
Are Lock-Free Concurrent Algorithms Practically Wait-Free?

Dan Alistarh∗

MSR Cambridge
dan.alistarh@microsoft.com

Keren Censor-Hillel†

Technion
ckeren@cs.technion.ac.il

Nir Shavit‡

MIT & Tel-Aviv University
shanir@csail.mit.edu.

Abstract

Lock-free concurrent algorithms guarantee that some concurrent operation will always make progress in a finite
number of steps. Yet programmers prefer to treat concurrent code as if it were wait-free, guaranteeing that all opera-
tions always make progress. Unfortunately, designing wait-free algorithms is generally a very complex task, and the
resulting algorithms are not always efficient. While obtaining efficient wait-free algorithms has been a long-time goal
for the theory community, most non-blocking commercial code is only lock-free.

This paper suggests a simple solution to this problem. We show that, for a large class of lock-free algorithms,
under scheduling conditions which approximate those found in commercial hardware architectures, lock-free algo-
rithms behave as if they are wait-free. In other words, programmers can keep on designing simple lock-free algorithms
instead of complex wait-free ones, and in practice, they will get wait-free progress.

Our main contribution is a new way of analyzing a general class of lock-free algorithms under a stochastic sched-
uler. Our analysis relates the individual performance of processes with the global performance of the system using
Markov chain lifting between a complex per-process chain and a simpler system progress chain. We show that lock-
free algorithms are not only wait-free with probability 1, but that in fact a general subset of lock-free algorithms can
be closely bounded in terms of the average number of steps required until an operation completes.

To the best of our knowledge, this is the first attempt to analyze progress conditions, typically stated in relation to
a worst case adversary, in a stochastic model capturing their expected asymptotic behavior.

1 Introduction
The introduction of multicore architectures as today’s main computing platform has brought about a renewed interest
in concurrent data structures and algorithms, and a considerable amount of research has focused on their modeling,
design and analysis.

The behavior of concurrent algorithms is captured by safety properties, which guarantee their correctness, and
progress properties, which guarantee their termination. In this paper, we focus on progress guarantees, and in particular
on the question of whether a concurrent algorithm is lock-free or wait-free. Intuitively, lock-free means that some
process is always guaranteed to make progress by completing its operations within a finite number of system steps,
while wait-free means that each process completes its operations within a finite number of its own steps.

An increasingly large fraction of concurrent commercial code is lock-free, i.e. ensures that the system always
makes progress, without using locks [7,11]. Over the years, the research community has devised ingenious, technically
sophisticated algorithms that are wait-free, i.e. ensure that each operation makes progress, without using locks [10].
Unexpectedly, wait-free algorithms are not being adopted by practitioners, despite the fact that the completion of all
method calls in a program is a natural assumption that programmers implicitly make.

Recently, Herlihy and Shavit [11] suggested that perhaps the answer lies in a surprising property of lock-free
algorithms: in practice, they often behave as if they were wait-free. Specifically, most operations complete in a timely
∗Part of this work was performed while the author was a Postdoctoral Associate at MIT CSAIL, where he was supported by SNF Postdoctoral

Fellows Program, NSF grant CCF-1217921, DoE ASCR grant ER26116/DE-SC0008923, and by grants from the Oracle and Intel corporations.
†Shalon Fellow.
‡This work was supported in part by NSF grants CCF-1217921 and CCF-1301926, DoE ASCR grant ER26116/DE-SC0008923, and by grants

from the Oracle and Intel corporations.

1

manner, and the impact of long worst-case executions on performance is negligible. In other words, in real systems,
the scheduler that governs the threads’ behavior in long executions does not single out any particular thread in order to
cause the theoretically possible bad behaviors. This raises the following question: could the choice of wait-free versus
lock-free be based simply on what assumption a programmer is willing to make about the underlying scheduler, and,
with the right kind of scheduler, one will not need wait-free algorithms except in very rare cases?

This question is important because the difference between a wait-free and a lock-free algorithm for any given
problem typically involves the introduction of specialized “helping” mechanisms [10], which significantly increase
the complexity (both the design complexity and time complexity) of the solution. If one could simply rely on the
scheduler, adding a helping mechanism to guarantee wait-freedom (or starvation-freedom) would be unnecessary.

Unfortunately, there is currently no analytical framework which would allow answering the above question, since
it would require predicting the behavior of a concurrent algorithm over long executions, under a scheduler that is not
adversarial.
Contribution. In this paper, we take a first step towards such a framework. Following empirical observations, we
introduce a stochastic scheduler model, and use this model to predict the long-term behavior of a general class of
concurrent algorithms. The stochastic scheduler is similar to an adversary: at each time step, it picks some process
to schedule. The main distinction is that, in our model, the scheduler’s choices contain some randomness. In partic-
ular, a stochastic scheduler has a probability threshold θ > 0 such that every (non-faulty) process is scheduled with
probability at least θ in each step.

We start from the following simple observation: under any stochastic scheduler, every bounded lock-free algorithm
is actually wait-free with probability 1. (A bounded lock-free algorithm guarantees that some process always makes
progress within a finite progress bound.) In other words, for any such algorithm, the schedules which prevent a process
from ever making progress must have probability mass 0. The intuition is that, with probability 1, each specific process
eventually takes enough consecutive steps, implying that it completes its operation. This observation applies in fact to
more general minimal/maximal progress conditions [11], and in particular to algorithms that employ locks. However,
this intuition is insufficient for explaining why lock-free data structures are efficient in practice: the result applies to
arbitrary algorithms, but the upper bound it yields on the number of steps until an operation completes is unacceptably
high.

Our main contribution is analyzing a general class of lock-free algorithms under a specific stochastic scheduler,
and showing that not only are they wait-free with probability 1, but that in fact they provide a pragmatic bound on the
number of steps until each operation completes.

We address a refined uniform stochastic scheduler, which schedules each non-faulty process with uniform prob-
ability in every step. Empirical data suggests that, in the long run, the uniform stochastic scheduler is a reasonable
approximation for a real-world scheduler. We emphasize that we do not claim real schedulers are uniform stochastic,
but only that such a scheduler gives an approximation of what happens in practice for our complexity measures, over
long executions.

We call the algorithmic class we analyze single compare-and-swap universal (SCU). An algorithm in this class is
divided into a preamble, and a scan-and-validate phase. The preamble executes auxiliary code, such as local updates
and memory allocation. In the second phase, the process first determines the data structure state by scanning the
memory. It then locally computes the updated state after its method call would be performed, and attempts to commit
this state to memory by performing an atomic compare-and-swap (CAS) operation. If the CAS operation succeeds,
then the state has been updated, and the method call completes. Otherwise, if some other process changes the state in
between the scan and the attempted update, then the CAS operation fails, and the process must restart its operation.

This algorithmic class is widely used to design lock-free data structures. It is known that every sequential object has
a lock-free implementation in this class using a lock-free version of Herlihy’s universal construction [10]. Instances
of this class are used to obtain efficient data structures such as stacks [15], queues [13], or hash tables [7]. The
read-copy-update (RCU) [8] synchronization mechanism employed by the Linux kernel is also an instance of this
pattern.

