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Abstract
Modularity is a central theme in any scalable program analysis. The
core idea in a modular analysis is to build summaries at proce-
dure boundaries, and use the summary of a procedure to analyze
the effect of calling it at its calling context. There are two ways to
perform a modular program analysis: (1) top-down and (2) bottom-
up. A bottom-up analysis proceeds upwards from the leaves of the
call graph, and analyzes each procedure in the most general calling
context and builds its summary. In contrast, a top-down analysis
starts from the root of the call graph, and proceeds downward, an-
alyzing each procedure in its calling context. Top-down analyses
have several applications in verification and software model check-
ing. However, traditionally, bottom-up analyses have been easier to
scale and parallelize than top-down analyses.

In this paper, we propose a generic framework, BOLT, which
uses MapReduce style parallelism to scale top-down analyses. In
particular, we consider top-down analyses that are demand driven,
such as the ones used for software model checking. In such analy-
ses, each intraprocedural analysis happens in the context of a reach-
ability query. A query Q over a procedure P results in query tree
that consists of sub-queries over the procedures called by P . The
key insight in BOLT is that the query tree can be explored in parallel
using MapReduce style parallelism – the map stage can be used to
run a set of enabled queries in parallel, and the reduce stage can be
used to manage inter-dependencies between queries. Iterating the
map and reduce stages alternately, we can exploit the parallelism
inherent in top-down analyses. Another unique feature of BOLT is
that it is parameterized by the algorithm used for intraprocedural
analysis. Several kinds of analyses, including may-analyses, must-
analyses, and may-must-analyses can be parallelized using BOLT.

We have implemented the BOLT framework and instantiated
the intraprocedural parameter with a may-must-analysis. We have
run BOLT on a test suite consisting of 45 Microsoft Windows
device drivers and 150 safety properties. Our results demonstrate
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Figure 1. Black box view of the BOLT framework.

an average speedup of 3.71x and a maximum speedup of 7.4x (with
8 cores) over a sequential analysis. Moreover, in several checks
where a sequential analysis fails, BOLT is able to successfully
complete its analysis.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification– assertion checkers, correct-
ness proofs, formal methods, model checking; D.2.5 [Software
Engineering]: Testing and Debugging– symbolic execution, test-
ing tools; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs– assertions, pre- and
post-conditions

General Terms Parallelism, Testing, Verification

Keywords Abstraction refinement; Interprocedural analysis; Soft-
ware model checking

1. Introduction
Scalable program analyses work by exploiting the modular struc-
ture of programs. Almost every interprocedural analysis builds
summaries at procedure boundaries, and uses the summary of a pro-
cedure at its calling contexts, in order to scale to large programs.
Broadly, interprocedural analyses can be classified as either top-
down or bottom-up, depending on whether the analysis proceeds
from callers to callees or vice-versa.

Bottom-up analyses have been traditionally easier to scale. They
work by processing the call graph of the program upwards from
the leaves. In a bottom-up analysis, before a procedure Pi is an-
alyzed, all the procedures Pj that are called by Pi are analyzed,
and for each Pj its summary SPj is computed, typically without
considering the calling contexts of Pj . Then, during the analysis
of Pi the summary SPj is used to calculate the effects of calling
Pj , instead of the body of Pj . One of the significant advantages of



bottom-up analyses is their decoupling between callers of a proce-
dureP and the analysis of the body ofP , which enables paralleliza-
tion. For instance, the designers of the SATURN tool [1], a scalable
bottom-up analysis, say that “another advantage of analyzing pro-
cedures separately is that the process is easily parallelized, with
parallelism limited only by analysis dependencies between different
procedures. We use compute clusters of 40-100 cores to run Saturn
analyses in parallel and normally achieve 80-90% efficiency”.

In contrast, a top-down analysis starts from the root of the
call graph and proceeds downward, analyzing each procedure in
its calling context. Top-down analyses have several applications
in verification and software model checking [2, 3, 19], as well as
dynamic test generation [16, 30]. However, top-down analyses have
been more challenging to scale and parallelize. During a top-down
analysis, the analysis of a procedure Pi is done separately for each
calling context, leading to repeated analysis of each procedure, and
fine grained dependencies between analysis instances. Hence, top-
down analyses are harder to scale. However, top-down analyses do
have precision advantages. Since each analysis of a procedure Pi

is done with respect to a calling context, the summary built for that
context can be more precise. Thus, software model checkers such
as SLAM [4] and BLAST [10], which employ a top-down analysis,
are able to be very precise, and have very low false error rates, but
only scale to programs of size 100K lines of code [7].

