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Abstract 
 

 This paper proposes a novel technique to computing 
geometric information from images captured under parallel 
projections. Parallel images are desirable for stereo 
reconstruction because parallel projection significantly 
reduces foreshortening. As a result, correlation based 
matching becomes more effective. Since parallel projection 
cameras are not commonly available, we construct parallel 
images by rebinning a large sequence of perspective images. 
Epipolar geometry, depth recovery and projective invariant 
for both 1D and 2D parallel stereos are studied. From the 
uncertainty analysis of depth reconstruction, it is shown that 
parallel stereo is superior to both conventional perspective 
stereo and the recently developed multiperspective stereo for 
vision reconstruction, in that uniform reconstruction error is 
obtained in parallel stereo. Traditional stereo reconstruction 
techniques, e.g. multi-baseline stereo, can still be applicable to 
parallel stereo without any modifications because epipolar 
lines in a parallel stereo are perfectly straight. Experimental 
results further confirm the performance of our approach. 
 

1    Introduction 
Stereo reconstruction algorithms have traditionally relied 

on planar perspective images. A planar perspective image 
collects many rays at a fixed viewpoint and is easy to acquire 
using conventional pinhole cameras. However, 3D 
reconstruction based on perspective stereo has inherent 
shortcomings due to the perspective foreshortening caused by 
perspective projection.  

Perspective foreshortening exists in typical photographic 
systems and the human visual system. Even though 
perspective foreshortening provides more realistic visual cues 
(see Fig.1.a), the exact shape and measurement of the objects 
cannot be recorded accurately. The size of the perspective 
projection of an object varies inversely with the distance of 
that object from the center of projection. Specifically, under 
perspective projection, parallel lines do not project to parallel 
lines and length ratio cannot be kept invariant. Previous work 
on modeling foreshortening (e.g., [4,17]) reveals that 
foreshortening can worsen correspondence results because 3D 
space is mapped nonlinearly to 2D image planes.  

Foreshortening in perspective stereo also results in highly 
biased scene reconstruction. Even if the correspondences 
between two perspective images are available with high 
precision, the uncertainty of depth reconstruction is highly 
sensitive to its corresponding depth value in geometry space. 
An increase in depth value incurs higher range uncertainty. In 

practice, stereo reconstruction with perspective images is 
shown to generate strongly biased reconstruction because 
scene radiance is sampled non-uniformly. 

Instead of designing algorithms to deal with foreshortening 
in perspective projection, we propose in this paper an 
alternative projection, parallel projection, which minimizes 
foreshortening effect in 3D reconstruction. Parallel projection 
has long been used to represent the mechanical parts in 
manufacturing industry using three-orthographic projections. 
The basic concept of parallel camera has also been applied in 
the area of computer graphics as an alternative image 
representation for synthetic scenes.  

 

 
 
 
 

 
 

 
 
 
 

(a) (b) 
Fig.1 Comparison between two projections: (a) perspective projection 
with significant foreshortening;  (b) parallel projection. 
 

Parallel projection has several advantages over perspective 
projection for image representation. First, as shown in Fig.1b, 
more accurate shape measurements can be obtained from 
parallel projection images. Second, in addition to projective 
invariants existing in perspective projection, parallel 
projection maintains parallelism and keeps length ratio 
invariant. Third, parallel projection samples the object space 
more uniformly than perspective projection. Recently, parallel 
projection has also been used in the area of image-based 
rendering to represent synthetic objects with multiple layered 
depth [5,6,8]. It has been shown that sampling uniformity in 
parallel images can alleviate “hole” artifact for image warping. 
However, vision algorithms using parallel projection images 
have not been studied due to the absence of parallel projection 
cameras in real world.  

In fact, parallel projection stereo does not necessarily rely 
on the practical availability of parallel projection cameras in 
real world. In this paper, we transform a dense collection of 
perspective images, specifically 3D or 4D uniform light field 
dataset [3,4,9], into a set of parallel projection images. Light 
field data can be acquired by moving a camera uniformly 
along a line or on a planar grid. 