We examine the class SCU under a uniform stochastic scheduler, and first observe that, in this setting, every such
algorithm behaves as a Markov chain. The computational cost of interest is system steps, i.e. shared memory accesses
by the processes. The complexity metrics we analyze are individual latency, which is the expected number of steps of
the system until a specific process completes a method call, and system latency, which is the expected number of steps

2

of the system to complete some method call. We bound these parameters by studying the stationary distribution of the
Markov chain induced by the algorithm.

We prove two main results. The first is that, in this setting, all algorithms in this class have the property that the
individual latency of any process is n times the system latency. In other words, the expected number of steps for
any two processes to complete an operation is the same. Moreover, the expected number of steps for the system to
complete any operation is the expected number of steps for a specific process to complete an operation, divided by
n. The second result is an upper bound of O(q + s

√
n) on the system latency, where q is the number of steps in the

preamble, s is the number of steps in the scan-and-validate phase, and n is the number of processes. This bound is
asymptotically tight.

The key mathematical tool we use is Markov chain lifting [4,9]. More precisely, for such algorithms, we prove that
there exists a function which lifts the complex Markov chain induced by the algorithm to a simplified system chain.
The asymptotics of the system latency are determined from the minimal progress chain.

More precisely, we bound system latency by characterizing the average behavior of a new type of iterated balls-
into-bins game, consisting of iterations which end when a certain condition on the bins first occurs, after which some
of the bins change their state and a new iteration begins. Once this bound is in place, we use the lifting to prove that the
individual latency is always n times the system latency, which implies that the individual latency is O(n(q + s

√
n)).

This analysis suggests that, under this scheduler, the amortized cost of an operation depends on Θ(
√
n). This

factor can be seen as the price of contention, i.e., the extra cost of having processors interrupt each other’s progress
because of contention in the scan-and-validate phase. Notice that the worst-case analysis of the same algorithm yields
an Ω(n) amortized step cost per operation.

In summary, our analysis shows that, under an approximation of the real-world scheduler, a large class of lock-free
algorithms provide virtually the same progress guarantees as wait-free ones, and that, roughly, the system completes
requests at a rate that is n times that of individual processes. It provides an analytical framework for predicting the
behavior of a class of concurrent algorithms, over long executions, under a scheduler that is not adversarial.
Related work. To the best of our knowledge, the only prior work which addresses a probabilistic scheduler for a shared
memory environment is that of Aspnes [3], who gave a fast consensus algorithm under a probabilistic scheduler model
different from the one considered in this paper. The observation that many lock-free algorithms behave as wait-free in
practice was made by Herlihy and Shavit in the context of formalizing minimal and maximal progress conditions [11],
and is well-known among practitioners. For example, reference [1, Figure 6] gives empirical results for the latency
distribution of individual operations of a lock-free stack. A parallel line of work considered designing contention
managers which convert lock-free or obstruction-free algorithms into wait-free ones, e.g. [6]. In contrast, we explore
how models of existing processor schedulers impact the behavior of lock-free algorithms.
Roadmap. We describe the model, progress guarantees, and complexity metrics in Section 2. In particular, Section 2.3
defines the stochastic scheduler. We show that lock-free becomes wait-free with probability 1 in Section 3. Section 4
defines the algorithmic class SCU(q, s), while Section 5.1 analyzes individual and global latency. The full version of
this paper [2] contains empirical justification for the model, and the complete analysis.

2 System Model

2.1 Preliminaries

Processes and Objects. We consider a shared-memory model, in which n processes p1, . . . , pn, communicate through
registers, on which they perform atomic read, write, and compare-and-swap (CAS) operations. A CAS operation takes
three arguments (R, expVal , newVal), where R is the register on which it is applied, expVal is the expected value of
the register, and newVal is the new value to be written to the register. If expVal matches the value of R, then we say
that the CAS is successful, and the value of R is updated to newVal . Otherwise, the CAS fails. The operation returns
true if it successful, and false otherwise.

We assume that each process has a unique identifier. Processes follow an algorithm, composed of shared-memory
steps and local computation. The order of process steps is controlled by the scheduler. A set of at most n−1 processes
may fail by crashing. A crashed process stops taking steps for the rest of the execution. A process that is not crashed

3

at a certain step is correct, and if it never crashes then it takes an infinite number of steps in the execution.
The algorithms we consider are implementations of shared objects. A shared object O is an abstraction providing

a set of methods M , each given by its sequential specification. In particular, an implementation of a method m for
object O is a set of n algorithms, one for each executing process. When process pi invokes method m of object O,
it follows the corresponding algorithm until it receives a response from the algorithm. Upon receiving the response,
the process is immediately assigned another method invocation. In the following, we do not distinguish between a
method m and its implementation. A method invocation is pending at some point in the execution if has not received
a response. A pending method invocation is active if it is made by a correct process (note that the process may still
crash in the future).
Executions, Schedules, and Histories. An execution is a sequence of operations performed by the processes. To
represent executions, we assume discrete time, where at every time unit only one process is scheduled. In a time unit,
a process can perform any number of local computations or coin flips, after which it issues a step, which consists of
a single shared memory operation. Whenever a process becomes active, as decided by the scheduler, it performs its
local computation and then executes a step. The schedule is a (possibly infinite) sequence of process identifiers. If
process pi is in position τ ≥ 1 in the sequence, then pi is active at time step τ .

Raising the level of abstraction, we define a history as a finite sequence of method invocation and response events.
Notice that each schedule has a corresponding history, in which individual process steps are mapped to method calls.
On the other hand, a history can be the image of several schedules.

2.2 Progress Guarantees
We now define progress guarantees, following the unified presentation from [11]. Instead of specifying progress
guarantees for each method of an object, for ease of presentation, we adopt the simpler definition which specifies
progress provided by an implementation. Consider an infinite execution e, with the corresponding history He. An
implementation of an object O provides minimal progress in the execution e if, in every suffix of He, some pending
active invocation of some method has a matching response. Equivalently, there is no point in the corresponding
execution from which all the processes take an infinite number of steps without returning from their invocation.

An implementation provides maximal progress in an execution e if, in every suffix of the corresponding history
He, every pending active invocation of a method has a response. Equivalently, there is no point in the execution from
which a process takes infinitely many steps without returning.
Scheduler Assumptions. We say that an execution is crash-free if each process is always correct, i.e. if each process
takes an infinite number of steps.
Progress. An implementation is deadlock-free if it guarantees minimal progress in every crash-free execution, and
maximal progress in some crash-free execution.1 An implementation is starvation-free if it guarantees maximal
progress in every crash-free execution. An implementation is lock-free if it guarantees minimal progress in every
execution, and maximal progress in some execution. An implementation is wait-free if it guarantees maximal progress
in every execution.
Bounded Progress. While the above definitions provide reasonable measures of progress, often in practice more
explicit progress guarantees may be desired, which provide an upper bound on the number of steps until some method
makes progress. To model this, we say that an implementation guarantees bounded minimal progress if there exists a
bound B > 0 such that, for any time step t in the execution e at which there is an active invocation of some method,
some invocation of a method returns within the next B steps by all processes. An implementation guarantees bounded
maximal progress if there exists a bound B > 0 such that every active invocation of a method returns within B
steps by all processes. We can specialize the definitions of bounded progress guarantees to the scheduler assumptions
considered above to obtain definitions for bounded deadlock-freedom, bounded starvation-freedom, and so on.

