

UPPSALA THESES IN COMPUTING SCIENCE
No. 17/93

Cycletrees: a Novel Class of Interconnection Graphs

Margus Veanes

Thesis for the Degree of
Licentiate of Philosophy

UPMAIL
Computing Science Department
Uppsala University
Box 311
S-751 05 UPPSALA
SwedenISSN 0283-359X

Abstract

We introduce a new class of graphs that we call cycletrees. A cycletree includes a basic
binary tree and has a unique Hamiltonian cycle. We argue that cycletrees reflect the
communication patterns of several common parallel programming paradigms and can
be used in various fields of parallel computation. Several minimality, optimality and
planarity properties are proved for cycletrees. A subclass of cycletrees is identified
as natural cycletrees through an inductive definition. Methods for generating natural
cycletrees, given either a set of vertices, a cycle or a basic binary tree, are presented.
We present an inexpensive and simple routing algorithm for natural cycletree net-
works. A superfast parallel algorithm is presented, which dynamically establishes the
shortest path router data for the given router algorithm. We compare cycletrees with
other interconnection graphs that have been designed for partly similar reasons.

Acknowledgements

I wish to thank all those who have helped me with my thesis. In particular, I would
like to thank my supervisor Jonas Barklund, and my colleague Sven-Olof Nyström for
invaluable comments on earlier versions of this thesis. Special thanks goes to H̊akan
Millroth for providing me with literature that has proved to be of great relevance
during the course of this work. I also want to thank Marianne Ahrne for checking the
English language.

Finally, I am most grateful to my wife Katrine for all the support and encourage-
ment I have received through the past years.

Contents

1 Introduction 1

1.1 Parallel programming paradigms . 1

1.1.1 The master-slave paradigm . 2

1.1.2 The systolic paradigm . 2

1.1.3 Affinity between different paradigms 3

1.2 Parallelization of sequential programs 3

1.2.1 Reform . 4

1.2.2 Bounded quantifications . 4

1.3 Properties of interconnection graphs 4

1.3.1 Embedding . 5

1.3.2 Mapping . 6

1.4 Related networks . 6

1.5 Outline of the thesis . 7

2 Cycletrees 9

2.1 Preliminaries . 9

2.2 Basic definitions and theorems . 9

2.3 Minimality and optimality . 13

2.3.1 Minimal cycletrees . 13

2.3.2 Optimal cycletrees . 15

2.4 Ordered cycletrees . 16

2.4.1 Related concepts . 17

3 Cycletrees as networks 19

3.1 Basic definitions . 19

3.2 Constructing cycletrees . 19

3.3 Routing in cycletrees . 22

3.3.1 Routing algorithm for cycletrees 22

3.3.2 Planar properties of cycletrees 23

3.3.3 Optimal router data . 25

3.4 Establishing optimal router data dynamically 28

3.4.1 Overview of the algorithm . 29

3.4.2 The algorithm . 30

3.4.3 Correctness . 34

3.4.4 Complexity analysis . 37

4 Conclusions and future work 39

Bibliography 41

i

ii CONTENTS

A Proofs 47
A.1 Number of edges in an optimal cycletree 47
A.2 Optimality of router data . 49

List of Figures

1.1 A cycletree . 1
1.2 The wavefront principle . 3
1.3 The ideal network . 4
1.4 An extreme example of a cycletree . 5
1.5 Some examples of related networks . 7

2.1 A full natural cycletree of 31 vertices 10
2.2 Inductive construction of chaintrees . 11
2.3 Construction of natural cycletrees . 11
2.4 A natural cycletree . 11
2.5 A cycletree which is not a natural cycletree 13
2.6 A minimal (and optimal) cycletree . 14
2.7 Traversal of a subtree . 17
2.8 An ordered cycletree . 17

3.1 Calculating the address of the right son of a pre-vertex 20
3.2 A tree-complete cycletree of 9 vertices 21
3.3 An admissible plane graph of a cycletree 23
3.4 Another admissible plane graph of the cycletree in Figure 3.3 25
3.5 The optimal router data of an internal vertex (the principle) 25
3.6 The optimal router data of an internal vertex (an example) 26
3.7 The optimal router data of an external vertex (the tricky case) 27
3.8 The optimal router data of an external vertex (an example) 28
3.9 An important property . 30
3.10 Subglobal view of Step 4 (an example) 30
3.11 Subglobal view of Step 2 of Algorithm 3 32
3.12 Subglobal view of Step 4 of Algorithm 3 32
3.13 Illustration of substep S53 of Algorithm 3 33
3.14 Sample execution of Algorithm 3 . 35

A.1 Internal vertex . 49
A.2 A leaf with a left ascendent . 51
A.3 A leaf with a left descendent . 51
A.4 A leaf at the same level as its left neigbour 51
A.5 The minimum “left” ascendent of a leaf 52

iii

iv LIST OF FIGURES

Chapter 1

Introduction

A cycletree is a graph which includes a basic binary tree and has a unique Hamiltonian
cycle. A minimal cycletree has the minimal number of edges that are not part of the
binary tree.

Figure 1.1: A cycletree. The curved lines correspond to edges that are not part of the
binary tree and the dashed lines correspond to edges that are not part of the cycle.

We argue that a cycletree is well suited as an interconnection graph of a network of
processing entities or nodes that are used to execute parallel programs. Communica-
tion between arbitrary nodes is possible, but we favour the following communication
patterns between the nodes. (Let the nodes be numbered from 1 to N .)

1. Broadcasting or distributing data from node 1 to all the other nodes.

2. Collecting or combining data from all nodes to node 1.

3. Communication between nodes i and i + 1, 1 ≤ i < N , and possibly between
nodes 1 and N .

These communication patterns occur frequently in many parallel programming para-
digms, as we shall see.

1.1 Parallel programming paradigms

The following programming paradigms and techniques are frequently used in parallel
computation; the above communication patterns occur often.

1. Binary tree paradigm.

2. Growing by doubling paradigm.

3. Compute-aggregate-broadcast technique.

4. Parallel divide-and-conquer technique [50, 51].

1

2 CHAPTER 1. INTRODUCTION

5. Systolic paradigm based on a linear or circular array.

6. Master-slave paradigm.

A widely recognized interconnection graph that supports the communication pat-
terns 1 and 2 and the first four paradigms is the binary tree [17, 30, 46, 66]. Clearly,
an interconnection graph that supports the third communication pattern and the fifth
paradigm is a circular array (an N -cycle, a ring). For a survey of paradigms 1–5 and
related algorithms see, e.g., Chaudhuri [17]. Let us examine the last two paradigms
more closely.

1.1.1 The master-slave paradigm

The master-slave paradigm (process farming [32], pure agenda parallel approach [15])
is a technique that is often used when the computation at hand can be divided into
several independent subcomputations. Problems that can be computed in this way
are often called ‘embarrassingly parallel’. Both binary trees and circular or linear
arrays are, due to their simple structure, often used as virtual interconnection graphs
of the master and the slaves.

1.1.2 The systolic paradigm

The systolic paradigm [37, 59] is, arguably, the most widely used paradigm for non-
shared memory parallel computation. The concept of systolic arrays was introduced
by H. T. Kung [46, chapter 8 by H. T. Kung]. In a systolic algorithm the entire
computation is divided into subcomputations, each of which is assigned to a node.
There is a flow of data through the nodes and the operations are pipelined to balance
input/output, computation and processing. Systolic algorithms are required to have
the following properties.

• Locality of computation and communication. Each node can communicate with
only a subset of its neighbours.

• Regular communication structure.

Computation can proceed either synchronously or asynchronously. Asynchronous
systolic algorithms are also known as soft-systolic or wavefront algorithms.

Several systolic algorithms have been developed for linear and circular arrays.
In general, problems that belong to the pipeline complexity class [36] can be solved
efficiently on such structures. Matrix-vector multiplication, recurrence evaluation and
priority queues are good examples [36, 42].

Systolic algorithms are often expected to have linear best-case relative speedup.
The run time for such algorithms is generally determined by the cost for starting the
algorithm, called latency, and the number of input values. Distributing or broadcast-
ing initial values and collecting the results can impede the relative speedup consid-
erably if such operations are not supported by the underlying network. Thus, if a
linear or circular array structure is used by the algorithm, an additional binary tree
structure of the nodes would clearly be favourable.

Wavefront algorithms

A wide range of parallel numerical algorithms can be described as wavefront algo-
rithms. The execution of such algorithms can be visualized as a two-dimensional
grid of subcomputations or cells. The computation in each cell is data driven and
the computational activity starts in the upper left corner and proceeds down and
right towards the lower right corner, creating a computational wavefront through the

1.2. PARALLELIZATION OF SEQUENTIAL PROGRAMS 3

grid (see Figure 1.2). The concept of computational wavefront was introduced by
S. Y. Kung [38] and is described in several other sources [16, 34, 37, 39].

The similarity comparison of DNA sequences [26] is a good representative of this
category. This problem occurrs in the field of genetics as part of the Human Genome
project [22] and is one of the important real world problems of today.

Figure 1.2: The wavefront principle. The grey cells have already been computed and
the black cells are currently active.

The point we want to make is that even though such algorithms can often be best
understood and visualized as a two-dimensional grid, the best implementation can
often be achieved on a linear or circular array. The reason for that should be obvious:
every cell is inactive during most of the computation, so implementation on a two-
dimensional grid of processors (one cell per processor, see Figure 1.2) would result
in poor efficiency. An implementation on a linear or circular array (a row of cells
per processor, see Figure 1.2) would not impede the relative speedup. The sequence
comparison problem is a good example, an excellent study has been presented by
Carriero and Gelernter [15].

1.1.3 Affinity between different paradigms

Often a problem is not solved by using just one paradigm, and the resulting algorithm
can be a mixture of different paradigms. For example, the sequence comparison
problem: if one sequence is to be compared with several other sequences (a database)
then one could either

1. do those comparisons in parallel,

2. parallelize each comparison, or

3. combine 1 and 2.

In the first case the master-slave paradigm is used, in the second case the systolic
paradigm is used, and in the third case a mixture of both is used. There are several
factors to be considered when choosing the best alternative [15].

1.2 Parallelization of sequential programs

Another important area of parallel computation deals with automatic parallelization
of sequential programs. Clearly, in that case there are no obvious choices of parallel
programming paradigms. Different approaches can be employed, e.g., using a master-
slave technique for parallelizing sequential divide-and-conquer algorithms [21].

A vast amount of research has been done in the area of parallelizing repetition,
usually in the form of sequential loops, see for example Wolfe [69] for some recent
achievements and directions. Often the data dependencies (if any) among the parallel
subcomputations have a local nature, e.g., iteration i requires a value produced by

4 CHAPTER 1. INTRODUCTION

iteration i − 1 (assuming a vectorization of the loop). The resulting computation
often has a systolic nature [44] or is ‘embarrassingly parallel’, in which case there are
no data dependencies among the subcomputations and would in many cases benefit
from a linear or circular array structure and a binary tree structure of the network,
as discussed above.

In particular, we are interested in parallelization of logic programs. Extracting par-
allelism in repetition has recently received serious attention in the logic programming
community. The two basic approaces that are currently being studied are Reform,
and bounded quantifications.

1.2.1 Reform

The fundamental programming structure for repetition in Horn clause based logic
programming is recursion. The Reform inference principle [65] offers a method for
uncovering parallelism in recursive logic programs. A novel compilation method [47,
48], based on Reform, can be used to compile recursion over inductively defined data
structures to bounded iteration over vectors. Well-known techniques can then be used
to run the iterations in parallel.

The data dependencies (if any) that arise most frequently between successive it-
erations in a Reform parallel execution of linear recursive logic programs are local. A
cycletree has been recognized by the Reform group [10] as an ideal interconnection
network for a nonshared memory implementation of a Reform engine.

1.2.2 Bounded quantifications

An extension to Horn clause based logic programming, that can be used to express
repetition, is quantification. Bounded quantified formulas over finite domains can be
realized as loops on sequential machines or as parallel threads on parallel machines.
In particular, bounded quantifications map well onto machines supporting the data
parallel model of computation.

Experience of programming with bounded quantifications indicates that all-to-one,
one-to-all, and local communication patterns are the most important ones in such
computations and would thereby benefit from a cycletree structure in a nonshared
memory implementation [5, 6].

1.3 Properties of interconnection graphs

The theoretically ideal network of N nodes has an interconnection graph that is a
complete graph of N vertices. Clearly, such a network is prohibitively expensive to
realize for large N (see Figure 1.3). The total number of edges must be reduced while
maintaining a structure that supports simple and efficient routing for the particular
area of applications for which the network is designed.

Figure 1.3: The ideal network.

1.3. PROPERTIES OF INTERCONNECTION GRAPHS 5

Some parameters that are commonly used to characterize networks are: num-
ber of edges, degree of the network (maximum degree of the nodes), diameter (the
largest distance between any two nodes), average distance, symmetry, edge- and node
connectivities, extensibility, and reliability [1, 2, 7, 53, 54, 68].

In this thesis the main issue is to combine a circular array and a binary tree into a
single graph, in order to provide efficient communication for the above communication
patterns. In doing so,

• the lowest possible degree,

• the smallest possible number of edges,1 and

• extensibility

are the parameters that we consider to be most important. We want to emphasize
the importance of extensibility: a cycletree can be constructed inductively to include
any basic binary tree. As an extreme example, Figure 1.4 shows a cycletree which
matches the cyclic-order odd-even transposition bilinear sorter [40].

Figure 1.4: An extreme example of a cycletree.

Several interconnection graphs have been presented that, in one way or another,
include a full binary tree and a circular array of the vertices, e.g., X-trees [19] and
completely linked trees [30], both of which are supergraphs of a full cycletree, and thus
are more complex and expensive. Recently, a network called a ringtree [70], which
is a special case of a cycletree (a full cycletree), has been put forward. The results
presented [70] are special cases of the more general results presented in Chapter 2 of
this thesis.

1.3.1 Embedding

An embedding of a guest graph G in a host graph H is a one-to-one association of
the vertices of G with the vertices of H, together with a specification of paths in
H connecting the images of the endpoints of each edge of G. The dilation of the
embedding is the maximum length of such paths. The expansion of the embedding is
the ratio |VH |/|VG|, where VH (VG) is the number of vertices in H (G) [55].

We do not address embedding of cycletrees in other networks, or VLSI, in this
thesis. It should be noted, however, that the low degree and the minimal number of
edges of certain cycletrees makes it possible to embed cycletrees in other networks,
so that the resulting embedding has a minimal expansion and dilation with respect
to binary tree and circular array embeddability.