Thus, it is natural to ask if we can parallelize and scale top-
down analyses. In particular, we consider top-down analyses that
are demand driven, such as the ones used for software model
checking. In such analyses, each intraprocedural analysis happens
in the context of a query. A query Q over a procedure P results
in sub-queries over procedures called by P . The query Q is in
a “blocked” state (that is, it cannot make progress) until at least
one of these sub-queries can be answered using a summary. When
such a summary is available for one or more of the sub-queries, the
parent query Q transitions to a “ready” state where it can continue
to execute, and may produce new sub-queries and get “blocked”
again. When the analysis of a query Q is conclusive, it moves to
a “done” state. It is important to note that (this will be illustrated
later) a query Q can move to a “done” state, even before all of
its sub-queries are done. Therefore, in this situation, the remaining
(transitive) sub-queries of q can be stopped and garbage collected.
Thus, the dependencies between query instances are more intricate
and detailed during a top-down analysis.

In this paper, we propose a generic framework, BOLT, which
uses MapReduce [13] style parallelism to scale top-down analyses.
The key insight in BOLT is that the query tree can be explored in
parallel as follows:

• The map stage is used to run a set of “ready” queries in parallel,
which can potentially result in a new set of sub-queries, and

• the reduce stage is used to manage interdependencies be-
tween queries, assess which parent queries can be moved to
the “ready” state from the “blocked” state, and which queries
can be garbage collected because they are no longer necessary
for the parents that originated these queries.

By iterating the map and reduce stages alternately, BOLT can ex-
ploit the parallelism inherent in any top-down analysis.

BOLT is parameterized by an intraprocedural analysis algo-
rithm, which we shall henceforth call PUNCH, used to analyze a
single procedure. BOLT initially receives a program P and a reach-
ability query Qmain over the main procedure main of P and it em-
ploys PUNCH to process Qmain. PUNCH explores paths in main ei-
ther forward or backward, or using combination of both. It can use
an overapproximate analysis, an underapproximate analysis, or a
combination of both. Whenever it encounters a method call Pi,
PUNCH formulates a sub-query Qi for Pi, which it needs to know

about Pi in order to answer the query it was asked, namely Qmain.
We say that Qi is a child of the parent query Qmain. PUNCH first
looks for a summary which can answer Qi in a database of sum-
maries SUMDB. If a suitable summary is found, it answers Qi us-
ing that summary and moves on. If not, PUNCH sets the query Qi

to the ready state and adds it to the set of queries it will return, and
explores other paths in main, repeating the same strategy to han-
dle any procedure calls it encounters on these paths. The PUNCH
call on the query Qmain finishes when PUNCH cannot perform any
further analysis in main without getting answers to queries it has
made to callees of main. At this point, it returns all the sub-queries
it has generated (which are all in the ready state), and Qmain itself,
which it sets to blocked state. The next map stage applies PUNCH
to all the queries that are in the ready state in parallel, and the sub-
sequent reduce stage then processes the answers produced by the
map stage, removing completed and redundant queries, and inform-
ing parent queries when their children have produced answers. This
process continues until Qmain returns an answer. Figure 1 shows an
overview of the BOLT framework which uses multiple instances of
PUNCH in parallel and a database of procedure summaries SUMDB
that stores results produced by PUNCH to avoid recomputing simi-
lar queries over the same procedure.

In our exposition of BOLT, we provide a formal specification of
the parameter PUNCH that any correct instantiation of BOLT should
respect. PUNCH can be instantiated to capture different kinds of
analyses. An instantiation of PUNCH to a “may-analysis” or an
overapproximation-based analysis, using “may” summaries, can
parallelize analyses such as SLAM [4] and BLAST [10]. An instan-
tiation of PUNCH to a “must-analysis” or an underapproximation-
based analysis, using “must” summaries, can parallelize analyses
such as DART [17] and CUTE [35]. We present an instantiation of
PUNCH that uses a “may-must-analysis”, combining overapproxi-
mations and underapproximations, to parallelize algorithms in the
family of DASH [9, 19].

Our contributions are summarized as follows.

– BOLT: a generic framework for parallelizing top-down inter-
procedural analyses. In particular, the framework targets demand
driven analyses such as the ones used in software model checkers.

– An instantiation of the BOLT framework with an intraprocedu-
ral analysis algorithm that uses a “may-must” analysis combining
testing (in the style of DART and CUTE) and abstraction (in the
style of SLAM and BLAST).

– A modular implementation of BOLT, where different intrapro-
cedural algorithms can be plugged-in and parallelized seamlessly;
and an extensive experimental evaluation of BOLT, using our may-
must-analysis on a number of Microsoft Windows device drivers
and safety properties, that demonstrates an average speedup of
3.71x and a maximum speedup of 7.4x using 8 cores (in compari-
son with a sequential analysis). Using BOLT, we have been able to
analyze several driver-property pairs that sequential analyses have
been unable to analyze previously.

