
New Fast Binary Pyramid Motion

Estimation for MPEG-2 and HDTV

Encoding
Xudong Song Member, IEEE, Tihao Chiang, Senior Member, IEEE,

Xiaobing Lee, Member, IEEE and Ya-Qin Zhang, Fellow, IEEE

Abstract|A novel Fast Binary Pyramid Motion Estima-
tion (FBPME) algorithm is presented in this paper. The
proposed FBPME scheme is based on binary multiresolu-
tion layers, XOR Boolean block matching and a N-scale tiling
search scheme. Each video frame is converted into a pyramid
structure of K-1 binary layers with resolution decimation
plus one integer layer at the lowest resolution. At the low-
est resolution layer, the N-scale tiling search is performed to
select initial motion vector candidates. Motion vector �elds
are gradually re�ned with the XOR Boolean block match-
ing criterion and the N-scale tiling search schemes in higher
binary layers.
FBPME performs several thousands times faster than the

conventional full search block matching scheme at the same
PSNR performance and visual quality. It also dramatically
reduces the bus bandwidth and on-chip memory require-
ment. Moreover, hardware complexity is low due to its bi-
nary nature.
Fully functional software MPEG-2 MP@ML and ATSC

HDTV encoders based on the FBPME algorithm have been
implemented. FBPME hardware architecture has been de-
veloped and is being incorporated into single-chip MPEG
encoders. A wide range of video sequences at various res-
olutions has been tested. The proposed algorithm is also
applicable to other digital video compression standards such
as H.261, H.263 and MPEG4.

Keywords|Binary Pyramid, Motion Estimation, MPEG,
HDTV, Block Matching, Tiling Search

I. Introduction

T
HE motion estimation (ME) and compensation are

critical components for digital video compression sys-

tems such as High De�nition Television (HDTV) and Stan-

dard De�nition Television (SDTV) broadcasting equip-

ment, video conferencing transmitters, and multimedia

servers for Web applications. Block-based ME has been

widely adopted by several important international stan-

dards such as Motion Picture Expert Group (MPEG),

Advanced Television Standard Committee (ATSC), Digi-

tal Video Broadcasting (DVB) and International Telecom-

munications Union (ITU). The relevant standards include

ISO/IEC MPEG-1, MPEG-2, MPEG-4, MPEG-7, H.261,

H.263, DVB and ATSC speci�cations [1], [2], [3], [4], [5].

The optimal block-based ME is typically de�ned as the

exhaustive search algorithm using Minimum Absolute Dif-

ference (MAD) block matching criterion. The technique

evaluates motion vectors for all locations within the search

window. Many fast ME algorithms with various sparse

Tihao Chiang was with Sarno� Corporation and is with Dept. of
Electronics Engineering at National Chiao Tung University, R.O.C.

Ya-Qin Zhang was with Sarno� Corporation in Princeton, NJ. He
is now with Microsoft Research China in Beijing, PRC.

searching schemes have been developed to reduce com-

putational complexity. Examples include the three-step

search [6], the 2D logarithmic search [7], the conjugate

directional search [8], the genetic search [9], [10], the un-

restricted center-biased diamond search [11], the feature-

based block motion estimation using integral projection

[12], and sub-sampled motion �eld estimation with alter-

nating pixel-decimation patterns [13]. These sparse search-

ing schemes provided much reduced complexity at the ex-

pense of motion accuracy. In addition, fast search schemes

are less robust in the sense that they are often trapped into

local minimum.

The multi-resolution ME techniques [14], [15], [16], [17],

[18], [19] were developed to search a smaller window from

lower to higher resolution layers similar to the hierarchical

motion projection search. A small search window at re-

duced resolution can cover the same area as the full search

in the full resolution with reduced complexity. With an

eÆcient hierarchical structure, decimation and �ltering al-

gorithms, the multi-resolution ME also provides greater ro-

bustness than sparse search algorithms.

To further reduce the computation, binary ME algo-

rithms have been developed. Binary ME algorithms use

an XOR Boolean block matching criterion instead of the

integer MAD criterion for block matching. The binary rep-

resentation provides much lower computational complexity

and data bus throughput for the basic block matching mod-

ule [20], [21], [22], [23], [24], [25], [26], [27]. The binary ME

algorithms can be combined with any fast search schemes

for further speed improvement.

In this paper, a new Fast Binary Pyramid Motion Esti-

mation (FBPME) algorithm is presented, based on a binary

pyramid structure, XOR Boolean block matching, and N-

scale tiling search scheme. The block matching now uses

only bit-wise XOR logic operations that are much simpler

and faster to implement than integer MAD operations. The

N-scale tiling scheme provides multi-path hierarchical pro-

jection searches from layer to layer to achieve more robust

performance. FBPME is about 4000 times faster than the

integer MAD full search ME, and 16 to 256 times faster

than the HFM-ME algorithm [21], [22]. It also requires

much less data bus bandwidth due to the binary nature of

the data transfer between frame and reference bu�ers.

This paper is organized as follows. Section 2 discusses

previous e�orts in binary ME algorithms, and brie
y sum-

marizes the di�erence and advantages of the proposed

4

 4

4

2

2

 4

4x4 pixels

Phase-Patterns

 2

2

mean mean

Match

STF vector

Fig. 1. Illustration of multi-resolution HFM block matching with
STF vectors

FBPME. Section 3 describes the construction of the bi-

nary pyramid. Section 4 presents the XOR Boolean block

matching and its parallel hardware architecture. Section

5 describes the N-scale tiling multi-path search for the

FBPME algorithm. Section 6 derives the computation

complexity and data bus bandwidth. Section 7 shows the

testing results of FBPME used in MPEG-2 MP@ML and

ATSC HDTV encoders for both SDTV and HDTV video

inputs.

II. Binary Motion Estimation Algorithms

A binary based fast Hierarchical Feature Matching Mo-

tion Estimation scheme (HFM-ME) was proposed to reduce

the matching computational complexity and bus through-

put in [21], [22]. The HFM-ME algorithm performs ME

with feature vector matching using integer means and bi-

nary phases. Zakhor and Lari [26] used one-bit edge in-

formation for global motion parameters to achieve cam-

era stabilization with comparable performance to that of

intensity-based integer ME. Natarajan, Bhaskaran, and

Konstantinides [23] presented a fast binary motion estima-

tion algorithm based on a simple one-bit transformation

and conventional search schemes. This algorithm provides

good performance for simple texture and slow motion se-

quences. For a complex texture scene sequence such as

\Flowergarden", it is reported in [23] that this binary ME is

2 dB below that for the full search MAD. Gharavi and Mills

[20] presented a threshold method to convert the absolute

di�erence of pixel matching into \0" or \1" bit representa-

tion. Thus the accumulator of the Mean Absolute Di�er-

ence (MAD) becomes a simple counter for \1's". Feng, Lo,

Mehrpour, and Karbowiak [27] used the mean of 8x8 pixels

to threshold all the pixels to form an 8x8 bit-plane. The full

search binary match is performed in the bit-planes to �nd

several locations with mismatches less than a threshold.