Embedding of binary trees and full binary tree based networks, like X-trees, snep-
trees, de Bruijn networks and completely linked trees, in other networks like hy-
percubes, meshes, rings and butterflies, and VLSI arrays has been studied exten-
sively [25, 30, 31, 41, 45, 49, 55, 56, 58, 67, 71, 72]. Several of those techniques and
results apply directly to cycletrees.

1When the cycletree under consideration fulfills certain criteria; see chapter 2.

6 CHAPTER 1. INTRODUCTION

1.3.2 Mapping

When G has more vertices than H embedding is, by definition, not possible, since
several vertices of G would have to be associated with one vertex of H. In such cases
G has to be mapped in H. In the literature mapping is divided into grouping (also
called contraction), placement and routing (also called wiring or path mapping), see
for example Shen [60] for definitions (where the first alternatives are used). Grouping
and placement jointly, are usually referred to as scheduling.

One can define mapping ofG inH more formally as follows. Given a decomposition
of G into disjoint subgraphs, such that the number of those subgraphs does not exceed
the number of vertices in H (grouping above), let G′ be a graph which has a vertex
for each such subgraph and an edge between two vertices if there is an edge between
the corresponding subgraphs of G. A mapping of G in H is then an embedding
(placement and routing above) of G′ in H.

The problem of finding the optimal mapping is known as the mapping problem.
The mapping problem in its most general form is computationally equivalent to the
graph isomorphism problem, see Bokhari [13] for a formal proof. Polynomial time
algorithms for solving the graph isomorphism problem are not known [18]. A topo-
logical mapping of G in H (an embedding of G in H with dilation 1), if such exists, is
an example of an optimal mapping. The topological mapping has been investigated
for some regular guest graphs and particular host graphs, e.g., CHiP lattices [62] and
hypercubes [11, 14, 57].

The approaches for obtaining suboptimal solutions, concerning either static map-
ping [12, 20, 60, 61], or dynamic (adaptive) mapping [35], vary. The most important
properties of the guest graph, determining the outcome of any solution, are the num-
ber of edges and the degree (and regularity when topological mapping is the issue) of
the guest graph.

We believe that the nice inductive structure of cycletrees makes them an attrac-
tive alternative to simple binary trees in dynamic embedding and mapping strategies,
yet to be investigated for cycletrees. Dynamic embedding of binary trees (in hyper-
cubes and butterflies) have been investigated, e.g., by Bhatt, Chung, Leighton and
Rosenberg [11]. Clearly, such strategies are important in the context of parallel divide-
and-conquer techniques [51]. The additional edges in cycletrees would considerably
widen the range of applicable parallel programming paradigms when combined with
dynamic embedding or mapping techniques.

1.4 Related networks

In this section we give a brief survey of the related network topologies that have been
put forward. For an overview of other static- and dynamic connection topologies see,
e.g., Almasi and Gottlieb [2].

A linear array by itself is a powerful interconnection network for many problems [9]
and is used for example in the Warp computer [3]. Another circular array based
interconnection graph is the chordal ring [4].

A binary tree is, for example, a common feature of the DADO architectures [63],
and is used, among others, in the Bentley and Kung machine [8]. The Leiserson
machine [27, 42] uses the completely linked binary tree structure (also called a semi
X-tree [27]). In the Bentley and Kung machine and in the Leiserson machine, the
internal nodes are used for routing only.

An interesting class of interconnection graphs is the X-trees [19]. The X-tree
structure is used for example in the Ottman, Rosenberg and Stockmeyer machine [52].
Hypertrees [23] are similar to X-trees. Some types of threaded trees are classified as
X-trees and have been studied by Despain and Patterson [19]. The threaded X-tree

1.5. OUTLINE OF THE THESIS 7

A threaded binary tree. A threaded X-tree. A double threaded X-tree.

A full cycletree (ringtree). A cyclic sneptree. A binary de Bruijn graph.

A completely linked tree. A half-ringed X-tree. A ringed X-tree.

A simple ring. A chordal ring. A full binary tree.

Figure 1.5: Some examples of related networks.

in Figure 1.5 is actually a preorder threaded binary tree (assuming left and right as
shown in the figure) with an extra thread from the rightmost leaf to the root and
belongs to the class of cycletrees. The threaded binary tree in the lower left corner of
Figure 1.5 is, what is commonly understood by a threaded binary tree [33], i.e., it is
threaded in inorder (or symmetric order).

Other binary tree based interconnection networks are sneptrees [45], de Bruijn
graphs [33, 58], and ringtrees [70]. The de Bruijn network of degree 4 is one type of
sneptree. Ringtrees are identical with full cycletrees.

Another class of binary tree (and butterfly) related networks are the fat-trees [43].
The interconnection graph of the latest model, CM-5, of the Connection Machine is
based on a fat-tree. The earlier models are hypercube based [64].

1.5 Outline of the thesis

In Chapter 2 we define and analyse cycletrees from a graph theoretical point of view
and prove some basic properties of cycletrees. In Chapter 3 we treat cycletrees as
networks of communicating processes. We show how cycletrees can be constructed
recursively, and we present a shortest path routing algorithm for certain cycletrees,
namely those which contain no edges between vertices at levels l and l+2, or cross-level
edges. We summarize our results in Chapter 4.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Cycletrees

In this chapter we define formally a class of interconnection graphs called cycletrees.
We show how certain cycletrees, which we call natural cycletrees can be defined induc-
tively. A minimal natural cycletree is shown to have the minimum possible number
of nontree edges. We also give a formula for the exact number of edges in an optimal
natural cycletree.

2.1 Preliminaries

We assume that the reader is familiar with elementary concepts in graph theory [24].
Cycletrees are treated as undirected simple graphs. Let G = 〈V,E〉 be a graph.
Throughout the thesis we will assume that G is simple and undirected. We will
sometimes denote the edge-set of G by EG and the vertex-set by VG. By writing
EG1⊕G2

we mean EG1
⊕ EG2

where ‘⊕’ is some set operation. An edge in EG is
written as a pair (a, b) where a and b are two vertices in VG. (Note that (a, b) = (b, a),
since G is undirected.) We use the notation G[X1, X2, . . . , Xn], to indicate that each
Xi, i ∈ {1, . . . , n}, is a certain partial subgraph of G; if Xi is an isolated vertex then
we simply write Xi for that vertex.

Following Almasi and Gottlieb [2], we use the term binary tree for a tree T which
consists of a single vertex, called its root, plus 0 or 2 disjoint binary trees, called its
immediate subtrees. The root of T has degree 0 or 2, the internal vertices (other than
the root) have degree 3 and the external vertices or leaves have degree 1. If a binary
tree is not an isolated vertex, i.e., when the root has degree 2, then we call it a basic
binary tree. We identify the root r of a binary tree T by T [r]. Note that a basic
binary tree is not the same as an extended binary tree [33], although the concepts are
related. (See Knuth [33, pp. 309 and 315], where binary trees as defined above are
called b-trees.)

2.2 Basic definitions and theorems

A Hamiltonian circuit or path in a graph G is a circuit or path which visits all the
vertices of G exactly once. We call the partial subgraph of G traversed by a Hamilto-
nian circuit or path of G simply a cycle or chain in G, respectively. We identify the
terminals r and s of a chain C by C[r, s]. We have a straightforward classification of
those graphs we call cycletrees.

Definition 1 (Cycletrees) Let G be a graph. Then G[C, T], VC = VT = VG, EG =
EC∪T , is a cycletree if T is a basic binary tree and C is a unique cycle in G.

9

10 CHAPTER 2. CYCLETREES

Let G[C, T] be a cycletree. We say that an edge α, α ∈ EG, is a tree edge (with
respect to T), if α ∈ ET ; a cycle edge, if α ∈ EC ; a nontree edge, if α ∈ EC−T ; a
noncycle edge, otherwise.

We will next show how to construct certain cycletrees inductively. We do so
by giving an inductive definition of natural cycletrees and show then that natural
cycletrees are indeed cycletrees. First, let us illustrate the form of a natural cycletree
(see Figure 2.1). The edges represented by the solid lines form a unique cycle. The
edges represented by straight lines form a basic binary tree. The dashed lines represent
the edges that are not part of the cycle. The curved lines represent the edges that
are not part of the basic binary tree.

Figure 2.1: A full natural cycletree of 31 vertices.

It is easy to see that the “left” and “right” halves of the natural cycletree in
Figure 2.1 are symmetric. We can also recognize a regular pattern in the structure of
one half. This structure is not only present in full natural cycletrees. We begin with
an inductive definition of a chaintree H[r, s] where r and s are two vertices of H. We
will later show that there exists a chain C[r, s] in H and that there exists no other
chain C ′[r, s] in H, such that C 6= C ′. A natural cycletree is then constructed from
two chaintrees.

Definition 2 (Chaintrees)

1. Let r be a vertex. Then 〈{r}, ∅〉[r, r] is a chaintree.

2. Let Hi[ri, si], i ∈ {1, 2, 3}, be disjoint chaintrees, and r and s two distinct
vertices not in VH1∪H2∪H3

. Then

(a) 〈VH1 ∪ {r, s}, EH1 ∪ {(r, r1), (r, s), (s1, s)}〉[r, s], and

(b) 〈VH1∪H2∪H3 ∪ {r, s},
EH1∪H2∪H3

∪ {(r, r1), (r, s), (s, r2), (s, r3), (s1, s2)}〉[r, s3]

are chaintrees (see Figure 2.2).
The only chaintrees are those given by clauses 1 and 2.

We can now construct a natural cycletree from two chaintrees as follows.

Definition 3 (Natural cycletrees) Let H1[r1, s1] and H2[r2, s2] be disjoint chaintrees,
and r a vertex not in VH1∪H2

. Then

〈VH1∪H2
∪ {r}, EH1∪H2

∪ {(r, r1), (r, r2), (s1, s2)}〉

is a natural cycletree. No graph is a natural cycletree unless it can be constructed as
above.

Definition 3 is illustrated by Figure 2.3. An example of a possible natural cycletree
is shown by Figure 2.4. We have the following theorem.

Theorem 1 The maximum degree of natural cycletrees is 3.

Proof. Immediate from Definition 2 and Definition 3.

2.2. BASIC DEFINITIONS AND THEOREMS 11

s

r

s1

r1

H1

s1

s

s1

s

s2 s3

r2 r3

H2 H3

Figure 2.2: Inductive construction of chaintrees, cases 2(a) and 2(b) of Definition 2.
The bold lines illustrate a chain.

s1 s2

r1 r2

r

H1 H2

Figure 2.3: Construction of natural cycletrees. The bold lines illustrate a cycle.

d e

c f g h

b i

a

Figure 2.4: A natural cycletree.

12 CHAPTER 2. CYCLETREES

The observant reader has probably noticed that we cannot always uniquely identify
the basic binary tree in a natural cycletree, the smallest example to illustrate this is
when the natural cycletree is a triangle; another example is the natural cycletree in
Figure 2.6. This is, however, only a minor detail and we deal with it in Section 2.4.

We will now prove that all natural cycletrees are cycletrees. We will use the
following lemma.

Lemma 1 Let H[r, v] be a chaintree. Then H contains a chain C[r, v] and there
exists no other chain C ′[r, v] in H such that C ′ 6= C.

Proof. We prove the lemma by induction over chaintrees.

Base case: When H is an isolated vertex, r = v, then trivially C, C = H, exists and
is unique.

Induction case: Let Hi[ri, si], i ∈ {1, 2, 3}, be chaintrees as in Definition 2.2. As-
sume that Ci[ri, si] is a chain in each Hi and that lemma holds for every Hi. We
prove the lemma for cases 2(a) and 2(b) of Definition 2.

Case 2(a): Clearly, C[r, s], where s = v, must use the edges (r, r1) and (s1, s) (see Fig-
ure 2.2), and thus the chain through H1 must have r1 and s1 as terminals. According
to the induction hypothesis, C1 is such a unique chain. Consequently,

C = 〈VH , {(r, r1), (s1, s)} ∪ EC1
〉

is a chain in H and there exists no other chain C ′[r, s], C ′ 6= C, in H.

Case 2.(b): Clearly, C[r, s3], where s3 = v, must use the edges (r, r1), (s1, s2), (r2, s)
and (s, r3) (see Figure 2.2), and thus the chains through H1, H2 and H3 must have
ri and si as terminals. According to the induction hypothesis, C1, C2 and C3 are the
corresponding unique chains. Consequently,

C = 〈VH , {(r, r1), (s1, s2), (r2, s), (s, r3)} ∪ EC1∪C2∪C3
〉

is a chain in H and there exists no other chain C ′[r, s3], C ′ 6= C, in H.

According to the induction principle we have proved the lemma for all chaintrees.

We can now easily prove the following theorem by using Lemma 1.

Theorem 2 A natural cycletree G is a cycletree G[C, T].

Proof. Let G, r, H1[r1, s1] and H2[r2, s2] be as in Definition 3. As r has degree 2,
both of the edges (r, r1) and (r, r2) must be part of any cycle of G. Clearly the edge
(s1, s2) must also be used. Thus, the chains through H1 and H2 must be C1[r1, s1]
and C2[r2, s2], repectively. By using Lemma 1, C1 and C2 exist and are unique.
Consequently

C = 〈VG, {(r, r1), (s1, s2), (r2, r)} ∪ EC1∪C2
〉

is the unique cycle of G. Hence G is a cycletree.

Note that the choice of vertex r in Theorem 2 does not affect the proof, since for any
vertex of degree 2 both its edges must be used in any cycle. Thus, by removing any
such vertex (and the corresponding edges) we must obtain a chain between the two
remaining terminals of the removed edges in the rest of the graph. If such a chain is
unique, then so is the cycle. We get the following corollary from Theorem 2.

Corollary 2.1 Let T be a basic binary tree, such that |VT | > 3, and v an arbitrary
internal vertex of degree 3 in T . Let v1 and v2 be the sons of v and w the father of
v. Then there exists a natural cycletree that uses the edges (w, v) and (v, v1) as cycle
edges and a natural cycletree that uses the edges (w, v) and (v, v2) as cycle edges.

2.3. MINIMALITY AND OPTIMALITY 13

Proof. Immediate by using Theorem 2, Definition 2 and Definition 3. Let r = v in
Definition 2. Clearly, either v1 = r1 or v2 = r1, since the binary trees with roots r1

and s, formed in Definition 2, can be arbitrary (see Figure 2.2).

All cycletrees are not natural cycletrees. Let us, just once, illustrate a cycletree which
is not a natural cycletree (see Figure 2.5). Another example of a non-natural cycletree
is the threaded X-tree in Figure 1.5.