The rest of the paper is organized as follows: Section 2 provides an
overview of BOLT and motivates its style of parallelism. Section 3
is a formal description of the BOLT framework. Section 4 discusses
the various instantiations of the intraprocedural parameter PUNCH.
Section 5 discusses our implementation and evaluation of BOLT.
Section 6 compares BOLT with related work. Finally, Section 7
concludes the paper and outlines directions for future research.



int foo(int p_foo);
int bar(int p_bar);
int baz(int p_baz);

main(int i, int j){
  int x, y;
  if (j > 0)
    x = foo(i);
  else if (j > -10)
    x = bar(i);
  else 
    x = baz(j);

  y = x + 5;
  assert(y > 0);
}

Qmain
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Figure 2. (a) Procedure main of example program, (b) State machine of a query Qi, and (c) Illustration of BOLT on (a).

2. Motivation
In this section, we illustrate the operation of BOLT on a toy program
and also motivate BOLT’s style of parallelism by examining a real-
world application.

2.1 Illustration of BOLT on a Toy Program
Consider the program shown in Figure 2(a) with main procedure
main. Procedure main invokes three other procedures, bar, foo,
and baz, which only have their signatures shown. Our goal is to
check if there exists some input to main that violates the assertion
“assert(y > 0)” at the end of the procedure. This check is en-
coded as the following query (formally defined in Section 3) over
the procedure main .

Qmain = 〈true ?
=⇒main y <= 0〉 (1)

This query asks the question if there is an execution through the
procedure main starting in any input state (denoted by the pre-
condition true) and ending in a state satisfying the error condition
y <= 0.

As shown in Figure 2(c), BOLT alternates between the map
and reduce stages in the style of the MapReduce framework [13].
Specifically, BOLT operates on this example as follows.

The first stage is the map stage where BOLT applies PUNCH
to the main query Qmain, which is initially in the Ready state, i.e.,
ready to be processed (the state machine for a lifespan of a query
is shown in Figure 2(b)). This results in the new queriesQfoo,Qbar

andQbaz, which are children ofQmain, all of which are in the Ready
state:

Qfoo = 〈true ?
=⇒foo ret <= -5〉 (2)

Qbar = 〈true ?
=⇒bar ret <= -5〉 (3)

Qbaz = 〈p baz <= -10
?

=⇒baz ret <= -5〉 (4)
Here, we assume that the intraprocedural analysis instantiated by
PUNCH is able to ascertain that the assertion “assert(y > 0)” in
the procedure main holds if and only if each of the procedures foo,
bar, and baz, return a value greater than -5. Note that Qbaz has the
precondition p baz <= -10, since baz is only called with inputs
less than or equal to −10.

The query Qmain is now in the Blocked state, because it needs
an answer from at least one of its child sub-queries before it can
make progress. The reduce stage analyzes if any interdependencies
between the queries have been resolved, and in this case, none are
resolved, so all the queries remain in their respective states (the first
reduce stage is essentially a no-op).

The second map stage applies PUNCH, in parallel, to each
of the Ready queries Qfoo, Qbar, and Qbaz. We assume that the
first two queries, Qfoo and Qbar, complete at this stage (perhaps
due to foo and bar being leaves in the call-graph) and therefore
move to the Done state, and Qbaz moves to the Blocked state
and generates a new query Qroo. The Done state implies that
the analysis of the query is complete. BOLT stores the results
of Done queries as procedure summaries in a summary database
SUMDB, in order to avoid recomputing them. A summary can
be either a must summary, representing an underapproximation of
the procedure and containing a path to error states, or a not-may
summary, representing an overapproximation of the procedure and
excluding paths to error states [19].

Since Qfoo and Qbar have moved to a Done state, the reduce
stage now sets Qmain to a Ready state, and thus enables it to be
processed by PUNCH in the next map stage, now that some of its



0	  

10	  

20	  

30	  

40	  

50	  

60	  

1	   10
	  

19
	  

28
	  

37
	  

46
	  

55
	  

64
	  

73
	  

82
	  

91
	  

10
0	  

10
9	  

11
8	  

12
7	  

13
6	  

14
5	  

15
4	  

16
3	  

17
2	  

18
1	  

19
0	  

19
9	  

20
8	  

N
um

be
r	  o

f	  R
ea
dy
	  S
ub

-‐Q
ue

rie
s	  

Time	  

Figure 3. Potential of parallelism illustrated on a device driver.

child sub-queries have returned results (summaries). The reduce
stage also deletes all Done queries (and their descendants). In this
case, it deletes Qbar and Qfoo.

