
Back to the future: Forecasting program behavior in automated homes

Jason Croft1, Ratul Mahajan2, Matthew Caesar1 and Madan Musuvathi2

1University of Illinois at Urbana-Champaign
2Microsoft Research

Abstract— Networked devices such as locks and ther-
mostats are now cheaply available, which is accelerating
the adoption of home automation. But unintended behav-
iors of programs that control automated homes can pose
severe problems, including security risks (e.g., acciden-
tal disarming of alarms). We facilitate predictable con-
trol of automated homes by letting users “fast forward”
their program and observe its possible future behaviors
under different sequences of inputs and environmental
conditions. A key challenge that we face, which is not
addressed by existing program exploration techniques, is
to systematically handle time because home automation
programs depend intimately on absolute and relative tim-
ing of inputs. We develop an approach that models pro-
grams as timed automata and incorporates novel mecha-
nisms to enable scalable and comprehensive exploration
of their behavior. We implement our approach in a tool
called DeLorean and apply it to 10 real home automation
programs. We find that it can fast forward these programs
3.6 times to 36K times faster than real time and uncover
unintended behaviors in them.

1. Introduction
With the advent of cheap networked devices (e.g., re-

motely controllable locks, lights, thermostats, and motion
sensors), automated homes are becoming mainstream [24].
The behavior of such homes is controlled based on a script
that is specified by the user. Such scripts have multiple
rules, where each rule specifies the actions that the home
should conduct in response to certain events (e.g., motion
is sensed) or at certain times of the day (e.g., at sunset).
The actions include, for instance, changing the state of
devices (e.g., turn on lights) and variables, and they may
depend on the time of day as well as environmental con-
ditions (e.g., temperature).

Today, many users have great difficulty in predictably
controlling their home automation (HA) systems because
the control scripts may not behave as they expect. HA
forums are alight with a myriad of problems that users
face [17, 9, 25], and a similar picture is painted by sys-
tematic studies [5, 21]. Living with home automation is
full of surprises, where the home behaves in unintended
or unexpected ways. These surprises are not only a matter
of annoyance but also pose security and monetary risks
(e.g., unintended unlocking of the door, improperly ac-

tivated thermostat). They occur because control scripts
can be complex, with complex interactions across rules
due to shared variable and device states. The collective
behavior of the rules is also hard to verify (e.g., during
specification) because it varies with time of day and envi-
ronmental conditions. Users thus understandably find it
hard to correctly reason about all possible behaviors.

The challenge faced by users is illustrated well by
what one person told us: “At one point I had a rule that would
turn on the heat, disarm the alarm, turn on some lights, etc. at 8am
in the morning on weekdays. What I didn’t consider was the fact that
I wouldn’t want this to happen when I was on vacation. I came home
from vacation to find a warm, inviting, insecure, well lit house that had
been that way for a week. I didn’t realize until then that I needed the
morning setup process to only apply when the alarm was set in sleep
mode which I set every night before I go to bed. That’s just one exam-
ple, but the point is that it has taken me literally YEARS of these types
of mistakes to iron out all the kinks.”

We posit that we can help users in predictably con-
trolling their automated homes by providing a primitive
to “fast forward” their homes. Using this primitive, users
will be able to observe all possible behaviors, under dif-
ferent times of day and environmental conditions, that the
home can exhibit when operating as per a given script. If
an unexpected behavior is observed, they can update their
script and repeat the process. This exploration should of
course be purely virtual; the actual state of the devices in
the home should not be impacted.

The primary challenge in developing a practical fast
forwarding primitive is correctly handling time. The be-
havior of an HA system depends heavily on time, not only
on exactly when certain events occur but also on the rel-
ative timing of events. To explore all possible behaviors,
in theory, we need to study all possible events at all possi-
ble times. Worse, even that is an ill-defined concept since
time is continuous. We describe in §3 why circumventing
this issue by discretizing time is unsatisfactory.

Prior work on systematically exploring program be-
havior, i.e., model checking [14, 23, 18, 27], does not ad-
dress this challenge and instead abstracts away time. For
instance, it assumes that timers of different periods can
fire at any time in any order. Similarly, comparisons in-
volving time can nondeterministically return true or false.
However, such an imprecise analysis of time is unaccept-
able for HA systems because, as we show later, it gener-

ates many states that are not reachable in practice.
In this paper, we develop a novel approach that uses

timed automata (TA) [2]1 to fast forward programs. A
TA is a finite state machine extended with virtual clock
variables. These virtual clocks are real valued (i.e., not
discrete) and advance at the same rate as wall clock time.
A TA transition can specify constraints on the clock vari-
ables and is taken only when the constraint is satisfied.
For instance, one can specify that a timeout transition
happens only when a particular clock variable is greater
than a constant. The analyzability of TAs arises from
the fact that, under certain conditions on the clock con-
straints, one can define a finite number of regions [2]. All
program states within a region are equivalent with respect
to the untimed behavior of a system. Thus, “all possible
times” can be safely translated to “all possible regions.”

While TAs have been extensively used for verifying
real-time systems [4, 28], this paper is motivated by the
need to analyze executable programs and not abstract mod-
els of them. Instead, we explore the timed behavior of a
program without the need to first derive its entire TA. This
exploration requires the set of temporal constraints that
appear in the program, which we extract using symbolic
execution [19] of program source code. We also develop
new techniques to boost the efficiency of this exploration.

We implement our approach in a tool called DeLorean
and use it to explore 10 real home automation programs.
We find that we can fast forward these programs at a rate
that is 3.6 times to 36K times faster than real time, while
maintaining temporal consistency. In two of the programs
that we inspected in detail, we found two instances each
of what appear to be unintended program behaviors.

While this paper is presented in the context of HA
control programs, our approach is general. In future work,
we plan to apply it to other kinds of systems where sys-
tematically modeling temporal behavior is important, e.g.,
OpenFlow controllers [7] and security protocols [10].

2. Motivation
Studies of home automation (HA) and forum discus-

sions reveal that users have serious difficulties in pre-
dictably controlling their automation technology [5, 17,
9, 25, 21]. To understand the kinds of the problems that
users face today, it helps to understand the nature of HA
systems. As illustrated in Figure 1, an HA system is usu-
ally composed of a controller and several devices such as
light switches, motion sensors, locks, alarms, etc. The
controller receives notifications from the devices (e.g.,
when motion is sensed), can poll them for their current
state (e.g., current temperature), and can send them com-
mands (e.g., turn on the light switch). It uses these capa-
bilities to coordinate the devices based on a control script
1This timed automata is different from the timed automata pro-
posed by Lynch and Vaandrager [22].

Figure 1: An example home automation system

that is provided by the user.2 In some HA systems, simple
aspects of control may be delegated to individual devices
(e.g., a light should turn on when a motion sensor broad-
casts that motion was detected), but even those systems
operate per a centralized control script.