The full search MAD matching is then performed on these

selected locations to obtain the best-matched position.

A. Hierarchical Feature Matching Motion Estimation

Lee and Zhang explored the basic binary block match-

ing concepts as illustrated in the Figure 1. The 4x4 integer

array of MAD block matching can be replaced by the sign

truncated feature (STF) vectors matching with 8 bits of

.

Frame Buffer

Σ

STF
Extractor

STF_vector
Pyramid

Feature
Matching
MRME

Fast Motion
Tracker

Frame Buffer

Half-Pixel
MV refine

Mode Control
+

Fine ME

Σ

DCT
Transfer Q

IDCT
Transfer

IQ

VLC

Intra/Inter/Bi Mode control

Motion Vector : (∆x, ∆y)

Inner loop refine ME

Intra path

Mode control

+

−

+
+

Fig. 2. HFM fast motion tracker and re�nement ME of the inner
encoder loop

mean, 2x2 and 4x4 bits arrays of phases. As shown in Fig-

ure 2, the HFM-ME algorithm is implemented as a fast mo-

tion tracker to provide coarse motion vectors and a re�ned

motion vector with a small (3x3) pixels search window. A

half-pixel mode decision module is used to �nd the �nal

motion vector with half-pixel accuracy. The HFM-ME is

executed as follows:

1. Build multi-resolution STF feature vectors, frame-by-

frame

2. Perform 16x16 XOR Boolean matching and 4x4 inte-

ger array of MAD matching at each search point

3. Use the relative full search scheme on the binary bit-

planes

4. Use the inner encoding loop MAD ME on recon-

structed data within 3x3 pixels of the re�ned window.

In step 1, a 4x4 sub-block of luminance integers is rep-

resented as a feature vector of one integer of the mean,

2x2 bits array and 4x4 bits array of binary phase pattern.

They can be simpli�ed as one mean with 4x4 bits array

of phases. Then a 16x16 macro-block is expressed as 4x4

sets of the mixed resolution feature vectors. As the block

matching, the 4x4 integer matching of MAD and 16x16 bi-

nary matching of XOR Boolean operations are performed.

In the XOR Boolean block matching, a \0" stands for a

good matched pixel, and a \1" for a mismatched pixel. A

Look Up Table (LUT) of the counted \0's" is developed

for software emulation of the fast numeric mapping of the

XOR matching results. The hardware logic implementa-

tion should be much simpler and faster.

In step 2, the full-search scheme is applied to the 4x4 ar-

ray of STF feature vector matching, vector-by-vector. As

a straightforward implementation with a �1 pixel search

step, each mean matching only needs 1/16 of integer com-

putations and data retrieval as in the 16x16 array of integer

MAD matching. The 4x4-integer array of matches can be

performed with a �4 pixel search step. Around each step

at location (x, y), 16x16 array of binary phase matching is

performed with �1 pixel step skew of (dx, dy).

In step 3, the relative full search is performed around

each checkpoint without phase skew as in step 2. The 4x4

array of STF feature of the reference frame is matched

.

Binary
Layers Frame Buffer

Σ
Noise Reduction Filter

+
Binary Pyramid

Generator

 Integer
Layer

Fast Binary Pyramid ME

Frame Buffer

Half-Pixel MV refine
+

Mode Control

Σ

DCT
Transfer

Q

IDCT
Transfer

IQ

VLC

Intra/Inter/Bi Mode control

Motion Vector: (∆x, ∆y)

Intra path

Mode control

+

−

+

+
Binary
LayersBinary

Layers

 N-scale
Tiling Search

 MAD
Block match

 N-scale
Tiling Search

 Boolean
Block match

Last layer ?

No
Yes

Go to the
next layer

Fig. 3. Illustration of fast binary pyramid motion estimation

with the shifted integer means and binary phases of current

blocks rather than the skewed reference blocks, in order

to eliminate the phase skew errors without retrieving the

shifted means of the reference block from the external mem-

ories. The STF vectors of (dx,dy) shifted current block can

be derived from the input data in the on-chip memories.

Therefore, the �nal motion vector (x+dx, y+dy) is shifted

from the input block location (i, j) to (i-dx, j-dy).

In step 4, a re�ned full search ME module is done in the

inner encoding loop to o�set the (dx,dy) shift as shown in

the Figure 2. Experiment results show that HFM-ME with

relative full-search provides almost the same PSNR perfor-

mance as the full search, but with much less computation

complexity and bus bandwidth.

The disadvantages of the HFM-ME algorithm are: (a)

diÆculty in combination with sparse fast search; (b) inac-

curacy of phase skewing; (c) limited number of layers due

to the �xed MB size; (d) the need for the inner encoding

loop ME module, and (e) need for fusion of integer match-

ing and binary matching results.

B. Fast Binary Pyramid Motion Estimation

In this paper we propose a new FBPME technique as

shown in Figure 3, which has low computational complex-

ity, reduces data bandwidth, and requires simple hard-

ware implementation. FBPME consists of the binary pyra-

mid construction, XOR block matching logic and N-scale

tiling search scheme. FBPME eliminates the phase skew

of the HFM-ME in the binary pyramid construction of the

FBPME. The XOR matching is implemented with simple

parallel hardware architecture. N-scale tiling search is used

to re�ne the motion vector candidates obtained from the

lowest resolution layer.

The tiling search scheme combines the advantages of

the hierarchical motion projection search and multi-path

search similar to the Viterbi algorithm. The multi-path

tiling search can greatly reduce the computations with mul-

tiple smaller search windows to preserve the robust perfor-

mance of full search block matching, eliminating the need

for large windows using binary full search and the inner-

loop re�nement in the HFM-ME algorithm.

The FBPME is performed according to the following

.

2-D Linear
Filter

Lowest binary layer

8 Noise reduced Luma

(720 x 480 bytes)

 (720 x 480 bits)

8

1 bit
Threshold

Pyramid

Kernel

 Luma data

(720 x 480)

 down-up sample

 (360 x 240 bytes) sub-samples

Fig. 4. Basic pyramid �ltering and binary bit-plane construction

steps:

1. Build the binary pyramid structure

2. Perform the N-scale tiling search with integer MAD

block matching at the top integer layer

3. Perform the N-scale tiling search with XOR Boolean

block matching at binary layers

4. Perform full search XOR Boolean matching with a �3

pixel re�nement window at original resolution.