Figure 2.5: A cycletree which is not a natural cycletree.

Our main concern throughout the rest of the thesis is the treatment of natural
cycletrees. We will from now on, unless otherwise stated, by cycletrees mean natural
cycletrees.

2.3 Minimality and optimality

We will in the following sections address the issue of the number of edges of a cycletree.
We will prove that a cycletree can be used to combine any basic binary tree and a
cycle in such a way that the resulting number of edges is the smallest possible. In
that case the cycletree is called minimal.

We also address the issue of the number of edges in a cycletree G[C, T], which is
constructed with a given set of vertices so that T has the minimal total path length
and G has the minimum number of edges. In that case G is called optimal. We also
give a formula for the exact number of edges of an optimal cycletree.

2.3.1 Minimal cycletrees

Assume that we have a basic binary tree T , and that we want to obtain a cycle C,
such that VC = VT , by adding as few edges as possible to T . Now the question is:
can we construct a cycletree that fulfills this property? This is indeed the case, which
will be proved shortly. Note that the uniqueness of the cycle in a cycletree does not
imply this property in general, as is illustrated with the next example.

Example 2.3.1 Consider the cycletree G in Figure 2.6. The noncycle edges are (b, c)
and (i, g). Clearly it has the same set of tree edges with respect to the binary tree
T [a] as the cycletree in Figure 2.4, but the total number of edges in Figure 2.6 is
less than in Figure 2.4. Note also that G has a different set of (non)tree edges with
respect to the binary tree T ′[e]. The (non)cycle edges form, however, always a unique
subset of EG.

Definition 4 (Minimality) We say that a cycletree G[C, T] is minimal for T , if for
any other cycletree G′[C ′, T], |EG| ≤ |EG′ |.

For example, the cycletree in Figure 2.6 is minimal. Consider a given basic binary
tree T . We will prove that no graph that extends T to also contain a Hamiltonian
cycle has fewer edges than a minimal cycletree.

To begin with, let us consider any cycle C ′, such that VC′ = VT . Let S[r] be a
subtree of T and let v be the father of r, if S 6= T ; any vertex not in VT , otherwise.

14 CHAPTER 2. CYCLETREES

f

d e

c g h

b i

a

d

f a

b i h

c g

e

Figure 2.6: A minimal (and optimal) cycletree that contains more than one basic
binary tree.

Clearly, either (r, v) is, or is not, in EC′ . We will denote by nc(S) and nc(S), respec-
tively, the minimum possible number of edges in S that cannot participate in C ′ in
each case. Thus nc(T) is the theoretical lower bound for |ET−C′ |. We will use the
following lemma.

Lemma 2 Let G[C, T] be a minimal cycletree for T . Then nc(T) = |ET−C |.
Proof. Let S[r] be a subtree of T . Let v be the father of r, if S 6= T ; any vertex not
in VT , otherwise. Then

|ES−C | =
{

nc(S), if (r, v) ∈ EC ;
nc(S), otherwise.

(2.1)

We prove the lemma by proving Property 2.1 and Property 2.2

nc(S) ≤ nc(S) + 1 ≤ nc(S) + 1 (2.2)

by induction over binary trees (subtrees of T).

Base case. If r is a leaf of T then |ES−C | = nc(S) = nc(S) = 0, and 0 ≤ 1 ≤ 1.

Induction case. Let S1[r1] and S2[r2] be the immediate subtrees of S and assume
that Property 2.1 and Property 2.2 hold for S1 and S2.

We know from Definition 2, Definition 3, and Theorem 2 that exactly one of
(r, r1) and (r, r2), say (r, r1), is in C, if (r, v) is in C; both (r, r1) and (r, r2) are in C,
otherwise. By using the induction hypothesis (Property 2.1 holds for S1 and S2), we
get that

|ES−C | =
{

nc(S1) + nc(S2) + 1, if (r, v) ∈ EC ;
nc(S1) + nc(S2), otherwise.

(2.3)

Furthermore,
nc(S1) + nc(S2) ≤ nc(S1) + nc(S2) (2.4)

must hold, or else, by using Corollary 2.1, there would exist another cycletree that
uses a larger subset of ES as cycle edges, including the edge (r, r2), and G would not
be minimal for T .

Now, let C ′ be any cycle such that VC′ = VT . Clearly, if (v, r) is in C ′ then at
most one of the edges (r, r1) and (r, r2) can be in C ′. Accordingly, if (v, r) is not in
C ′ then both (r, r1) and (r, r2) can be in C ′. According to the induction hypothesis,
nc(Si) ≤ nc(Si) + 1, i ∈ {1, 2}. Thus, by using Property 2.4,

nc(S) = nc(S1) + nc(S2) + 1, (2.5)

nc(S) = nc(S1) + nc(S2). (2.6)

2.3. MINIMALITY AND OPTIMALITY 15

Now, it follows trivially from Property 2.3, Property 2.5 and Property 2.6 that Prop-
erty 2.1 holds for S. Furthermore, by using the induction hypothesis, nc(S1) ≤
nc(S1) + 1, and Property 2.5 and Property 2.6, we get that nc(S) ≤ nc(S). By using
the induction hypothesis, nc(S2) ≤ nc(S2), and Property 2.5 and Property 2.6, we
get that nc(S) ≤ nc(S) + 1. Hence Property 2.2 holds for S.

According to the induction principle, we have proved Property 2.1 and Property 2.2
for all subtrees of T and in particular for T itself. Now, it is an immediate consequence
of Property 2.1 that nc(T) = ET−C .

We can now easily prove the following theorem, by using Lemma 2.

Theorem 3 Let G′ be any graph such that a basic binary tree T and a cycle C ′,
VC′ = VT , are partial subgraphs of G′. Let G[C, T] be a minimal cycletree for T .
Then |EG| ≤ |EG′ |.

Proof. We know, by definition, that nc(T) ≤ |ET−C′ |. By using Lemma 2, |ET−C | =
nc(T), we get that |ET−C | ≤ |ET−C′ |. We know that |EG| = |ET−C | + |EC |, since
there are no superfluous edges in G, and trivially that |EG′ | ≥ |ET−C′ |+ |EC′ |. Hence
|EG| ≤ |EG′ |, since |EC | = |EC′ |.

2.3.2 Optimal cycletrees

Let us assume that one wants to construct a cycletree G[C, T] given only a set of
vertices. Clearly, constructing T to have the minimal total path length has several
advantages. For example if T is used as the interconnection graph of a process network
then the total communication path length of T is minimized. At this point it is worth
noting that we are not giving top priority to minimizing the average distance between
an arbitrary pair of vertices of G. The reason why we introduced cycletrees in the first
place was to provide efficient communication for parallel computations that generally
need T for “global communication” and C for “local communication”.

The level of a vertex v of T [r] is the path length1 of the shortest path from r to v.
The depth of T is the maximum level of T . We say that a binary tree T of depth D is
tree-complete if all the leaves of T are at levels D and D− 1. We say that a cycletree
G[C, T] is tree-complete (with respect to T) if T is tree-complete.

We know that the total path length of a basic binary tree T is minimal if T is tree-
complete. (The relation to complete extended binary trees is obvious, see Knuth [33].)
When constructing a cycletree G[C, T], we also want to keep the number of additional
edges at minimum. This suggests the following definition.

Definition 5 (Optimality) Let G[C, T] be a tree-complete cycletree. We say that G
is optimal if |EG| ≤ |EG′ | for any other tree-complete cycletree G′[C ′, T ′], VG′ = VG.

Clearly, if a cycletree G[C, T] is optimal then it is both minimal for T and tree-
complete. (The converse is in general not true, i.e., a cycletree that is both tree-
complete and minimal need not be optimal.)

Theorem 4 Let G be an optimal cycletree, N = |VG| and K = blog2(N + 1)c. Then

|EG| =

{
(3N − 1)/2− b(2K + 1)/3c, if N > 4b(2K + 1)/3c − 1;

N − 1 + b(2K + 1)/3c, otherwise.
(2.7)

Proof. See Appendix A.1.

1Number of edges used by the path.

16 CHAPTER 2. CYCLETREES

Let G[C, T], N = |VG|, be a cycletree where T is a full binary tree, i.e., N + 1 is a
power of 2. Then Formula 2.7 reduces to

N − 1 + b(N + 2)/3c, (2.8)

which was also shown by Xie and Ge [70] to be the number of edges in a ringtree.
One can easily verify that the cycletree in Figure 2.6 is optimal, by using Formula 2.7.
We also get the following corollary from Theorem 4.

Corollary 4.1 Let G be any graph that has a tree-complete basic binary tree T and
a cycle C, VC = VT , as partial subgraphs. Let N and K be as above. Then G has at
least as many edges as the number given by Formula 2.7.

Proof. Immediate by using Theorem 3, since optimal cycletrees are by definition also
minimal.

As an example of the use of the above formulas, assume that one has a full cycletree
of N vertices and wants to double the size of it to 2N +1. Then how many additional
edges are required? By using Formula 2.8, we obtain that N+2b(N+3)/6c additional
edges are required. Thus, doubling the number of vertices roughly doubles the number
of edges in a cycletree.

2.4 Ordered cycletrees

In this section we will introduce some new concepts that will be used extensively
throughout the rest of the thesis. Let G[C, T [r]] be a cycletree. We know that C is
unique. That allows us to enumerate the vertices of G in a simple manner and by
those means define an ordering on G.

Let N = |VG| and P = (r, s2, . . . , sN , r) be a Hamiltonian circuit of G. We say
that r has address 1 and each si has address i, 2 ≤ i ≤ N . (Clearly, there exist two
such enumerations of G with respect to r; we may choose either of those.) We will
from now on identify a vertex with its address, i.e., we will say vertex a instead of
vertex with address a. Vertex 1, i.e, the root of T , will also be called the root of
G. Let S[a] be a subtree of T , such that a is not a leaf. Let S1[l] and S2[h] be the
immediate subtrees of S, such that l < h. We call S1 the left subtree of S and S2 the
right subtree of S.

Now, let S[a] be a proper subtree of T and v the father of a. It is an immedi-
ate consequence of Definition 2 and Definition 3 that S was traversed in one of the
following ways.

1. If vertex a is the immediate successor of vertex v on P , i.e., a− 1 = v, then S
was traversed by visiting a first.

2. If vertex a is the immediate predecessor of vertex v on P , i.e., (a mod N)+1 = v,
then S was traversed by visiting a last.

3. Otherwise S was traversed by traversing the left subtree of S (if any), visiting
a, and traversing the right subtree of S (if any).

We call S a pre-tree, a post-tree, or an in-tree, in each case, respectively. Vertex a is
called accordingly, a pre-vertex, a post-vertex or an in-vertex. In general, we call pre,
post and in the mark of the corresponding subtree or vertex. The above cases are
illustrated in Figure 2.7. Throughout the rest of the thesis, ‘−’, ‘0’ and ‘+’ will be
used in figures to represent the marks pre, in and post, respectively.

Let S[a] be a subtree of T , such that a is not a leaf of T . Let S1[l] and S2[h] be
the left and right subtrees of S, respectively. We have the following relations between
left and right, and the marks.

2.4. ORDERED CYCLETREES 17

H H H

a a a

v v

− + 0

Figure 2.7: Traversal of S; H is the subgraph of the cycletree that is induced by VS .

• If a is the root of G then l is a pre-vertex and h a post-vertex.

• If a is a pre-vertex then l is a pre-vertex and h an in-vertex.

• If a is an in-vertex then l is a post-vertex and h a pre-vertex.

• If a is a post-vertex then l is an in-vertex and h a post-vertex.

We say that T is ordered in cycle order. We illustrate the new concepts in Figure 2.8.
(If we had enumerated the cycle in Figure 2.8 in the other direction we would have

1

2

3

4

5

6

7

8

9

10 11

12

13

14 15

16

17
−

−

−

+

0

−

+

0

− +

0

−

− 0

+

+

Figure 2.8: An ordered cycletree.

got a mirror image of Figure 2.8, with pre-trees and post-trees switched.)

2.4.1 Related concepts

The choice of names containing ‘pre’, ‘post’ and ‘in’ has a historical background in
ordered binary trees. In fact, there is a connection between ordered cycletrees and
threaded binary trees [33]. One can give a mutually recursive definition of cycle order
traversal of an ordered binary tree, by using the above points, and obtain an ordered
binary tree that is threaded in cycle order. By removing the orientation of the arcs
in such a tree, a cycletree is obtained. Some types of threaded trees, to be used
as networks, have been studied by Despain and Patterson [19] and are illustrated in
Figure 1.5.

18 CHAPTER 2. CYCLETREES

Chapter 3

Cycletrees as networks

In this chapter we will treat cycletrees as networks of communicating nodes. We will
present an algorithm that recursively configures a cycletree from a given number of
nodes. We next treat the problem of routing in cycletrees. Shortest path routing
criteria are defined for each node. A “systolic” algorithm, that is superfast for tree-
complete cycletrees, is presented for establishing the shortest path routing criteria
dynamically.

3.1 Basic definitions

We have up to now studied some basic properties of cycletrees. Let us now turn to
the more practical issue of using cycletrees as interconnection graphs in the MP-RAM
model, see for example Almasi and Gottlieb [2] for a formal treatment of the various
computational models.

We will think of our RAMs simply as nodes. Each node has a unique address
between 1 and N , where N is the total number of nodes. When saying node a we will
mean the node with address a.

The interconnection graph has a vertex corresponding to each node in the ensem-
ble. An edge in the graph indicates that the nodes at either end can communicate
via a bidirectional channel or link. Nodes so connected are called neighbours.1

3.2 Constructing cycletrees

Let us assume having only a collection of N nodes that we want to configure so that
the corresponding interconnection graph is a cycletree. As there exists a vast number
of possible cycletrees having N vertices, we assume that certain constraints are given
and must be satisfied, e.g., tree-completeness. (Note that it is necessary that N is
odd and N ≥ 3, in order that it be possible to construct a basic binary tree of N
vertices.)

Let G[C, T] be the cycletree to be constructed. Let S be a subtree of T , which
has mark m and n vertices. The constraints are assumed to be given in form of a
definition for the relation ‘split’:

split(m,n, l, r)⇔ constraints

1We will be referring to the vertices and the edges of an interconnection graph as nodes and links,
when we have that interpretation in mind.

19

20 CHAPTER 3. CYCLETREES AS NETWORKS

where l is the number of vertices in the left subtree of S and r is the number of
vertices in the right subtree of S.2

Example 3.2.1 If we want G to be tree-complete then we can define ‘split’ as follows.

split(m,n, l, r) ⇔ l = min(n− 2blog2(n+1)c−1, 2blog2(n+1)c − 1) ∧
r = n− 1− l

We do not need the mark in this case.