1According to [11], the algorithm is required to guarantee maximal progress in some execution to rule out pathological cases where a thread
locks the object and never releases the lock.

4

2.3 Stochastic Schedulers
We define a stochastic scheduler as follows.

Definition 1 (Stochastic Scheduler). For any n ≥ 0, a scheduler for n processes is defined by a triple (Πτ , Aτ , θ). The
parameter θ ∈ [0, 1] is the threshold. For each time step τ ≥ 1, Πτ is a probability distribution for scheduling the n
processes at τ , and Aτ is the subset of possibly active processes at time step τ . At time step τ ≥ 1, the distribution Πτ

gives, for every i ∈ {1, . . . , n} a probability γiτ , with which process pi is scheduled. The distribution Πτ may depend
on arbitrary outside factors, such as the current state of the algorithm being scheduled. A scheduler (Πτ , Aτ , θ) is
stochastic if θ > 0. For every τ ≥ 1, the parameters must ensure the following:

1. (Well-formedness)
∑n
i=1 γ

i
τ = 1;

2. (Weak Fairness) For every process pi ∈ Aτ , γiτ ≥ θ;

3. (Crashes) For every process pi /∈ Aτ , γiτ = 0;

4. (Crash Containment) Aτ+1 ⊆ Aτ .

The well-formedness condition ensures that some process is always scheduled. Weak fairness ensures that, for a
stochastic scheduler, possibly active processes do get scheduled with some non-zero probability. The crash condition
ensures that failed processes do not get scheduled. The set {p1, p2, . . . , pn} \ Aτ can be seen as the set of crashed
processes at time step τ , since the probability of scheduling these processes at every subsequent time step is 0.
An Adversarial Scheduler. Any classic asynchronous shared memory adversary can be modeled by “encoding” its
adversarial strategy in the probability distribution Πτ for each step. Specifically, given an algorithm A and a worst-
case adversary AA for A, let pτi be the process that is scheduled by AA at time step τ . Then we give probability 1 in
Πτ to process pτi , and 0 to all other processes. Things are more interesting when the threshold θ is strictly more than
0, i.e., there is some randomness in the scheduler’s choices.
The Uniform Stochastic Scheduler. A natural scheduler is the uniform stochastic scheduler, for which, assuming no
process crashes, we have that Πτ has γτi = 1/n, for all i and τ ≥ 1, and Aτ = {1, . . . , n} for all time steps τ ≥ 1.
With crashes, we have that γτi = 1/|Aτ | if i ∈ Aτ , and γτi = 0 otherwise.

2.4 Complexity Measures
Given a concurrent algorithm, standard analysis focuses on two measures: step complexity, the worst-case number
of steps performed by a single process in order to return from a method invocation, and total step complexity, or
work, which is the worst-case number of system steps required to complete invocations of all correct processes when
performing a task together. In this paper, we focus on the analogue of these complexity measures for long executions.
Given a stochastic scheduler, we define (average) individual latency as the maximum over all inputs of the expected
number of steps taken by the system between the returns times of two consecutive invocations of the same process.
Similarly, we define the (average) system latency as the maximum over all inputs of the expected number of system
steps between consecutive returns times of any two invocations.

2.5 Background on Markov Chains
We now give a brief overview of Markov chains. Our presentation follows standard texts, e.g. [12, 14]. The definition
and properties of Markov chain lifting are lifted from [9].

Given a set S, a sequence of random variables (Xt)t∈N, where Xt ∈ S, is a (discrete-time) stochastic process with
states in S. A discrete-time Markov chain over the state set S is a discrete-time stochastic process with states in S that
satisfies the Markov condition Pr[Xt = it|Xt−1 = it−1, . . . , X0 = i0] = Pr[Xt = it|Xt−1 = it−1].
The above condition is also called the memoryless property. A Markov chain is time-invariant if the equality Pr[Xt =
j|Xt−1 = i] = Pr[Xt′ = j|Xt′−1 = i] holds for all times t, t′ ∈ N and all i, j ∈ S. This allows us to define the
transition matrix P of a Markov chain as the matrix with entries

pij = Pr[Xt = j|Xt−1 = i].

5

The initial distribution of a Markov chain is given by the probabilities Pr[X0 = i], for all i ∈ S. We denote the
time-invariant Markov chain X with initial distribution λ and transition matrix P by M(P, λ).

The random variable Tij = min{n ≥ 1|Xn = j, if X0 = i} counts the number of steps needed by the Markov
chain to get from i to j, and is called the hitting time from i to j. We set Ti,j = ∞ if state j is unreachable from i.
Further, we define hij = E[Tij], and call hii = E[Tii] the (expected) return time for state i ∈ S.

Given P , the transition matrix of M(P, λ), a stationary distribution of the Markov chain is a state vector π with
π = πP . (We consider row vectors throughout the paper.) The intuition is that if the state vector of the Markov chain
is π at time t, then it will remain π for all t′ > t. Let P (k) be the transition matrix P multiplied by itself k times,
and p(k)

ij be element (i, j) of P (k). A Markov chain is irreducible if for all pairs of states i, j ∈ S there exists m ≥ 0

such that p(m)
ij > 0. (In other words, the underlying graph is strongly connected.) This implies that Tij < ∞, and all

expectations hij exist, for all i, j ∈ S. Furthermore, the following is known.

Theorem 1. An irreducible finite Markov chain has a unique stationary distribution π, namely

πj =
1

hjj
,∀j ∈ S.

The periodicity of a state j is the maximum positive integer α such that {n ∈ N|p(n)
jj > 0} ⊆ {iα|i ∈ N}. A state

with periodicity α = 1 is called aperiodic. A Markov chain is aperiodic if all states are aperiodic. If a Markov chain
has at least one self-loop, then it is aperiodic. A Markov chain that is irreducible and aperiodic is ergodic. Ergodic
Markov chains converge to their stationary distribution as t→∞ independently of their initial distributions.

Theorem 2. For every ergodic finite Markov chain (Xt)t∈N we have independently of the initial distribution that
limt→∞ qt = π, where π denotes the chain’s unique stationary distribution, and qt is the distribution on states at time
t ∈ N.

Ergodic Flow. It is often convenient to describe an ergodic Markov chain in terms of its ergodic flow: for each
(directed) edge ij, we associate a flow Qij = πipij . These values satisfy

∑
iQij =

∑
iQji and

∑
i,j Qij = 1. It also

holds that πj =
∑
iQij .

Lifting Markov Chains. Let M and M ′ be ergodic Markov chains on finite state spaces S, S′, respectively. Let P, π
be the transition matrix and stationary distribution for M , and P ′, π′ denote the corresponding objects for M ′. We say
that M ′ is a lifting of M [9] if there is a function f : S′ → S such that

Qij =
∑

x∈f−1(i),y∈f−1(j)

Q′xy,∀i, j ∈ S.