In step 1, the Binary Pyramid Generator performs k

layer decimation �ltering to build a conventional pyramid

structure with k integer layers. Each integer layer (except

the bottom layer) is up-sampled to approximate its lower

layer data. The di�erence between the integer layer and

its approximation is compared to a threshold to derive the

binary layer. The resultant binary pyramid structure con-

sists of one top integer layer and k-1 binary layers. This

new binary pyramid structure o�ers more precise represen-

tation for the residual information of the pyramid layers

without the phase skew errors caused by the simple mean

threshold methods.

In step 2, N-scale (N = 4) tiling search is performed

for the top integer layer to locate four initial motion vector

candidates corresponding to the best MAD block matching

with di�erent shapes of tiling super-blocks. These four

initial motion vector candidates will be projected into the

next binary layer for multi-path motion vector re�nements.

Each candidate is related to one of the four shapes of tiling

such as 8x8, 4x8, 8x4, and 4x4 blocks, as shown in Figure

13. This tiling search with various shaped super-blocks

covers greater geometrical region of multiple macroblocks

in the original resolution layer to prevent the FBPME from

being trapped into local minima. The FBPME scheme,

therefore, can achieve more reliable and accurate motion

estimation with similar or smaller search windows.

In step 3, the XOR Boolean block match is combined

with the N-scale tiling search at higher resolution binary

layers. Centering on each motion vector projection loca-

tion, the tiling search is performed in a 3x3 pixel win-

dow. The four motion vector candidates with the best

XOR block match will be projected into the next binary

layer. The same process will be repeated, layer-by-layer,

until the last binary layer. The XOR Boolean block match

can be implemented with look-up-table methods using soft-

.

8

8

8

8

 integers

8

1st Layer

2nd Layer

4th Layer

Down-sampled

 Luma data

(720 x 480)

 (720 x 480 bits)

 (360 x 240 bits)

 (180 x 120 bits)

top integer layer

 (90 x 60 bytes)

 Example of 4-layer

Binary Pyramid

3rd Layer 8

 integers

Down-sampled

 integers

Down-sampled

Fig. 5. Illustration of 4-layer binary pyramid construction

ware emulation or hardware logic as indicated in Section

4.

In step 4, at the original resolution binary layer, the bi-

nary motion vector re�nement is performed with the XOR

Boolean block match of 16x16 bits and full search around

the best block match of the four projected candidates from

the previous layer. The search window is �3 pixels.

III. Construction Of the Binary Pyramid

The binary pyramid is constructed as follows:

1. Initialization: Let k be the number of pyramid level.

Let l = 0 and level 0 be the original image, i.e.,

Xl=X0.

2. Generate level l+1: An image Xl is �ltered by a

low-pass �lter H, the output of a low-pass �lter H

is H(Xl). H(Xl) is decimated by a factor of M

in each dimension which produces a reduced image

Xl+1 = DM(H(Xl)): The reduced image Xl+1 is in-

terpolated by an interpolating �lter IM giving the ex-

panded image IM(Xl+1):

3. Form the Binary Pyramid Bl:

Bl =

�
1 if (Xl � IM(Xl+1)) � T

0 otherwise

Where T is a threshold.

4. Termination: Let l = l+1 and if l 6= k� 1, go to step

2; otherwise, Bl = X(k� 1), stop.

Figure 4 illustrates the basic functions to construct the

binary pyramid. The 2-D �lter and down-sampling oper-

ations produce the conventional pyramid data structures.

The di�erence between the input data and the up-sampling

approximations is compared with a threshold to gener-

ate the binary plane with the same spatial resolution as

the input data. This process is repeated on the down-

sampled data, layer-by-layer, until reaching the desired bi-

nary level. An example of 4-layer binary pyramid construc-

tion is shown in the Figure 5.

An example to illustrate the binary pyramid construction

process follows. A 4x4 sub-block of input data is �ltered

and decimated by a factor of 2 as shown in Equation (1).

.

Fig. 6. The image of level 1 of the binary pyramid generated from
the 2nd frame in the \Flowergarden" sequence.

Subsample

0
BB@

74 59 100 158

74 69 59 80

87 86 65 69

100 118 72 60

1
CCA =

�
70 94

87 72

�

(1)

The 2x2 decimated data is up-sampled as shown in Equa-

tion (2).

Upsample

�
70 94

87 72

�
=

0
BB@

70 82 94 94

78 80 83 83

87 79 72 72

87 79 72 72

1
CCA (2)

Finally, the di�erence between Equation (1) and (2) is

compared with a threshold of zero to give a binary plane

as shown in Equation (3).

0
BB@

1 0 1 1

0 0 0 0

0 1 0 0

1 1 0 0

1
CCA =

0
BB@

74 59 100 158

74 69 59 80

87 86 65 69

100 118 72 60

1
CCA

�

0
BB@

70 82 94 94

78 80 83 83

87 79 72 72

87 79 72 72

1
CCA (3)

Figure 6 shows the �rst binary layer image of the 2nd

frame in the \Flowergarden" sequence. Figures 7-8 show

the 2nd and 3rd binary layer images, respectively. Figure

9 shows the top layer integer image, in 8 bits per pixel,

as the 4-th layer of conventional sub-samples. The binary

layer images have not only preserved the edge information

but also emphasized the complex details from relatively

at areas, such as the cloud area in the \Flowergarden"

sequence.

IV. XOR Boolean Matching Criterion and

Parallel Architecture

Block matching algorithms are widely used in motion

compensated video-coding applications. In block matching

.

Fig. 7. The image of level 2 of the binary pyramid generated from
the 2nd frame in the \Flowergarden" sequence.

.

Fig. 8. The image of level 3 of the binary pyramid generated from
the 2nd frame in the \Flowergarden" sequence.

ME, a frame Fc is divided into blocks with size of G �

G. For each block in the current frame Fc, a block from

the reference frame Fr (a previous or future frame) with

corresponding displacement (x; y) is selected by satisfying

the block matching criteria. This displacement (x; y) in

the reference block shifted from the current block location

is de�ned as the motion vector.

A. Block Matching Criteria

The Mean Absolute Di�erence (MAD) is often used as

the block-matching criterion. The MAD calculation in-

volves one subtraction, one absolute value operation, and

one accumulation per pixel.

MAD(x; y) =
1

G2

G�1X
i=0

G�1X
j=0

jIc(i; j)� Ir(i+ x; j + y)j

where Ic(i; j) is the value of pixel intensity at location (i,

j) within the current frame. Ir(i+ x; j + y) is the value of

pixel intensity at location (i+x, j+y) within the reference

frame.

In MAD block matching, each pixel is represented as an

8-bit integer. In binary pyramid, a byte is reduced to a

bit so only bit-wise operations are needed. The absolute

di�erence computation then becomes a simple logic XOR

operation, such as:

A�B = A�B with a borrow bit Cy = AB

jA�Bj = A�B without any borrow bit

where � denotes the exclusive-or (XOR) operation.

