more users. Crash reports include the current script
being edited and 1000 recent log messages and instrumentation
events. The log is particularly useful in the presence of
async APIs in JavaScript, which often make stack traces non-
informative.

The analysis of instrumentation data is simpler: it can be
visualized over time and categorized by different kinds of
devices. We have used it on a number of occasions when
deciding to remove unused fragments of user interface code
from the IDE.

In addition to automated tracking, we also let users, par-
ticularly the ones using the “beta” release, report bugs in a
dedicated forum. These then can be categorized, assigned,
and tracked. Given our limited resources, this form of crowd-
sourced testing enabled by the large TouchDevelop user-base
has proven very useful.

B. Scripts and users

This section provides basic data about the users of TouchDe-
velop, the scripts they publish, and growth trends. The analysis
is based on the public data about users and their published
scripts (see § III-C).

The data-set contains 164,267 scripts published between
August 2011, when we first introduced script publishing, and
September 2014. We have excluded from further analysis
7,586 scripts published from various system and testing ac-
counts, leaving us with 156,681 scripts.

A script feature is a built-in function name, a qualified
library function name, or a language feature name (eg., “if-
statement”, “object type definition” or “assignment”).

A feature multiset for a script contains each feature as
many times as it is used in a given script. In particular,
the multiset does not contain literals or art references, which
are customizable in automatic tutorials, and are commonly
changed during rebrandings—when a user forks a script and
only changes a bit of text or a picture.



Fig. 4. Growth of TouchDevelop

Trivial scripts are ones which have no base script and share
the exact feature multiset with at least ten other scripts. These
are either very small, or are the result of completing a tutorial.

Overall, 48% (75,957) of all scripts are non-trivial. There
are 220,783 users of whom 44,956 have published at least
one script, and 19,328 have published at least one non-trivial
script.

Figure 4 shows the growth of TouchDevelop over time—
published scripts and registered users, both cumulative and
per-week. User registration is optional since October 2013:
we estimate the number of unregistered users to be around
500,000. There was a significant bump in number of users
(if not scripts) following a round of publicity after the initial
release of the Web IDE. Similarly, the Hour of Code event in
late 2013 brought in quite a few new (but trivial) scripts.

Figure 5 shows the size of published scripts. While the ma-
jority of scripts are small (their median size is 24 statements),
18,135 scripts contain more than 100 statements and 1,559
scripts contain more than 1000 statements. Scripts above 5000
statements are outliers—there are only 132 (0.1%) of them—
and the biggest script has 9282 statements. Scripts which
are successful, measured by the number of runs, tend to be
larger— scripts with over 100 runs have a median size of 71
statements and scripts with over 500 runs have a median size
of 90 statements.

In the remaining sections we examine how various factors
influence users’ success in developing apps. We use the pop-

Fig. 5. Distribution of script sizes

Fig. 6. Script popularity by publication platform

ularity of a published script, defined as the number of runs of
the script, as a proxy for its quality and thus user success. This
decision is discussed further in the Threats section (§ V-F).

C. Effects of replicated workspace

The main benefit of having the workspace automatically
replicated is the ability to seamlessly switch between devel-
opment on different devices, in particular mobile ones. We thus
explored correlations between publication devices and script
popularity.

Figure 6 shows the mean number of runs and the mean size
for scripts published from different kinds of devices. Overall,
scripts published from mobile devices (phones, tablets, music
players, etc.) are smaller, yet more popular than ones pub-
lished from desktops (keyboard-equipped desktop and laptop
computers). This suggests people are putting more effort into
programming from a mobile device.



Fig. 7. Script popularity by user type

The good showing of mobile platforms is mainly due
to the dedicated TouchDevelop apps for Windows Phone.
Our Android app is relatively recent and not yet as feature
complete. Tablets are generally also showing good results,
comparable with desktop machines.