Before turning to the algorithm, let us show how, for a given subtree S[a], the ad-
dresses of a’s left and right sons can be calculated in a “top down” manner. Let S1[a1]
and S2[a2] be the left and right subtrees of S, respectively. We know from Section 2.4
that the vertices of S1 shall precede in cycle order those of S2. We know also the
following.

• If a is a pre-vertex then it is the first (in cycle order) vertex of S.

• If a is an in-vertex then it is between S1 and S2.

• If a is a post-vertex then it is the last vertex of S.

For example, if a is a pre-vertex then a1 = a + 1 and a2 can be calculated as a2 =
a+ 1 + L+ L2 (see Figure 3.1).

a
a2

L
L2

−

0

Figure 3.1: Calculating the address of the right son of a pre-vertex.

We can now present the algorithm. The algorithm constructs a cycletree recur-
sively, using the above properties. As it is a trivial matter to construct a cycle, one
is assumed to be given.

Algorithm 1 Let C be a cycle of N vertices; N is odd and N ≥ 3. An enumeration
of the vertices is assumed. The algorithm constructs an ordered cycletree G[C, T] =
〈VC , EC∪E〉, by adding the required noncycle edges E to C, in such a way that ‘split’
holds for every subtree of T .

[Top level.] The root of G, vertex 1, has the pre-vertex 2 as its left son and the
post-vertex N as its right son. Calculate values of L, R, L1, R1, L2 and R2 that
satisfy

split(root, N, L,R) ∧ split(pre, L, L1, R1) ∧ split(post, R, L2, R2).

Now E is given by

E = cfg(pre, 2, L1, R1) ∪ cfg(post, N, L2, R2),

where cfg(m, a, L,R) is computed as the set of noncycle edges to form the subtree of
T , which has root a, mark m, L vertices in its left subtree, and R vertices in its right
subtree.

2Note that split(m,n, l, r) can be nondeterministic in l and r. It could, in one extreme case, be
defined so that l is any odd part of n up to n− 2, which would correspond to “no constraints”.

3.2. CONSTRUCTING CYCLETREES 21

[Base case.] If L = 0 then a is an external vertex; return ∅.
[Recursive case.] If L > 0 then a is an internal vertex. We have three cases to
consider, depending on the mark, m, of a. Let a1 and a2 be the left and right sons
of a, respectively.

[pre-vertex] If a is a pre-vertex, m = pre, then a1 = a+ 1 is a pre-vertex and
a2 is an in-vertex. Calculate values of L1, R1, L2 and R2 that satisfy

split(pre, L, L1, R1) ∧ split(in, R, L2, R2).

Let a2 = a+ L+ L2 + 1 (see Figure 3.1); return

{(a, a2)} ∪ cfg(pre, a1, L1, R1) ∪ cfg(in, a2, L2, R2).

[post-vertex] If a is a post-vertex, m = post, then a2 = a− 1 is a post-vertex
and a1 is an in-vertex. Calculate values of L1, R1, L2 and R2 that satisfy

split(in, L, L1, R1) ∧ split(post, R, L2, R2).

Let a1 = a−R−R1 − 1; return

{(a, a1)} ∪ cfg(in, a1, L1, R1) ∪ cfg(post, a2, L2, R2).

[in-vertex] If a is a in-vertex, m = in, then its left son a1 = a − 1 is a post-
vertex and its right son a2 = a+ 1 is a pre-vertex. Calculate values of L1, R1,
L2 and R2 that satisfy

split(post, L, L1, R1) ∧ split(pre, R, L2, R2).

Return

cfg(post, a1, L1, R1) ∪ cfg(pre, a2, L2, R2).

Termination of Algorithm 1 is guaranteed by the fact that the third argument
of ‘cfg’ is strictly less in each recursive call of ‘cfg’. Thus, eventually, the base case
must be reached. For example, by running Algorithm 1 with N = 9 and assuming a
definition of ‘split’ as given in Example 3.2.1, the algorithm produces a cycletree as
shown in Figure 3.2. The dashed lines correspond to the edge-set E in the algorithm.

4 5

3 6 7 8

2 9

1

− 0

− 0 0 +

− +

Figure 3.2: A tree-complete cycletree of 9 vertices.

22 CHAPTER 3. CYCLETREES AS NETWORKS

3.3 Routing in cycletrees

In this section we show how to route data from one arbitrary node to another in a
cycletree network. We shall give an algorithm that when presented with two nodes a
and b produces a path from a to b along which data can be routed. We ignore issues
of redundant paths that can be used, for example, to split the load between nodes
that communicate heavily. We will also assume that all communication links in our
idealized model have the same cost.

Evidently, a naive algorithm would be to use the cycle whenever a and b are two
consecutive nodes, and to use the tree otherwise. That would result in a poor use of
the cycletree. Consider, for example, a cycletree network that has the interconnection
graph as in Figure 3.2; we would get a path of length 3 between the nodes 7 and 2,
although the shortest path between these nodes has length 2.

Instead, we will treat a cycletree as a whole. Our aim is to obtain an algorithm
that is both simple and inexpensive to use, and that for each pair of nodes a and b
produces a shortest path from a to b.

In the following we will first present a routing algorithm. The algorithm will rely
on certain static values associated with each node, which we call the router data of
the node.

We then show how to define the router data so that the algorithm fulfills the
shortest path requirement. We say that such router data are optimal. We will restrict
the possible set of cycletrees to those which contain no edges between nodes at levels
l and l + 2, which we call cross-level edges; e.g., the cycletree in Figure 2.8 has a
cross-level edge between nodes 15 and 16.

Finally, we present a parallel algorithm that dynamically establishes the optimal
router data of each node of a cycletree having no cross-level edges. Assuming N nodes
configured as a cycletree, the algorithm uses O(N) memory and O(K) time, where
K is the depth of the cycletree. Thus, the algorithm is superfast for tree-complete
cycletrees, since K = O(logN) in that case.

3.3.1 Routing algorithm for cycletrees

Let G be a cycletree with N nodes and let a be some node in G. We will use f(a), l(a)
and r(a) to denote the following neighbours of a.

• f(a) is the father of a, unless a is the root of G in which case it is undefined.

• l(a) is the left son of a, if a is an internal node; node a− 1, otherwise.

• r(a) is the right son of a, if a is an internal node; node (a mod N)+1, otherwise.

Note that l(a) = f(a) or r(a) = f(a) if a is an external pre-node or an external post-
node, respectively. When producing a path (a, x, . . . , b) from node a to node b, a 6= b,
where x is a neighbour of a, the algorithm uses the given router data lmin(a), lmax(a),
rmin(a) and rmax(a) to select x.

Algorithm 2 (Router). Let G be a cycletree and let (a, b), a 6= b, be an ordered pair
of nodes in G. The algorithm produces a path from a to b.

[Select neighbour.] Select a neighbour x of a by using the router data of a.

x =

l(a), if lmin(a) ≤ b ≤ lmax(a);

r(a), if rmin(a) ≤ b ≤ rmax(a);

f(a), otherwise.

[Iterate.] If x = b then terminate else produce the path from x to b accordingly.

3.3. ROUTING IN CYCLETREES 23

As discussed previously, our aim was to obtain a routing algorithm that is both simple
and inexpensive. Evidently, this is the case for Algorithm 2. Now we must find the
router data of each node so that the algorithm terminates.

The necessary (since the neighbour x is chosen deterministically) and sufficient
(since there are only a finite number of nodes) condition for termination of Algorithm 2
is that no node occurs twice on the produced path.

Let G[C, T] be a cycletree and let a be a vertex in G. A naive solution, which
was mentioned earlier, would be to let lmin(a) and lmax(a) be the minimum- and
maximum vertices, respectively, in the subtree S′[l(a)] of T . Accordingly, one could
let rmin(a) and rmax(a) be the minimum and maximum vertices, respectively, in the
subtree S′[r(a)] of T .

The best solution is, ofcourse, if the router data are optimal, i.e., when a shortest
path from vertex a to any other vertex b goes through: l(a), if lmin(a) ≤ b ≤ lmax(a);
r(a), if lmin(a) ≤ b ≤ lmax(a); f(a), otherwise.

It turns out that it is not possible to find the optimal router data of the nodes of
an arbitrary cycletree. However, it is sufficient to disallow cross-level edges in order
to be able to do so, e.g., all tree-complete cycletrees fall into this category, neither
does the cycletree in Figure 1.1 have any cross-level edges.

3.3.2 Planar properties of cycletrees

We shall next investigate some further properties of cycletrees that will subsequently
be used to determine the optimal router data of the nodes of a cycletree having no
cross-level edges.

Definition 6 (Admissibility) Let G[C, T] be any graph in the class of cycletrees (pos-
sibly a non-natural cycletree). We say that G is admissible if G is planar and there
exists a plane3 graph of G such that EC is the contour4 of the infinite region. We say
that the corresponding plane graph is admissible.

For example the non-natural cycletree in Figure 2.5 is not admissible. The non-natural
cycletree (threaded X-tree) in Figure 1.5 is admissible however.

It is easy to prove that all (natural) cycletrees are planar graphs, which has also
been illustrated with plane graphs of several cycletrees. As another example, Fig-
ure 3.3 is an admissible plane graph of a cycletree, Rω in the figure is the infinite
region; the finite regions are R1, R2, R3, R12 and R13.

4

5 7 9 10

11

3

6 8

122 131
−

0 + − 0

+

−

0 0

+− +

R1 R13

Rω

R12R2R3

Figure 3.3: An admissible plane graph of a cycletree.

Theorem 5 Let G be a (natural) cycletree. Then G is admissible.

Proof. Follows easily from Definition 2, Definition 3, Lemma 1 and Theorem 2 (see
Figure 2.2 and Figure 2.3).

We get the following two useful theorems.

3A planar depiction of a planar graph. In general there exist several plane graphs for a planar
graph.

4Set of edges surrounding a region.

24 CHAPTER 3. CYCLETREES AS NETWORKS

Theorem 6 The contours of two adjacent (finite5) regions of an admissible plane
graph of a cycletree share exactly one edge, which is a noncycle edge.

Proof. Let G[C, T] be a cycletree. We know, due to Theorem 5, that G is admissible.
Beginning with C (C has one region), each noncycle edge that is added must, due to
the admissibility criterion, split a region into two regions, and thus becomes the only
shared edge between those two regions.

Theorem 7 The contour of every region of an admissible plane graph of a cycletree
includes exactly one nontree edge.

Proof. Let G[C, T] be a cycletree. The contour of a region of G must include at least
one nontree edge (as T by itself has no regions). According to Theorem 6, none of
those edges can be in the contour of another region of G. There are, by using Euler’s
formula6, exactly r,

r = |EG| − |VG|+ 1 =

|VG|−1︷︸︸︷
|ET | +|EC−T | − |VG|+ 1 = |EC−T |,

regions in G, i.e., as many regions as there are nontree edges. Consequently, every
region must have exactly one nontree edge in its contour.

As a consequence of Theorem 6, the set of contours of the regions of any plane
depiction of a cycletree is always the same, regardless of the choice of depiction, as
long as the admissibility criterion is satisfied.7

As a consequence of Theorem 7 and that the terminals of every nontree edge are
the leaves of the basic binary tree, the contour D of a region of a cycletree G[C, T]
begins and ends with the root of some subtree S of T . Contour D includes the
rightmost branch of the left subtree of S and the leftmost branch of the right subtree
of S. We call those the left side and the right side of D, respectively. The root of S,
which is neither on the left nor the right side of D, is called the top of D.

It is easy to see that each pre- and in-vertex belongs to the left side of some contour
and each post- and in-vertex belongs to the right side of some contour. Furthermore,
the top of a contour is always either a pre-vertex, a post-vertex or the root of the
cycletree.

Example 3.3.1 Let D1 be the contour of region R1, of the cycletree in Figure 3.4
(or Figure 3.3). We have that

D1 = {(1, 2), (2, 6), (6, 7), (7, 8), (8, 13), (13, 1)}.
The vertices 2 and 6 (none of which is a post-vertex) are on the left side of D1, and

the vertices 7, 8 and 13 (none of which is a pre-vertex) are on the right side of D1.
Vertex 1 is the top of D1. To illustrate Theorem 6, e.g., R1 and R13 are adjacent
regions having only the noncycle edge (8, 13) in common.

We define a descendent of vertex a to be a itself or a descendent of vertex b if a
is at level l, b is at a level greater than l, and there is an edge between a and b. We
call a an ascendent of b if b is a descendent of a.

We denote the set of descendents of a by desc(a). Note that a leaf b can be a
descendent of another leaf a if there is a “descending” edge from a to b, e.g., vertex 7
of the cycletree in Figure 3.4 is a descendent of vertex 6, even though vertex 6 is not
its father in the basic binary tree.

5Assumed from now on, unless otherwise stated.
6Euler’s formula is more commonly written r = |E| − |V |+ 2, where r takes into account also the

infinite region.
7Note that Theorem 6 and Theorem 7 hold for all graphs in the class of cycletrees that are

admissible (not only natural cycletrees). The theorems hold for example for the threaded X-tree in
Figure 1.5.

3.3. ROUTING IN CYCLETREES 25

4 5 7 9 10 11

3 6 8 12

2 13

1

− 0 + − 0 +

− 0 0 +

− +

R1

R13

Rω

R12

R2

R3

Figure 3.4: Another admissible planar depiction of the cycletree in Figure 3.3.

3.3.3 Optimal router data

Armed with the necessary definitions and theorems, we can now attack the problem
of finding the optimal router data of a vertex a of a cycletree G[C, T] having no
cross-level edges.

Let us try to grasp the intuition first, considering only lmin(a) and lmax(a) (treat-
ment of rmin(a) and rmax(a) is analogous). Assume also that a is internal and, to
start with, on the right side of the contour D of a region R (see Figure 3.5).

S1

S2

R

l(a)

a

f(a)f(v)

v

r(a)b|D|/2c − 1

d|D|/2e − 1

Figure 3.5: An internal vertex a on the right side of the contour D of a region R.
Dashed lines correspond to zero or more edges, each solid line corresponds to a single
edge.

Let v be the vertex on D such that a shortest path, P say, from l(a) to v is shorter
than (or as short as) the shortest path, P ′ say, from f(a) to v, and P ′ is at most 1 step
longer than P . Theorem 6 implies that a shortest path between any two vertices on
the same contour must follow that contour. Thus8 |P | = b|D|/2c − 1.