Informally,M ′ is collapsed ontoM by clustering several of its states into a single state, as specified by the function
f . The above relation specifies a homomorphism on the ergodic flows. An immediate consequence of this relation is
the following connection between the stationary distributions of the two chains.

Lemma 1. For all v ∈ S, we have that
π(v) =

∑
x∈f−1(v)

π′(x).

3 From Minimal Progress to Maximal Progress
We now formalize the intuition that, under a stochastic scheduler, all algorithms ensuring bounded minimal progress
guarantee in fact maximal progress with probability 1. We also show the bounded minimal progress assumption is
necessary: if minimal progress is not bounded, then maximal progress may not be achieved. The proof of this result is
relatively straightforward, and is therefore left to the full version of this paper [2].

Theorem 3 (Min to Max Progress). Let S be a stochastic scheduler with probability threshold 1 ≥ θ > 0. Let A be
an algorithm ensuring bounded minimal progress with a bound T . Then A ensures maximal progress with probability
1. Moreover, the expected maximal progress bound of A is at most (1/θ)T .

6

1 Shared: registers R,R1, R2, . . . , Rs−1

2 procedure method-call()
3 Take preamble steps O1, O2, Oq /* Preamble region */
4 while true do

/* Scan region: */
5 v ← R.read()
6 v1 ← R1.read(); v2 ← R2.read(); . . .; vs−1 ← Rs−1.read()
7 v′ ← new proposed state based on v, v1, v2, . . . , vs−1

/* Validation step: */
8 flag ← CAS(R, v, v′)
9 if flag = true then

10 output success
Algorithm 1: The structure of algorithms in SCUq,s.

The proof is based on the fact that, for every correct process pi, eventually, the scheduler will produce a solo
sequence of length T . On the other hand, since the algorithm ensures minimal progress with bound T , pi must
complete its operation during this interval.

This result matches the intuition for why many practical lock-free algorithms behave as being wait-free in practice:
even if we only allow operations to complete when running solo, there is always a chance that a process will get enough
consecutive steps to complete. Notice that the same proof applies if instead of considering the minimal progress bound
T , we consider the individual progress bound T ′, which is a bound on the number of consecutive steps a process has
to take in order to complete. This reduces the obtained bound for maximal progress from (1/θ)T to (1/θ)T

′
, which

may be much smaller.
We then prove that the finite bound for minimal progress is necessary. For this, we devise an unbounded lock-free

algorithm which is not wait-free with probability > 0. The main idea is to have processes that fail to change the value
of a CAS repeatedly increase the number of steps they need to take to complete an operation. The argument is given
in the full version of this paper.

Lemma 2. There exists an unbounded lock-free algorithm that is not wait-free with high probability.

4 The Class of Algorithms SCU
In this section, we define the class of algorithms SCU(q, s). An algorithm in this class is structured as follows. (See
Algorithm 1 for the pseudocode, and Figure 2 for an illustration.) The first part is the preamble, where the process
performs a series of q steps. The algorithm then enters a loop, divided into a scan region, which reads the values of s
registers, and a validation step, where the process performs a CAS operation, which attempts to change the value of a
register. The goal of the scan region is to obtain a view of the data structure state. In the validation step, the process
checks that this state is still valid, and attempts to change it. If the CAS is successful, then the operation completes.
Otherwise, the process restarts the loop. We say that an algorithm with the above structure with parameters q and s is
in SCU(q, s).

We assume that steps in the preamble may perform memory updates, including to registers R1, . . . , Rs−1, but do
not change the value of the decision register R. Also, for simplicity, two processes never propose the same value
for the register R. (This can be easily enforced by adding a timestamp to each request.) The order of steps in the
scan region can be changed without affecting our analysis. Such algorithms are used in several CAS-based concurrent
implementations. In particular, the class can be used to implement a concurrent version of every sequential object [10].
It has also been used to obtain implementations of several concurrent objects, such as counters [5], stacks [15], and
queues [13].

7

5 Analysis of the Class SCU
We analyze the performance of algorithms in SCU(q, s) under the uniform stochastic scheduler. We assume that all
threads execute the same method call with preamble of length q, and scan region of length s. Each thread executes an
infinite number of such operations. To simplify the presentation, we assume all n threads are correct in the analysis.
The claim is similar in the crash-failure case, and will be considered separately.

We examine two parameters: system latency, i.e., how often (in terms of system steps) does a new operation
complete, and individual latency, i.e., how often does a certain thread complete a new operation. Notice that the
worst-case latency for the whole system is Θ(q + sn) steps, while the worst-case latency for an individual thread is
∞, as the algorithm is not wait-free. We will prove the following result:

Theorem 4. Let A be an algorithm in SCU(q, s). Then, under the uniform stochastic scheduler, the system latency
of A is O(q + s

√
n), and the individual latency is O(n(q + s

√
n)).

We prove the upper bound by splitting the class SCU(q, s) into two separate components, and analyzing each
under the uniform scheduler. The first part is the loop code, which we call the scan-validate component. The second
part is the parallel code, which we use to characterize the performance of the preamble code. In other words, we first
consider SCU(0, s) and then SCU(q, 0).

5.1 The Scan-Validate Component
Without loss of generality, we can simplify the pseudocode to contain a single read step before the CAS. We obtain
the performance bounds for this simplified algorithm, and then multiply them by s, the number scan steps. That is, we
start by analyzing SCU(0, 1) and then generalize to SCU(0, s).
Proof Strategy. We start from the Markov chain representation of the algorithm, which we call the individual chain.
We then focus on a simplified representation, which only tracks system-wide progress, irrespective of which process is
exactly in which state. We call this the system chain. We first prove the individual chain can be related to the system
chain via a lifting function, which allows us to relate the individual latency to the system latency (Lemma 4). We then
focus on bounding system latency. We describe the behavior of the system chain via an iterated balls-and-bins game,
whose stationary behavior we analyze in Lemmas 7 and 8. Finally, we put together these claims to obtain an O(

√
n)

upper bound on the system latency of SCU(0, 1).
Due to space limitations, some proofs are omitted. They can be found in the full version of the paper [2].

5.1.1 Markov Chain Representations

We define the extended state of a process in terms of the state of the system, and of the type of step it is about to
take. Thus, a process can be in one of three states: either it performs a read, or it CAS-es with the current value of
R, or it CAS-es with an invalid value of R. The state of the system after each step is completely described by the n
extended states of processes. We emphasize that this is different than what is typically referred to as the “local” state
of a process, in that the extended state is described from the viewpoint of the entire system. That is, a process that has
a pending CAS operation can be in either of two different extended states, depending on whether its CAS will succeed
or not. This is determined by the state of the entire system. A key observation is that, although the “local” state of a
process can only change when it takes a step, its extended state can change also when another process takes a step.
The individual chain. Since the scheduler is uniform, the system can be described as a Markov chain, where each
state specifies the extended state of each process. Specifically, a process is in state OldCAS if it is about to CAS with
an old (invalid) value of R, it is in state Read if it is about to read, and is in state CCAS if it about to CAS with the
current value of R. (After CAS-ing, the process returns to state Read .)