We did not collect data about publication device at the
beginning—the plot shows data for the 88% of scripts for
which we did collect publication device. Also, Windows
tablets are a bit difficult to categorize as they may or may
not sport a keyboard, which may or may not be used. They
are thus included in both Windows numbers and separately.

Figure 7 shows the total number of runs of all scripts
published, averaged over given user set (and divided by 10
to fit in the plot). It also shows the mean number of days the
user was active.

Similarly to the data for scripts, users publish higher quality
scripts from mobile platforms. In both cases they use the
platform for about five days on average. However, users who
publish from both desktop and mobile platforms produce much
better scripts and use TouchDevelop for almost a month on
average.

The last point is particularly encouraging, as this kind of
usage is directly enabled by the replicated workspace.

D. Effects of version control

TouchDevelop version control and dependency tracking
allows users to create updates of their existing scripts, fork
and modify scripts as well as utilize libraries. Here we discuss
effects of these activities on script popularity.

We use the term remix for a script with more than one
author in its base chain. A direct remix is a script authored by
a user different from the base script’s author.

The update size is the cardinality of the multiset of features
used in given script minus the feature multiset of its base (if
any). The cardinality of the sum of all update sizes, which is
a measure of published edit operations, is similar for trivial
and non-trivial scripts (8.3M and 7.1M respectively). On the
other hand, there are 1.8M statements in trivial scripts (which
have no base) and 9.8M in non-trivial ones, suggesting that
an average non-trivial statement was republished unchanged
about 6 times.

Fig. 8. Distribution of update sizes

Fig. 9. Script popularity by feature used

Figure 8 shows the update sizes for scripts with no base
(ie., initial publications), scripts where the base has the same
author (ie., updates), and scripts where the base has a different
author (ie., direct remixes). The data is for non-trivial scripts
only. The initial publication is by far the biggest, with small
incremental updates after that. Remixes are less numerous and
on average 40% smaller than updates.

Typically, there are at most a few updates published for
a given script, however longer update sequences occur: the
maximal length of a base chain is 314, with 995 scripts over
50, 8,352 over 10, and 49,500 over 1.

Figure 9 shows script popularity for scripts using different
features of the platform or the language. The data is limited



to non-trivial and non-hidden scripts. 4 Hidden scripts account
for about 15% of all scripts, but are more common in some
of the buckets we analyze (though not in the per-platform
buckets from previous sections). Hidden scripts are hardly run
by anyone other than their author, so they get artificially low
scores.

Scripts which have a base are more popular and bigger
than average. Remixes are bigger yet and of slightly lower
popularity. Additionally, over half of the scripts have a base,
and almost a fifth are remixes.

Libraries as a form of modularization (ie., the author of
library and the script is the same) seem very successful. Usage
of libraries published by others also gives a boost to popularity.
We have excluded usage of libraries published by our system
accounts, which are automatically included in templates.

The positive effects of re-publishing of scripts and libraries
point to the usefulness of our version control and dependence
tracking scheme. The high number of scripts leveraging these
features point to their simplicity.

E. Effects of language features

The second set in Figure 9 focuses on the usage of different
language features. Scripts with comments in the source seem
more popular (possibly because they are utilized by more
advanced users). Other somewhat advanced features (global
variables and functions with arguments) also have positive
influence on popularity. However, users do not seem to know
how to handle more advanced features, like type definitions
and boxes [8] (see below).

The last set splits the scripts by the main API used. Scripts
that use the game board (which includes physics and 2D
graphics engines) are most numerous and popular. Boxes are
TouchDevelop’s way of constructing more complex UIs. They
are an advanced feature, which users seem to find hard to
master. Finally, it is possible to create very simple scripts (note
the low average size) with simple UI, which use neither game
board or boxes.

The relative run counts of games and apps may be due to
users being more inclined to play games than use productivity
apps. However, even the gap between apps with and without
boxes is significant.