  



   

 

1.1    Related work 

The work described in this paper is closely related to 
current research trends in multi-perspective projection for 
image-based representation, including multiple-center-of-
projection images [12], manifold mosaics [11], and multi-
perspective panoramas for image based rendering [13], cel 
animation [14], and stereo reconstruction from multi-
perspective panoramas [14,15,19]. Similar to [14], we select 
the best rays for vision reconstruction. But our work differs 
from these previous multi-perspective approaches in that the 
parallel projection images are the most desirable for stereo 
reconstruction. As will be shown in this paper, parallel stereo 
enables better correspondences, allows more accurate 
measurement for depth estimation, and results in an epipolar 
geometry that is absolutely parallel between any two parallel 
projections. In contrast, the previous work on multiperspective 
stereo reconstruction in [15] has only approximately straight 
epipolar lines, thus limiting the use of traditional multi-
baseline stereo techniques. As we will show in this paper, 
similar to perspective stereo, multiperspective stereo has non-
uniform depth reconstruction uncertainty.  

Another thread of research related to this paper is on image 
based rendering [3,7,13] based on light field data. However, 
we focus on a different aspect: how to create the depth from 
light field. The emergence of large and dense collection of 
image datasets suggests a powerful new paradigm for solving 
traditional graphics and vision problems. In this paper, rather 
than designing vision algorithms to deal with light data set, we 
resample light field data to obtain new images that are the 
most desirable for stereo reconstruction. 

1.2 Overview 

We address the following questions in the remainder of 
this paper. How are parallel images captured and generated 
from real perspective images? Given two parallel images, how 
are epipolar geometry and parallax computed? What is the 
reconstruction geometry involved? We provide answers to 
these questions using 1D parallel projection (camera moving 
along a line) and 2D parallel projection (camera moving on a 
planar grid) in Sections 2 and 3, respectively. We study the 
reconstruction uncertainty of parallel stereo in Section 4. Also 
in Section 4 we compare parallel stereo with two types of 
stereo setups for vision reconstruction, specifically, single 
perspective, and multi-perspective. Finally we present our 
experimental results on synthetic and real images in Section 5 
and conclude in Section 6.  

2  1D Parallel Stereo 

2.1   1D parallel images from perspective images 

We first describe how 1D parallel images from perspective 
image sequences are created. We constrain a perspective 
camera to move uniformly along a line, described by s. A large 
collection of single perspective images (indexed by image 
coordinates u and v) , denoted as ),( vusI here, can be sampled 
along the s direction.  

For a specific u, we can rebin a set of perspective images 
Is(u,v) into a parallel image Iu(s,v), shown in Fig.2. The 
rebinning process is similar to constructing EPI [1].  
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Fig.2     An image of 1D parallel projection rebinned from a sequence 
of perspective images. 

 
 Let S denote the total number of samples along the s 
direction, and U and V the width and height of the sampled 
perspective image respectively. Obviously, the width of the 1D 
parallel image is equal to the number of sample points along 
the camera trajectory. The height V of the original perspective 
image is the same as the height of the 1D parallel image. Fig. 3 
shows a pair of parallel images rebinned from the u1-th and 
u2-th columns of original perspective images that can be used 
for stereo reconstruction.  
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Fig.3     A pair of parallel images for stereo reconstruction rebinned 
from two columns, u1 and u2, of original images. 
 
2.2   Imaging Geometry 

 The imaging geometry from two 1D parallel images Iu1(s,v) 
and Iu2(s,v) is shown in Fig.4. We set the origin of the world 
Cartesian co-ordinate system XYZ  at the starting sample 
point on the camera path and align X  and Z axes with the 
camera trajectory and the vertical direction of image plane. If 
we can establish matching between the two parallel images, 
the depth of corresponding points in the scene can be 
estimated in a similar way as the conventional perspective 
stereo. 
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Fig.4      Imaging geometry of 1D parallel stereo. 