A state S of the individual chain is given by a combination of n states S = (P1, P2, . . . , Pn), describing the
extended state of each process, where, for each i ∈ {1, . . . , n}, Pi ∈ {OldCAS , Read , CCAS} is the extended
state of process pi. There are 3n − 1 possible states, since the state where each process CAS-es with an old value
cannot occur. In each transition, each process takes a step, and the state changes correspondingly. Recall that every
process pi takes a step with probability 1/n. Transitions are as follows. If the process pi taking a step is in state

8

{p1,p2};0;0

p1 ; 0 ; p2

p2 ; 0 ; p1

0;0;{p1,p2}

p1; p2 ; 0

p2; p1 ; 0

0; p2; p1

0; p1; p2

Figure 1: The individual chain and the global chain for two
processes. Each transition has probability 1/2. The red
clusters are the states in the system chain. The notation
X;Y ;Z means that processes in X are in state Read , pro-
cesses in Y are in state OldCAS , and processes in Z are in
state CCAS .

preamble

scan failure

success

validate

Figure 2: Algorithm in SCU(q, s).

Read or OldCAS , then all other processes remain in the same extended state, and pi moves to state CCAS or Read ,
respectively. If the process pi taking a step is in state CCAS , then all processes in state CCAS move to state OldCAS ,
and pi moves to state Read .
The system chain. To reduce the complexity of the individual Markov chain, we introduce a simplified representation,
which tracks system-wide progress. More precisely, each state of the system chain tracks the number of processes in
each state, irrespective of their identifiers: for any a, b ∈ {0, . . . , n}, a state x is defined by the tuple (a, b), where a
is the number of processes that are in state Read , and b is the number of processes that are in state OldCAS . Notice
that the remaining n − a − b processes must be in state CCAS . The initial state is (n, 0), i.e. all processes are
about to read. The state (0, n) does not exist. The transitions in the system chain are as follows. Pr[(a + 1, b −
1)|(a, b)] = b/n, where 0 ≤ a ≤ n and b > 0. Pr[(a + 1, n − a − 1)|(a, b)] = 1 − (a + b)/n, where 0 ≤ a < n.
Pr[(a− 1, b)|(a, b)] = a/n, where 0 < a ≤ n. See Figure 1 for a simple example of the two chains, and their lifting,
for n = 2.

5.1.2 Lifting the Individual Chain

We start from the observation that both the individual chain and the system chain are ergodic. Let π be the stationary
distribution of the system chain, and let π′ be the stationary distribution for the individual chain. For any state k =
(a, b) in the system chain, let πk be its probability in the stationary distribution. Similarly, for state x in the individual
chain, let π′x be its probability in the stationary distribution.

We now prove that there exists a lifting from the individual chain to the system chain. Intuitively, the lifting from
the individual chain to the system chain collapses all states in which a processes are about to read and b processes are
about to CAS with an old value (the identifiers of these processes are different for distinct states), into to state (a, b)
from the system chain.

Definition 2. Let S be the set of states of the individual chain, andM be the set of states of the system chain. We
define the function f : S → M such that each state S = (P1, . . . , Pn), where a processes are in state Read and b
processes are in state OldCAS , is taken into state (a, b) of the system chain.

We then obtain the following relation between the stationary distributions of the two chains.

Lemma 3. For every state k in the system chain, we have πk =
∑
x∈f−1(k) π

′
x.

Proof. We obtain this relation algebraically, starting from the formula for the stationary distribution of the individual
chain. We have that π′A = π′, where π′ is a row vector, and A is the transition matrix of the individual chain. We
partition the states of the individual chain into sets, where Ga,b is the set of system states S such that f(S) = (a, b).
Fix an arbitrary ordering (Gk)k≥1 of the sets, and assume without loss of generality that the system states are ordered
according to their set in the vector π and in the matrix A, so that states mapping to the same set are consecutive.

Let now A′ be the transition matrix across the sets (Gk)k≥1. In particular, a′kj is the probability of moving from a
state in the set Gk to some state in the set Gj . Note that this transition matrix is the same as that of the system chain.

9

Pick an arbitrary state x in the individual chain, and let f(x) = (a, b). In other words, state x maps to set Gk, where
k = (a, b). We claim that for every set Gj ,

∑
y∈Gj Pr[y|x] = Pr[Gj |Gi].

To see this, fix x = (P0, P1, . . . , Pn). Since f(x) = (a, b), there are exactly b distinct states y reachable from x
such that f(y) = (a+1, b−1): the states where a process in extended local state OldCAS takes a step. Therefore, the
probability of moving to such a state y is b/n. Similarly, the probability of moving to a state y with f(y) = (a+1, b−1)
is 1 − (a + b)/n, and the probability of moving to a state y with f(y) = (a − 1, b) is a/n. All other transition
probabilities are 0.

To complete the proof, notice that we can collapse the stationary distribution π′ onto the row vector π̄, where the
kth element of π̄ is

∑
x∈Gk π

′
x. Using the above claim and the fact that π′A = π′, we obtain by calculation that

π̄A′ = π̄. Therefore, π̄ is a stationary distribution for the system chain. Since the stationary distribution is unique,
π̄ = π, which concludes the proof.

In fact, we can prove that the function f : S → M defined above induces a lifting from the individual chain to the
system chain.

Lemma 4. The system Markov chain is a lifting of the individual Markov chain.

Proof. Consider a state k inM. Let j be a neighboring state of k in the system chain. The ergodic flow from k to j is
pkjπk. In particular, if k is given by the tuple (a, b), j can be either (a+ 1, b− 1) or (a+ 1, b), or (a− 1, b). Consider
now a state x ∈ M, x = (P0, . . . , Pn), such that f(x) = k. By the definition of f , x has a processes in state Read ,
and b processes in state OldCAS .

If j is the state (a+ 1, b− 1), then the flow from k to j, Qkj , is bπk/n. The state x from the individual chain has
exactly b neighboring states y which map to the state (a+ 1, b− 1), one for each of the b processes in state OldCAS
which might take a step. Fix y to be such a state. The probability of moving from x to y is 1/n. Therefore, using
Lemma 3, we obtain that ∑

x∈f−1(k),y∈f−1(j)

Q′xy =
∑

x∈f−1(k)

∑
y∈f−1(j)

1

n
π′x =

b

n

∑
x∈f−1(k)

π′x =
b

n
πk = Qkj .

The other cases for state j follow similarly. Therefore, the lifting condition holds.

Next, we notice that, since states from the individual chain which map to the same system chain state are symmetric,
their probabilities in the stationary distribution must be the same. The proof is straightforward.

Lemma 5. Let x and x′ be two states in S such that f(x) = f(y). Then π′x = π′y .

We now put together the previous claims to obtain an upper bound on the expected time between two successes for a
specific process.

Lemma 6. Let W be the expected system steps between two successes in the stationary distribution of the system
chain. Let Wi be the expected system steps between two successes of process pi in the stationary distribution of the
individual chain. For every process pi, W = nWi.