The XOR binary block match is the simplest case of

the MAD matching criterion with the minimum hardware

complexity. The XOR match criterion is expressed as the

following:

XOR(x; y) =

G�1X
i=0

G�1X
j=0

�(Ic(i; j)� Ir(i+ x; j + y))

.

Fig. 9. The image of level 4 of the binary pyramid generated from
the 2nd frame in the \Flowergarden" sequence.

.

4

4

k

k

XOR

4x4
bit-match

Count “0”
logic

16:4
LUT

5 x 64 kbits

CY

B[3]

B[2]

B[1]

B[0]

current
frame

reference
frame

16

16

16

kxk shift registers 320 kbit SRAM memory

Fig. 10. Block diagram of the 4x4 kernel operator of 4� 4 arrays of
XOR Boolean block matching

�(Ic(i; j)� Ir(i+ x; j + y)

=

�
0 if Ic(i; j) = Ir(i+ x; j + y)

1 otherwise

It shows that the binary block matching becomes sim-

ply counting the number of \0"s in the G �G match pat-

tern between the current and the reference binary blocks.

The more the \0"s, the better the two binary blocks are

matched.

B. The Parallel XOR Matching Architecture

The binary XOR matching operations can be easily built

into NxN arrays of parallel logic architecture. In a simple

Field Programmable Gate Array (FPGA) design, the ker-

nel operator can be 4x4 arrays and 4x4 such kernel oper-

ators can perform the 16x16 of Boolean XOR match of a

macro-block in a single clock cycle.

.

A
B
C
D

D[15]
.
.
.

4:2 logic
count “0”

Cy

b[1]
b[0]

A
B
C
D

4:2 logic
count “0”

Cy

b[1]
b[0]

A
B
C
D

4:2 logic
count “0”

Cy

b[1]
b[0]

A
B
C
D

4:2 logic
count “0”

Cy

b[1]
b[0]

D[11]
.
.
.

D[7]
.
.
.

D[3]
.
.
.

Σ CY

B[3]

B[2]

B[1]

B[0]

Cy1

b1[1]
b1[0]

Cy2

b2[1]
b2[0]

Cy3

b3[1]
b3[0]

Cy4

b4[1]
b4[0]

1, if D[…] = 0x00
0, otherwise

of “0” in D[…]

Three count “1” numbers:

B0 = Σbk[0] where k=1,2,3,4

B1 = Σbk[1] + C10

B2 = Σ Cyk +C20 + C21

Five bit final results :

Fig. 11. Partitions of combinatorial logic for the 16:4 count \0" logic

.

C10 B[0]

C’31 C’21 B’[1]

B[3] B[2] B[1] B[0]

+

C31 C21 B[1]

C21

C’32 B’[2]+

C32 B[2]

C20

C31

C32+

CY

Cy4
Cy3
Cy2
Cy1

CY
C’32

B’[2]

b4[1]
b3[1]
b2[1]
b1[1]

C’31
C’21

B’[1]

C20
C10

B[0]

B[3]

B[2]

B[1]

B[0]

b4[0]
b3[0]
b2[0]
b1[0]

4:2 logic
count “1”

4:2 logic
count “1”

4:2 logic
count “1”

a
b
c
d

a
b
c
d

a
b
c
d

C2
C1

B

C2
C1

B

C2
C1

B

Fig. 12. Partition of the summation logic into three count 1 logic
and a complex carry logic

The Figure 10 shows a block diagram of the 4x4 kernel

operator. It consists of a 4x4 register �le, a k� k shift reg-

ister arrays, a 4x4 XOR match operator, and a 16:4 Look

Up Table (LUT) memory. The 4x4 register �le holds a 4x4

binary sub-block from the current frame Fc and the k � k

shift register arrays hold the bits of the search window from

the reference frame Fr. The 4x4 XOR operator performs

the 4 � 4 Boolean match, and the 16:4 LUT converts the

number of \0" in the 16 bit match result into the 4 bit

numeric data. All the registers, shift registers, and LUT

memory cells can be implemented by Static Random Ac-

cess Memory (SRAM) technologies. The 16:4 LUT memory

utilizes 320kbits SRAM cells, as (4+1)�216 bits and most

of them saved the same value. Using two of 8:3 LUT

and a 4bit adder can greatly reduce the SRAM size with

compromising the speed. A 4bit counter and 16bit shift

register can easily count the number \0" of the matched

bits in 16 clock cycles with much less logic cells.

The \Hard-Wire" Application-Speci�c Integrated Cir-

cuits (ASIC) solutions can implement the same 16:4 logic of

counting \0" with much less logic gates and the fast perfor-

mance. The Figure 11 illustrates the basic functions of the

16:4 mapping logic with the \Hard-Wire" combinatorial

logic implementations. The 16:4 logic can be partitioned

into 4 of 4:2 count \0" logic circuits and a summation logic

to add up the 4 of 2bit numerical numbers.

The 4:2 count \0" logic converts the 4 input bits

[A;B;C;D] to 2 output bits b[1]; b[0]; and Cy (carry bit).

When the Cy = 1, the b[1] and b[2] will be equal to 0, be-

cause there are only 4 input bits. The 4:2 count \0" logic

is expressed as:

Cy = A B C D

b[0] = A�B � C �D

b[1] = Cy ABC ABD ACD BCD

where the b[0] shows there are 1 or 3 \0"s and the b[1]

with 2 or 3 \0" bits in the 4 input bits, respectively. The

b[1] can be illustrated as there are no 1 \0", nor 4 \0"s, nor

4 \1"s.

.

 8x8

 8x8

 MV1

 MV3

 MV2

 4x8

 8x4

 4x4

 MV4

Fig. 13. Illustration of 4-scale tilings search scheme

The summation logic can be further partitioned into

three count \1" logic circuits, as illustrated in the Figure

12. At �rst, the B[0] count "1" logic adds all the least sig-

ni�cant bits fb1[0], b2[0], b3[0], b4[0]g from the outputs

of four count "0" circuits. Then, the B[1] logic adds the

second bits fb1[1], b2[1], b3[1], b4[1]g and the carry bit

from B[0]. Finally, the B[2] logic adds all the carry bits

fCy1, Cy2, Cy3, Cy4g plus carry bits from B[0] and B[1],

respectively. They are expressed as the follows:

B[0] = b1[0]� b2[0]� b3[0]� b4[0]

B[1] = b1[1]� b2[1]� b3[1]� b4[1]� C10

B[2] = Cy1� Cy2� Cy3� Cy4� C20 � C21

B[3] = C31 � C32

CY = Cy1 Cy2 Cy3 Cy4

where the C10 and C20 are the carry bits from the B[0]

logic. The bits C21, C31 and C32 are carry bits from

the B[1] logic and B[2] logic circuits, respectively. When

CY=1, the set fB[3],B[2].B[1],B[0]g equals f0,0,0,0g be-

cause this 16:4 count "0" logic has only 16 input bits.