 



   

 

 Using the basic law of sines for triangles, we have 
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where s∆  denotes the sample interval along the camera path, f 
is the camera focal length, and  
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 Therefore, for a point at distance z seen in two parallel 
images 1I and 2I , the horizontal and vertical parallax can be 
described as follows: 
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 The above horizontal epipolar line constraint (Eq.2.8) 
enables traditional stereo reconstruction techniques, e.g. multi-
baseline stereo, to be applicable to 1D parallel stereo without 
any modifications. We can think of s∆  as the focal length in 
perspective stereo. The larger the sample interval, the higher 
the resolution in the resulting parallel image. 

 We call the angle between the directions of projection 
related to a pair of parallel images base-angle. Similar to the 
baseline in perspective stereo, the base-angle of a parallel 
stereo setup is kept invariant. 

2.3   1D parallel projective invariant  

Projective invariants are shape descriptors that are 
independent of the point of view from which the shape is seen, 
and, therefore, are of major importance in stereo, object 
recognition and scene reconstruction. Projective 
transformation preserves type (i.e., a point remains a point and 
a line remains a line), incidence (i.e., whether a point lies on a 
line), and cross ratio. However, it does not preserve length, 
angle, and parallelism that are useful for measuring shapes.  

Parallel projection has more measures kept invariant than 
perspective projection. For 1D parallel projection, it can keep 
the ratio of length invariant, in addition to type, incidence and 
cross ratio in perspective projection. As shown in Fig.5, let 
Mi=(xi,yi,zi), i=1,2,3 be three points on the same spatial line, 
the length ratio defined as 

31

21
321 ),,(

MM

MM
MMMLr =    (2.9) 

is preserved because M1m1, M2m2 and M3m3 are parallel to each 
other. 
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Fig.5     1D parallel projective invariant: length ratio. 

 

3    2D Parallel Stereo 
3.1    Parallel images from 4D light field  

Similar to the formation of 1D perspective images, we can 
obtain 2D parallel images from perspective images. The 
difference is that while a 1D parallel image is implemented slit 
by slit from a line of images, a 2D parallel image is resampled 
pixel by pixel from a 2D grid of images. These 2D parallel 
projection images can be resampled directly from a 4D light 
field [7] or Lumigraph [3]. Lumigraph characterizes the flow 
of light through unobstructed space in a static scene with fixed 
illumination. Here, we follow the same definition and 
denotation of light field as in [7] where s and t denote the 
camera trajectory, and u and v represent image coordinates. Let 
U and V be the width and height of each single perspective 
image, and S and T be the number of samples along s and t 
directions respectively. Furthermore, let ),(, vuI ts  and ),(, tsI vu  
represent the original perspective images and resulting 2D 
parallel images, respectively. 
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(a) (b) 

Fig. 6     A pair of 2D parallel images for vision reconstruction 
rebinned from a grid of perspective images. 

          
The total number of the resulting 2D parallel images is 
VU × . The 2D parallel images are represented by the normal 

of projection plane (s,t) and the direction of projection (u, v, f), 
where f denotes the focal length. Figure 6 shows two parallel 
projection images rebinned from a light field at the (u1, v1)-th 
and (u2, v2)-th directions. 

 

3.2    Epipolar geometry in 2D parallel stereo 

 An important practical application of epipolar geometry is 
to aid the search for corresponding points, reducing it from the 
entire second image to a single epipolar line. In 



   

 

multiperspective stereo [10,14,15,19], the horizontal epipolar 
line is only available between a symmetric pair of concentric 
multiperspective stereo with the same radius. In contrast, the 
epipolar lines among multiple 2D parallel images are 
absolutely horizontal. Therefore, any traditional stereo 
algorithms are applicable to parallel stereo without 
modification, e.g. multi-baseline stereo technique [9]. The 
recently developed plane sweep algorithm [2] can also be 
applied to parallel stereo where the sweeping efficiency can be 
further improved by encoding affine texture mapping into the 
warping process.  

 Fig. 7 shows two parallel images of a rigid scene. The 3D 
point M projects to pixel m1 in the first image 1I , and m2 in the 
second one 2I . Here, two parallel images share the same 
projection plane (s,t) but with different projection directions, 
denoted as 1l

�

=(u1,v1,f) and 2l
�

=(u2,v2,f), respectively. 
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Fig.7      The epipolar line m1m2 between two 2D parallel images. 
 