In subsequent stages (not shown in the figure), it may so happen
thatQmain completes due to the answers it gets from the sub-queries
Qfoo and Qbar. If that happens, the next reduce stage will garbage
collect the remaining queries such as Qbaz and Qroo, since their
answers are no longer required (i.e., we have been able to answer
Qmain even without requiring the answers to these sub-queries).

To summarize, BOLT alternates between two phases: the par-
allel map stage, which applies PUNCH in parallel to verification
queries, and the reduce stage, which performs housekeeping, get-
ting rid of unnecessary queries and reactivating blocked ones. The
process continues until the main query Qmain is answered.

2.2 Opportunity for Parallelism
Since our goal is to parallelize top-down analyses, it is important
to ascertain the amount of parallelism available in the query tree
induced by a top-down analysis for real-world programs. Thus, for
these programs, it is useful to know the number of Ready queries
in each successive stage of the MapReduce process in order to
understand the level of parallelism that is available.

To get a rough idea of the amount of parallelism available in
analyzing device drivers, which are our target application, we in-
strumented a sequential top-down analysis and recorded the total
number of Ready sub-queries over the lifetime of a query for a
dispatch routine (the main procedure) in a device driver. Figure 3
shows this number plotted against time, for a typical device driver.
At its peak, the query has around 50 Ready sub-queries. On this
driver, a sequential top-down analysis would analyze each of these
Ready sub-queries one at a time. In contrast, BOLT exploits the
fact that these Ready queries can be analyzed independently, and,
therefore, parallelizes execution of these sub-queries on the avail-
able processor cores. Once these sub-queries run in parallel, they
will in turn generate more sub-queries with more opportunity for
exploiting parallelism. Ultimately, the speedup obtained by BOLT
depends on several other factors (see Section 5.1 for a thorough
evaluation), but the above methodology is useful to understand the
amount of parallelism inherently available in any top-down anal-
ysis, and the gains we can expect out of parallelizing the analysis
using BOLT.

3. The BOLT Framework
In this section, we describe the BOLT framework together with its
intraprocedural parameter PUNCH for solving reachability queries.

3.1 Preliminaries
Programs A program P is a set of procedures {P0, . . . , Pn},
where P0 is the main procedure (entry point). A procedure Pi is
a tuple (Vi, Ni, Ei, n

0
i , n

x
i , λi), where

• Vi is the disjoint union of the set of local variables V L
i of Pi

and the set of global variables VG of P .
• Ni is the set of control nodes (locations).
• Ei : Ni ×Ni is the set of edges between control nodes.
• n0

i , n
x
i ∈ Ni are the entry and exit locations, respectively.

• λi : Ei −→ Stmt is a labeling function, where Stmt is the set
of program statements over Vi. Statements in Stmt are either
simple statements or call statements. A simple statement in a
procedure Pi is an assignment statement x = E or an assume
statement assume(Q), where x is a variable in Vi, E is an
expression over the variables Vi, andQ is a Boolean expression
over the variables Vi. A call statement to procedure Pj is of the
form call Pj .

We assume, w.l.o.g., that communication between procedures is
performed via the global variables VG, and for each procedure Pi,
there does not exist a node n ∈ Ni such that (nx

i , n) ∈ Ei.

Program Model A configuration of a procedure Pi is a pair
(n, σ), where n ∈ Ni and the state σ is a valuation of variables
Vi of Pi. The set of all states of Pi is denoted by ΣPi . Every edge
e ∈ Ei is a relation Γe ⊆ ΣPi × ΣPi defined by the standard
semantics of the statement λi(e).

The initial configurations of a procedure Pi are {(n0
i , σ) |

σ ∈ ΣPi}. From a configuration (n, σ), Pi can execute a state-
ment by traversing some edge e = (n, n′) ∈ Ei and reaching
a configuration (n′, σ′), where (σ, σ′) ∈ Γe. We say that a con-
figuration (n, σ) can reach another configuration (n′, σ′), where
n, n′ ∈ Ni if and only if there exists a sequence of edges in
(n, n1), (n1, n2), . . . , (nm, n

′) ∈ Ei which if executed from state
σ leads to state σ′.

Procedure Summaries For any procedure Pi, let ϕ1 and ϕ2 be
formulae representing sets of states in 2ΣPi . Then, we have two
types of summaries for Pi, must summaries and not-may sum-
maries defined as follows [19].

• Must Summary: 〈ϕ1
must
=⇒Pi ϕ2〉 is a must summary for Pi if

and only if every exit configuration (nx
i , σ
′), where σ′ ∈ ϕ2,

is reachable from some initial configuration (n0
i , σ), where

σ ∈ ϕ1.