The carry bits from the B[0] logic are expressed as:

C20 = b1[0] b2[0] b3[0] b4[0]

C10 = C20 b1[0] b2[0] b3[0] b1[0] b2[0] b4[0]

b1[0] b3[0] b4[0] b2[0] b3[0] b4[0]

where the C10 can be interpreted as that there exist no

four "0"s nor one "1" nor four "1"s in the least signi�cant

bits fb1[0], b2[0], b3[0], b4[0]g.

To simplify the logic, three of 4:2 count "1" circuits are

used. The B'[1] and B'[2] logic are expressed as:

B0[1] = b1[1]� b2[1]� b3[1]� b4[1]

C 0

31 = b1[1] b2[1] b3[1] b4[1]

C 0

21 = b1[1] b2[1] b3[1] b1[1] b2[1] b4[1] b1[1] b3[1] b4[1]

b2[1] b3[1] b4[1] C 0

31

B0[2] = Cy1� Cy2� Cy3� Cy4

C 0

32 = Cy1 Cy2 Cy3 Cy1 Cy2 Cy4 Cy1 Cy3 Cy4

Cy2 Cy3 Cy4 CY

Consequently, the carry bits from B[1] and B[2] circuits

are as follows:

C21 = C 0

21 � (C10B
0[1])

C31 = C 0

31 � (C10B
0[1]C 0

21)

C32 = C 0

32 � (C20C21 + C20B
0[2] + C 0

21B
0[2])

The special \Hard-Wire" ASIC implementation of this

parallel logic architecture for the Boolean XOR block

matching can be much fastser than the FPGA LUT de-

signs and the software emulations of the LUT algorithms

with the general purpose DSP and CPU processors.

V. Binary Pyramid Motion Estimation With

N-Scale Tilings

Let Fm denote them-th image frame in a video sequence.

The binary pyramid Fm is generated using the algorithm

described in Section 3. Each pyramid layer is partitioned

into non-overlapping blocks of size s. The resulting parti-

tion or tiling at layer l is represented by F l;s
m
. The intensity

value of the pixel with coordinates x = [x1; x2]
T in an im-

age frame m at layer l is denoted by F l
m(x) where x1, x2,

and T denote the row index, the column index, and \trans-

pose", respectively. For a given s = [s1; s2]
T , the block of

pixels with upper left corner at image position x at layer l

is referred to as Bl
m
(x; s) = fF l

m
(q) 2 F l

m
jx � q < x+ sg:

The sum of the absolute di�erences between pixels from a

block Bl
m(x; s) from frame m and corresponding pixels in

block Bl
m�1(x; s) from frame m� 1 can be represented as:

Bl

m
(x; s)	Bl

m�1(x; s)

=
P

0�d<s
jF l
m(x+ d)� F l

m�1(x+ d)j

The sum of XOR Boolean operations between pixels from

a block Bl
m(x; s) from frame m and corresponding pixels

in block Bl
m�1(x; s) from frame m� 1 can be denoted as:

Bl

m
(x; s)� Bl

m�1(x; s)

=
P

0�d<s
�(F l

m(x+ d)� F l
m�1(x+ d))

�(F l

m(x+ d)� F l

m�1(x+ d))

=

�
0 if F l

m
(x+ d) = F l

m�1(x+ d)

1 otherwise

Let F 0;s be a tiling de�ned on the full resolution im-

age with cardinality �. Let F 0;s=2 be a tiling de�ned on

level 1. For the lower resolution image, N-scale tilings

are considered. They are fF l;s1gk�1
l=2 , fF

l;s2gk�1
l=2 , � � � ; and

fF l;sNgk�1
l=2 .

.

Layer 3: 8x8 integers

Layer 2: 8x8 bits

Layer 1: 8x8 bits

Layer 0: 16x16 bits

projections

 tiling MV set

Final Motion Vector

(MV1, MV2, MV3 , MV4)

(MV1, MV2, MV3, MV4)

4

4

Fig. 14. Tiling set of motion vector projection into multi-layer pyra-
mid

1. Initialization: Let k be the number of binary pyramid

level and l = k � 1. At the Level k � 1, the motion

vector �elds vk�1
s1 , vk�1

s2 ,� � �, and vk�1
sN

are de�ned as

follows:

vk�1
sj

= arg min
v2
k�1

Bk�1
m

(x; sj)	Bk�1
m�1(x+ v; sj)

where

1 � j � N

k�1 = fv : �dk�1 � v � dk�1g

2. Projection and Re�nement: From the lower resolution

l+1 to the higher resolution l, the motion vector �elds

are projected according to the following:

ul
sj

= 2vl+1
sj

where

1 � j � N

The motion vector �elds at the resolution l are re�ned

as follows:

vlsj = arg min
v2fwl

j1
;wl

j2
;���;wl

jN
g�

Bl

m
(x; sj)�Bl

m�1(x+ v; sj)
�

where

wl

ji
= arg min

v2
l
Bl

m
(x+ ul

si
; sj)�Bl

m�1(x+ ul
si
+ v; sj)

1 � j � N

1 � i � N

l = fv : �dl � v � dlg

3. Let l = l � 1 and if l 6= 1, go to step 2; otherwise, go

step 4, continue.

4. Level 1:

u1sj = 2v2sj

where

1 � j � N

v1
s=2 = arg min

v2fwl
1
;wl

2
;���;wl

N
g�

B1
m(x; s=2)�B1

m�1(x+ v; s=2)
�

where

w1
i = arg min

v2
1�
B1
m(x + u1si; s=2)�B1

m�1(x+ u1si + v; s=2)
�

1 � i � N

1 = fv : �d1 � v � d1g

5. Termination: Level 0:

u0 = 2v1
s=2

v0 = arg min
v2
0

B0
m
(x+ u0; s)�B0

m�1(x+ u0 + v; s)

where

0 = fv : �d0 � v � d0g

Figure 13 shows a 4-scale tiling example. A binary

pyramid layer can be tiled into 8 � 8, 8 � 4, 4 � 8, 4 � 4

super-blocks with various shapes, with respect to the scale

N = 4. There are 3 advantages in the N-scale tiling search

in the binary pyramid structure: (a) Large super-blocks

can be used for more hierarchical layer ME; (b) Natural

scenes frequently contain motion at di�erent scales; various

shapes can be better �tted with motion objects; (c) Viterbi-

like multi-path hierarchical projection search can prevent

the ME from being trapped in local minima. The tiling

multi-path search is much more important for binary based

ME, as illustrated in Figure 14.

Figure 14 shows the fast binary pyramid motion estima-

tion using 4-scale tiling. Motion estimation is �rst per-

formed at level 3 using four di�erent tiling block sizes as

shown in Figure 13 in the conventional block matching.