 In a standard perspective stereo, the epipolar plane is 
defined by a 3D point M and the baseline that links two optical 
centers. The epipolar line is the straight line of intersection by 
the epipolar plane and the image plane. In contrast, the 
epipolar plane between two parallel images is defined by point 
M and two projection directions forming the base-angle, here 
m1M and m2M. The image point m in the first parallel image 
may correspond to an arbitrary spatial point M on the ray 
direction 1l

�

=(u1,v1,f) (for example, at infinity), and the 
projection of m1M in the projection plane can be determined 
by the intersection between the defined epipolar plane and 
projection plane (s,t), as shown in Fig. 6.  

 Specifically, 1l
�

, 2l
�

, and epipolar line 
)0,,( 121221 ttssmm −−=  satisfy the coplanar constraint,  
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 The above equation can be simplified to  
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 We observe that the epipolar line between two parallel 
images indeed keeps parallel. Particularly, it becomes 
horizontal or vertical when either 12 uu = or 12 vv = , respectively.  

 

 

3.3    Imaging geometry 

 Fig.8 shows a 3D point M(x,y,z) and two parallel images 
that share the same projection plane (s,t). The directions of 
projection of two corresponding pixels are determined by their 
directional cosine, 1l  and 2l  respectively, as follows: 
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Fig.8     Imaging geometry in 2D parallel stereo. 
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 Each point in the field of view is projected onto its 
projection plane (s,t) along its projection direction. Again, with 
the basic law of  sines, we have  
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where 1θ  and 2θ  are determined by 
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 Substituting epipolar geometry Eq. (3.2) into Eq. (3.7), we 
get the horizontal and vertical parallax, respectively, 
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 Unlike in the perspective stereo, the disparity in parallel 
stereo (both directions) is linear to the depth value. 



   

 

3.4    Projective invariant in 2D parallel projection 

 Besides length ratio, parallelism is also invariant under 2D 
parallel projection, as illustrated in Fig.9. 
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Fig.9      2D parallel projective invariant: parallelism.  

 
 Invariant measures such as length ratio and parallelism 
make correlation much easier than in perspective stereo where 
perspective foreshortening could be significant.  

 

4   Depth Uncertainty Analysis 
4.1    Depth Uncertainty in parallel stereo 

 Because of the discrete nature of the imaging system, the 
image coordinates of each pixel may have quantization error 
of up to 2/1± pixel that, in turn, affects depth estimation.   

 From Equation (2.4), the depth uncertainty for 1D parallel 
stereo can be estimated as  
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where noise 1:2s∆  results primarily from quantization error 
along the s direction. Several observations can be made from 
Eq.(4.1): 

•  There is no relationship between depth uncertainty 
and depth value.  

•  The contribution to the depth estimation error is 
closely related to the sampling interval s∆ (and t∆ in 
2D parallel stereo) in light field sampling. The larger 
the sampling interval, the larger the depth uncertainty. 

 

 

 

 
 
 
 
 

 
 
 

Fig.10 Depth error for different 1D parallel stereo. Here X axis 
denotes 1θ , Y axis denotes 12 θθ − , and Z axis denotes the depth 
error involved. 

•  The uncertainty also depends on the base-angle 
between two parallel projections for vision 
reconstruction. Fig.10 illustrates the error associated 
with different values of ( 1θ , 12 θθ − ). The error is well 
under control when a large base-angle is used. In 
particular, a minimum depth error occurs when 
( 2/21 πθθ −= ). However, with a large base-angle, 
only objects close to the cameras can be reconstructed. 

 Similarly, we can derive the depth uncertainty for 2D 
parallel stereo from Equation (3.7), 
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where noise 1:2s∆  and 1:2t∆ are due mainly to quantization 
error along s and t directions, respectively. Substituting Eq. 
(3.8) and Eq.(3.9) into Eq.(4.2), we observe that the depth 
error does not depend on the actual depth value either. 