Proof. Let µ be the probability that a step is a success by some process. Expressed in the system chain, we have that
µ =

∑
j=(a,b)(1− (a+ b)/n)πj . Let Xi be the set of states in the individual chain in which Pi = CCAS . Consider

the event that a system step is a step in which pi succeeds. This must be a step by pi from a state inXi. The probability
of this event in the stationary distribution of the individual chain is ηi =

∑
x∈Xi π

′
x/n.

Recall that the lifting function f maps all states x with a processes in state Read and b processes in state OldCAS
to state j = (a, b). Therefore, ηi = (1/n)

∑
j=(a,b)

∑
x∈f−1(j)∩Xi π

′
x. By symmetry, we have that π′x = π′y , for every

states x, y ∈ f−1(j). The fraction of states in f−1(j) that have pi in state CCAS (and are therefore also in Xi) is
(1− (a+ b)/n). Therefore,

∑
x∈f−1(j)∩Xi π

′
x = (1− (a+ b)/n)πj .

We finally get that, for every process pi, ηi = (1/n)
∑
j=(a,b)(1 − (a + b)/n)πj = (1/n)µ. On the other hand,

since we consider the stationary distribution, from a straightforward extension of Theorem 1, we have thatWi = 1/ηi,
and W = 1/µ. Therefore, Wi = nW , as claimed.

10

5.1.3 System Latency Bound

In this section we provide an upper bound on the system latency. We prove the following.

Theorem 5. The expected number of steps between two successes in the system chain is Θ(
√
n).

An iterated balls-into-bins game. To bound W , we model the evolution of the system as a balls-into-bins game. We
will associate each process with a bin. At the beginning of the execution, each bin already contains one ball. At each
time step, we throw a new ball into a uniformly chosen random bin. Essentially, whenever the process takes a step, its
bin receives an additional ball. We continue to distribute balls until the first time a bin acquires three balls. We call
this event a reset. When a reset occurs, we set the number of balls in the bin containing three balls to one, and all the
bins containing two balls become empty. The game then continues until the next reset.

This game models the fact that initially, each process is about to read the shared state. To change its value, it
must take two steps without the state changing in between. A process which changes the shared state by CAS-ing
successfully causes all other processes which were about to CAS with the correct value to fail their operations. These
processes now need to take three steps to change the shared state. We therefore reset the number of balls in the
corresponding bins to 0. We define the game in terms of phases. A phase is the interval between two resets. For phase
i, we denote by ai the number of bins with one ball at the beginning of the phase, and by bi the number of bins with 0
balls at the beginning of the phase. Since there are no bins with two or more balls at the start of a phase, we have that
ai + bi = n.

Notice that this iterated game evolves in the same way as the system Markov chain. In particular,W is the expected
length of a phase. To prove Theorem 5, we first obtain a bound on the length of a phase in terms of the parameters ai
and bi.

Lemma 7. Let α ≥ 4 be a constant. The expected length of phase i is at most min(2αn/
√
ai, 3αn/b

1/3
i). The phase

length is 2αmin(n
√

log n/
√
ai, n(log n)1/3/b

1/3
i), with probability at least 1−1/nα. The probability that the length

of a phase is less than min(n/
√
ai, n/(bi)

1/3)/α is at most 1/(4α2).

Proof. Let Ai be the set of bins with one ball, and let Bi be the set of bins with zero balls, at the beginning of the
phase. We have ai = |Ai| and bi = |Bi|. Practically, the phase ends either when a bin in Ai or a bin in Bi first
contains three balls.

For the first event to occur, some bin in Ai must receive two additional balls. Let c ≥ 1 be a large constant, and
assume for now that ai ≥ log n and bi ≥ log n (the other cases will be treated separately). The number of bins in
Ai which need to receive a ball before some bin receives two new balls is concentrated around

√
ai, by the birthday

paradox. More precisely, the following holds.

Claim 1. Let Xi be random variable counting the number of bins in Ai chosen to get a ball before some bin in Ai
contains three balls, and fix α ≥ 4 to be a constant. Then the expectation of Xi is less than 2α

√
ai. The value of Xi

is at most α
√
ai log n, with probability at least 1− 1/nα

2

.

Proof. We employ the Poisson approximation for balls-into-bins processes. In essence, we want to bound the number
of balls to be thrown uniformly into ai bins until two balls collide in the same bin, in expectation and with high
probability. Assume we throw m balls into the ai ≥ log n bins. It is well-known that the number of balls a bin
receives during this process can be approximated as a Poisson random variable with mean m/ai (see, e.g., [14]). In
particular, the probability that no bin receives two extra balls during this process is at most

2

(
1−

e−m/ai(mai)
2

2

)ai
≤ 2

(
1

e

)m2

2ai
e−m/ai

.

If we take m = α
√
ai for α ≥ 4 constant, we obtain that this probability is at most

2

(
1

e

)α2e−α/
√
ai/2

≤
(

1

e

)α2/4

,

11

where we have used the fact that ai ≥ log n ≥ α2. Therefore, the expected number of throws until some bin
receives two balls is at most 2α

√
ai. Taking m = α

√
ai log n, we obtain that some bin receives two new balls within

α
√
ai log n throws with probability at least 1− 1/nα

2

.

We now prove a similar upper bound for the number of bins in Bi which need to receive a ball before some such bin
receives three new balls, as required to end the phase.

Claim 2. Let Yi be random variable counting the number of bins in Bi chosen to get a ball before some bin in Bi
contains three balls, and fix α ≥ 4 to be a constant. Then the expectation of Yi is at most 3αb

2/3
i , and Yi is at most

α(log n)1/3b
2/3
i , with probability at least 1− (1/n)α

3/54.

Proof. We need to bound the number of balls to be thrown uniformly into bi bins (each of which is initially empty),
until some bin gets three balls. Again, we use a Poisson approximation. We throw m balls into the bi ≥ log n bins.
The probability that no bin receives three or more balls during this process is at most

2

(
1− e−m/ai(m/bi)

3

6

)bi
= 2

(
1

e

)m3

6b2
i

e−m/bi

.

Taking m = αb
2/3
i for α ≥ 4, we obtain that this probability is at most

2

(
1

e

)α3

6 e
−α/b1/3

i

≤
(

1

e

)α3/54

.

Therefore, the expected number of ball thrown into bins from Bi until some such bin contains three balls is at most
3αb

2/3
i . Taking m = α(log n)1/3b

2/3
i , we obtain that the probability that no bin receives three balls within the first m

ball throws in Bi is at most (1/n)α
3/54.

The above claims bound the number of steps inside the sets Ai and Bi necessary to finish the phase. On the other
hand, notice that a step throws a new ball into a bin from Ai with probability ai/n, and throws it into a bin in Bi with
probability bi/n. It therefore follows that the expected number of steps for a bin in Ai to reach three balls (starting
from one ball in each bin) is at most 2α

√
ain/ai = 2αn/

√
ai. The expected number of steps for a bin in Bi to reach

three balls is at most 3αb
2/3
i n/bi = 3αn/b

1/3
i . The next claim provides concentration bounds for these inequalities,

and completes the proof of the Lemma.

Claim 3. The probability that the system takes more than 2α n√
ai

√
log n steps in a phase is at most 1/nα. The

probability that the system takes more than 2α n

b
1/3
i

(log n)1/3 steps in a phase is at most 1/nα.