While the scripting languages of different HA systems
differ, the control loop of all systems can be viewed as
a set of rules. Each rule has a trigger and associated ac-
tions. A trigger is either an event in the environment (e.g.,
sensed motion, toggled light switch) or a firing timer. Ac-
tions include setting the state of a device (e.g., turn on the
light) or a variable and setting timers. Actions can be con-
ditioned on device state, variable and timer values, and
time of the day. They can also include sleep commands.

Figure 2 shows an example script with three rules. As-
sume that the user wants to turn on the front porch light
when motion is detected and it is dark out, and to auto-
matically turn off this light after 5 minutes if it is daytime.
Rule 1 is triggered when motion is detected by the front
porch motion sensor. It turns on the light if motion is
detected twice within 1 second and the light level sensed
by a light meter is less than 20. The first condition is a
heuristic to help weed out false positives in motion sens-
ing, and the second ensures that light is turned on only
when it is dark. Rule 1 also updates the time when mo-
tion was last detected. Rule 2 is triggered when the front
porch light goes from off to on (either programmatically
or through human action). It sets a timer for 5 minutes.
Rule 3 is triggered when this timer fires, and it turns off
the light if the current time is between 6 AM and 6 PM.

The behavior of HA systems is difficult for users to
predict and control because of two factors:
1. Complex interactions across rules. Even if users can
reason correctly about individual rules, it can still be hard
for them to reason about the script as a whole because
of complex interactions across rules. These interactions
arise because of shared state across rules due to the state
of variables and devices. Thus, the program’s current be-
havior depends not only on the current trigger but also
on the current state, which in turn is a function of the se-
quence and timings of rules triggered in the past. This
dependence and the number of possible sequences makes
it difficult to predict the behavior of the script.
2By user, we refer to the person that is configuring the HA sys-
tem, who may be a resident of the home or a hired professional.

2

1 /* Rule 1 */
2 motionFrontPorch.Detected:
3 if (Now - timeLastMotion < 1 secs
4 && lightMeter.LightLevel < 20)
5 FrontPorchLight.Set(On);
6 timeLastMotion = Now;
7
8 /* Rule 2 */
9 frontPorchLight.StateChange:
10 if (frontPorchLightState == On)
11 timerFrontPorchLight.Reset(5 mins);
12
13 /* Rule 3 */
14 timerFrontPorchLight.Fired:
15 if (Now.Hour > 6 AM && Now.Hour < 6 PM)
16 FrontPorchLight.Set(Off);

Figure 2: An example home automation script

2. Verification difficulty. Another difficulty arises from
the fact that the behavior of the system depends on en-
vironmental factors (e.g., light level) and time of day.
How the program behaves when it is being configured
and tested can differ substantially from how it might be-
have in the future. This dependence makes verifying pro-
gram behavior difficult because it is hard to emulate all
possible combinations of future conditions.

As an example, even the simple script in Figure 2 has
a behavior that may not be expected by the user. Suppose
the light is turned from off to on at 9:00 PM either due to
motion sensing or by the user, triggering Rule 2. Then,
the user walks on to the front porch at 9:04:50 PM, which
triggers Rule 1. This user might expect the light to stay on
for at least 5 minutes, but the light goes off unexpectedly
ten seconds later (at 9:05 PM). The fix here is of course
to reset the timer in Rule 1, but that may not be apparent
to the user until this behavior is encountered in practice.

3. Goals and challenges
Our goal is to help users predictably control their homes

by providing a “fast forwarding” primitive. Given a start-
ing time and device states, this primitive predicts possi-
ble behaviors of a control script, for the specified dura-
tion in the future. It systematically explores all possible
sequences of triggers and environmental conditions that
can yield different behaviors. The exploration is virtual
in that the actual state of the devices is not impacted. Its
output is the set of unique device states that the home can
be in, along with the sequence of events (i.e., triggers, en-
vironmental conditions and actions) that lead to that state.

This primitive can help users identify if the home can
be in any unintended state (e.g., alarm is armed but the
back door is unlocked). In addition to unintended states,
the fast forwarding primitive can also help identify unin-
tended behaviors (e.g., light goes off a second after turn-
ing on) along any of the explored sequences of events. If
an unintended state or behavior is found, the associated
sequence of events that led to it can help identify the flaw
in the script. At that point, the script can be updated and

the process repeated.
In a home with many devices, it may not be feasible

to browse through all possible states. In this paper, we
assume that users can express state or behavior invariants
using the same tools that they use to express the control
script.3 These invariants can correspond either to general
safety conditions or to anomalies observed in practice—
the former lends confidence in the configuration of the
home, and the latter helps diagnose the observed anoma-
lies. Inspection of our HA scripts suggests that users of-
ten know the invariants they want to maintain (§7.5). In
future work, we will investigate if reasonable invariants
can be automatically generated based on the functional-
ity and location of devices in the home.

The difficulty in building a practical fast forwarding
primitive for an HA control system is the enormity of the
search space of possible sequences of events. This stems
from two factors:
1. Dependence on time. The behavior of an HA system
depends intimately on time, both on the absolute time and
the relative timing of triggers. For instance, the behav-
ior of the script in Figure 2 depends on the time of day
and on how close in time two motion events fire. For a
comprehensive exploration, all possible timings must be
considered.

Further, “all possible times” is ill-defined because time
is continuous. We could discretize time and assume that
events happen only at discrete moments. But picking the
granularity of discretization is tricky—if it is too fine, the
exploration will have too much overhead as we would be
exploring too many event occurrences; if it is too coarse,
the exploration will miss event sequences that occur at
finer granularity in practice and lead to different behav-
iors.4 Without an ability to correctly reason about time,
there appears to be no satisfactory way to pick a granu-
larity that works for all events and programs [2].
2. Dependence of external factors. The behavior of
an HA system depends also on external factors that are
not captured in program variables or triggers. These ex-
ternal factors could be values obtained through network
services (e.g., querying a Web service for local tempera-
ture) or values sensed by devices in the home (e.g., light
level). For a comprehensive evaluation, all combinations
of values of external factors must be explored. So, if a
program depends on external temperature and light level,
for every trigger, its response must be explored with all
combinations of temperature and light levels.

As mentioned in §1, existing work on exploring pro-
gram behavior does not address these challenges. We de-
scribe our approach next.

3Most users, residents or professionals, who configure HA
scripts today are fairly technically savvy [5, 21].
4We initially tried this discretization-based approach but had to
abandon it after we ran into these problems.

3

Figure 3: A TA for the program in Figure 2

4. Our approach
We leverage timed automata [2] to reason systemat-

ically about time and use program source code analysis
techniques to scalably explore the impact of external fac-
tors. Our approach is not specific to HA systems and can
be used to explore the behavior of any control program
where correctly modeling time is important. We outline
our approach in this section and describe in the next sec-
tion how it is used in DeLorean to fast forward HA sys-
tems. We first provide a brief background on TAs.