F. Threats To Validity

It is important to recall the context of the TouchDevelop
project and the threats to validity that may prevent our results
from generalizing to other CIDEs,

Most of TouchDevelop users are beginning programmers.
However, there is a small but very influential group of more
experienced developers who produce good libraries and base
scripts for remixes by the larger group. This kind of division
is a natural one in many software development scenarios,
but the experience gap between the two groups is likely to
be much larger in TouchDevelop. Moreover, the motivation
structure in TouchDevelop is vastly different, with most users

4Hidden scripts are published and publically accessible via the Web APIs
but are not indexed by TouchDevelop’s search engine.

just checking it out for fun. Furthermore, most of the scripts
are small and mobile-specific, and are written in a custom-
designed programming language designed for syntax-directed
editing.

We have used number of runs of a published script as
a measure of success. Our assumption is that once a user
manages to develop an app, they will publish it and it will
get run by the author and other users. Of course, the user may
not publish, or other users may fail to find (and thus run) the
script. However, the number and quality of publications does
not suggests users are particularly shy about publishing. We
also observe lots of scripts being run by non-authors.

Alternatively, we could use the number of installations of
a script or the number of hearts (positive reviews) given to a
script. We found these to be correlated, but the number of runs
is the most informative, especially for the majority of scripts,
which do not have any hearts, but are run a few times.

Profile, coverage, and crash logs also could be used as
measures of quality and popularity, but they are often missing
and do not capture if the script is performing useful functions.

VI. RELATED WORK

Many aspects of TouchDevelop can be found in lesser
combination in existing projects and websites; to the best
of our knowledge, the deep integration of an IDE, replicated
workspaces, a version control system, and app store is unique
to the TouchDevelop project.

A. Software Configuration Management

The primary contribution of this paper is the novel combina-
tion of ideas from software configuration management [12] in
a new domain (a cloud-based IDE for creating mobile apps).

Workspaces. Most traditional IDEs, such as Eclipse and
Visual Studio, support a notion of a workspace local to the
developer’s machine, but do not support workspace replication
across devices. As we have seen, workspace replication allows
users to develop and maintain TouchDevelop scripts from any
device, including the mobile device they intend their app to be
delivered on. Our evaluation shows that the quality of apps is
significantly affected by the set of devices the TouchDevelop
scripts were authored with.

Version Control. On the other hand, TouchDevelop’s (cen-
tralized) version control system (VCS) is highly simplified
compared to traditional VCSs: TouchDevelop’s VCS maintains
a forest of immutable publications, which makes it easy for
users to fork a new version of an existing publication. Touch-
Develop’s VCS is not file- or directory- based: TouchDevelop
publications are stored in the cloud and live in a flat namespace
of unique identifiers (such as hhuc) - the publications are
discoverable via search, a tagging mechanism, and ranking
scores, as well as via other meta-data associated with pub-
lications (i.e., whether or not they are libraries, documents,
tutorials, etc).

TouchDevelop has no notion of “check-out” or “check-in”
operations associated with many VCSs. Instead, the action of



editing a published script creates a fork of that script, which
later can be published. An explicit merge operation is used
to combine the contents of a published script with a script
in a user’s workspace. These three operations (edit, publish,
merge) are sufficient for TouchDevelop programmers to share
and collaborate with one another, which is much simpler than
popular but complex VCSs such as Git [13].

Dependency Management. TouchDevelop layers other fea-
tures of a VCS on top of its tree of immutable publications via
meta-data imbedded in the publications: a new publication P ’s
dependencies are published (and thus become immutable) and
their version identifiers embedded in P before it is published.
This feature is a form of “strongly typed version control”, as
identified by Perry [14], which requires an interface between
the version control system and the compiler. The use of ex-
plicit dependences between software artifacts to optimize and
incrementalize the build process has been well studied [15],
[16]. We make use of the same idea to make it easier for our
users to deploy and update their apps.