Now, since no cross-level edges are allowed, v must be on the left side of D (simple
arithmetics), and a shortest path from a to any descendent of v (in S1) or a descendent
of l(a) (in S2) goes through l(a). For the same reason, a shortest path from a to any
vertex outside S1 and S2 goes through either r(a) or f(a). Now, due to cycle ordering,

desc(v) ∪ desc(l(a)) = {x | min(desc(v)) ≤ x ≤ max(desc(l(a))) },

and thus, intuitively lmin(a) = min(desc(v)) and lmax(a) = max(desc(l(a))) should be
optimal.

8Note that |P | (|D|) is the number of edges in P (D), i.e., the length of P (D).

26 CHAPTER 3. CYCLETREES AS NETWORKS

If a does not belong to the right side of any contour, i.e., a is a pre-vertex, then
lmin(a) should clearly be min(desc(l(a))), which is vertex a+ 1.

Note that the above reasoning holds only under the assumption that the cycle-
tree contains no cross-level edges. It is easy to find counterexamples otherwise. We
will next treat the problem more formally and handle internal and external vertices
separately.

Optimal router data of internal vertices

Let us denote by x
s→ y a shortest path from vertex x to vertex y in G.

Definition 7 (◦) Let a be a vertex of G. We let ◦a and a◦ be the following vertices
of G. If a is a pre-vertex then ◦a = l(a). Otherwise a is on the right side of a contour
D and we let ◦a be the vertex on D such that

|f(a) s→ ◦a| − 1 ≤ |l(a) s→ ◦a| ≤ |f(a) s→ ◦a| (3.1)

(see Figure 3.5 where v = ◦a). If a is a post-vertex then a◦ = r(a). Otherwise a is on
the left side of a contour D and we let a◦ be the vertex on D such that

|f(a) s→ a◦| − 1 ≤ |r(a) s→ a◦| ≤ |f(a) s→ a◦| (3.2)

(see Figure 3.5 where v◦ = a).

Example 3.3.2 Let us look at the internal vertex 8 of the cycletree in Figure 3.4.
We get ◦8 = 2 and 8◦ = 10 (see Figure 3.6). It is easy to see that any descendent
of vertex 2, 8 or 10 is closer to vertex 8 via one of its sons than via its father, and
any other vertex (in the dashed area) is closer to vertex 8 via its father. In fact,
lmin(8) = 2, lmax(8) = 7, rmin(8) = 9 and rmax(8) = 10 are optimal.

4 5 7 9 10 11

3 6 8 12

2 13

1

− 0 + − 0 +

− 0 0 +

− +

◦8

8◦

Figure 3.6: The subgraph of the cycletree, induced by the descendents of vertices 8,
2 and 10 is drawn with solid lines.

Summing up, we have the following definitions.

Definition 8 (Internal router data) Let G be a cycletree having no cross-level edges
and let a be an internal vertex of G. We define the router data of a as follows.

lmin(a) = min(desc(◦a)), (3.3)

lmax(a) = max(desc(l(a))), (3.4)

rmin(a) = min(desc(r(a))), (3.5)

rmax(a) = max(desc(a◦)), (3.6)

3.3. ROUTING IN CYCLETREES 27

Optimal router data of external vertices

The above router data need not be optimal for external vertices. This can easily be
confirmed by looking at the cycletree in Figure 3.4. Vertex 10 is on the right side
of the contour of region R13. We get that min(desc(◦10)) = min(desc(8)) = 7, but for
example vertex 5 is closer to vertex 10 via vertex 9 than via vertex 12.

Let a be an external vertex of a cycletree G having no cross-level edges and let
N = |VG|. Trivially, we must have lmax(a) = l(a) and rmin(a) = r(a). It is also easy to
see that, whenever a is a descendent of l(a) or r(a), then lmin(a) = 1 or rmax(a) = N ,
respectively, is optimal. (Note that a cannot be both a descendent of l(a) and a
descendent of r(a).) If l(a) or r(a) is a descendent of a then lmin(a) = min(desc(◦a)) or
rmax(a) = max(desc(a◦)), repectively, is optimal. The reasoning in the last case is the
same as if a had been internal (see Figure 3.5).

Assume now that l(a) is at the same level as a (see Figure 3.7), and let us find the
optimal value of lmin(a) (treatment of rmax(a), when r(a) and a are at the same level,
is analogous).

Let z be the least vertex that has l(a) as its maximum descendent. Then z must
be the left son of f(z), or else z would not be least. Thus z is either a pre-vertex or an
in-vertex. If z is an in-vertex then it is on the right side of the contour D of a region
(R′ in the figure). Vertex ∗z in the figure denotes vertex ◦z, if D has an odd number
of vertices; r(◦z), otherwise. (The formal definition is given below.) The subgraph S1

is induced by desc(∗z) and the subgraph S2 is induced by desc(z). Any vertex in S1

or S2 is now closest to a via l(a), and any vertex outside S1 and S2 is closest to a via
f(a) or r(a).

l(a) a

S1 S2

k

k

f(a)

∗z z

f(z)

k′

k′◦z
R′

Figure 3.7: An external vertex a at the same level as l(a). Vertex z is the minimum

vertex such that l(a) = max(desc(z)); k = |l(a) s→ z| and k′ = |z s→ ∗z|.

Definition 9 (∗) Let v be a vertex of G. We let ∗v and v∗ be the following vertices
of G. If v is a pre-vertex then ∗v = v. Otherwise v is on the right side of a contour
D and we let ∗v be the vertex on D such that

|v s→ ∗v| = |f(v) s→ ◦v|. (3.7)

We let, accordingly, v∗ = v if v is a post-vertex. Otherwise v is on the left side of a
contour D and we let v∗ be the vertex on D such that

|v s→ v∗| = |f(v) s→ v◦|. (3.8)

Summing up, we have the following definitions.

28 CHAPTER 3. CYCLETREES AS NETWORKS

Definition 10 (External router data) LetG be a cycletree having no cross-level edges
and let a be an external vertex of G. We define the router data of a as follows.

lmin(a) =

 1, if a ∈ desc(l(a));
min(desc(◦a)), if l(a) ∈ desc(a);
min(desc(∗z)), otherwise, where z = min{x | l(a) = max(desc(x)) },

(3.9)

lmax(a) = l(a), (3.10)

rmin(a) = r(a), (3.11)

rmax(a) =

 N, if a ∈ desc(r(a));
max(desc(a◦)), if r(a) ∈ desc(a);
max(desc(z∗)), otherwise, where z = max{x | r(a) = min(desc(x)) },

(3.12)

Example 3.3.3 Let us consider vertex 10 in Figure 3.4, and let us calculate lmin(10)
first. As vertices 10 and l(10) = 9 are at the same level, the third case of Formula 3.9
must apply. Now, the least vertex that has 9 as its maximum descendent is vertex 8.
We know that ∗8 = 6. The minimum descendent of 6 is 5. Thus lmin(10) = 5 (see
Figure 3.8). We calculate rmax(10), in a similar fashion, to be 11, by using the third
case of Formula 3.12. Clearly, a shortest path to any other vertex (in the dashed area)
goes through vertex 12.

4 5 7 9 10 11

3 6 8 12

2 13

1

− 0 + − 0 +

− 0 0 +

− +

◦8

∗8

Figure 3.8: The subgraph induced by {x | 5 ≤ x ≤ 11 } is shown with solid lines.

Theorem 8 Let G be a cycletree network having no cross-level links and let the router
data of each node in G have the values given by Definition 8 and Definition 10 in the
internal and external case, respectively. Then Algorithm 2 terminates and produces a
shortest path between any pair of nodes in G.

Proof. See Appendix A.2.

3.4 Establishing optimal router data dynamically

We will next treat the problem of dynamically establishing the optimal router data in
a cycletree network. We assume that we are given a network of N nodes configured as
a cycletree without cross-level edges. We present a parallel algorithm that establishes
the optimal router data in each node. We assume that we are given O(N) processors,
each having O(1) memory. Let the depth of the cycletree be K. We will show that
the algorithm runs in O(K) time units, and thus is logarithmic in N if the cycletree
is tree-complete.

3.4. ESTABLISHING OPTIMAL ROUTER DATA DYNAMICALLY 29

In the algorithm each node is seen as a process that consists of smaller (possibly
concurrent) subprocesses, fair scheduling of which is assumed. We assume a ren-
dezvous communication model between nodes. An edge beteen two vertices in the
interconnection graph corresponds to a bidirectional synchronous channel or link be-
tween the corresponding nodes. Thus a communication event takes place when both
parts are ready.

The algorithm is described from the local viewpoint of one node and the same
algorithm is run in every node of the cycletree. Thus, the algorithm in one node is in
itself a subprocess of the node, which upon termination has established the optimal
router data of that node. The optimal router data can then be used, as described by
Algorithm 2, to obtain optimal communication when running further programs.

We will start by giving a brief overview of the algorithm. We then give a detailed
description of the algorithm and illustrate the algorithm with an example. Finally,
we argue for its correctness and calculate its parallel complexity. (It could provide
easier understanding of the algorithm if sections 3.4.1, 3.4.2 and 3.4.3 were studied
simultaneously.)

3.4.1 Overview of the algorithm

The information that is assumed to be known in each node a is: whether a is internal
or external, mark of a, (and the address of a)9. Upon termination lmin = lmin(a),
lmax = lmax(a), rmin = rmin(a) and rmax = rmax(a). The algorithm consists of 5
steps.

Step 1. Initialization. Fetch the mark of f(a). If either a or f(a) is a pre-node then
a is on the left side of a contour D. Otherwise run the “opposite” algorithm in a
(roughly: left and right are switched). The rest of the algorithm is described as if a
is a pre-node or f(a) is a pre-node. (If a is an in-node then it is also on the right side
of another contour D′.)

Step 2. Calculate α as the number of ascendents of a, other than a itself, on the
same side of D, δ as the difference between the length of a’s side of D and the length
of the opposite side of D. If a is an in-node then calculate also δ′ as the corresponding
value with respect to D′.
(Subglobal view: nodes on the left and the right sides of a contour exchange informa-
tion.)

Step 3. Calculate mind as min(desc(a)), maxd as max(desc(a)), lmax and rmin (as
above). If a is external then it uses δ and δ′ to determine its immediate ascendent(s)
and descendent(s).
(Global view: information is propagated upwards from descendent to ascendent.)

Step 4. (Kernel 1.) Calculate lmin as min(desc(◦a)), and rmax as max(desc(a◦)).
Also, calculate rmax* as max(desc(a∗)) if a is an in-node. The router data are now
optimal, unless r(a) or l(a) is at the same level as a.
(Subglobal view: nodes on the left and the right sides of a contour exchange informa-
tion.)

Step 5. (Kernel 2.) The optimal values for lmin and rmax are calculated if a is
external.
(Global view: information is propagated downwards from ascendent to descendent.)

An important property

There is one important property of cycletrees that follows easily from Theorem 6
and Theorem 7 and is used in steps 2 and 4. Namely, the left and the right sides

9As before, we will identify a node directly with its address.

30 CHAPTER 3. CYCLETREES AS NETWORKS

of a contour and the nontree edge connecting those sides constitute a path that is
edge-disjoint with the corresponding paths with respect to other contours.

In steps 2 and 4 all communication takes place within such a subpath of a contour
in a systolic manner. We can therefore describe those steps “subglobally” by looking at
each contour separately. See Figure 3.9 that illustrates the property for the cycletree
shown previously in Figure 1.1.

R

6 7 8 10 11 12 16 17 18 20 21 22 28 29 30 32 33 35

5 9 13 15 19 23 27 31 34 36 40 41

4 14 24 26 37 39 42 43

3 25 38 44

2 45

1

Figure 3.9: The grey area of a region is spanned by the left side, the right side and
the nontree edge of the contour of that region. No two grey areas share an edge.

Before turning to the formal treatment of the algorithm, let us illustrate Step 4
subglobally by extracting the subpath of the contour spanning the grey area of region
R in Figure 3.9. See Figure 3.10.

30

141

152

173 183

192

241

250

−

0

−

0 +

0

+

0

Figure 3.10: The subpath of the contour spanning the grey area of region R in Fig-
ure 3.9.

An arrow between two nodes x and y in Figure 3.10 shows that x and y need a
value from each other. In particular, node 14 needs the value of max(desc(19)) from
node 19 for its rmax, and node 19 needs the value of min(desc(14)) from node 14 for
its lmin. (Those values were calculated during Step 3.)

In order to accomplish such an exchange of information in a systolic manner, the
values of α and δ are used (those values were calculated during Step 2). The number
of ascendents of a node, other than the node itself, that are on the same side of the
contour of region R is shown as an index of that node’s address in the figure. This
value (except for node 25) is the value of α in the corresponding node.

For example, during Step 4, node 15 needs to bypass 2 (= α) values from node 17
to node 14, before it receives the value for its rmax from node 17 (originally sent
by node 24). Concurrently, node 15 sends the value of its minimum descendent to
node 17 and after that bypasses 2 (= α) values from node 14 to node 17.

3.4.2 The algorithm

We shall now present a detailed description of the algorithm. The algorithm is de-
scribed as it is executed in one node a. We name the neighbours f(a) (if any), l(a) and
r(a), by f , l and r, respectively.

Let b be a neighbour of a. We denote a send operation of the value of an expression
e to b by b!e, and a receive operation of a value from b that is saved in variable x

3.4. ESTABLISHING OPTIMAL ROUTER DATA DYNAMICALLY 31

by b?x. Furthermore, we will denote two concurrent subprocesses P and Q of the
algorithm by P ‖ Q, and two sequential subprocesses, P followed by Q, by P ; Q.
We adopt the convention that ‘;’ binds more tightly than ‘‖’. We can thus drop the
parentheses in (P ; Q) ‖ R and write it as P ; Q ‖ R.

(The algorithm can almost trivially be translated into either CSP [28] or OC-
CAM [32].)

Algorithm 3 Let a be a node in a network of N nodes configured as a cycletree
with no cross-level edges. Let m be the mark of a and let I be a flag which is true,
if a is an internal node; otherwise false. Upon termination the variables lmin, lmax,
rmin and rmax hold the optimal values of the router data lmin(a), lmax(a), rmin(a)
and rmax(a), respectively. At the top level the algorithm is described by the process

if a = 1 then S1′ else (S1 ; S2 ; S3 ; S4 ; S5).

[Step 1] calculates mf, the mark of f . If a = 1 then a has no father and it acts like
a pre-node for its left son and like a post-node for its right son. If a = 1 then the
router data are calculated in S1′ and the algorithm terminates. (The values for lmax
and rmin are sent from l and r during S3.)