4.1 Background on timed automata
TAs are finite state machines extended with real-valued

virtual clocks (VC). The state of a TA consists of the state
of the underlying finite state machine together with the
values of all VCs. Thus, a TA contains an unbounded
number of states. A TA transition changes the machine
state and resets a set of VCs. Each transition specifies
a set of clock constraints and is enabled from states that
satisfy the constraint.

Figure 3 shows a TA that captures the behavior of the
script in Figure 2. There are four states, corresponding
to the Cartesian product of whether the front porch light
(FPL) is on or off and the current light level (CLL). The
TA uses three virtual clocks to capture the time since i)
the last motion (tlm), ii) the light was turned on (tfpl), and
iii) midnight (td). Transitions are labeled with their trig-
gers (underlined), the clock constraints (in parenthesis),
and the clocks that are reset (in brackets). Motion denotes
motion, and FplOn and FplOff denote the physical acts of
manipulating the light. Some transitions have multiple la-
bels, one for each situation in which the TA can go from
the source to the sink state. Transitions that have no trig-
gers are taken as soon as the clock constraints are met.

The key property of TAs that is of interest to us is that
they provide a systematic way to explore a TA if VC con-
straints obey certain conditions. The conditions are that
arithmetic operations cannot be performed between two
VCs and a VC cannot be involved in a multiplication or
division operation. But adding or subtracting constants to
VCs is allowed, and so is comparing two VCs (potentially
after adding or subtracting constants).

Under these conditions all possible behaviors of the
TA can be explored without the need to consider “all pos-

sible times.” Time can be divided into regions of equiv-
alence such that the exact timing of a trigger within the
region does not matter. These regions are defined using
constraints on VCs. How these regions emerge can be in-
tuitively understood if one observes that what matters for
the TA in Figure 3 is, after a motion event, whether the
succeeding motion event occurs before or after 1 sec. The
exact timing of the second motion event is not critical.

For space constraints, we do not describe here how
these regions can be derived, but we point out their two
properties that are relevant to our work. The size of the
region is proportional to the greatest common denomina-
tor (GCD) of constants used across all clock constraints.
Regions get exponentially smaller as VCs are added to
the TA, because each VC imposes additional constraints
on what can fall within a region.

Once the regions are known, fully exploring the TA’s
behavior requires 1) exploring all possible transitions, in
response to all possible triggers, from the current state
that can be taken given VC constraints; and 2) explor-
ing exactly one delay transition in which there is no state
transition but all the VCs advance by the same amount.
This amount is such that the time progresses to the im-
mediately succeeding region.

4.2 Exploring program behavior using TA
We are given a control program and its starting state

as input, and our goal is to fast forward it for a given
duration. The output of this process is all possible states
that the program can be in after this duration.

We assume that the program can be modeled as a TA.
In such modeling, all timers and variables that store time
are, in effect, VCs. To leverage time regions, these VCs
must satisfy the conditions mentioned above. We believe
that these conditions are met in many contexts. They are
certainly met in the eight different kinds of HA systems
that we study in §7. The scripting languages of these sys-
tems cannot even express complex clock operations.

If we were given or if we could derive the entire TA
corresponding to the program, we could explore its be-
havior using existing methods [28, 4]. What we have in-
stead is a program. The TA corresponding to all but the
smallest of control programs will be extremely large as
it needs to capture the program logic and its response to
possible events and environmental conditions.

Thus, we explore the TA dynamically (akin to how
FSA-based model checkers dynamically explore the FSA
instead of deriving the complete FSA of the program).
Beginning from the starting program state, we repeatedly
derive successor states that result from triggers or delay
transitions. For delay transitions, we need to know the
timed regions in advance, so we can compute the delay
amount. Fortunately, constructing these regions does not
require the complete TA; we only need the constraints on

4

1: EndWC=Time.Now + FFduration; . How long to explore
2: S0.WC = Time.Now; . Set the wall clock
3: ES = {}; . explored states
4: US={S0}; . unexplored states
5: while US 6= φ do
6: Si = US.pop();
7: ES.push(Si);
8: for all e in Events, Si.EnTimers do
9: for all env in Environments do

10: So = Compute(Si, e, env);
11: if !Similar(So, (US ∪ ES)) then
12: US.push(So);
13: end if
14: end for
15: end for
16: if Si.EnTimers = φ then
17: delay = DelayForNextRegion(Si.Region);
18: if Si.WC + delay > EndWC then
19: continue;
20: end if
21: So = Si.AdvanceAllVCs(delay);
22: for all timer in So.Timers do
23: if timer.dueTime >= So.WC then
24: So.EnTimers.Push(timer);
25: end if
26: end for
27: if !Similar(So, (US ∪ ES)) then
28: US.push((So, t));
29: end if
30: end if
31: end while

Figure 4: Pseudocode for basic TA exploration.

the values of virtual clocks [2]. We extract these con-
straints using analysis of program source.

Figure 4 shows how we comprehensively explore pro-
gram behavior. Assume that we want to fast forward for
FFDuration and the starting state of the program is S0.
Program state includes the values of its (non-time) vari-
ables, VCs, and timers that are enabled (i.e., ready to fire).
We do a breadth-first exploration using a queue of unex-
plored states. Obtaining all successors of a state entails
firing all possible events and all enabled timers, under all
possible combinations of values of environmental factors
(Environments). If a successor state is not similar to any
that had been seen before, we add it to unexplored states.
Two states are similar if their variable values and set of
enabled timers are identical and if their VC values map
to the same time region; it is not necessary that the VC
values be identical since the exact time within a region
does not matter.

If the state being explored has no enabled timer, it
is eligible for a delay transition that represents a period
of time where nothing happens but time advances to the
succeeding region; states with enabled timers need to fire
those timers before time can progress. We ignore the suc-
cessor if this delay takes us past EndTime. Otherwise, the
successor state is computed by advancing all VCs. We
treat wall clock time, which is virtualized during explo-
ration, as any other VC except that it never resets; it tracks
the progress of absolute time. We then check if any of the

timers have been enabled because of this delay and mark
them as such. The construction of time regions guaran-
tees that no timers are skipped during the delay transition.

We make a few observations about the exploration above.
First, it assumes that the environment is highly dynamic—
the value of each factor can vary over its entire range at
any given time and two proximate (in time) values can
differ arbitrarily. In general, however, an environmen-
tal factor (e.g., temperature) may vary within a smaller
range at a given time of day and it may also be slow
moving such that two proximate values differ only by a
small amount. It is straightforward to limit the explo-
ration to more realistic models of environmental condi-
tions. Building such models (e.g., through historical data)
is a subject of future work.

Second, the exploration assumes that the processing
of a trigger is instantaneous and deterministic, which is
common in HA systems since actions in a rule are sim-
ple. If the system is non-deterministic, we can account for
that in exploration just like existing model checkers by
exploring the different executions that can transpire. An-
other potential source of non-determinism is race condi-
tions between simultaneous triggers, but we already han-
dle that since we explore all possible trigger sequences.