 

4.2    Comparison with other stereo setups 

 In this section we show that parallel projection stereo is 
superior to other stereo techniques available today in its robust 
depth uncertainty. Depth estimation error in parallel stereo 
does not vary with the changes in depth value, but rather 
remains constant under different depth values. In other words, 
scene depth is reconstructed uniformly in all depth ranges, 
yielding uniform depth resolution and depth reconstruction 
error. In contrast, stereo reconstruction obtained from 
perspective or multi-perspective images are shown to generate 
strongly biased scene reconstruction (see fig.11). 

 In the following, we analyze in detail the depth uncertainty 
to noise for traditional perspective stereo and recently 
developed multi-perspective stereo. 
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(a)                                   (b)                               (c) 
 

Fig.11 Three typical stereo setups and their related depth 
reconstruction error: (a) traditional perspective stereo with non-
uniform depth reconstruction error; (b) multiperspective stereo with 
non-uniform depth reconstruction; (c) parallel stereo with uniformly 
controlled depth reconstruction. 

 



   

 

4.2.1 Depth error in perspective stereo 

 In a standard perspective stereo setup (see Fig.11a),  
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bf
z =  .      (4.3) 

 Thus the derived depth uncertainty is proportional to the 
square of its related depth value,  
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where b denotes the baseline between two perspective images, 
1:2u∆ is the error associated with quantization error of 1:2u . 

Fig.12a illustrates the theoretical error bounds versus depth 
value for several different baseline values. We observe that the 
larger the baseline, the smaller the depth error. Furthermore, 
the larger the depth, the larger the depth uncertainty.  

 

 
 
 
 
 
 
 
 
 
 
                       (a)              (b) 
Fig12. Depth uncertainty for: (a) standard perspective stereo; (b) 
multiperspective stereo. 
 

 
4.2.2 Depth error in multiperspective stereo 

 Recently developed multiperspective stereo [14] can yield 
isotropic depth reconstruction by sampling the scene radiance 
in all directions. However, the reconstruction accuracy of 
every point in the scene is not truly uniform. Uniform 
reconstruction of 3D points is limited to 2D manifold with the 
same radius, but not along the radius direction. 

 For a multiperspective stereo (see Fig.11b),  
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where 1:2θ∆ represents the error related to image resolution 
along the angle direction, and d is the radius for multi-
perspective images. Fig.12.b shows the depth uncertainty 
associated with multi-perspective stereo. 

 We can observe that the reconstruction error increases as 
the radius of spatial point becomes larger. This is somewhat 
similar to traditional perspective stereo, whose reconstruction 
uniformity is also limited to 2D surface related to the same 

depth value. But parallel stereo can provide uniform 
reconstruction in 3D space because the reconstruction error 
from parallel stereo is unrelated to specific locations of spatial 
points.  

 
5. Experiments  
 In our experiments, the standard correlation based 
technique with fixed window sizes is used for stereo 
reconstruction.  

5.1 Synthetic data 

 We have rendered 512 perspective images (with size of 
640×480) by moving a camera uniformly along a line. These 
images are then put together to form two parallel images 
(512×480), shown in fig.13.a and 13.b, respectively. These 
two 1D parallel images are created by stacking the 320-th and 
the 350-th column, respectively, from the original image 
sequences. The choice of base-angle in a parallel stereo 
depends on the tradeoff between the reconstruction accuracy 
and the range of scene coverage. The smaller the base-angle, 
the larger the depth uncertainty, and the larger the field of 
view reconstructed. Additionally, the smaller the base-angle, 
the less the occlusion.  

 The reconstructed depth map is shown in Fig.13.c, and its 
associated uncertainty map, defined as the correlation value in 
the resulting depth map, is given in Fig.13.d. A higher 
intensity value in the correlation map corresponds to a larger 
correlation value for the resulting disparity map. Note that a 
smaller disparity means a smaller depth in parallel stereo, in 
contrast to any previous stereo reconstruction methods where a 
small disparity means a larger depth. We can observe that the 
reconstruction result is fairly good.  