B. Web-based Software Development and CIDEs

Community websites such as StackOverflow demonstrate
how to encourage programmers to share knowledge, and
online repositories such as GitHub [2] combine cloud stor-
age, social functions to encourage collaboration, outsourcing
functions like build to other web services. However, nei-
ther one supports both the development activity (IDE) and
the deployment of applications (app store). Recent work by
Ponzanelli and colleagues integrates StackOverflow into the
Eclipse IDE [17].

Providing the functionality of traditional IDEs in a Web site
is becoming increasingly popular, and there are many web-
based IDEs available today, such as codenvy.com, koding.com,
or visualstudio.com. While these sites provide typical IDE
functionality (develop, compile, test, debug) and parts of
TouchDevelop experience (ubiquituous workspace and code
repository), they fall short on the many other aspects of our
vision.

There is no deep integration of social features to support
the online community and foster open collaboration. Also,
support for tracking the whole life cycle of applications
(including deployment and telemetry) is only slowly emerging,
and typically limited to the parts of the application that execute
in the cloud. Few web-based IDEs support offline operation,
as TouchDevelop does.

Finally, as far as we have seen, web-based IDEs all but
ignore the mobile experience and still squarely focus on
programming from the traditional desktop with large screens,
keyboards, and text-based programming languages.

C. Development for Non-expert Programmers on Mobile

PocketCode [18] is a tool similar to the initial version
of TouchDevelop—it focuses on single-user programming
directly on a phone or tablet. The programming language is
far simpler and its main aim is education.

AppInventor [19] lets users create Android apps by dragging
and dropping blocks representing various ASTs on a separate
PC. The programming language is simpler than in Touch-
Develop (for example lacking library abstractions), and the
cloud and social support is more limited. On the other hand,
the support for Android-specific APIs and UI is superior in
AppInventor. Interestingly, the code editor is fully structured—
expressions are also edited as trees. The effectiveness of the
two approaches was recently compared [6].

VII. SUMMARY

We have presented a publication model for scripts and
associated meta-data, ranging from comments and reviews to
run-time coverage information and stack dumps, as well as an
integration of workspace replication, version control, and app
store. Our evaluation of the TouchDevelop CIDE shows that
this combination has been effective in attracting a vibrant user
community that shares and remixes scripts.

Since the TouchDevelop CIDE has complete knowledge of
all the code and libraries needed to run an app (via version
control + automated dependency tracking) it is very easy for
anybody to fork a published application to make modifications.
This enables spontaneous collaboration and encourages users
to openly exchange code.

A CIDE integrates not only the development and testing
of an application, but the whole lifecycle, which also in-
cludes publishing of the application in the app store, and
the publishing of updates. Thus, a CIDE can automatically
collect telemetry information and report it to the author. For
instance, it can report how many users have run a script, it
can display detailed code coverage, and it can report crashes.
It also collects user ratings, comments and suggestions.

Last but not least, the use of a CIDE simplifies the collection
of data across the whole lifecycle of an application, and allows
us to quickly incorporate lessons learnt. In TouchDevelop, we
make all versions of all applications and variations (by all
authors) publicly available for research, accessible via the Web
(see § III-C).

REFERENCES

[1] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich, “TouchDe-
velop: programming cloud-connected mobile devices via touchscreen,”
in Proceedings of the 10th SIGPLAN symposium on New ideas, new
paradigms, and reflections on programming and software, ser. ON-
WARD ’11, 2011, pp. 49–60.

[2] “GitHub,” http://github.com.
[3] “TypeScript Langauge Website,” http://www.typescriptlang.org/.
[4] T. Teitelbaum and T. Reps, “The cornell program synthesizer: A

syntax-directed programming environment,” Commun. ACM, vol. 24,
no. 9, pp. 563–573, Sep. 1981. [Online]. Available: http://doi.acm.org/
10.1145/358746.358755

[5] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,
“The Scratch programming language and environment,” Trans. Comput.
Educ., vol. 10, pp. 16:1–16:15, November 2010.