4.2.1 Predicting successor states

The basic TA-based exploration above correctly han-
dles time but is too slow to be practical. We use three
techniques to make it practical. Our first technique re-
duces the time to obtain successor states of a state being
explored. To explain it, we first define the notion of clock
personality. A program state’s clock personality w.r.t. a
clock constraint is 0 or 1, depending on whether its VC
values satisfy the constraint. Its clock personality w.r.t.
a set of constraints captures its personality w.r.t. individ-
ual constraints. Two sets of VC values can have identical
personalities even if they are not in the same region.

Consider two non-similar program states, S1 and S2
with identical variable values, enabled timers, and clock
personalities w.r.t. to clock constraints in the program. In
this case, we observe that the behavior of S2 to a stim-
ulus (i.e., the combination of trigger and environmental
conditions), will be identical to that of S1. This obser-
vation enables us to predict the successors of S2, instead
of computing them, if we already obtained the successors
of S1. The predicted successor of S2 for a given stim-
ulus has the same variable values and enabled times as
the corresponding successor of S1. It, however, does not
inherit the VC values of S1’s successor. It retains its own
VC values, except that all virtual clocks that were reset
for S1 in response to the stimulus are reset.

Successor prediction is much faster than successor com-
putation. Prediction requires a copy of state and modify-
ing its VC values, which we can make even more effi-
cient through appropriate data structures (§5). Computa-

5

Figure 5: Overview of DeLorean

tion requires deserializing the parent’s state, running the
program and subjecting it to the stimulus, and then seri-
alizing the successor’s state. These are costly operations.

4.2.2 Cutting down on environmental factors

The following observation significantly reduces the
number of environmental factors that must be explored.
The values of environmental factors can vary over a wide
range; in theory, each possible value should be explored
as program behavior can differ for different values. But
in practice, not every single value leads to a different out-
come. A range of values can have an identical impact.
For instance, the light level in Figure 2 can vary from 0
to 99; but instead of behaving differently for each possi-
ble value, what really matters is whether the light level
is from 0-19 or 20-99. Using one value in each range is
sufficient to explore all possible behaviors.

A special case of this observation is that some envi-
ronmental factors may not matter at all for processing a
trigger. For instance, light level does not matter for Rules
2 and 3 in Figure 2. We thus do not need to explore this
factor at all when exploring their triggers.

We use symbolic execution [19] of the program source
code, in which we process each rule to recover the combi-
nations of values of external factors that lead to different
outcomes when processing a rule. More details are pre-
sented in the next section.

4.2.3 Independent control loops

Our third optimization is based on the observation that
large control programs may often be composed of mul-
tiple, independent control loops that manipulate differ-
ent parts of the program state. For instance, in the HA
context, thermostats and furnaces may be controlled by a
climate control loop, and locks and alarms may be con-
trolled by a security control loop, and these two may ma-
nipulate different variables and clocks. In such cases, we
can explore the loops independently, instead of exploring
them jointly. Separate exploration is faster because joint
exploration considers the Cartesian product of the values
of independent variables and clocks. We use taint track-
ing to identify independent loops.

5. System design
We now describe the design of DeLorean which uses

the approach above in the context of HA systems. The
primary input that the user provides to DeLorean is the
duration for which the system should be fast forwarded

Notifier Non-notifier
Event sensor Trigger -
Value sensor Trigger, prog. variable Env. factor

Actor Trigger, prog. variable Env. factor

Table 1: Device modeling in DeLorean.

(FFDuration). The user can also specify three optional in-
puts. The first is an alternative HA script whose behavior
should be explored. By default, we extract and use the
script currently running at the controller. The second is
a list of invariants on device states and system behavior,
which should be satisfied at all times. They are speci-
fied in a manner similar to the if conditions in the rules.
The third is the wall clock time and starting state of (a
subset of) devices and variables from which exploration
should begin. By default, current wall clock time and de-
vice states, extracted from the controller, are used.

The output of DeLorean is all the unique states that
the devices can be in after FFDuration. If invariants are
specified and are violated by any state during the explo-
ration, we also output that state. In addition, DeLorean
outputs the path that leads to each state, where the path
is the timestamped sequence of triggers, along with the
values of environmental factors during those firings.

As Figure 5 shows, the operation of DeLorean has
three stages. First, the front end converts the HA script to
a program in which devices and clocks have been virtu-
alized. Second, pre-exploration analyzes this program to
recover information required for the optimizations men-
tioned above. The final stage is exploration itself. While
the front end is specific to the type of the HA system
and its scripting language, the other two stages are com-
pletely independent. In fact, these stages are not even
HA-specific and can be applied to any control program in
which interactions with external world have been virtual-
ized. We now describe each stage in more detail.

5.1 Stage 1: Front end
The main goal of the front end is to transform the HA

script to a program in which devices have been virtual-
ized and time-related activities have been expressed using
VCs. The resulting program does not need access to the
physical devices and can be run on any computer (e.g.,
in the cloud). The behavior of this program is otherwise
identical to the HA script that runs on the HA controller
with access to real devices.

5.1.1 Virtualizing devices

When modeling devices in the program, our goal is to
model their externally observable state and actions, not
their internal behavior which can be arbitrarily complex.
We model devices using one or more variables or envi-
ronmental factors in the program. First consider simple
devices such as light switches and motion sensors whose
current state can be represented using one value. The

6

operation of such devices can be classified as: i) event
sensors which sense events in the environment such as
motion or smoke; ii) value sensors which sense envi-
ronmental conditions such as temperature or light level;
and iii) actors such as light switches and locks which do
not sense the environment but their state can be changed
programmatically or by a human. Devices can also be
classified as those that send notifications when their state
changes and those that need to be polled by the controller
when their current value is needed. Event sensors always
send notifications when events are detected.

Table 1 summarizes how we model each case. The
simplest case is that of event sensors, which can appear
only as a trigger in a rule. We do not need to do any-
thing special for an event sensor. If its trigger does not
already exist in the script, the script must be ignoring its
events and we can ignore it as well. If the trigger exists, it
becomes one of the triggers in the transformed program.
For value sensors and actors that do not send notifica-
tions, we treat attempts to query their value as a query
for an environmental factor. This query returns values in
the valid range for that device which depends on its type
(e.g., a dimmer varies between 0–99).

For value sensors or actors that send notifications, HA
controllers keep an up-to-date view of its value which
is used when the device state is queried. The value up-
date process at the controller is automatic and not explicit
in the script. To model it, we introduce an additional
rule and program variable. The rule’s trigger is a noti-
fication from the device, and its action updates the vari-
able’s value to the notified value. If a rule with the same
trigger already exists in script, we merge the two rules
by prepending the variable-update action to the existing
rule’s actions. Queries for device state read this variable.