5.2 Real data 

 Experiments were also performed on the MPEG2 garden 
sequence. The total number of images in this sequence is 150. 
Our tracking program shows the camera motion for the flower 
garden sequence is approximately linear and equally spaced. 
Thus, the image sequence can be rebinned to a set of 
approximate 1D parallel images. Fig.14(a)(b) show a pair of 
such parallel images rebinned from the 90-th and the 95-th 
column in the original image sequence. The disparity maps 
with window sizes 11 and 15 are shown in Fig.14(c)(d). The 
recovered disparity map is good even though the camera path 
is only approximately along a straight line and the sampling 
interval is unknown. These results could be further improved if 
denser image sequences were available. 

5.3 Comparison with traditional perspective stereo 

 Finally, we compare parallel stereo with perspective stereo 
in terms of their matching performance using correlation 
technique. Fig15.(a-b) and Fig15.(c-d) give a pair of images of 
a chess board cube under parallel and perspective projections 
respectively. The estimated disparity maps and correlation 
maps with square template sizes 11 and 23 are shown in 
Fig.15(e)(f)(i)(j) for parallel stereo and Fig.15(g)(h)(k)(l) for 
perspective stereo, respectively. The following observations 
can be made: 
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1). Parallel stereo has better matching performance than 
conventional perspective stereo, as supported by “hole” 
artifacts appeared in disparity map under perspective stereo. 

2). In perspective stereo, matching becomes worse when 
the angle between the surface normal and the ray direction 
is larger because of foreshortening.  

3). For both stereo setups, a larger window size results in a 
larger local distortion (see the deterioration of their related 
correlation map).  

4). Foreshortening effect in parallel stereo is uniformly 
distributed, as shown in Fig.16.(d-f). Foreshortening in 
perspective projection is non-uniform (Fig.16.(j-l)), thus, 
deteriorating the disparity results. 

 

6. Conclusion 
 Based on the belief that traditional perspective images are 
not the most appropriate for solving many computer vision 
tasks, this paper introduces a new image representation under 
parallel projections. A key idea behind this approach is that 
the input images or rays for computer vision algorithms can be 
carefully chosen in order to produce optimal results. Rather 
than physically constructing parallel projection cameras, we 
describe in this paper how to create parallel projection images 
by processing a large sequence of perspective input images 
from light field.  

 We classify the parallel projections into two types: 1D and 
2D parallel projections. In a 1D parallel projection image, the 
image is under parallel projection only along one dimension 
(along which the camera is moving) whereas the other is under 
perspective projection. In 2D parallel projection images, the 
images are under parallel projection in both directions. Parallel 
projection images represent the appearance of a scene from 
many perspective viewpoints, as opposed to traditional single 
perspective viewpoints. They differ from recently developed 
multiperspective images in that their pixel rays are parallel to 
each other. 

 The epipolar geometry, parallax, range reconstruction and 
projective invariant for both 1D and 2D parallel projection 
stereos have then been studied. Our theoretical analysis on 
depth reconstruction uncertainty shows that the performance 
of the new stereo is superior to that of the traditional 
perspective stereo and the more recently developed 
multiperspective stereo. More importantly, our experimental 
result shows that parallel stereo produces accurate 3D scene 
models with the smallest reconstruction error compared to any 
stereo reconstruction available today. 

 The essential idea of parallel projection image 
representation described here opens up many other 
applications in image based modeling and rendering, including 
layered depth image, high resolution images composition, and 
view-dependent texture mapping, etc. These are very exciting 
topics for our future work. 

References 
[1] R.Bolles, H.H.Baker, and D.H.Marimont. Epipolar Plane Image Analysis: 
An Approach to Determing Structure From Motion. In International Journal 
of Computer Vision, 1:7-55. Boston, 1987. 

[2] R.T.Collins. A space-sweep approach to true multi-image matching. In 
IEEE Comp. Soc. Conf. On Computer Vision and Pattern 
Recognition(CVPR’96), pages 358-363, San Francisco, June 1996. 

[3] S.J.Gortler, R.Grzeszczuk, R.Szeliski, and M.F Cohen. The Lumigraph. In 
Computer Graphics Proceedings, pages 43-54, Proc.SIGGRAPH’96 
(Orlando), August 1996. 