S1′ = (l!Pre ‖ r!Post) ; (lmin, rmax := 2, N ‖ l?lmax ‖ r?rmin)

S1 = (f?mf ‖ if I then (l!m ‖ r!m)) ; Switch

Switch: If either a or f is a pre-node then let one := 1 and limit := N . Otherwise
run the “opposite” algorithm in a: let one := −1, limit := 1 and switch the names, r
with l, lmin with rmax and lmax with rmin.

[Step 2] calculates α and δ; also δ′ if a is an in-node.

S2 = (if m = mf then S21 else S22) ‖
(if m = In then S23)

S21 or S22 calculates α and δ, and S23 calculates δ′ (δ′ is defined only if a is an
in-node). In S21, a has no ascendents, other than a itself, on the same side of the
contour. In S22, a has at least one such ascendent. (See Figure 3.11.)

S21 = α := 0 ; r!1 ‖ r?x ; δ := 1− x
S22 = (S221 ‖ S222) ; δ := α+ 1− x

S221 = f?α ; r!(α+ 1)

S222 = r?x ; f !(x− 1)

S23 = l!1 ‖ l?y ; δ′ := 1− y

[Step 3] calculates maxd, mind, lmax and rmin.

S3 = S31 ; f !maxd ‖ S32 ; S33 ; if ¬I ∧ δ > 0 then r!mind

In S31, the value of maxd is received from r if r is a descendent of a, else a is its own
greatest descendent. The value of maxd is then sent to f . In S32, x is received from
l if l is a descendent of a, x is set to a otherwise. In S33, x is used to calculate mind,
lmax and rmin. Finally, the value of mind is sent to r if r is an ascendent of a.

S31 = if I ∨ δ < 0 then r?maxd else maxd := a

S32 = if I ∨ (m = In ∧ δ < 0) then l?x else x := a

S33 = if I ∧m 6= In then mind, lmax, rmin := a, x, x+ one

else mind, lmax, rmin := x, a− one, a+ one

32 CHAPTER 3. CYCLETREES AS NETWORKS

ak

aα

aα−1

aα+1

a0

bp

bp−1

b0

b1

t

p+1−(k−α)−1

α

p+1−(k−α)
α+1

k+1

p+1

k+1−1
p

1

k+1−p

k − α

Figure 3.11: Subglobal view of Step 2. In node aα the value of p + 1 − (k − α) is
received as x and δ is calulated as δ = α+ 1− x = k − p. The “opposite” algorithm
is executed in nodes b1, . . . , bp, and either in b0 and a0 if t is a post-node, or in b0 if
t is the root of the cycletree.

[Step 4] calculates rmax and lmin; also rmax* if a is an in-node. The value of rmax*
is needed in Step 5. The value of rmax (lmin) is now optimal, unless r (l) is at the
same level as a.

S4 = (if I ∨ δ ≤ 0 then (S41 ; S41*) else (rmax := limit ; S42)) ‖
(if m = In then S43 else lmin := a+ one)

S43 = l!maxd ‖ l?lmin

In S41 and S41*, rmax and rmax*, respectively, are calculated (see Figure 3.12).

a0 a1 aα−1 aα aα+1 an

bn
a0◦

bn−α
aα◦

b1 b0
an◦

z0 z0 zα−1 z0 zα−1 zα z0 zn

x0 x0 xα−1 x0 xα−1 xα x0 xn

z0 zn zα zα+1 zn zα+1 zn zn

x0 xn xα xα+1 xn xα+1 xn xn

Figure 3.12: Subglobal view of Step 4 of Algorithm 3; (a0, . . . , ak) and (b0, . . . , bp) are
the left and right sides of a contour, respectively, and n = min(k, p); zi = min(desc(ai))
and xi = max(desc(ai◦)). The grey node is either ak, if k = p + 1; bp, if p = k + 1;
otherwise nonexistent.

If r is an ascendent of a then the optimal value of rmax is trivially limit (see
Definition 3.12). Furthermore, rmax* is not needed in Step 5, since a cannot be the
maximum ascendent that has the same least descendent as a, and S42 is executed to
simply pass α values from f to r and from r to f .

The value of lmin is calculated concurrently.
The following works only because no cross-level edges are allowed, otherwise dead-

lock would occur. In S41, a sequence of α values bypass a from r to f and the (α+1)’st
value x from r is assigned to rmax. The α’th value from r (if any) is in x′. Now, if a is
an in-node then α > 0 and we know that x′ = max(desc(f◦)) and rmax* is calculated
by using that

max(desc(a∗)) =

{
max(desc(f◦)) = x′, if |C| is even (δ 6= 0);
max(desc(a◦)) = x, otherwise.

3.4. ESTABLISHING OPTIMAL ROUTER DATA DYNAMICALLY 33

Concurrently, the value of mind is sent to r and α values bypass a from f to r.

S41 = S411 ‖ S412

S411 = z := mind ; FtoR(α) ; r!z

S412 = r?x ; RtoF(α) ; rmax := x

S41* = if δ = 0 then rmax* := x else rmax* := x′

S42 = f?z ; FtoR(α− 1) ; r!z ‖ r?x ; RtoF(α− 1) ; f !x

RtoF(k) = ;1≤i≤k(x′ := x ; (f !x′ ‖ r?x))i

FtoR(k) = ;1≤i≤k(z′ := z ; (r!z′ ‖ f?z))i

[Step 5] calculates the optimal values of rmax (lmin) if a is an external node at the
same level as r (l).

S5 = if I then S51 else (if m 6= In then S52 else S53)

If a is internal then the following is done in S51. If δ < 1 (then max(desc(a)), say b,
and r(b) can be at the same level), and if a and f are pre-nodes then mind (equals
min(desc(∗a))) is sent to r. If m 6= mf and δ < 1 then a value is passed from f to
r. Thus, that value is eventually received by b, and is from there sent to r(b) as the
optimal value of lmin(r(b)) if b is at the same level as r(b).

Accordingly, if a is an in-node and δ′ < 1 then rmax*, which was calculated in S4,
is sent to l and is eventually received by l(min(desc(a))) (or discarded by min(desc(a)) if
l(min(desc(a))) is not at the same level).

S52 and S53 work similarly (see Figure 3.13 for S53).

a)

f

l a

r

b)

f

l a

r

c)

f

l a r

x

lmin

x rmax*

lmin

x

x

lmin

x

rmax* rmax

x

Figure 3.13: Illustration of S53; a) δ = 1; b) δ = −1; c) δ = 0. In all cases, if δ′ = 0,
i.e., a is at the same level as l, then lmin is received from l as illustrated with the
dashed arrow.

S51 = (if δ < 1 then (if m = mf then r!mind else (f?x ; r!x))) ‖
(if m = In ∧ δ′ < 1 then l!rmax*)

S52 = (if δ < 1 then (if m = mf then r!mind else (f?x ; r!x))) ‖
(if δ ≥ 0 then r?y) ; (if δ = 0 then rmax := y)

S53 = (if δ′ = 0 then l?lmin) ‖
(if δ > 0 then r?x ; l!x) ;

(if δ < 0 then (f?x ; r!x ‖ l!rmax*)) ;

(if δ = 0 then (f?x ; r!x ‖ l!rmax* ‖ r?rmax))

34 CHAPTER 3. CYCLETREES AS NETWORKS

Example 3.4.1 Let us illustrate Algorithm 3 with a cycletree of 9 nodes, as shown in
Figure 3.14. During Step 1 is mf calculated in each node. The “opposite” algorithm
is executed in nodes 4, 7, 8 and 9.

In Step 2 we get a flow of data through the cycletree. For example, in node 5,
α = 1, δ = α+ 1− 1 = 1 (level difference between nodes 6 and 7), and δ′ = 1− 0 = 1
(level difference between nodes 4 and 3).

During Step 3 the minimum and maximum descendents are calculated. For ex-
ample, nodes 7 and 9 receive 6 as their least descendent. Note that, at this point the
root receives its values for lmax and rmin (see S1′).

During Step 4 most nodes receive the optimal values for lmin and rmax. Nodes 7
and 8 are exceptions. In node 7 the current value of rmax is not known to be optimal
and in node 8 the current value of lmin is not known to be optimal (those values
are emphasized in the figure). In node 5 rmax* = 7, and in node 7 (the “opposite”
algorithm) lmin* = 4.

During Step 5 node 8 receives the optimal value for lmin, which is the value of
lmin* sent by node 7. Node 7 receives a new value for its rmax from node 8. The
other events have no effect on the current values (the values received by nodes 4 and 6
are discarded).

3.4.3 Correctness

We will now prove in a relatively informal manner that each step of the algorithm
terminates and produces the values it is supposed to, or in one word, that the algo-
rithm is correct. Certain parts will be skipped, for example Step 1, where a proof
seems superfluous.

Let us first introduce some useful concepts. Let X0, X1, . . . , Xk, k ≥ 0, be con-
current processes forming a chain, i.e., Xi uses one output channel which is the only
input channel used by Xi+1 for 0 ≤ i < k. We denote it by

X0 À X1 À · · · À Xk.

The above chain is called a pipe [29], if X0 uses one input channel and Xk uses one
output channel; we call it an isolated pipe if X0 uses no input channel and Xk uses
no output channel. A pipe (and thus an isolated pipe) has the nice property that it
does not deadlock if none of the elements do [29].

The following notations will be used. A process X which is executed by the
“opposite” algorithm is denoted by X. The index of a process denotes the node
where the corresponding process is executed.

Step 2. Let us look subglobally at one contour D of the cycletree. Let (a0, . . . , ak) be
the left side of D and (b0, . . . , bp) the right side of D (see Figure 3.11). The execution
of S2 initially forms an isolated pipe from a0 to b0 and from b0 to a0

X1a0
À S221a1

À · · · À S221ak À S222bp À · · · À S222b1 À Y2b0

‖ X2a0
¿ S222a1

¿ · · · ¿ S222ak ¿ S221bp ¿ · · · ¿ S221b1 ¿ Y1b0 ,

where

X1 ‖ X2 = S21, if a0 is a pre-node; S23 otherwise,

Y1 ‖ Y2 = S21, if b0 is a post-node; S23 otherwise.

Let P be any one of the two chains. The first element of P sends a value to the next
element and terminates. The rest of P then forms an isolated pipe which reduces
similarly until the last element of P receives a value and terminates.

3.4. ESTABLISHING OPTIMAL ROUTER DATA DYNAMICALLY 35

1

2

3

4

5

6

7 8

9

−+

−

−

+

0

−

0 +

+

1

2

3

4

5

6

7 8

9

−+

−

−

+

0

−

0 +

+

1

2

3

4

5

6

7 8

9

−+

−

−

+

0

−

0 +

+

1

2

3

4

5

6

7 8

9

−+

−

−

+

0

−

0 +

+

(Step 2)

22

11 02
11

13
22

04
11

33

22

24
11

11
11

(Step 3)

41

42

41 61

62

63

61

62
81

63

(Step 4)

(3,7)

(,6)

(1,)

(3,9)

(,9)

(2,8) (6,)

(4,8)

62

31 32
61

72

93

22

41

73
21

42

23 71

92

43
91

61
81

(Step 5)

(2,8) (4,)

21

92

91

41
81

Figure 3.14: Sample execution of Algorithm 3. An arrow denotes a unidirectional
channel between two neighbours. A communication event between two neighbours
is shown by a label on the corresponding channel. The indices of the events show
their chronological ordering. The values of (lmin, rmax) upon completion of Step 4
are illustrated.

36 CHAPTER 3. CYCLETREES AS NETWORKS

It is not hard to see, by examining the code of Step 2 and Figure 3.11, that correct
values for α and δ have been established in each node.

Step 3. Termination of S3 is guaranteed by the fact that in each node a, process Xa,
where X is S1′, if a is the root; S3, if a or f(a) is a pre-node; S3, otherwise, receives a
value concurrently from all immediate descendents of a (if any), and, unless a is the
root, sends a value concurrently to all immediate ascendents of a. There are no cycles
in the corresponding global logical process network, which implies termination [29],
since X neither deadlocks nor livelocks.

It is not hard to see, by examining the code of S3, which uses the cycle order
properties of cycletrees to calculate maxd, mind, lmax and rmin, that the calculated
values are correct.

Step 4. Let D, (a0, . . . , ak) and (b0, . . . , bp) be as above. The execution of S4 forms
initially, in a manner similar to the execution of S2, an isolated pipe from a0 to b0
and from b0 to a0. Let n = min(k, p). We have the isolated pipes

X1a0
À S411a1

À · · · À S411an À Z1À S412bn À · · · À S412b1 À Y2b0

‖ X2a0
¿ S412a1

¿ · · · ¿ S412an ¿ Z2¿ S411bn ¿ · · · ¿ S411b1 ¿ Y1b0 ,

where

X1 ‖ X2 = S41, if a0 is a pre-node; S43, otherwise,

Y1 ‖ Y2 = S41, if b0 is a post-node; S43, otherwise,

Z1 ‖ Z2 = S42an+1
, if k = p+ 1; S42bn+1

, if p = k + 1; none, otherwise.

The “none” case means that S411an À S412bn and S412an ¿ S411bn are pipes. Note
that −1 ≤ k − p ≤ 1, since cross-level edges are disallowed.

Let P be any one of the above isolated pipes, and let m = max(k, p). First, Pi and
Pi+1, 0 ≤ i ≤ m, communicate and P0 terminates. Next, Pi and Pi+1, 1 ≤ i ≤ m,
communicate and P1 terminates. Let m = m−1. The rest of P then forms an isolated
pipe which reduces in the same manner until m = −1. (See also Figure 3.12.)

Now, in every node ai, 0 ≤ i ≤ n, rmaxai has been assigned the value of maxdbn−i ,
which was originally sent by bn−i. It is easy to calculate that bn−i = ai◦, and thus
rmaxai = maxdai◦ = max(desc(ai◦)) which is correct. It is straightforward to see that
also the other values are correct.

Step 5. The execution of S5, viewed globally, initially forms a set of isolated pipes.
Let

Pa0
À Pa1

À · · · À Pan

be an element in that set. There are two symmetric cases. One of those is that a0 is
the minimum node which has an as its maximum descendent (possibly a0 itself), i.e.,

a0 = min{x | max(desc(x)) = an }.
Then a0 is the left son of its father and a0 has no other immediate ascendents.
Furthermore, ai+1 = r(ai) and ai+1 ∈ desc(ai), for 0 ≤ i < n. Thus, an is either the
rightmost son of a0, or if the rightmost son of a0 is not the maximum descendent of
itself then (let z = a0) node l(a) as illustrated in Figure A.5.