[6] A. Harzl, V. Krnjic, F. Schreiner, and W. Slany, “Comparing purely
visual with hybrid visual/textual manipulation of complex formula on
smartphones,” in DMS, 2013, pp. 198–201.

[7] S. Apel, O. Leßenich, and C. Lengauer, “Structured merge with auto-
tuning: balancing precision and performance,” in ASE, 2012, pp. 120–
129.

http://codenvy.com
http://koding.com
http://visualstudio.com
http://github.com
http://www.typescriptlang.org/
http://doi.acm.org/10.1145/358746.358755
http://doi.acm.org/10.1145/358746.358755


[8] S. Burckhardt, M. Fähndrich, P. de Halleux, S. McDirmid, M. Moskal,
N. Tillmann, and J. Kato, “It’s alive! continuous feedback in UI
programming,” in PLDI, 2013, pp. 95–104.

[9] S. Burckhardt, M. Fähndrich, D. Leijen, and B. Wood, “Cloud types
for eventual consistency,” in European Conference on Object-Oriented
Programming (ECOOP), ser. LNCS, vol. 7313. Springer, 2012, pp.
283–307.

[10] N. Horspool and N. Tillmann, TouchDevelop - Programming on the
Go. Apress, 2013. [Online]. Available: https://www.touchdevelop.com/
docs/book

[11] L. Brutschy, P. Ferrara, and P. Müller, “Static analysis for independent
app developers,” in Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), 2014, to appear.

[12] J. Estublier, D. Leblang, A. v. d. Hoek, R. Conradi, G. Clemm, W. Tichy,
and D. Wiborg-Weber, “Impact of software engineering research on the
practice of software configuration management,” ACM Trans. Softw. Eng.
Methodol., vol. 14, no. 4, pp. 383–430, Oct. 2005.

[13] S. Perez De Rosso and D. Jackson, “What’s wrong with git?: A
conceptual design analysis,” in Proceedings of the 2013 ACM Inter-
national Symposium on New Ideas, New Paradigms, and Reflections on
Programming &#38; Software, ser. Onward! ’13, 2013, pp. 37–52.

[14] D. E. Perry, “Version control in the inscape environment,” in Proceedings
of the 9th International Conference on Software Engineering, ser. ICSE
’87, 1987, pp. 142–149.

[15] W. F. Tichy, “Smart recompilation,” ACM Trans. Program. Lang. Syst.,
vol. 8, no. 3, pp. 273–291, Jun. 1986.

[16] Z. Shao and A. W. Appel, “Smartest recompilation,” in Proceedings of
the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, ser. POPL ’93, 1993, pp. 439–450.

[17] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack overflow
in the ide,” in Proceedings of the 2013 International Conference on
Software Engineering, ser. ICSE ’13, 2013, pp. 1295–1298.

[18] W. Slany, “A mobile visual programming system for Android smart-
phones and tablets,” in VL/HCC, 2012, pp. 265–266.

[19] J. Liu, C.-H. Lin, P. Potter, E. P. Hasson, Z. D. Barnett, and M. Singleton,
“Going mobile with App Inventor for Android: a one-week computing
workshop for k-12 teachers,” in SIGCSE, 2013, pp. 433–438.

https://www.touchdevelop.com/docs/book
https://www.touchdevelop.com/docs/book

	Introduction
	TouchDevelop Background
	History
	Code Representation and IDE
	Programming Language

	Cloud Publications
	Publications
	Ranking of scripts and authors
	Openness and plug-ins

	Integrating Workspace, Version Control and App Store
	Replicated Workspace
	Version Control and Dependency Management
	App Store and Updates

	Evaluation
	TouchDevelop itself
	Scripts and users
	Effects of replicated workspace
	Effects of version control
	Effects of language features
	Threats To Validity

	Related Work
	Software Configuration Management
	Web-based Software Development and CIDEs
	Development for Non-expert Programmers on Mobile

	Summary
	References