Proof. Fix a parameter β > 0. By a Chernoff bound, the probability that the system takes more than 2βn/ai steps
without throwing at least β balls into the bins in Ai is at most (1/e)β . At the same time, by Claim 1, the probability
that α

√
ai log n balls thrown into bins in Ai do not generate a collision (finishing the phase) is at most 1/nα

2

.
Therefore, throwing 2α n√

ai

√
log n balls fail to finish the phase with probability at most 1/nα

2

+ 1/eα
√
ai logn.

Since ai ≥ log n by the case assumption, the claim follows.
Similarly, using Claim 2, the probability that the system takes more than 2α(log n)1/3b

2/3
i n/bi = 2α(log n)1/3n/b

1/3
i

steps without a bin inBi reaching three balls (in the absence of a reset) is at most (1/e)1+(logn)1/3b
2/3
i +(1/n)α

3/54 ≤
(1/n)α, since bi ≥ log n.

The previous results imply that, if ai ≥ log n and bi ≥ log n, then the expected length of a phase is min(2

αn/
√
ai, 3αn/b

1/3
i). The phase length is 2α min(n√

ai

√
log n, n

b
1/3
i

(log n)1/3), with high probability.

It remains to consider the case where either ai or bi are less than log n. Assume ai ≥ log n. Then bi ≥ n− log n.
We can therefore apply the above argument for bi, and we obtain that with high probability the phase finishes in
2αn(log n/bi)

1/3 steps. This is less than 2α n√
ai

√
log n, since ai ≤ log n, which concludes the claim. The converse

case is similar.

12

Next, we analyze the dynamics of the phases i ≥ 1 based on the value of ai at the beginning of the phase. Fix c a
large constant. Phase i is in the first range if ai ∈ [n/3, n], in the second range if n/c ≤ ai < n/3, and is in the third
range if 0 ≤ ai < n/c. We analyze the probability of moving between ranges by carefully bounding the change in
ball counts for the bins during a phase as a function of ai’s initial value.

Lemma 8. For i ≥ 1, if phase i is in the first two ranges, then the probability that phase i+ 1 is in the third range is
at most 1/nα. Let β > 2c2 be a constant. The probability that β

√
n consecutive phases are in the third range is at

most 1/nα.

Proof. We first bound the probability that a phase moves to the third range from one of the first two ranges.

Claim 4. For i ≥ 1, if phase i is in the first two ranges, then the probability that phase i+ 1 is in the third range is at
most 1/nα.

Proof. We first consider the case where phase i is in range two, i.e. n/c ≤ ai < n/3, and bound the probability that
ai+1 < n/c. By Lemma 7, the total number of system steps taken in phase i is at most 2αmin(n/

√
ai
√

log n, n/b
1/3
i (log n)1/3),

with probability at least 1− 1/nα. Given the bounds on ai, it follows by calculation that the first factor is always the
minimum in this range.

Let `i be the number of steps in phase i. Since ai ∈ [n/c, n/3), the expected number of balls thrown into bins from
Ai is at most `i/3, whereas the expected number of balls thrown into bins from Bi is at least 2`i/3. The parameter
ai+1 is ai plus the bins from Bi which acquire a single ball, minus the balls from Ai which acquire an extra ball. On
the other hand, the number of bins from Bi which acquire a single ball during `i steps is tightly concentrated around
2`i/3, whereas the number of bins in Ai which acquire a single ball during `i steps is tightly concentrated around
`i/3. More precisely, using Chernoff bounds, given ai ∈ [n/c, n/3), we obtain that ai ≥ ai+1, with probability at
least 1− 1/eα

√
n.

For the case where phase i is in range one, notice that, in order to move to range three, the value of ai would
have to decrease by at least n(1/3− 1/c) in this phase. On the other hand, by Lemma 7, the length of the phase is at
most 2α

√
3n log n, w.h.p. Therefore the claim follows. A similar argument provides a lower bound on the length of a

phase.

The second claim suggests that, if the system is in the third range (a low probability event), it gradually returns to one
of the first two ranges.

Claim 5. Let β > 2c2 be a constant. The probability that β
√
n phases are in the third range is at most 1/nα.

Proof. Assume the system is in the third range, i.e. ai ∈ [0, n/c). Fix a phase i, and let `i be its length. Let Sib be
the set of bins in Bi which get a single ball during phase i. Let T ib be the set of bins in Bi which get two balls during
phase i (and are reset). Let Sia be the set of bins in Ai which get a single ball during phase i (and are also reset). Then
bi − bi+1 ≥ |Sib| − |T ib | − |Sia|.

We bound each term on the right-hand side of the inequality. Of all the balls thrown during phase i, in expectation
at least (1 − 1/c) are thrown in bins from Bi. By a Chernoff bound, the number of balls thrown in Bi is at least
(1 − 1/c)(1 − δ)`i with probability at least 1 − exp(−δ2`i(1− 1/c)/4), for δ ∈ (0, 1). On the other hand, the
majority of these balls do not cause collisions in bins from Bi. In particular, from the Poisson approximation, we
obtain that |Sib| ≥ 2|T ib | with probability at least 1− (1/n)α+1, where we have used bi ≥ n(1− 1/c).

Considering Sia, notice that, w.h.p., at most (1 + δ)`i/c balls are thrown in bins from Ai. Summing up, given
that `i ≥

√
n/c, we obtain that bi − bi+1 ≥ (1 − 1/c)(1 − δ)`i/2 − (1 + δ)`i/c, with probability at least 1 −

max((1/n)α, exp(−δ2`i(1− 1/c)/4). For small δ ∈ (0, 1) and c ≥ 10, the difference is at least `i/c2. Notice also
that the probability depends on the length of the phase.

We say that a phase is regular if its length is at least min(n/
√
ai, n/(bi)

1/3)/c. From Lemma 7, the probability
that a phase is regular is at least 1 − 1/(4c2). Also, in this case, `i ≥

√
n/c, by calculation. If the phase is regular,

then the size of bi decreases by Ω(
√
n), w.h.p.

If the phase is not regular, we simply show that, with high probability, ai does not decrease. Assume ai < ai+1.
Then, either `i < log n, which occurs with probability at most 1/nΩ(logn) by Lemma 7, or the inequality bi − bi+i ≥
`i/c

2 fails, which also occurs with probability at most 1/nΩ(logn).

13

To complete the proof, consider a series of β
√
n consecutive phases, and assume that ai is in the third range for all

of them. The probability that such a phase is regular is at least 1− 1/(4c2), therefore, by Chernoff, a constant fraction
of phases are regular, w.h.p. Also w.h.p., in each such phase the size of bi goes down by Ω(

√
n) units. On the other

hand, by the previous argument, if the phases are not regular, then it is still extemely unlikely that bi increases for the
next phase. Summing up, it follows that the probability that the system stays in the third range for β

√
n consecutive

phases is at most 1/nα, where β ≥ 2c2, and α ≥ 4 was fixed initially.