Initially Pa0
sends the value of min(desc(∗a0)) to Pa1

(unless n = 0). That value is
either the value of minda0

, if a0 and f(a0) are pre-nodes; the value of lmin*a0
, other-

wise, i.e., if a0 is an in-node and executes the “opposite” algorithm. The subsequent
elements of the chain pass that value on to their immediate successors and terminate,
until Pan is reached. Evidently, the chain terminates.

Finally, Pan sends that value to node r(an) if an and r(an) are at the same level.
In node r(an) the received value is assigned to lminr(an) and is now optimal according
to Formula 3.9 and thus correct.

3.4. ESTABLISHING OPTIMAL ROUTER DATA DYNAMICALLY 37

3.4.4 Complexity analysis

Let G[C, T] be a cycletree with no cross-level edges. Let N = |VG|, and let K be the
depth of T . As we let G be the interconnection graph that defines the topology of
our MP-RAM model, we trivially associate each node of G with a processor in the
model. Thus we assume a balanced distribution of an identity-size problem [2].

We show that Algorithm 3 runs in O(K) time and requires O(1) memory per pro-
cessor. The latter statement can be confirmed simply by observing that the number
of variables per node (each capable of holding one datum10), used by the algorithm,
is constant.

Let us now treat the time complexity of the algorithm. In our idealized model,
a communication event of one datum between any two neighboring nodes costs O(1)
time units. We treat the algorithm stepwise and denote the time taken by each step
i by T i(N).

Clearly T 1(N) = O(1). We know from the discussion in the previous section that
T 3(N) = O(K) and T 5(N) = O(K). We know also from the previous section that
T 2(N) = O(K) and T 4(N) = O(K), since the size of the largest contour is O(K). The
overall time cost is therefore T (N) = O(K). The most interesting case is when G is
tree-complete. In that case we know that K = O(logN), and thus T (N) = O(logN).

10An integer between −1 and N .

38 CHAPTER 3. CYCLETREES AS NETWORKS

Chapter 4

Conclusions and future work

Cycletrees reflect the communication patterns of several common parallel program-
ming paradigms. In the general case, however, the communication patterns are not
directly identifiable, e.g., in computations resulting from automatic parallelization.
The most common communication patterns that arise in parallel computations are,
arguably, supported by a binary tree structure and a circular array structure.

We have shown in Chapter 2 that a cycletree includes any basic binary tree, has
a unique Hamiltonian cycle and that the maximum degree of a natural cycletree is 3,
which is clearly the lowest possible. We have also shown that a cycletree, if minimal,
has the smallest possible number of nontree edges. Thus a cycletree can be used to
realize both a basic binary tree structure and a circular array structure for the lowest
possible cost, from an embedding or mapping point of view.

Natural cycletrees have an appealing inductively defined structure. In Chapter 3
we first showed with Algorithm 1 how to construct a (natural) cycletree recursively
by using the inductive nature of its structure. This algorithm provides the outlines
of how cycletree networks can be configured dynamically.

We then presented an inexpensive and simple router, Algorithm 2, for natural
cycletrees and showed through Algorithm 3 how to obtain a shortest path communi-
cation harness in a natural cycletree network, thus providing optimal communication
in cases when communication is not local.

We showed that Algorithm 3 is superfast for tree-complete cycletrees, and thus,
in combination with dynamic configuration of cycletrees, obtaining a shortest path
communication harness is usually (in the interesting cases) inexpensive.

Supported by the discussion in Chapter 1, we believe that cycletrees can be used
in several areas of parallel computation to support, in the general case, efficient com-
munication in parallel computations on nonshared memory machines, in particular
when the exact communication patterns of the computation are not known.

Future work

The work can be pursued in several directions from here on. There are several open
questions to be be investigated.

How well can cycletrees be embedded or mapped in various host graphs like hyper-
cubes, meshes and butterflies, or VLSI? Based on the extensive work that has been
done on embedding binary trees and binary tree based networks in other networks
and VLSI, the answer to that question seems promising.

How well do cycletrees perform in practice, when used as (either virtual or actual)
interconnection graphs in parallel computations where one-to-all, all-to-one and local
communication patterns occur generally? Cycletrees could be studied in the context

39

40 CHAPTER 4. CONCLUSIONS AND FUTURE WORK

of data parallel computations, e.g., in the context of bounded quantifications and
Reform.

What are the potential bottlenecks in cycletrees for arbitrary communication pat-
terns? To what cost, and how, can cycletrees be extended to “fat cycletrees” in order
to remove those?

Which problems can be solved in parallel by making a direct use of the cycletree
structure, and how should parallel algorithms be designed for such problems?

What other graph theoretical properties do cycletrees employ? Does the class of
cycletrees include graphs that are not natural cycletrees but merit equal attention?

Bibliography

[1] Agrawal, D. P., Janakiram, V. K. and Pathak G. C., Evaluating the performance
of multicomputer configurations, IEEE Computer 19,5 (1986).

[2] Almasi, G. S. and Gottlieb, A., Highly Parallel Computing, Ben-
jamin/Cummings, Redwood City, 1989.

[3] Annaratone, M. et al., The Warp computer: architecture, implementation and
performance, IEEE Transactions on Computers C-36,12 (1987).

[4] Arden, B. W. and Lee, H., Analysis of chordal ring network, IEEE Transactions
on Computers, C-30:291–295 (1981).

[5] Arro, H., Barklund, J. and Bevemyr, J., Parallel bounded quantifications –
preliminary results, UPMAIL Technical Report No. 74, Computing Science De-
partment, Uppsala University, 1992.

[6] Barklund, J. and Millroth, H., Providing iteration and concurrency in logic
programs through bounded quantifications, in: H. Tanaka (ed.), Proc. Intl.
Conf. on Fifth Generation Computer Systems, Ohmsha, Tokyo, 1992.

[7] Beivide, R., Herrada, E., Balcázar, J. L. and Arruabarrena, A., Optimal dis-
tance networks of low degree for parallel computers, IEEE Transactions on
Computers 40,10 (1991).

[8] Bentley, J. L. and Kung, H. T., A tree machine for searching problems, in: Proc.
Intl. Conf. on Parallel Processing, 1979.

[9] Bentley, J. L. and Ottmann, T., On the power of one dimensional vectors of pro-
cessors, in: H. Noltemeier (ed.), Proc. Graph-Theoretic Concepts in Computer
Science, LNCS 100, Springer-Verlag, Berlin, 1980.

[10] Bevemyr, J., Lindgren, T., Millroth, H. and Tärnlund, S.-Å., Personal commu-
nication.

[11] Bhatt, S. N., Chung, F. R. K., Leighton, F. T. and Rosenberg, A. L., Optimal
simulations of tree machines, in: 27th IEEE Symp. on Foundations of Computer
Science, 1986.

[12] Boillat, J. E. and Kropf P. G., A fast distributed mapping algorithm, in:
H. Burkhart (ed.), Proc. CONPAR 90 – VAPP IV, LNCS 457, Springer-Verlag,
Berlin, 1990.

[13] Bokhari, S. H., 1981, On the mapping problem, IEEE Transactions on Com-
puters, C-30,3 (1981).

[14] Brandenburg, J. E. and Scott, D. E., Embedding of communication trees and
grids into hypercubes, Intel iPSC User Group, 1 (1986).

41

42 BIBLIOGRAPHY

[15] Carriero, N. and Gelernter, D., How to Write Parallel Programs, A First Course,
MIT Press, Mass., 1990.

[16] Chandy, K. M. and Misra, J., Parallel Program Design: A Foundation, Addison-
Wesley, Reading, Mass., 1988.

[17] Chaudhuri, P., Parallel Algorithms: Design and Analysis, Prentice Hall, Sydney,
1992.

[18] Corneil, D. and Read, R. C., The graph isomorphism disease, Journal of Graph
Theory, 1:339–363 (1977).

[19] Despain, A. M. and Patterson, D. A., X-tree: a tree structured multi-processor
computer architecture, in: Proc. IEEE 5th Annual Symposium on Computer
Architecture, 1978.

[20] Eklund, P., Hierarchical wiring in multigrids, in: Proc. CONPAR 90 - VAPP
IV, LNCS 457, Springer-Verlag, Berlin, 1990.

[21] Freisleben, B. and Kielmann, T., Automatic parallelization of divide-and-
conquer algorithms, in: CONPAR 92 - VAPP V, Springer-Verlag, Berlin, 1992.

[22] Frenkel, K. A., The Human Genome project and informatics, Communications
of the ACM, 34,11 (1991).

[23] Goodman, J. R. and Sequin, C. H., Hypertree: a multiprocessor interconnection
topology, Computer Science Technical Report 4227, Dept. Elec. Eng. and Comp.
Sci., Univ. of California, Berkeley, 1981.

[24] Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

[25] Gordon, D., Efficient embedding of binary trees in VLSI arrays, IEEE Trans-
actions on Computers, C-36:1009–1018 (1987).

[26] Gotoh, O., An improved algorithm for matching biological sequences, Journal
of Molecular Biology, 162:705–708 (1982).

[27] Goyal, P. and Narayanan, T. S., Dictionary machine with improved perfor-
mance, The Computer Journal, 31,6 (1988).

[28] Hoare, C. A. R., Communicating sequential processes, Communications of the
ACM, 21,8 (1978).

[29] Hoare, C. A. R., Communicating Sequential Processes, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1985.

[30] Horowitz, E. and Zorat, A., The binary tree as an interconnection network:
applications to multiprocessor systems and VLSI, IEEE Transactions on Com-
puters, C-30:247–253 (1981).

[31] Hromkovitč, J., Müller, V., Sýkora, O. and Vrťo, I., On embedding interconnec-
tion networks into rings of processors, in: Proc. PARLE 92, Springer-Verlag,
Berlin, 1992.

[32] Jones, G. and Goldsmith, M., Programming in occam 2, Prentice Hall, London,
1988.

[33] Knuth, D. E., The Art of Computer Programming. Volume 1: Fundamental
Algorithms, Second Edition, Addison-Wesley, Reading, Mass., 1973.

BIBLIOGRAPHY 43

[34] Krishnamurthy, E. V., Parallel Processing: Principles and Practice, Addison-
Wesley, Sydney 1989.

[35] Krämer, O. and Mühlenbein, H., Mapping strategies in message based multi-
processor systems, in: Proc. PARLE 87, LNCS 258, Springer-Verlag, Berlin,
1987.

[36] Kung, H. T., The structures of parallel algorithms, in: M. Yovits (ed.), Advances
in Computers 19, Academic Press, New York, 1980.

[37] Kung, S. Y., VLSI Array Processors, Prentice Hall, Englewood Cliffs, New
Jersey, 1988.

[38] Kung, S. Y., VLSI array processor for signal processing, in: MIT Conf. on
Adva. Research on I. C., MIT Press, Mass., 1980.

[39] Kung, S. Y., Arun, K. S., Bhaskar Rao, D. V. and Hu, Y. H., A matrix data
flow language/architecture for parallel matrix operations based on computa-
tional wavefront concept, in: H. T. Kung, B. Sproull and G. Steele (eds.), VLSI
Systems and Computations, Springer-Verlag, Berlin, 1981.

[40] Lam, S. P. S., A novel sorting array processor, in: Proc. CONPAR 92 - VAPP V,
LNCS 634, Springer-Verlag, Berlin, 1992.

[41] Latifi, S. and El-Amawy, A., Efficient approach to embed binary trees in 3-D
rectangular arrays, IEEE Processors, 137,2 (1990).

[42] Leiserson, C. E., Systolic priority queues, Report CMU-CS-79-115, Dept. of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1979. (Also in:
Proc. Caltech VLSI Conf., 1979)

[43] Leiserson, C. E., Fat-Trees: universal networks for hardware-efficient supercom-
puting, IEEE Transactions on Computers, C-34,10 (1985).

[44] Lengauer, C., Towards systolizing compilation: an overview, in: Proc.
PARLE 89, LNCS 366, Springer-Verlag, Berlin, 1989.

[45] Li, P. P. and Martin, A. J., The sneptree – a versatile interconnection network,
in: K. Hwang, S. M. Jakobs and E. E. Swartzlander (eds.), Proc. IEEE Intl.
Conf. on Parallel Processing, 1986.

[46] Mead, C. and Conway, L., Introduction to VLSI systems, Addison-Wesley, Read-
ing, Mass., 1980.

[47] Millroth, H., Reforming Compilation of Logic Programs, Ph.D. Thesis, Com-
puting Science Department, Uppsala University, 1990.

[48] Millroth, H., Reforming compilation of logic programs, in: International Logic
Programming Symposium, MIT Press, Cambridge, Mass., 1991.

[49] Monien, B. and Sudborough, I. H., Simulating binary trees on hypercubes, in:
J. H. Reif (ed.), Proc. AWOC 88 VLSI Algorithms and Architectures, LNCS
319, Springer-Verlag, Berlin, 1988.

[50] Mou, Z. G., A Formal Model for Divide-and-Conquer and its Parallel Real-
ization, Ph.D. thesis, Research Report YALEU/DCS/RR–795, Dept. of Comp.
Sci., Yale Univ., 1990.

44 BIBLIOGRAPHY

[51] Nelson, P. A. and Snyder, L., Programming paradigms for nonshared memory
parallel computers, in: L. H. Jamieson, D. B. Gannon and R. J. Douglass (eds.),
The Characteristics of Parallel Algorithms, MIT Press, Cambridge, Mass., 1987.

[52] Ottman, T. A., Rosenberg, A. L. and Stockmeyer, L. J., A dictionary machine
for VLSI, IEEE Transactions on Computers, C-31,9 (1982).

[53] Reed, D. A. and Grunwald, D. C., The performance of multicomputer intercon-
nection networks, IEEE Computer, 20,6 (1987).

[54] Reed, D. A. and Schwetman, H. D., Cost-performance bounds for multimicro-
computer networks, IEEE Transactions on Computers, C-32,1 (1983).

[55] Rosenberg, A. L., Graph embeddings 1988: recent breakthroughs, new direc-
tions, in: J. H. Reif (ed.), Proc. AWOC 88 VLSI Algorithms and Architectures,
LNCS 319, Springer-Verlag, Berlin, 1988.

[56] Ruzzo, W. L. and Snyder, L., Minimum edge length planar embeddings of
trees, in: H. T. Kung, B. Sproull and G. Steele (eds.), VLSI Systems and
Computations, Springer-Verlag, Berlin, 1981.

[57] Saad, Y. and Schultz, M. H., Topological properties of hypercubes, Research
Report RR-389, Yale University, 1985.

[58] Samatham, M. R. and Pradhan, D. K., The de Bruijn multiprocessor network:
a versatile parallel processing and sorting network for VLSI, IEEE Transactions
on Computers, 38,4 (1989).