• Not-may Summary: 〈ϕ ¬may
=⇒ Pj ϕ2〉 is a not-may summary

for Pi if and only if every initial configuration (n0
i , σ), where

σ ∈ ϕ1, cannot reach any exit configuration (nx
i , σ
′), where

σ′ ∈ ϕ2.

Queries A query Qi over some procedure Pj is defined as a 4-
tuple (qi, si, pi,Oi), where

• qi is a reachability question of the form 〈ϕ1
?

=⇒Pj ϕ2〉, asking
if a procedure Pj starting in a configuration in {(n0

j , σ) | σ ∈
ϕ1} can reach a configuration in {(nx

j , σ) | σ ∈ ϕ2}.
• si ∈ {Ready,Blocked,Done} is the query state.
• pi is the index of the parent query Qpi of Qi.
• Oi is a verification object that maintains the internal state of

a query. The exact nature of this object depends on the kind
of analysis being performed by BOLT (may-analysis/must-
analysis/may-must-analysis). We will formally describe this
in Section 4.



A procedure summary S can be used to answer a reachability
question 〈ϕ1

?
=⇒Pj ϕ2〉 in either of the following ways:

• Answer = “yes”, if S = 〈ϕ̂1
must
=⇒Pj ϕ̂2〉, where ϕ̂1 ⊆ ϕ1 and

ϕ2 ∩ ϕ̂2 6= ∅,
• Answer = “no”, if S = 〈ϕ̂1

¬may
=⇒ Pj ϕ̂2〉, where ϕ1 ⊆ ϕ̂1 and

ϕ2 ⊆ ϕ̂2.

Intuitively, a must-summary S answers a reachability question
〈ϕ1

?
=⇒Pj ϕ2〉 with a “yes, there is an execution from a state

in ϕ1 to a state in ϕ2 through Pj”. On the other hand, if S is a
not-may summary, then it answers the reachability question with
a “no, there are no executions through Pj from any state in ϕ1 to
any state in ϕ2”.

A verification question for a program P is a query Q0 =

(q0, s0, p0,O0) over its main procedureP0, where q0 = 〈ϕ1
?

=⇒P0

ϕ2〉, ϕ2 describes undesirable (error) states, and p0 is undefined,
since the initial query Q0 does not have any parent queries.

3.2 PUNCH: The Intraprocedural Parameter
BOLT is parameterized by an intraprocedural analysis algorithm
PUNCH for manipulating queries. PUNCH takes a query Qi in the
Ready state, and the goal is to either compute a summary that
answers the reachability question of Qi or produce new queries
required to answer Qi. PUNCH stores procedure summaries that
it computes in a database SUMDB. PUNCH also queries SUMDB
for procedure summaries in order to avoid recomputing answers to
queries. The formal specification of PUNCH is described below.

Input: Qi = (qi, si, pi,Oi).

Output: Set of queries R.

Precondition: si = Ready.

Postcondition: R = {Q′i} ∪ C, where Q′i = (qi, s
′
i, pi,O′) and

1. (s′i = Done) =⇒ (C = ∅), and

2. (s′i ∈ {Blocked,Ready}) =⇒
∀(qj , sj , pj ,Oj) ∈ C · pj = i ∧ sj = Ready

PUNCH takes a query Qi = (qi, si, pi,Oi) as input and re-
turns a set of queries R. If PUNCH successfully analyzes Qi, it
returns a copy Q′i of Qi in a Done state (formula 1 of the above
postcondition), and adds a summary that answers qi to SUMDB,
as a side effect. Otherwise, it returns a copy Q′i of Qi that is
Ready or Blocked, and a set of child sub-queries C of Q′i (for-
mula 2 of the above postcondition). Every child sub-query Qj =
(qj , sj , pj ,Oj) ∈ C is uniquely identified by its index j. If a query
Qi is in the Blocked state, PUNCH cannot make any progress with
Qi and can only continue when one of its children has an answer
(i.e., the child reaches Done state and adds a summary to SUMDB).
If Qi is in the Ready state, PUNCH can perform more processing
on Qi. Note that the only side-effect of PUNCH is the addition of
summaries to SUMDB.

BOLT expects PUNCH to operate as follows. First, PUNCH at-
tempts to answer a query Qi on some procedure Pj by analyzing
Pj using the summaries of the procedures Pj calls that are stored
in SUMDB. If it fails to find appropriate summaries for those pro-
cedures, it moves Qi to a Blocked state and produces a number of
new sub-queries C. The query Qi remains Blocked until one of its
sub-queries is Done (and, therefore, has a summary in SUMDB).
Alternatively, PUNCH may decide to preempt an ongoing analysis
of Qi and return Qi in a Ready state. In Section 4, we present sev-
eral instantiations of PUNCH.