Each detected motion vector from each scale is propagated

to the next lower level and is re�ned using XOR matching

criterion at four di�erent scales. This process repeats once

until level 1 is reached. At level 1, the four motion vectors

projected from level 2 are re�ned using XOR matching cri-

terion at the 8 � 8 tiling block. The best motion vector

from these four motion vectors, based on the most \0's"

from XOR matching, is projected to level 0. At level 0, the

�nal motion vector is obtained re�ning the motion vector

projected from level 1 using XOR matching criterion for

the 16� 16 tiling block.

.
0 50 100 150

27

28

29

30

31

32

33

Number of frames

P
S

N
R

 (
dB

)

Fig. 15. PSNR versus frame number for an MPEG-2 encoder.
Test sequence: Flowergarden. Solid line represents Full Search.
Dashed line represents FBPME.

VI. Complexity and Bus Bandwidth

A. Complexity Of the FBPME

The width and the height of the image sequence is W

and H , respectively. The search window has �M pixels.

In the conventional full search block matching algorithm,

it requires one subtraction, one addition, and one absolute

value operation for a single pixel matching. The computa-

tional complexity (operations per frame) is approximated

as:

CFULL 'W �H � 4�M2 � 3 = 12WHM2

In FBPME, we use k = 4 and N = 4. For the FBPME

the same full search scheme is used. The tiling block size

at level 0 is 16�16. The tiling block size at level 1 is 8�8.

The same tiling block sizes of 8�8, 8�4, and 4�8, 4�4 are

used at level 2, and level 3. The e�ective search range at

level 0, level 1, and level 2 is set to �3 pixels. The e�ective

search range at level 3 is set to �M=8 pixels.

At level 3, the computational complexity is approxi-

mated as

C3 '
WH

64
�
M2

64
� 4� 3 =

3WHM2

1024

At level 2 and level 1, each 8�8 block can be represented

by four 16-bit vectors. A 16-bit XOR Boolean operator

can be implemented using one 16-bit exclusive-or arrays, a

dual-port look-up table (LUT) with 65536 entries. The 8�

8 block needs four additions for the 64 pixels for the basic

matching. Likewise, the 8 � 4 block needs two additions

for the 32 pixels basic matching. Then, the computational

complexity at level 2 and level 1 is approximated as

C2 '
WH

16
�

�
4

64
+

2

32
� 2

�
� 49 =

147WH

256

At level 1, The 8� 8 block then needs four additions for

the 64 pixels for the basic matching. The computational

complexity at level 1 is approximated

C1 '
WH

4
�

4

64
� 49 =

49WH

64

At level 0, the 16� 16 block needs sixteen additions for

the 256 pixels for the basic matching. The computational

complexity is approximated as

C0 'WH �
32

256
� 49 =

49WH

16

Therefore, the computational complexity of the FBPME

can be approximated as

CFBPME = C3 + C2 + C1 + C0 =
3WHM2

1024
+

1127WH

256

The ratio between CFBPME and CFULL is below.

CFBPME

CFULL
=

3WHM
2

1024
+ 1127WH

256

12WHM2
=

1

4096
+

1127

3072M2
(4)

It is seen from Equation (4) that the computational

complexity of FBPME is very low compared with the full

search.

B. Bus Bandwidth

Bus throughput and on-chip memory requirement are of-

ten bottlenecks for cost-e�ective real-time MPEG encoder

implementation. This subsection estimates the required

data throughput for the proposed FBPME scheme.

The frame rate, the width and height of the image se-

quence is Fr, W , and H , respectively. The size of the

image block is G�G. A picture frame contains H

G
pictures

slices, and there are W

G
blocks in each slice. The search

window has �M pixels. In a block matching motion es-

timation, search areas of adjacent blocks overlap quite a

bit. This overlapped area data can be stored inside the

on-chip memory bu�er to reduce external memory band-

width. We assume an on-chip memory bu�er `D' whose

size equals to the search area, (G+2M)� (G+2M) bytes.

The new loading data size for bu�er D is G � (G + 2M)

bytes when the next block is on the same picture slice.

We need to load the complete bu�er at the beginning of

a slice while processing one picture slice. Thus, the to-

tal external memory bandwidth per slice is approximately

((G+2M)2+(W
G
� 1)�G� (2M +G)) bytes if boundary

block cases are neglected. So, the bus bandwidth (bytes/s)

of the Full search is approximated as

MBfull

' H

G
((G+ 2M)2 + (W

G
� 1)�G� (2M +G)) � Fr

A derivation of the memory bandwidth requirement for

FBPME is given in the following.

At layer 3, the bus bandwidth (bytes) is approximated

as

MB3

' H

64
� ((8 +M=4)2 + (W

64
� 1)� 8� (M=4 + 8))

At layer 2, the bus bandwidth (bytes) is approximated

as

MB2 '
1

8
� (

HW

16� 32
� (8 + 6)� (4 + 6)� 2

+ HW

32�32
� (8 + 6)2 + HW

16�16
� (4 + 6)2) (5)

.
0 50 100 150

25

25.5

26

26.5

27

27.5

28

28.5

29

29.5

30

Number of frames

P
S

N
R

 (
dB

)

Fig. 16. PSNR versus frame number for an MPEG-2 encoder. Test
sequence: Mobi. Solid line represents Full Search. Dashed line
represents FBPME.

.
0 20 40 60 80 100 120

36

37

38

39

40

41

42

43

Number of frames

P
S

N
R

 (
dB

)
Fig. 17. PSNR versus frame number for an MPEG-2 encoder. Test

sequence: Jeep. Solid line represents Full Search. Dashed line
represents FBPME.

At layer 1, the bus bandwidth (bytes) is approximated

as

MB1 ' H

16
� W

16
� (8 + 6)2 � 4� 1

8

At layer 0, the bus bandwidth (bytes) is approximated

as

MB0 '
H

16
�
W

16
� (16 + 6)2 �

1

8

Therefore, the bus bandwidth (bytes/s) of the FBPME

is approximated as

MBFBPME ' Fr � (MB0 +MB1 +MB2 +MB3)

Table I lists bus bandwidth requirements in Mbytes/s

for the FBPME and Full Search where BS represents Bus

Bandwidth. It is showing that the bus bandwidth require-

ment of the proposed algorithms is much smaller than that

of full search.

VII. Experimental Results

The proposed fast binary pyramid motion estimation al-

gorithm was implemented in the MPEG-2 framework. The

SDTV MPEG sequences \Flowergarden", \ Mobi" of size

720 � 480 consisting of 150 frames each and the HDTV

TABLE I

Bus bandwidth in Mbytes/s for the two algorithms.

Fr = 30Hz, W = 720, H = 480.