More complex devices such as a thermostat, which has
an actor functionality for target temperature and a value
sensor functionality for current temperature, are modeled
as multiple single-valued devices. We currently assume
that the values of a device’s sub-functions are indepen-
dent, which works well for the devices that we have en-
countered in our work, but may not work for all devices.

A related limitation of our modeling is that we assume
that there are no dependencies across device values in the
home. But in practice, for instance, the value sensed by
a light meter may be impacted by the state of a nearby
light. In the future, we will extend our device models
to include relationships between the multiple values of a
given device and allow users to provide models of their
home that capture relationships across devices.

Finally, our modeling strategy cannot model extensi-
ble devices such as smartphones and PCs. But such de-
vices are incorporated in current HA systems in a limited
manner, as a remote control for other devices. They ac-
tivities they can trigger can also be triggered by humans.

Our exploration already considers such triggers.

5.1.2 Introducing virtual clocks

HA scripts do not contain explicit references to VCs,
but as mentioned previously, all time-related activities in
effect manipulate VCs. We make these references explicit
so time is properly handled in later stages.

There are three kinds of activities in HA scripts that
are time related. The first is measuring the gap between
two events of interest (e.g., consecutive motion events).
Here, a variable (e.g., timeLastMotion in Figure 2) is used
to store the time of the first event, which is then subtracted
from the wall clock time of the second event to obtain the
gap. To capture this activity using a VC, we set the VC
to zero when the first event occurs; the value of the VC
when the second event occurs yields the delay, since VCs
progress at the same rate as the wall clock unless reset.

The second time-related activity is a timer (e.g., timer-
FrontPorchLight in Figure 2). To capture this activity using
a VC, we reset the VC when the timer is set, and queue a
timer trigger to fire after the desired delay, after removing
any previously queued event.

The third time-related activity is a sleep call, in which
some actions for a rule are taken after a delay (e.g., turn
on fan, sleep 30 secs, turn it off). We capture this activity
by introducing a new timer and a rule. The actions of the
new rules correspond to post-sleep actions of the original
rule. The sleep and post-sleep actions in the original rule
are replaced by a timer that fires after the desired delay.
Multiple sleep calls in a rule are handled similarly, by
splitting across rules and using timers to link the rules. In
our treatment of sleep calls, if the trigger for the original
rule occurs again before the timer set by an earlier occur-
rence fires, the post-sleep actions that correspond to the
earlier trigger will not be carried out (because the earlier
timer event will be dequeued). This behavior is consistent
with the semantics of HA systems.
Reducing the number of clocks The number of VCs in
the program has a significant impact on exploration effi-
ciency because the size of regions shrinks exponentially
with it. When converting an HA script into a program,
we should introduce the minimum number of VCs. We
exploit two opportunities. First, consider cases where
the actions in a rule have multiple sleeps, e.g., action1;
sleep(5); action2; sleep(10); action3. Instead of using two
timers (one per sleep), we can use only one because the
two sleeps can never be active at the same time [11]. To
retain the original dynamic behavior, we introduce a new
program variable to track which actions should be taken
when the timer fires. In the example above, when the rule
is triggered, after action1 is taken, this variable is reset to
0 and the timer is set to fire after 5 seconds. When the
timer fires: i) if the variable value is 0, action 2 is taken,
the variable is set to 1, and the timer is set to fire after 10
seconds; ii) if the variable value is 1, action 3 is taken.

7

Second, HA scripts often have daily activities for sev-
eral different times of the day (e.g., sunrise, an hour after
sunrise, sunset, midnight, etc.). The straightforward way
to translate such a script is to introduce a timer per unique
time. But a more efficient way is to use just one timer to
conduct all such activities, using a method similar to the
above — introduce an additional program variable to cy-
cle through the activities of the day. The variable’s value
is reset after the last activity is conducted.

5.2 Stage 2: Pre-exploration
This stage analyzes the program produced by the front

end to recover the information needed for constructing
timed regions and implementing the optimizations of §4.

It primarily uses symbolic execution [19] of program
source. Symbolic execution simulates the execution of
code using a symbolic value σx to represent the value of
each variable x. As the symbolic executor runs, it updates
the symbolic store that maintains information about pro-
gram variables. For example, after the assignment y=2x
the symbolic executor does not know the exact value of
y but has learned that σy=2σx. At branches, symbolic
execution uses a constraint solver to determine the value
of the guard expression, given the information in the sym-
bolic store. The symbolic executor only explores the branch
corresponding to the guard’s value as returned by the con-
straint solver, ensuring that infeasible paths are ignored.
If there is insufficient information to determine the guard’s
value, both branches are explored. In this way, a tree of
all possible program execution paths is produced. Each
path is summarized by a path condition that is the con-
junction of branch choices made to go down that path.

We symbolically execute the program’s main control
loop (EventFired) which is the starting point for all pro-
cessing activity. We configure the symbolic execution to
treat the following entities as symbolic: program state
(variables and clocks), the return value of each external
function call, and the two parameters of EventFired. There
is a separate symbol for each external function call in-
stance even if the calls are to the same function; two calls
to the same function can return different values.

The output of the symbolic executor is the set of pos-
sible paths for each possible trigger. In general, symbolic
execution may not be able to cover all paths, but the code
to process a trigger in HA programs tends to be simple.
We find that all paths are covered for the programs we
study in §7. If full coverage is not reached for a trigger,
our exploration may miss some behaviors.

For each path, we obtain the i) constraints that must
hold for the program to traverse that path, and ii) the pro-
gram state that results after its traversal. The constraints
and the resulting program state are in terms of input sym-
bols, the entities we made symbolic in the configuration.

We can now recover the following information.

Virtual clock constraints. These are required for con-
structing time regions and for predicting successor states.
We obtain them from the output of symbolic execution by
taking the union of constraints on VCs along each path.
Additionally, program statements that reset a timer x to k
secs are essentially clock constraints of the form x ≥ k.
We extract such statements from the program source and
add corresponding constraints to the set.
Relevant values of environmental factors. We need to
identify which values of an environmental factor lead to
different outcomes when processing a rule. For this, we
look at the path constraints and resulting program states
corresponding to the rule. If the input symbol for a fac-
tor is missing from all constraints and resulting program
states, it is completely irrelevant for exploring the rule.

For factors that are relevant, constraints on the input
symbols along each path reflect the ranges of values for
each factor that take the program down the path. We can
use any example values that satisfy the constraint, which
we obtain using a constraint solver.

However, there is a distinction between traversing the
same path and resulting in the same state. A program
such as var=CurrTemp() traverses the same path for all val-
ues of CurrTemp(), but it produces different resulting states.
In the presence of such data dependencies (as opposed to
only control dependency), we must explore all values that
satisfy the path constraint. We have not encountered such
dependencies in our programs.5

Independent control loops. We can use the output of
symbolic execution for taint tracking as well. We analyze
the program state that results along each path. If the fi-
nal value of a variable along any path is different from
its (symbolic) input value, that variable is impacted along
the path. This impact depends on the input symbols that
appear in the output value (data dependency) and path
constraints (control dependency). The variables corre-
sponding to those input symbols are tainting the variable.