1: function BOLT(Program P , Query Q0 = (q0, s0, p0,O0))
2: QSet = {Q0}
3: while ¬∃(qi, si, pi,Oi) ∈ QSet · si = Done∧ qi = q0 do

MAP:
4: QSet′ ←

⊎
{PUNCH(Qi) | Qi ∈ QSet∧si = Ready}

5: QSet← QSet′ ∪ {Qi | Qi ∈ QSet ∧ si 6= Ready}
REDUCE:

6: for all Qi = (qi, si, pi,Oi) ∈ QSet do
7: if si = Done then
8: if spi = Blocked then set spi to Ready

9: (* remove subtree rooted at Qi from QSet *)
10: QSet← QSet \ Descendants(Qi)

11: if there exists a must summary for q0 in SUMDB then
12: return “Error Reachable”
13: else
14: return “Program is Safe”

Figure 4. BOLT algorithm

3.3 BOLT: The Parallel Top-Down Verification Framework
BOLT uses MapReduce [13] and is formally described in Figure 4.
BOLT takes as input a program P and a verification question Q0

over the main procedure P0 of P . The algorithm starts with a set of
queries QSet that is initialized to the verification question (line 2).
Each iteration (lines 3 – 10) is divided into two stages:

1. The MAP stage (lines 4 – 5): Applies PUNCH, in parallel, to
each query Qi ∈ QSet that is in Ready state. QSet′ is then
assigned the union of all of the results returned by all calls to
PUNCH. This is denoted by parallel union symbol

⊎
. The only

resource shared by parallel instances of PUNCH is the summary
database SUMDB.

2. The REDUCE stage (lines 6 – 10): Removes redundant and
Done queries from QSet. The function Descendants(Qi) is
used to denote the image of the transitive closure of the parent-
child relation starting from Qi. For every query Qi s.t. si =
Done, all descendants of Qi, including Qi, are removed from
QSet, since they were added to QSet to help answer Qi, and
now that si = Done, they are no longer required. Additionally,
the REDUCE stage sets parents of Done queries to Ready state,
as new results about their child queries have been added to
SUMDB by PUNCH, potentially enabling parent queries to be
Done in the next MAP stage.

The algorithm keeps iterating and executing the MAP and REDUCE
stages until q0 is answered. For a query Qi, when si = Done,
SUMDB either contains a must summary or a not-may summary
that answers qi (by definition of PUNCH). Therefore, when BOLT
exits the loop at line 3, we know that there exists a summary that
answers the reachability question q0. If q0 is answered by a must
summary, then BOLT returns “Error Reachable”, as there is an
execution to the error states defined in q0. On the other hand, if q0
is answered by a not-may summary, then BOLT returns “Program
is Safe”, since the not-may summary precludes any execution to an
error state in q0,
Example 1. Recall the example from Section 2.1. In the second iter-
ation of BOLT, the MAP stage applies PUNCH to the Ready queries
in QSet:Qfoo, Qbar andQbaz. That is, in the second iteration, QSet
is assigned as follows:

QSet′ ← PUNCH(Qfoo) ∪ PUNCH(Qbar) ∪ PUNCH(Qbaz)

= {Q′foo} ∪ {Q′bar} ∪ {Qroo, Q
′
baz}, and

QSet← QSet′ ∪Qmain



Note that PUNCH(Qfoo), PUNCH(Qbar), and PUNCH(Qbaz), are
computed in parallel. Subsequently, the REDUCE stage realizes that
Q′foo and Q′bar are Done and, therefore, sets Qmain to a Ready state
and removes Q′foo and Q′bar from QSet.

4. Instantiations of PUNCH
In this section, we will describe how any must-analysis, may-
analysis, and may-must-analysis can be suitably modified to meet
the specification of PUNCH given in Section 3.2. For a detailed
exposition of must-, may-, and may-must-analyses, the reader is
referred to [19].
Assume that PUNCH, is given a query Qm = (qm, sm, pm,Om),
where qm = 〈ϕ1

?
=⇒Pi ϕ2〉 and sm = Ready. We start by

defining a must-map and a may-map over procedure Pi as follows:

• Must-map: A must-map Ω : Ni → 2ΣPi maps locations n ∈
Ni of Pi to sets of states, representing an underapproximation
of the set of reachable states at that location from states in ϕ1 at
n0
i . For each node n ∈ Ni, we use Ωn to denote Ω(n). Initially,

Ωn0
i

= ϕ1, and for all n ∈ Ni \ {n0
i }, Ωn = ∅.