Algorithms BS(M = 128) BS(M = 64)

FBPME 8.73 8.21

FullSearch 238.93 109.90

sequences \Jeep", \Mask"of size 1920� 1080 consisting of

105 frames each were used in this simulation. In our exper-

iment, the size of group of the pictures (GOP) was set to

15. The prediction distance between I frame and P frame

was 3. The e�ective search range was set to �128. The

coding rate was 4Mbps for SDTV and 19Mbps for HDTV.

The bu�er size for SDTV and HDTV was set to 1.79Mbits

and 7.81 Mbits, respectively.

Our motion estimator computes all encoding modes in-

cluding forward, backward, bi-directional and dual prime

but only one mode will be selected. The mode decision for

each macro-block is critical for the encoder performance.

In our experiment, we use an optimized mode selection

that considers the rate-distortion behavior of each coding

mode. For example, the bi-directional interpolative mode

uses more motion vectors although it typically yields less

residual. Thus, our experimental results will give a better

representation of the encoding results of an optimized en-

coder. The comparison between full search and FBPME

uses the same optimized mode selection.

The PSNR results using the proposed FBPME and

full search for the \Flowergarden",\Mobi", \Jeep", and

\Mask" are shown in Figures 15-18, respectively. Table

II shows the average PSNR of the MPEG-2 with FBPME

and full search.

TABLE II

PSNR (dB) of MPEG-2 combined with FBPME method and

full search.

PSNR (dB)

Methods Flowergarden Mobi Jeep Mask

FBPME 30.63 27.22 39.74 42.75

Full Search 30.84 27.41 39.83 42.78

One can see from Table II, Figures 15-18 that the pro-

posed FBPME achieves comparable performance with full

search but with much less complexity.

VIII. Conclusions

In this paper, we presented a fast binary pyramid mo-

tion estimation algorithm that not only signi�cantly re-

duces the computational complexity, but also greatly re-

duces the bus bandwidth requirement. The FBPME takes

advantages of XOR Boolean matching and N-scale tiling

multi-path search scheme. It achieves the same level of

PSNR and visual quality at less than 1/4000 of the com-

putational load of the conventional full-search algorithm.

.
0 20 40 60 80 100 120

37

38

39

40

41

42

43

44

45

Number of frames

P
S

N
R

 (
dB

)

Fig. 18. PSNR versus frame number for an MPEG-2 encoder. Test
sequence: Mask. Solid line represents Full Search. Dashed line
represents FBPME.

Its binary nature allows it to be implemented very easily

in hardware. The proposed scheme was implemented in

an MPEG-2 MP@ML and ATSC HDTV encoder frame-

work. Extensive test results have indicated the superior

performance of the proposed FBME in speed, memory re-

quirement, as well as data throughput.

Acknowledgments

The authors would like to thank the suggestions of the

anonymous reviewers.

References

[1] ITU-T H263, Recommendation H.263 video coding for low bit rate
communication , January 1998.

[2] ISO/IEC 11172-2, Information technology - coding of moving pic-
tures and associated audio - for digital storage media at up to
about 1.5 Mbit /s - Part 2: Video, 1990.

[3] ISO/IEC International Standard 13818-2, Information technology
- generic coding of moving pictures and associated audio infor-
mation - Part 2: Video, 1994.

[4] MPEG-4 FDIS ISO/IEC JTC1/SC29/WG11 Coding of Moving
Pictures and Associated Audio ISO/IEC 14496-2, March 1999.

[5] ATSC A/53, ATSC Digital Television Standard, ATSC Speci�-
cations, USA, Sept. 1995.

[6] T. Koga et al, \Motion-compensated interframe coding for video
conferencing," in Proc. N Nat. Telecom. Conf. , pp. G 5.3.1-G
5.3.5, Nov./Dec. 1981.

[7] J.R. Jain and A.K. Jain, \Displacement measurement and its ap-
plication in interframe image coding, " IEEE Trans. Commun. ,
COM-29, pp. 1799-1808, Dec. 1981.

[8] R. Srinivasan and K.R. Rao, \Predictive coding based on eÆcient
motion estimation, " IEEE Trans. Commun. , COM-33, pp. 1011-
1014, Sept. 1985.

[9] K. Chow and M.L. Liou, \Genetic motion search algorithm for
video compression," IEEE Trans. Circuits and Systems for Video
Technology, No. 6, pp. 440-445, Dec. 1993.

[10] C.H. Lin and J.L. Wu, \A lightweight genetic block-matching
algorithm for video coding" IEEE Trans. Circuits and Systems
for Video Technology, No. 4, pp. 386-392, Aug. 1998.

[11] J.Y. Tham, S. Ranganath, M. Ranganath, and A. Kassim, \A
novel unrestricted center-biased Diamond search algorithm for
block motion estimation ," IEEE Trans. Circuits and Systems
for Video Technology, No. 4, pp. 369-377, Aug. 1998.

[12] J.S. Kim and R.H. Park, \A fast feature-based block matching
algorithm using integral projections," IEEE Journal on Selected
Areas in Comm., Vol. 10, pp. 968-971, June 1992.

[13] B. Liu and A. Zaccarin, \New fast algorithm for estimation of
block motion vectors," IEEE Trans. Circuits and Systems for
Video Technology, No. 2, pp. 148-157, April 1993.

[14] M. Bierling, \Displacement estimation by hierarchical block-

matching," SPIE Visual Comm. Image Process., Vol. 100, pp.
942-951, 1988.

[15] Y.-Q. Zhang and S. Zafar, \Motion-Compensated wavelet trans-
form coding for color video compression", IEEE Trans. Circuits
and Systems for Video Technology, No. 3, 2, pp. 285-296, Sept.
1992.

[16] B.B. Paul and E. Viscito, \Hierarchical motion estimation with
2-scale tilings," Proc. IEEE International Conference on Image
Processing, pp . 260-264, Nov. 1994.

[17] X. Song, T. Chiang, and Ya-Qin Zhang, \A hierarchical motion
estimation algorithm using nonlinear pyramid for MPEG-2," in
Proc. IEEE International Symposium on Circuits and Systems,
pp. 1165-1168, June 1997.

[18] J. Chalidabhongse and C.-C. J. Kuo, \Fast motion vector
estimation using multiresolution-spatio-temporal correlations,"
IEEE Trans. Circuits and Systems for Video Technology, No.
3, pp. 477-488, June 1997.

[19] P. Burt and E. H. Adelson, \The Laplacian pyramid as a com-
pact image code," IEEE Trans. on Communication, Vol. COM-
31, no 4, April 1983.

[20] H. Gharavi and M. Mills, \Blockmatching motion estimation
algorithms - New results," IEEE Trans. on Circuits and Systems
Vol. 37, No. 5 pp. 649-651, May 1990.