This taint information is used to identify independent
sets of variables and VCs. Two variables or VCs are
deemed dependent if either they taint each other in the
program, or they occur together in a user-supplied invari-
ant (as we must do a joint exploration in this case as well).
After determining pairwise dependence, we compute the
independent sets that cover all variables and VCs.

5.3 Stage 3: Exploration
This stage implements the method outlined in §4. It

starts by running the program and initializing it to the
starting state. We then take the checkpoint of the pro-
5The HA scripting languages that we are aware of do not allow
the expression of such data dependencies. To “remember” the
value of an external factor, one can create a control dependency.
Instead of var=CurrTemp, we can use if (CurrTemp()< 20) var=1;
elsif (CurrTemp()< 40) var=2; This restores one-to-one map-
ping between paths and states.

8

gram, which involves serializing its internal state. The
checkpoint captures the values of all variables in the pro-
gram, including time related variables, and the times when
various timers will fire. As mentioned previously, we
also virtualize the wall clock time during exploration, with
its initial value set to the desired start time.

For efficiently operating on program state, we main-
tain several pieces of additional information for each state.
These include three different kinds of hashes: i) of their
variable values and enabled timers; ii) of the time re-
gion the VC values fall in, which is a combination of the
hashes on clock constraints that define the region; iii) of
the clock personality of the VC values.

The combination of the first two hashes lets us quickly
determine if two states are similar; we cannot do a direct
comparison of checkpoints, and restoring and peeking in-
side the checkpoint for similarity checks is costly. The
combination of the first and third hash lets us quickly de-
termine if a state’s successor can be predicted using an-
other, already explored state.

We also maintain separately a table that contains the
values of the VCs of a state. Many states differ only
in terms of their VC values—the successor state after a
delay transition differs from the parent only in terms of
VC values, so does the successor that is predicted from
another state. Maintaining this table separately lets us
quickly obtain these successor states.

Maintaining this table also helps us reduce the mem-
ory footprint. Two states that differ only in their VC val-
ues can share the checkpoint, while having separate ta-
bles. However, this implies that the VC values in a table
can be out of sync with those embedded in the check-
point. Thus, when restoring a state, we update its VC
values from the table, immediately after deserialization
and before any other processing begins.

Finally, to quickly compute the amount of delay needed
to advance to the successor region, we use the abstraction
technique proposed by Clarke et al. [8]. In this technique
the VC values are abstracted in terms of their integral and
fractional components. One difference in our implemen-
tation, motivated by the need to maintain a precise virtu-
alization of the wall clock time, is that we do not cut off
the fractional components.

6. Implementation
We implemented DeLorean in C#. We developed front

end modules for two HA systems—ISY [16] and ELK [12].
We chose these two because of their popularity. Of all
the HA systems that we study in §7, ISY has the most ex-
pressive scripting language. For both systems, we parse
scripts with a parser that was developed using ANTLR [3].
The parser produces a C# program that captures the be-
havior of the script and contains additional variables, rules,
and actions needed for modeling devices.

type #rules #devs SLoC #VCs GCD (s) #trans
P1 OmniPro 6 3 59 2 7200 72
P2 Elk 3 3 75 2 1800 123
P3 MiCasaVerde 6 29 143 2 300 178
P4 Elk 13 20 193 5 5 19.7M
P5 ActiveHome 35 6 216 14 5 78.7K
P6 mControl 10 19 221 4 5 51K
P7 OmniIIe 15 27 277 6 60 3.6M
P8 HomeSeer 21 28 393 10 2 8.1M
P9 ISY 25 51 462 6 60 121M

P10 ISY 90 39 867 6 10 256M

Table 2: The HA programs we study

We use Pex [26] to symbolically execute the main
event loop of this C# program. Pex is a modern symbolic
execution engine that mixes concrete and symbolic exe-
cution (”concolic” execution) to boost path coverage and
efficiency. The bulk of our code implements the explo-
ration stage, and it was developed from scratch. We could
not use one of the existing tools for exploring TAs [28, 4]
because we do not have the complete TA for the program.

7. Evaluation
This section evaluates DeLorean. We show its perfor-

mance, the benefit of its prediction-based optimization,
compare it to alternative approaches, and finally show
that it can help find unintended behaviors.

7.1 Dataset
We evaluate DeLorean using real HA scripts. We so-

licited these scripts on a mailing list for HA enthusiasts.
We picked the 10 scripts shown in Table 2. We selected
them for the diversity of HA systems and the number of
rules and devices. We see that most installations have
tens of rules and devices, with the maximums being 90
and 51. This points to the challenge users face today in
predictably controlling their homes. Collectively, these
installations had 19 different types of devices, including
motion sensors (an event sensor), temperature sensors (a
value sensor), sprinklers (an actor), and thermostats (a
multi-value device).

The table shows the source lines of code (SLoC) and
the number of VCs in the program obtained after trans-
formation in the first stage. Systems for which we have
not implemented a front end yet were transformed manu-
ally. We see that most installations have 5 or more VCs,
indicating a heavy reliance on time.

The table also shows the GCD (greatest common de-
nominator) across all constants in VC constraints in the
program. The GCD can be coarsely thought of as the de-
tail with which the program observes the passage of time.
Since the size of the regions depends on it, it also heavily
influences the exploration time.

7.2 Fast forwarding performance

9

Figure 6: Latency of fast forwarding for an hour.

The time it takes to fast forward an HA program is
important because it reflects the amount of time the user
will have to wait to determine if the input script behaves
as intended. To study this performance, we run DeLorean
over all 10 programs. We conduct 20 trials, each with ran-
domly selected starting state and time (since program be-
havior depends on both). All experiments use an 8 Core
2.5Ghz Intel Xeon PC with 16GB RAM.

Figure 6 shows the time in seconds it takes to fast for-
ward one hour. The error bars correspond to minimum
and maximum time observed across trials, and the labels
above the bars show the fast forwarding rate (i.e., one
hour divided by the time taken).

We see that DeLorean can fast forward real programs
by 3.6 times to 36K times faster than wall-clock time. A
majority of the programs can be fast forwarded in under
a minute, which can enable a fast explore-debug cycle.

We also see that the fast forwarding rate is roughly but
not strictly dependent on LoC in the program. P4 has the
second slowest rate, even though its LoC is fourth small-
est. Here, the reason is that the fast forwarding speed de-
pends on the biggest control loop in the program, and in
P4’s case this loop is bigger (more variables and clocks)
than those of P5-P7.

To provide a sense of the complexity of fast forward-
ing, the last column in Table 2 shows the number of tran-
sitions that we needed to fast forward for an hour. Di-
viding by the latency of fast forwarding, we can estimate
that DeLorean makes 200K transitions per second. As we
will show below, being able to predict successor states is
key to supporting this high rate.