• May-map: A may-map Π : Ni → 22
ΣPi maps locations

n ∈ Ni ofPi to sets of sets of states (partitions), which together
represent an overapproximation of the set of states that can
reach ϕ2 at that location. For each node n ∈ Ni, we use Πn

to denote Π(n). Initially, Πnx
i

= {ϕ2,ΣPi \ϕ2}, and for every
n ∈ Ni \ {nx

i }, Πn = {ΣPi}.
For a node n ∈ Ni, we treat sets of states Ωn and ϕn ∈ Πn as

formulas and use the notation ΩG
n and ϕG

n to denote versions of Ωn

and ϕn where all local variables are existentially quantified.
In what follows, we sketch how different analyses populate

these maps to answer the reachability question qm.

Must-Analysis A must-analysis explores a subset of the behav-
iors, or an underapproximation, of a given program, and is therefore
useful for proving the presence of errors. For example, DART [16]
and CUTE [35] use a combination of symbolic and concrete execu-
tions to explore an underapproximation of a program.

In a must-analysis, PUNCH progressively propagates sets of
reachable states along edges of the procedure Pi. If at any point
Ωnx

i
∩ ϕ2 6= ∅, then the postcondition ϕ2 of qm is reachable from

a state in ϕ1, and, therefore, a must-summary that answers qm can
be generated and stored in SUMDB. The verification objectOm for
a must-analysis is the must-map Ω.

The main difference from a typical must-analysis is the way
in which PUNCH propagates reachable states over call statements.
Given an edge e = (n, n′) ∈ Ei such that λi(e) is a call state-
ment call Pj , PUNCH encodes reachability over this call as the
reachability question 〈ΩG

n
?

=⇒Pj ΣPj 〉, and first checks whether a
must-summary that answers this question is available in SUMDB.
If such a must-summary exists in SUMDB, it uses the summary
to update the set of reachable states Ωn′ at location n′, the des-
tination location of the call-edge e. On the other hand, if a must-
summary is unavailable, PUNCH creates a child query Qk, where
qk = 〈ΩG

n
?

=⇒Pj ΣPj 〉, and adds it to R (the set of sub-queries
that PUNCH returns, which contains an updated copy of Qm). In
contrast, a regular must-analysis would analyze the procedure Pj

and compute reachability information.
If PUNCH successfully computes all reachable states, then it ter-

minates analysis of Qm. But since a must-analysis is not guaran-
teed to converge, PUNCH continues to analyzeQm up to some time
limit or an upper-bound on the number of explored paths before it
stops analysis and returns a set of child sub-queries R of Qm. This
is to ensure that the MAP stage always terminates. When PUNCH

stops its analysis of Qm, the state of PUNCH, which is the must-
map Ω, is saved in Om, so that the next time Qm is processed by
PUNCH, it can continue exploration from the saved state Om.

May-Analysis A may-analysis explores an overapproximation of
a program’s behaviors, and is therefore used to prove absence of
errors. For example, software model checkers such as SLAM [5]
and BLAST [10] overapproximate the set of states reachable in a
program using predicate abstraction [20].

In our case, the goal of a may-analysis is to prove that no
execution can reach a state in ϕ2 at nx

i from a state in ϕ1 at n0
i .

For every edge e = (n, n′) ∈ Ei, we assume that there exists
an abstract edge between every ψn ∈ Πn and every ψn′ ∈
Πn′ (denoted by ψn →e ψn′ ). The may-analysis proceeds by
eliminating infeasible abstract edges in order to prove that ϕ2 is
unreachable. Eliminated abstract edges are stored in the set Ē,
which is initially empty.

Suppose that for edge e = (n, n′), λi(e) is a simple statement,
and that there exists an abstract edge ψ1 →e ψ2. A may-analysis
checks if ψ1 can reach a state in ψ2 by taking edge e. In case it
cannot, ψ1 is split into two partitions: ψ1 ∧ θ and ψ1 ∧ ¬θ, where
pre(λi(e), ψ2) ⊆ θ and pre(λi(e), ψ2) is the preimage of the set
of states ψ2 w.r.t the statement λi(e). Since no state in ψ1∧¬θ can
reach ψ2, Ē is updated with the edge (ψ1 ∧ ¬θ, ψ2). Intuitively,
the partition ψ1 is refined into a partition that may reach ψ2, and
another one that may not.

Now suppose that λi(e) is a call statement to some procedure
Pj . Then, PUNCH encodes the reachability question 〈ψG

1
?