[21] X. Lee, \A fast feature matching algorithm of motion compen-
sation for hierarchical video codec,,"in SPIE Con. Visual Com-
munication and Image Processing, Boston, MA, vol. 1818, pp.
1462-1474, Nov. 1992.

[22] X. Lee and Ya-Qin Zhang, \A fast hierarchical motion-
compensation scheme for video coding using block feature match-
ing," IEEE Trans. on Circuits and Systems for Video Technology
Vol. 6, pp. 627-635, Dec. 1996.

[23] B. Natarajan, V. Bhaskaran, and K. Konstantinides, \Low-
Complexity block-based motion estimation via one-bit trans-
forms," IEEE Trans. on Circuits and Systems for Video Tech-
nology Vol. 7, pp. 702-706, Aug. 1997.

[24] X. Song, Ya-Qin Zhang, and T. Chiang \Hierarchical motion
estimation algorithm using binary pyramid with 3-scale tilings,"
in Proc. of SPIE Visual Communications and Image Processing,
pp. 80-87, January 1998.

[25] X. Song, T. Chiang, and Ya-Qin Zhang \A scalable hierarchical
motion estimation algorithm for MPEG-2 ," in Proc. of IEEE
International S ymposium on Circuits and Systems, June 1998.

[26] A. Zakhor and F. Lari, \Edge-Based 3-D camera motion esti-
mation with application to video coding," IEEE Trans. on Image
Processing Vol. 2, No. 4, pp. 481-498, Oct. 1993.

[27] J. Feng, K.-T. Lo, H. Mehrpour, and A. E. Karbowiak, \Adap-
tive block matching motion estimation algorithm using bit-plane
matching," in IEEE Int. conf. Image Processing, Washington,
DC, 1995, pp. 496-499.

Xudong Song (M'96) received the M.S. de-
gree in the Institute of Information Science
from Northern Jiaotong University, Beijing,
China, in 1988, and the Ph.D degree in elec-
trical engineering from Tampere University of
Technology, Tampere, Finland, in 1993.

From 1993 to 1995, he worked as a Research Associate in the
Department of Neurosurgery, the University of Illinois at Chicago,
in the area of medical imaging. From 1996 to 2000, he was with
the Sarno� Corporation (formerly David Sarno� Research Center),
Princeton, NJ, as a Member of the Technical Sta� where he was ac-
tively engaged in research and development of Electronic Cinema,
H.263, MPEG, real time HDTV encoding, and digital television. He
joined the IVAST in 2000 as a Senior Technical Sta� where he works
on multimedia. In 1999, he received sarno� technical achievement
award. He has six US patents granted or pending. His current re-
search interests include multimedia, video compression over Internet
Protocol based networks.

Tihao Chiang (S'90-M'95-SM'99) re-
ceived the B.S. degree in electrical engineer-
ing from the National Taiwan University in
1987, and the M.S. degree in electrical engi-
neering from Columbia University in 1991. He
receved his Ph.D. degree in electrical engineer-
ing from Columbia University in 1995. In 1995,
he joined David Sarno� Research Center as a
Member of Technical Sta�. Later, he was pro-
moted as a technology leader and a program
manager. While at Sarno�, he led a team and

developed an optimized MPEG-2 software encoder. For his work in
the encoder and MPEG-4 areas, he received two Sarno� achievement
awards and three Sarno� team awards.

Since 1992 he actively participated in ISO's Moving Picture Ex-
perts Group (MPEG) digital video coding standardization process.
He is currently the co-chairman for encoder optimization on the
MPEG-4 committee. He has made more than 40 contributions to the
MPEG committee. He has co-authored the rate control technology
that was adopted as part of the MPEG-4 International Standards
in 1998. His main research interests are compatible/scalable video
compression, stereoscopic video coding, and motion estimation. In
September 1999, he joined National Chiao-Tung University as an as-
sistant professor in Taiwan, R.O.C. Dr. Chiang is currently a senior
member of IEEE and holder of three US patents and more than ten
pending patents. He published over 20 technical journal and confer-
ence papers in the �eld of video and signal processing.

Xiaobing Lee received the B.S.E.E from Bei-
jing University of Post and Telecommunica-
tions, Beijing, China, in 1981, the M.S.E.E.
from Columbia University, NY, in 1984, and
Ph.D. degree in Electrical Engineering from
Clarkson University, Potsdam, NY, in 1989.

Lee is director of research at SeaChange Systems, Inc. His research
interests include digital video streaming and video servers, video pro-
cessing/compression, cable and satellite Multimedia IP systems. He
was with Sarno� Corporation (formerly David Sarno� Research Cen-
ter) Princceton, NJ, in 1998 to 1999. He was principle engineer at
Wegener Communications Corp, Atlanta, GA, in 1994 to 1998, and
senior research engineer at Tee-Comm Electronics, Canada, in 1993
to 1994. He was research scientist at University of Toronto, Canada,
in 1991 to 1993, and research technologist at SouthernWestern Bell
Corp., St. Louis, MO, in 1989 to 1990.

His current responsibility is research and develop the integrated
MPEG multiplex and QAM modulation / OC3-C line-card devices,
Fiber-Channel backplanes and Gigabit networks for video servers and
multimedia IP systems.

Ya-Qin Zhang joined Microsoft Research in
China in January 1999, leaving his post as
the Director of Multimedia Technology Labo-
ratory at Sarno� Corporation in Princeton, NJ
(formerly David Sarno� Research Center, and
RCA Laboratories). His Laboratory is a world
leader in MPEG-2/DTV, MPEG4/VLBR, and
multimedia information technologies. He was
with GTE Corp. in Waltham, MA and Con-
tel Technology Center in Virginia from 1989 to
1994. He has authored and co-authored over

200 refereed papers and 30 US patents granted or pending in digital
video, Internet, multimedia, wireless and satellite communications.
Many of the technologies he and his team developed have become the
basis for start-up ventures, commercial products, and international
standards. He serves on the board of directors of �ve companies.

Dr. Zhang served as the Editor-In-Chief for the IEEE TRANSAC-
TIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOL-
OGY from July 1997 to July 1999. He is the Chairman of Visual Sig-
nal Processing and Communications Technical Committee of IEEE
Circuits and Systems Society. He serves on the Editorial boards of
seven other professional journals and over a dozen conference com-
mittees. He has been an active contributor to the ISO/MPEG and
ITU standardization e�orts in digital video and multimedia.

Dr. Zhang is a Fellow of IEEE. He received numerous awards,
including several industry technical achievement awards and IEEE
awards. He was awarded as the Research Engineer of the Year in
1998 in New Jersey. He recently received the national Eta Kappa Nu
award as The Outstanding Young Electrical Engineering of 1999 in
US.

He received his B.S. and M.S. in Electrical Engineering from the
University of Science and Technology of China (USTC) in 1983 and
1985. He received his Ph.D in Electrical Engineering from George
Washington University in 1989.