[4]. Mark W. Maimone and Steven A. Shafer, Modeling the Foreshortening in 
Stereo Vision using Local Spatial Frequency, CMU Computer Science 
Technical Report TR95. Carnegie Mellon University, January 1995 (32 pages)  

[5]. N.Max. Hierarchical rendering of trees from precomputed multi-layer Z-
buffer, Rendering Techniques’96 (Proc. 7th Eurographics Workshop on 
Rendering, pages 165-174, Springer-Verlag, 1996. 

[6]. N.Max, C.Mobley, B. Keating, and E-H Wu,Plane-parallel radiance 
transport for global illumination in vegetation. Rendering Techniques’97 
(Proc. 8th Eurographics Workshop on Rendering), pages 239-250, Springer-
Verlag, 1997. 

[7] M.Levoy and P.Hanarahan. Ligh Field Rendering. In Computer Graphics 
Proceedings, pages 31-42, Proc.SIGGRAPH’96 (Orlando), August 1996. 

[8]. D.Lischinski and A. Rappoport, Image Base Rendering for non-diffuse 
Synthetic Scenes. Rendering Techniques’98 (Proc. 9th Eurographics 
Workshop on Rendering), Springer-Verlag, 1998  

[9] M.Okutomi and T.Kanade. A Multiple-baseline Stereo. IEEE Trans. On 
Pattern Analysis and Machine Intelligence, 15(4): 353-363, 1985. 

[10] R.Peleg and M.Ben-Ezra. Stereo panorama with a single camera. In 
CVPR’99, pages395-401, FortCollins, June 1999. 

[11] R.Peleg and J,Herman. Panoramic mosaics by manifold projection. In 
Conf. On Computer Vision and Pattern Recognition(CVPR’97), pages 338-
343, San Juan, June 1997. 

[12] P.Rademacher and G.Bishop. Multiple-center-of-Projection Images. In 
Computer Graphics Proceedings, pages 199-206, Proc.SIGGRAPH’98 
(Orlando), July 1998. 

[13] H.-Y.Shum and L.-W.He. Rendering with Concentric Mosaics. In 
Computer Graphics Proceedings, pages 299-306, Proc.SIGGRAPH’99 (Los 
Angeles), August 1999. 

[14] H.-Y.Shum, A.Kalai, and S.M.Seitz. Omnivergent stereo. In Seventh 
International Conference on Computer Vision (ICCV’99), Greece, September 
1999. 

[15] H.-Y.Shum and R.Szeliski. Stereo.Reconstruction from Multiperspective 
Panorama. In Seventh International Conference on Computer Vision 
(ICCV’99), Greece, September 1999. 

[16] D.N.Wood et al. Multiperspective panorama for cel animation. In 
Computer Graphics Proceedings, pages 243-250, Proc.SIGGRAPH’97 (Los 
Angeles), August 1997. 

[17]. Y.-L. Xiong and L. Matthies, Error Analysis of a Real-Time Stereo 
System, In IEEE Conference on Computer Vision and Patter Recognition 
(CVPR), 1997, pp. 1087-1093  

[18] G.Xu and Z.Zhang, Epipolar Geotry in Stereo, Motion and Object 
Recognition: A Unified Approach. 1996. Kluwer Academic Publishers.  

[19] J.-Y.Zheng and S.Tsuji. Panorama Representation for Route Recognition 
by a Mobile Robot. In International Journal of Computer Vision. 9(1):55-76. 
Netherlands, 1992. Kluwer.  

 
 



   

 

    

  

 

   

Fig. 15    Matching performance comparison between perspective stereo and parallel stereo: (a)(b) a pair of parallel images;  
(c)(d) a pair of pespective images; (e)(f) reconstruction of parallel stereo with window sizes 11 and 23; (i)(j) associated correlation 
maps of (e)(f); (g)(h) result of perspective stereo with window sizes 11 and 23; (k)(l) associated correlation maps of (g)(h).  

Fig.13   Parallel stereo with synthetic images: (a)(b) image pair; (c) result; (d) correlation map. 

Fig.14    Parallel stereo with real images: (a)(b) rebinned image pair; results with window (c) size  11; (d) size  15. 
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