7.3 Benefit of predicting successor states
Predicting successor states is a general optimization

for dynamically exploring TAs. Its effectiveness, how-
ever, depends on how often we encounter non-similar states
with identical clock personalities, variables, and enables
timers. To evaluate it, Figure 7 plots the percentage re-
duction in latency when prediction is used compared to
when it is not used. We see that for the smallest of our

Figure 7: Benefit of predicting successor states.

Figure 8: Invalid program states generated by un-
timed exploration.

programs, prediction leads to slower exploration. This
is because in such cases the overhead associated with
checking for past states that can be used for prediction
is greater than any benefit it brings.

However, for larger programs, prediction brings sub-
stantial benefit. For P9, prediction helps cut the explo-
ration time by 95%. That is, exploring without prediction
is slower by a factor of 20.

7.4 Comparison with alternatives
We now compare our TA-based systematic exploration

to two other alternatives—untimed exploration and ran-
domized testing. We show that the former generates many
invalid states, and the latter misses many valid states.

7.4.1 Untimed exploration

As mentioned earlier, current model checkers ignore
time and can thus generate invalid program states that
will not be generated in real executions. If there were just
a few invalid states, it is conceivable that users would be
willing to put up with occasional incorrectness. However,
we find that untimed exploration results in many incorrect
states. Figure 8 shows the percentage of additional, in-
valid states produced by untimed model checking,6 when
6This comparison based on invalid states alone hides one addi-

10

beginning from the same starting state as DeLorean and
running until it cannot find any new states. Untimed ex-
ploration differs from DeLorean in three aspects: i) in
addition to successors based on device notifications, each
state has successors based on each queued timer, indepen-
dent of the target time of the timer; ii) if a comparison to
time is encountered during exploration both true and false
possibilities are considered; iii) there are no delay tran-
sitions. The graph averages results over 10 paired trials
with different starting inputs, and the error bars shows
maximum and minimum percentage of invalid states.

We see that untimed exploration produces a significant
number of invalid states. For most programs, the number
of invalid states is of the same order as the number of
valid states produced by DeLorean.

Closer inspection of results from untimed exploration
provides insight into how some invalid states are pro-
duced. One common case is where devices such as lights
are programmed to turn on in the evening, using a timer.
Because timers can fire anytime, untimed model check-
ing incorrectly predicts that the light can be off in the
evening, which will not happen in practice. Another case
is where certain actions are meant to occur in a sequence,
e.g., open the garage door after key press and then close
it 5 minutes later. With DeLorean, these actions are car-
ried out in the right sequence, correctly predicting that
the door is left in the closed state. But both possible se-
quences are explored by untimed exploration, one which
incorrectly predicts that the garage door is left open.

These results confirm the limitation of using untimed
exploration for HA systems. Untimed exploration can
produce many false positives, that is, unintended states
that will not arise in practice. Users will likely find it hard
to separate these false positives from any true positives.

As an aside, comparing the number of needed transi-
tions in timed and untimed exploration provides a gauge
for the additional complexity that systematically handling
time brings. Across all programs, we find that untimed
exploration needs 82% fewer transitions compared to fast
forwarding for an hour.

7.4.2 Randomized testing

Another alternative to our approach is randomized test-
ing in which the program is subjected to random sequences
of triggers to uncover unintended states and behaviors.
Unlike untimed exploration, such testing maintains tem-
poral correctness but it does not systematically explore
program behavior.

To evaluate the benefit of systematic exploration, we
subjected our HA programs to randomized testing. We
generated a random sequence as follows. At each step,

tional limitation of untimed model checking. Untimed explo-
ration is incapable of verifying program behaviors that depend
on time (e.g., light turned off a second after turning on).

Figure 9: States missed by randomized testing.

we randomly choose an input from the set of delay plus
device notifications. If a device notification is chosen, the
corresponding rule in the program is processed. If there
are environmental factors in the rule’s actions, we pick
their values randomly. If delay is chosen as the input,
the amount of delay is randomly chosen between 0 and
the GCD of the constants in clock constraints (to match
the granularity of timed regions, which approximates the
time granularity of program’s operation). We then ad-
vance all VCs by this amount. If a timer becomes ready
to fire along the way, we process its corresponding rule.
We repeat such steps until the virtual wall clock time ad-
vances by an hour.

We generate and test the program with multiple se-
quences. For a fair comparison, we hold constant the
CPU time taken for exploration—we conduct random-
ized testing for the amount of real time it takes for De-
Lorean to explore an hour from the same starting input.

Figure 9 plots the percentage of states that are reached
by DeLorean but missed by randomized testing. The re-
sults are aggregated over 10 paired trials with different
starting states and times, and the error bars denote the
maximum and minimum. We see that a significant frac-
tion of states can be missed with randomized testing of
HA programs, which points to the need for systematic
exploration to uncover unintended states and behaviors.

7.5 Unintended behaviors
Since we are not aware of the user intent that under-

lies our HA programs, we are unable to systematically
examine how often unintended states or behaviors are
found by DeLorean. But to informally gauge the ability
of DeLorean to find unintended behaviors, we conduct
an informal analysis based on comments on rules in the
scripts. The comments can sometimes suggest invariants
that the user wants to maintain.

We inspected comments in two of the scripts (P9, P10),
and turned them into invariants for which DeLorean should
report violations. We found four violations.
P9-1 A comment indicated that the lights in the back

11

of the house should turn on if motion is detected in the
evening, defined as the period from sunset to 11:35PM.
But DeLorean found that the lights could be on even if
there was no motion. When we inspected the triggers
that produced this behavior, we found a rule that appears
misprogrammed. Instead of using conjunction as the con-
dition to turn on the light (sunset < Now < 11:35PM &&
MotionDetected), it was using disjunction (sunset < Now <

11:35PM || MotionDetected)
P9-2 A comment indicated that front porch light should
stay on from half hour after sunset until 2AM. There were
two rules to implement this invariant, one that turned the
light on at a half hour after sunset and one that turned it
off at 2AM. But DeLorean found cases where the light
was off in that time window. Inspection revealed that
there was another rule in the script to turn off the light
at 7:45PM. Thus, the invariant is violated if sunset occurs
after 7:15PM (which does happen where the user of P9
resides). In HA scripts the time of the sunset is either
configured statically, or fetched from a Web service. This
scripts falls in the latter category, and we model sunset
as an external factor and explored its entire valid range.
Exploring values higher than 7:15PM uncovered the vio-
lation. An additional comment in the script suggests that
the 7:45PM rule was meant to exist temporarily but the
user forgot to remove it.
P10-1 A comment indicated that the user wanted to turn
on the dimmer switch in the master bath room when mo-
tion is detected. But we found instances where the mo-
tion occurred but the dimmer was not on. Inspection re-
vealed that the user’s detailed intent, implemented using
two rules, was to turn on the dimmer half-way when mo-
tion occurs during the day, and to turn it on fully when
its detected during night. But the way day and night time
periods were defined left a 2 minute gap where nothing
would happen in response to motion.
P10-2 A comment indicated that the user wanted to treat
three devices identically, that is, they should be either all
on or all off. Inspection of a violation of this invariant
showed that while three of the four rules that involved
these devices correctly manipulated them as a group, one
rule had left out one of the devices.