Final argument. To complete the proof of Theorem 5, we group the states of the game according to their range:
state S1,2 contains all states (ai, bi) in the first two ranges, i.e. with ai ≥ n/c. State S3 contains all states (ai, bi)
with ai < n/c. Using Lemmas 7 and 8, we obtain that the collective probability of states in S1,2 is at least 1 −
β
√
n/nα, while the probability of states in S3 is at most β

√
n/nα. Therefore, the expected length of a phase is at

most 2α
√
n(1−β

√
n/nα)+βn2/3

√
n/nα = O(

√
n), as claimed. This completes the proof of Theorem 5. Note that,

per Lemma 7, this bound is asymptotically tight.

5.2 General Bounds for SCU(q, s)

We now put together the results of the previous sections to obtain a bound on individual and system latency. First, we
notice that Theorem 5 can be easily extended to the case where the loop contains s scan steps, as the extended state
of a process p can be changed by a step of another process q 6= p only if p is about to perform a CAS operation. We
obtain that both the system and the individual latency bounds are multiplied by s. We then use the lifting method to
analyze the parallel code, i.e. SCU(q, 0). The key observation is that, in this case, the stationary distribution for the
individual chain is uniform.

Lemma 9. For any 1 ≤ i ≤ n and q ≥ 0, given an algorithm in SCU(q, 0), its individual latency is Wi = nq, and
its system latency is W = q.

Proof. We examine the stationary distributions of the two Markov chains. Contrary to the previous examples, it turns
out that in this case it is easier to determine the stationary distribution of the individual Markov chain MI . Notice
that, in this chain, all states have in- and out-degree n, and the transition probabilities are uniform (probability 1/n). It
therefore must hold that the stationary distribution of MI is uniform. Further, notice that a 1/nq fraction of the edges
corresponds to the counter of a specific process pi being reset. Therefore, for any i, the probability that a step in MI

is a completed operation by pi is 1/nq. Hence, the individual latency for the algorithm is nc. To obtain the system
latency, we notice that, from the lifting, the probability that a step in MS is a completed operation by some process is
1/q. Therefore, the individual latency for the algorithm is q.

Clearly, an algorithm in SCU(q, s) is a sequential composition of parallel code followed by s loop steps. Fix a
process pi. By Lemma 9, using linearity of expectation, we obtain that the expected individual latency for process
pi to complete an operation is O(n(q + s

√
n)). We define the individual chain and the system chain for the general

algorithm, and show that a lifting exists. This again implies that the system latency is O(q + s
√
n), which completes

the proof of Theorem 4.
Notes on the argument. We could have tailored the analysis to consider both components at the same time (via a
more complicated iterated balls-into-bins game). However, we believe the modularity of the framework is a potentially
useful property, and therefore chose to highlight it.

We also note that the above argument also gives an upper bound on the expected number of (individual) steps
a process pi needs to complete an operation (similar to the standard measure of individual step complexity). Since
the scheduler is uniform, this is also O(q + s

√
n). Finally, we note that, if only k ≤ n processes are correct in the

execution, we obtain the same latency bounds in terms of k: since we consider the stationary behavior of the algorithm,
the latencies are only influenced by correct processes.

14

Corollary 1. Given an algorithm in SCU(q, s) on k correct processes under a uniform stochastic scheduler, the
system latency is O(q + s

√
k), and the individual latency is O(k(q + s

√
k)). The expected step complexity of an

operation is O(q + s
√
k).

6 Discussion
This paper is motivated by the fundamental question of relating the theory of concurrent programming to real-world
algorithm behavior. We give a framework for analyzing concurrent algorithms which partially explains the wait-free
behavior of lock-free algorithms, and their good performance in practice. Our work is a first step in this direction, and
opens the door to many additional questions.

In particular, we are intrigued by the goal of obtaining a realistic model for the unpredictable behavior of sys-
tem schedulers. Even though it has some foundation in empirical results, our uniform stochastic model is a rough
approximation, and can probably be improved. We believe that some of the elements of our framework (such as the
existence of liftings) could still be applied to non-uniform stochastic scheduler models, while others may need to be
further developed. A second direction for future work is studying other types of algorithms, and in particular imple-
mentations which export several distict methods. The class of algorithms we consider is universal, i.e., covers any
sequential object, however there may exist specific implementations which do not fall in this class. Finally, it would
be interesting to explore whether there exist concurrent algorithms which avoid the Θ(

√
n) contention factor in the

latency, and whether such algorithms are efficient in practice.

Acknowledgments. The authors would like to thank Mohsen Ghaffari, William Hasenplaugh, Maurice Herlihy, Jon
Kelner, and Ronitt Rubinfeld for useful discussions, and Faith Ellen for very helpful comments on an earlier version
of this paper. We also thank the anonymous reviewers for their useful comments.

References
[1] Samy Al-Bahra. Nonblocking algorithms and scalable multicore programming. Commun. ACM, 56(7):50–61,

2013.

[2] Dan Alistarh, Keren Censor-Hillel, and Nir Shavit. Are lock-free concurrent algorithms practically wait-free?
CoRR, abs/1311.3200, 2013.

[3] James Aspnes. Fast deterministic consensus in a noisy environment. J. Algorithms, 45(1):16–39, 2002.

[4] Fang Chen, László Lovász, and Igor Pak. Lifting markov chains to speed up mixing. In Proceedings of the
thirty-first annual ACM symposium on Theory of computing, STOC ’99, pages 275–281, New York, NY, USA,
1999. ACM.

[5] Dave Dice, Yossi Lev, and Mark Moir. Scalable statistics counters. In 25th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’13, Montreal, QC, Canada , 2013, pages 43–52, 2013.

[6] Faith Ellen Fich, Victor Luchangco, Mark Moir, and Nir Shavit. Obstruction-free algorithms can be practically
wait-free. In Proceedings of the International Symposium on Distributed Computing, pages 493–494, 2005.

[7] Keir Fraser. Practical lock-freedom. Technical Report UCAM-CL-TR-579, University of Cambridge, Computer
Laboratory, February 2004.

[8] D. Guniguntala, P.E. McKenney, J. Triplett, and J. Walpole. The read-copy-update mechanism for supporting
real-time applications on shared-memory multiprocessor systems with linux. IBM Systems Journal, 47(2):221–
236, 2008.

15

[9] Thomas P. Hayes and Alistair Sinclair. Liftings of tree-structured markov chains. In Proceedings of the 13th
international conference on Approximation, and 14 the International conference on Randomization, and combi-
natorial optimization: algorithms and techniques, APPROX/RANDOM’10, pages 602–616, Berlin, Heidelberg,
2010. Springer-Verlag.

[10] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems,
13(1):123–149, January 1991.

[11] Maurice Herlihy and Nir Shavit. On the nature of progress. In 15th International Conference on Principles of
Distributed Systems (OPODIS), Toulouse, France, December 13-16, 2011. Proceedings, pages 313–328, 2011.

[12] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times. American Mathemat-
ical Society, 2008.

[13] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and blocking concurrent
queue algorithms. In PODC, pages 267–275, 1996.

[14] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, New York, NY, USA, 2005.

[15] R. K. Treiber. Systems programming: Coping with parallelism. Technical Report RJ 5118, IBM Almaden
Research Center, 1986.

16