[59] Shapiro, E., Systolic programming: a paradigm of parallel processing, in:
E. Shapiro (ed.), Concurrent Prolog, Collected Papers Vol. 1, MIT Press, Cam-
bridge, Mass., 1987.

[60] Shen, H., 1991, Efficient Design and Implementation of Parallel Algorithms,
Ph.D. Thesis, Dept. of Comp. Sci., Åbo Akademi, 1991.

[61] Shen, H., Self-adjusting mapping: a heuristic mapping algorithm for map-
ping parallel programs on to transputer networks, The Computer Journal, 35,1
(1992).

[62] Snyder, L., Introduction to the configurable, highly parallel computer, IEEE
Computer, 15,2 (1982).

[63] Stolfo, S. J., Initial performance of the DADO2 prototype, IEEE Computer,
20,1 (1987).

[64] Tucker, L. W. and Robertson, G. G., Architecture and applications of the Con-
nection Machine, IEEE Computer, 21,8 (1988).

[65] Tärnlund, S.-Å., Reform, draft, Computing Science Department, Uppsala Uni-
versity, 1991.

[66] Ullman, J. D., Computational Aspects of VLSI, Computer Science Press,
Rockville, Md., 1984.

[67] Valiant, L. G., Universality considerations for VLSI circuits, IEEE Transactions
on Computers, C-30:135–140 (1981).

[68] Wittie, L. D., Communication structures for large networks of microcomputers,
IEEE Transactions on Computers, C-30:264–273 (1981).

BIBLIOGRAPHY 45

[69] Wolfe, M., New program restructuring technology, in: Proc. Parallel Computa-
tion, First Intl. ACPC Conf., LNCS 591, Springer-Verlag, Berlin, 1991.

[70] Xie, X. and Ge, Y., An optimal structure that accomodates both a ring and
a binary tree, in: A. Bode (ed.), Proc. Distributed Memory Computing, LNCS
487, Springer-Verlag, Berlin, 1991.

[71] Youn, H. Y. and Singh, A. D., On implementing large binary tree architectures
in VLSI and WSI, IEEE Transactions on Computers, 38,4 (1989).

[72] Zienicke, P., Embeddings of treelike graphs into 2-dimensional meshes, in:
Möhring (ed.), Proc. WG’90 Graph-Theoretic Concepts in Computer Science,
LNCS 484, Springer-Verlag, Berlin, 1990.

46 BIBLIOGRAPHY

Appendix A

Proofs

A.1 Number of edges in an optimal cycletree

Let G[C, T] be an optimal cycletree, let N = |VG|. As T is a tree-complete basic
binary tree, T is full up to level K − 1, i.e., T has 2l vertices at level l, 0 ≤ l < K,
and R number of internal vertices at level K − 1, where

K = blog2(N + 1)c,
2R = N + 1− 2K .

Let us by Im denote the number of noncycle edges at a full level1 m of a cycletree,
and by Jm that of a chaintree. Then

Im = 2Jm−1, m > 0,

and, by using Definition 2, we obtain the following linear recurrence equation for Jm:

J0 = 0,

J1 = 1,

Jm = Jm−1 + 2Jm−2, m > 1.

By using standard techniques we get the following solution:

Jm =
2m − (−1)m

3
=

⌊
2m + 1

3

⌋
.

Let R′ be the number of noncycle edges at level K. We know that R′ must be minimal,
since G is optimal and the number of noncycle edges at levels m, 1 ≤ m < K, are
fixed by Im. There are R internal vertices at level K−1 and for each of these vertices
exactly one edge is a noncycle edge (assume that K > 1). Thus R−R′ of these edges
are at level K − 1. We get the following formula for R′, since R−R′ can be at most
IK−1,

R′ =

{
R− IK−1, if R− IK−1 ≥ 0;
0, otherwise.

We know that R = (N + 1)/2− 2K−1 and IK−1 = 2JK−2, thus

R− IK−1 =
N + 1

2
− 2K−1 − 2

2K−2 − (−1)K−2

3

=
N + 1

2
− 2

2K − (−1)K

3

=
N + 1

2
− IK+1.

1The level of an edge (r, s), where r is the father of s, is the level of s.

47

48 APPENDIX A. PROOFS

Thus the following is an equivalent formula for R′:

R′ =

{
(N + 1)/2− IK+1, if N ≥ 2IK+1 − 1;
0, otherwise.

Now, the total number of edges of G is the number of cycle edges, which is N , plus
the number of noncycle edges at all levels. Thus

|EG| = N +
K−1∑
m=1

Im +R′

= N + 2
K−2∑
m=0

Jm +R′

= N + 2

K−2∑
m=0

2m − (−1)m

3
+R′

= N +
2

3

(
K−2∑
m=0

2m −
K−2∑
m=0

(−1)m

)
+R′

= N +
2

3

(
2K−1 − 1− (−1)K−1 − 1

−2

)
+R′

= N +
2K − (−1)K

3
− 1 +R′

= N + JK − 1 +R′

=

{
N + JK − 1 + (N + 1)/2− 2JK , if N ≥ 4JK − 1;

N + JK − 1, otherwise.

=

{
(3N − 1)/2− JK , if N ≥ 4JK − 1;

N − 1 + JK , otherwise.

=

{
(3N − 1)/2− b(2K + 1)/3c, if N ≥ 4b(2K + 1)/3c − 1;

N − 1 + b(2K + 1)/3c, otherwise.

A.2. OPTIMALITY OF ROUTER DATA 49

A.2 Optimality of router data

Let G be a cycletree with no cross-level edges, and let a be any vertex of G. We
will prove that the router data as given by formulas 3.3 and 3.4 in the internal case,
and 3.9 and 3.10 in the external case, are optimal. (Proof of the optimality of formulas
3.5, 3.6, 3.11 and 3.12 is analogous, due to symmetry of G, just switch pre- and post
vertices). We must prove that for any vertex x of G such that x 6= a,

|l(a) s→ x| ≤ |f(a) s→ x|

when lmin(a) ≤ x ≤ lmax(a), and

|l(a) s→ x| ≥ |f(a) s→ x|

when x < lmin(a).

Internal vertices

In the following we will assume that a is an internal vertex of G and x is any other
vertex of G.

Pre-vertex (or root)

When a is a pre-vertex (or the root) then a is on the right side of no contour. In that
case ◦a = l(a), by definition. As a is a pre-vertex (or the root), so is l(a). The vertices
between lmin(a) and lmax(a) are all the descendents of l(a) and are trivially closer to
a via l(a). Any other vertex less than l(a), other than a itself, must be closer to a via
f(a).

In- or Post-vertex

Assume now that a is an in- or a post-vertex. In that case a belongs to the right side
of the contour D of a region R. Let t be the top of D. See Figure A.1. Let S be the
subgraph of G induced by

{x | lmin(a) ≤ x ≤ lmax(a)} = desc(◦a) ∪ desc(l(a)).

The subgraph S is shown as S1 and S2 in the figure.

S1

S2

R

z r(z)

l(a)

a

f(a)

t

f(◦a)

◦a

r(a)b|D|/2c − 1

d|D|/2e − 1

Figure A.1: Vertex a is internal.

We know that ◦a is always on the left side of D, since a is internal. Let z be the
rightmost son of ◦a. This condition holds because cross-level edges are not allowed,
i.e., whenever |D| is odd, z and r(z) must be at the same level, and whenever |D| is
even, the levels must differ by one.

50 APPENDIX A. PROOFS

Assume x is in S. We prove that |f(a) s→ x| ≥ |l(a) s→ x|. Unless l(a) is visited, in
which case the proof is trivial, we know, due to Theorem 6, that any shortest path
from f(a) to x must visit t by following the contour. As ◦a is a descendent of t and x
is a descendent of ◦a, a shortest path from t to x goes through ◦a. We have that

|f(a) s→ x| = |f(a) s→ ◦a s→ x|.

According to Definition 3.1 |l(a) s→ ◦a| ≤ |f(a) s→ ◦a|. Thus

|f(a) s→ x| ≥ |l(a) s→ ◦a s→ x| ≥ |l(a) s→ x|.

Assume x < lmin(a). We prove that |l(a) s→ x| ≥ |f(a) s→ x|. Unless f(a) is visited,
in which case the proof is trivial, any shortest path from l(a) to x must visit z by
following the contour through the nontree edge (z, r(z)). Furthermore, any shortest
path from z to x must visit ◦a. This follows from that ◦a is an in-vertex or a pre-
vertex, in both cases a shortest path from any right descendent of ◦a to x must visit
◦a. We get that

|l(a) s→ x| = |l(a) s→ ◦a s→ x|.
Let us consider two cases now, assuming that |D| is either odd or even. If |D| is
odd then f(◦a) must be on the left side of D, with ◦a as its right son. As x is not

a descendent of ◦a, we know that |f(◦a) s→ x| ≤ |◦a s→ x|. We know also that

|f(a) s→ f(◦a)| = |l(a) s→ ◦a|, since |D| is odd. Thus

|l(a) s→ x| ≥ |l(a) s→ ◦a|+ |f(◦a) s→ x|
= |f(a) s→ f(◦a)|+ |f(◦a) s→ x|
≥ |f(a) s→ x|.

If |D| is even then |f(a) s→ ◦a| = |l(a) s→ ◦a|, and thus

|l(a) s→ x| = |f(a) s→ ◦a s→ x| ≥ |f(a) s→ x|.

External vertices

We will in the following assume that a is an external vertex of G. We have three cases
to consider, according to Formula 3.9. We can exclude the case when a is a pre-vertex
because then l(a) = f(a) and the proof is trivial. Thus, we assume that a is either a
post- or an in-vertex. In either case a must be on the right side of the contour D of
a region R. Let t be the top of D.

Case 1: a is a descendent of l(a).

In that case lmin(a) = 1, i.e., all the vertices less than a are closer to a through l(a).
This situation is illustrated by Figure A.2.

We know that |D| must be even, k = |D|/2 − 1 in the figure. The case is really
trivial, as any vertex x, x < a, must be to the left of a. Thus in the worst case a
shortest path from l(a) to x visits t, and is as long as from f(a) to x, e.g., when x = 1.

Case 2: l(a) is a descendent of a.

In this case lmin(a) = min(desc(◦a)). See Figure A.3. Also in that case must |D|
be even, since cross-level edges are disallowed. We have that ◦a is the left son of t,
k = |D|/2− 1 in the figure.

The subgraph induced by desc(◦a) is shown as S. Clearly, if x is in S then a
shortest path from f(a) to x, unless visiting l(a), must visit t and ◦a. We get that

|f(a) s→ x| = k + |◦a s→ x| = |l(a) s→ ◦a s→ x| ≥ |l(a) s→ x|.

A.2. OPTIMALITY OF ROUTER DATA 51

a

l(a) f(a)

t

k k

R

Figure A.2: Vertex a is a leaf and a is a descendent of l(a).

l(a)

S
a

f(a)◦a

t

k

k R

Figure A.3: Vertex a is a leaf and l(a) is a descendent of a.

Now, if x < lmin(a) then any shortest path from l(a) to x, unless visiting f(a), must
visit ◦a, and thus

|l(a) s→ x| = k + |◦a s→ x| = |f(a) s→ ◦a s→ x| ≥ |f(a) s→ x|.

Case 3: a and l(a) are at the same level.

Let z be the minimum vertex such that l(a) = max(desc(z)). Then lmin(a) = min(desc(∗z)),
according to Formula 3.9. If z is not a pre-vertex then it is on the right side of the
contour D′ of a region R′, as illustrated by Figure A.4 where k′ = b(|D′| − 1)/2c.

l(a) a

S1 S2

k

k

f(a)

∗z z

f(z)

k′

k′◦z

t′

R′

R

Figure A.4: Vertex a is a leaf at the same level as l(a) and z is the minimum vertex
such that l(a) = max(desc(z)).

The subgraph S induced by

{x | lmin(a) ≤ x < a} = desc(∗z) ∪ desc(z)

52 APPENDIX A. PROOFS

is shown as S1 and S2 in the figure. Note that if z is a pre-vertex then ∗z = z and
S1 = S2. It is illustrated by Figure A.4 that |l(a) s→ z| = |f(a) s→ f(z)| = k. Actually,
f(a) is a descendent of f(z) and k is the level difference between those vertices, as it
is between z and l(a). Furthermore, a shortest path between z and f(a) has length
k+ 1. It is easy to calculate that if a is the left son of f(a) then z = ◦a and the above
holds. If a is the right son of f(a) then z = ◦a = l(a) only if z is either a pre-vertex or
l(l(a)) is not an ascendent of l(a), otherwise the case must be one of those illustrated
by Figure A.5. It is easy to see that the above reasoning holds also in those cases.

RR a

z

z

a

Figure A.5: Two possible cases of z (either internal or external) if z 6= ◦a.

Assume that x is in S. Let us first assume that x is in S2. We know, based on
the above reasoning, that

|f(a) s→ x| ≥ 1 + |l(a) s→ x|.
Now, assume that z is not a pre-vertex and x is in S1, otherwise S1 = S2 and we are
done. A shortest path from f(a) to x, unless visiting z (in which case a shortest path
from l(a) to z is clearly shorter and we are done), goes through t′, ◦z and ∗z. Thus,
see Figure A.4,

|f(a) s→ x| = |f(a) s→ f(z)
s→ ◦z s→ ∗z s→ x|

= k + k′ + |◦z s→ ∗z s→ x|
= |l(a) s→ z

s→ ∗z|+ |◦z s→ ∗z s→ x|
≥ |l(a) s→ x|.

Assume that x < lmin(a). If z is a pre-vertex then lmin(a) = z and any vertex less
than z is clearly closest to a via f(a). Assume the opposite. Then a shortest path from
l(a) to x, unless visiting f(a) and f(z), goes through z and ∗z. Thus

|l(a) s→ x| = |l(a) s→ z
s→ ∗z s→ x|

= k + k′ + |∗z s→ x|
= |f(a) s→ f(z)

s→ ◦z|+ |∗z s→ x|.
Let us consider two cases now: either |D′| is odd or even. If |D′| is odd then ∗z = ◦z
and trivially

|l(a) s→ x| = |f(a) s→ f(z)
s→ ◦z s→ x| ≥ |f(a) s→ x|.

If |D′| is even, then ◦z must be on the left side of D′ with ∗z as its right son. As x

is not a descendent of ∗z, we know that |◦z s→ x| ≤ |∗z s→ x|, and thus

|l(a) s→ x| ≥ |f(a) s→ f(z)
s→ ◦z|+ |◦z s→ x| ≥ |f(a) s→ x|,

which completes the proof.