These findings suggest that DeLorean can indeed help
users find unintended behaviors in their scripts. We also
note that during this exercise, we found several commented
out rules and comments that suggest users often “test drive”
their rules to verify their behavior. DeLorean can help
make this test drive systematic, by verifying behavior un-
der a wider variety of conditions (time of day and envi-
ronmental factors).

8. Related work
Our work builds on the progress that the research com-

munity has made towards verifying the behavior of real

systems. Three threads of work are particularly relevant.
Model checking programs One class of techniques is
model checking in which programs are modeled as an
FSA and their behavior is comprehensively explored [14,
23, 18]. Recent work, like us, also combines model check-
ing with symbolic execution [27, 6]. However, most model
checking work ignores time. It assumes that timers can
fire any time after they are set and all time comparisons
can yield true or false with equal probability. This ap-
proach works well for programs that have a weak depen-
dence of time, but the behavior of control programs that
we study is intricately linked with time. Ignoring time
in such programs can lead to exploring infeasible exe-
cutions, and it cannot discover unexpected behaviors in
which the mismatch is the time gap between events.

One exception is NICE, which studies OpenFlow ap-
plications whose behavior can vary considerably based
on packet timings [7]. However, its treatment of time is
not systematic and is domain-specific (e.g., injects pack-
ets without any delay and with usually high delay). Our
work shows how time can be accounted for in model
checking systematically and in a general manner.
Model checking using TA There has been much work
on TA-based model checking in the real-time systems
community. It includes developing efficient tools to ex-
plore the TA [4, 28] as well as transformations that speed
explorations [15, 11]. This body of work assumes that
the entire TA is known in advance, and it does not target
program analysis. While we draw heavily on the insights
from it, to our knowledge, our work is the first to use TA
to model check programs. We describe general methods
to dynamically and comprehensively explore program ex-
ecutions and techniques to optimize exploration.
Other debugging techniques Explicit state model check-
ing, which we use in our work, is complementary to other
program debugging approaches. For instance, record and
replay [20] can help diagnose faults after-the-fact and is
especially useful for non-deterministic systems; in con-
trast, we want to determine if faults can arise in the future.
There has also been work on “what-if” analysis in IP net-
works, e.g., with the use of shadow configurations [1] and
route prediction [13]. These works largely focus on com-
puting the outcomes of configuration changes; in con-
tract, we want to study the dynamic behavior of more
general programs.

9. Conclusions
Mistakes in automation scripts can impact the com-

fort, safety, and efficiency of the home environment. We
built DeLorean, a tool that can help users gain confidence
in their script by virtually fast forwarding it to see its fu-
ture behaviors under different times of day and environ-
mental conditions. DeLorean is based on a new approach
to systematically explore program behavior. It uses timed

12

automata, instead of finite state machines, as the basis of
exploration, and it can thus correctly handle time. While
developed in the context of home automation, this ap-
proach is general. In future work, we will use it to ex-
plore programs in other contexts where correctly model-
ing time is important [7, 10].

10. References

[1] R. Alimi, Y. Wang, and Y. Yang. Shadow
configuration as a network management primitive.
ACM SIGCOMM, August 2008.

[2] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 1994.

[3] ANTLR parser generator.
http://antlr.org/.

[4] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson,
and W. Yi. UPPAAL: A tool suite for automatic
verification of real-time systems. Hybrid Systems
III, 1996.

[5] A. J. Brush, B. Lee, R. Mahajan, S. Agarwal,
S. Saroiu, and C. Dixon. Home automation in the
wild: Challenges and opportunities. In CHI, 2011.

[6] M. Canini, V. Jovanovic, D. Venzano,
B. Spasojevic, O. Crameri, and D. Kostic. Toward
online testing of federated and heterogeneous
distributed systems. In USENIX ATC, 2011.

[7] M. Canini, D. Venzano, P. Peresini, D. Kostic, and
J. Rexford. A NICE way to test OpenFlow
applications. In NSDI, 2012.

[8] E. M. Clarke, F. Lerda, and M. Talupur. An
abstraction technique for real-time verification,
2007.

[9] Home automation news, reviews, forums.
http://cocoontech.com/forums/.

[10] R. Corin, S. Etalle, P. H. Hartel, and A. Mader.
Timed analysis of security protocols. Computer
Security, 15(6), 2007.

[11] C. Daws and S. Yovine. Reducing the number of
clock variables of timed automata. In Real-Time
Systems Symposium, 1996.

[12] ELK products, inc.
http://www.elkproducts.com/.

[13] N. Feamster and J. Rexford. Network-wide
prediction of BGP routes. IEEE/ACM Trans.
Networking, April 2007.

[14] P. Godefroid. Model checking for programming
languages using verisoft. In POPL, 1997.

[15] M. Hendriks and K. G. Larsen. Exact acceleration
of real-time model checking. In Electronic Notes in
Theoretical Computer Science, 2002.

[16] Universal devices products/insteon/isy-99i series.
http://www.universal-devices.com/
99i.htm.

[17] Forum - questions and answers.

http://forum.universal-devices.
com/viewforum.php?f=27.

[18] C. E. Killian, J. W. Anderson, R. Jhala, and
A. Vahdat. Life, death, and the critical transition:
Finding liveness bugs in systems code. In NSDI,
2007.

[19] J. C. King. Symbolic execution and program
testing. Commun. ACM, 19(7), 1976.

[20] T. Leblanc and J. Mellor-Crummey. Debugging
parallel programs with instant replay. IEEE
Transactions on Computers, 36, 1987.

[21] S. Lucero and S. Schatt. Home automation and
security. ABI Research, 2009.

[22] N. Lynch and F. Vaandrager. Forward and
backward simulations for timing-based systems.
Rex Workshop, 1991.

[23] M. Musuvathi, D. Y. W. Park, A. Chou, D. R.
Engler, and D. L. Dill. CMC: A programatic
approach to model checking real code. In OSDI,
2002.

[24] Home controls – analysis and forecasts. Park
Associates, 2010.

[25] SmartHomeUsa.com home automation forums.
http://forums.smarthomeusa.com/.

[26] N. Tillmann and J. de Halleux. Pex: White box test
generation for .NET. In Tests and Proofs (TAP),
April 2008.

[27] M. Yabandeh, N. Knezevic, D. Kostic, and
V. Kuncak. CrystalBall: Predicting and preventing
inconsistencies in deployed distributed systems. In
NSDI, 2009.

[28] S. Yovine. Kronos: A verification tool for real-time
systems. Int’l Journal of Software Tools for
Technology Transfer, 1997.

13