=⇒Pj

ψG
2 〉. If there exists exists a not-may summary 〈ψ̂1

¬may
=⇒ Pj ψ̂2〉

that answers this reachability question, then we know that there
are no executions from ψ1 to ψ2. Therefore, PUNCH splits ψ1 into
ψ1 ∧ θ and ψ1 ∧ ¬θ, where θ ⊆ ϕ̂1, and adds (ψ1 ∧ θ, ψ2) to the
set Ē. Otherwise, if there does not exist such a summary, PUNCH

adds a child query Qk, where qk = 〈ψG
1

?
=⇒Pj ψ

G
2 〉, to the set R.

As discussed, a may-analysis maintains the map Π and the set
of eliminated edges Ē. Therefore, when PUNCH returns Qm in
a Ready or Blocked state, Om is set to (Π, Ē). A may-analysis
sets the query Qm to Done when all partitions of n0

i intersecting
with ϕ1 cannot reach a partition of nx

i intersecting with ϕ2, where
reachability is defined via abstract edges. As with a must-analysis,
for fairness, PUNCH may decide to terminate analysis prematurely
and store the state of the analysis in Om.

May-Must-Analysis Finally, may-must-analyses combine a must-
analysis with a may-analysis in order to efficiently find errors as
well as prove their absence. The SYNERGY [22] and DASH [9]
algorithms are examples of may-must-analyses. Both use testing,
symbolic execution and abstraction to check properties of pro-
grams. Interpolation-based software model checking algorithms,
such as [2, 24, 31], can also be seen as may-must-analyses. Such
algorithms also use symbolic executions to error locations to find
bugs and, in case of infeasible executions, use interpolants derived
from refutation proofs to create an abstraction that eliminates a
large number of potential counterexamples.

For the queryQm, a may-must-analysis maintains Π, Ω, and Ē.
That is, if PUNCH returns Qm in a Ready or Blocked state, it sets
Om to (Π,Ω, Ē).

A may-must-analysis only analyzes an abstract transitionψ1 →e

ψ2, where e = (n, n′) ∈ Ei and λi(e) is a call to some procedure
Pj , if Ωn∩ψ1 6= ∅ and Ωn′ ∩ψ2 = ∅. That is, only abstract transi-
tions which have been reached by the must analysis, but not taken,
are analyzed. These transitions are called “frontiers” in [9, 22].

A may-must-analysis handles such abstract transitions as fol-
lows:



let bolt () =
while (Q_0.isNotDone()) do
QSet := Async.AsParallel

[for Q_i in QSet -> async {return punch Q_i}];
reduce ();

done;
...

Figure 5. F# implementation of BOLT’s main function bolt.

1. If there exists a must summary 〈ψ̂1
must
=⇒Pi ψ̂2〉 that answers

the query 〈ΩG
n

?
=⇒Pj ψ

G
2 〉, then we know that there exists an

execution from Ωn to ψ2 through Pj , and, therefore, PUNCH

updates Ωn′ to be Ωn′ ∪ θ, where θ ⊆ ψ̂2 and θ ∩ ψ2 6= ∅.

2. If there exists a not-may summary 〈ψ̂1
¬may
=⇒ Pi ψ̂2〉 that an-

swers the query 〈ΩG
n

?
=⇒Pj ψG

2 〉, then we know that there
are no executions from Ωn to ψ2, and, therefore, PUNCH splits
region ψ1 into ψ1 ∧ ¬θ and ψ1 ∧ θ, where θ ⊆ ϕ̂1 and
¬θ ∩ Ωn = ∅. Thus, the edge (ψ1 ∧ θ, ψ2) is added to Ē.

3. Finally, if neither kind of summaries exist, then a child query
Qk, where qk = 〈(Ωn ∧ ψ1)G

?
=⇒Pi ψ

G
2 〉, is added to R.

In a may-must-analysis, PUNCH continues processing a query
Qm until a must summary is produced, a not-may summary is pro-
duced, or all abstract edges have been analyzed and child queries
have to be answered to continue processing. Similar to may- and
must-analysis, PUNCH may decide to terminate analysis prema-
turely.

In summary, we have shown how PUNCH can be instantiated
with various classes of analyses, which encompass a large number
of already published algorithms from the literature. In the following
section, we discuss a may-must implementation of PUNCH, based
on DASH [9], and describe our empirical evaluation of BOLT on a
number of Microsoft Windows device drivers.

5. Implementation and Evaluation
We have implemented BOLT in the F# programming language and
integrated it with the Static Driver Verifier toolkit (SDV) [6] for Mi-
crosoft Windows device drivers. Our implementation adopts a plug-
gable architecture, where different instantiations of PUNCH that ad-
here to the specification in Section 3.2 can be easily integrated into
our tool. The main function bolt of our implementation is par-
tially shown in Figure 5. Our implementation assumes that punch
is a pure function (except for its communication with SUMDB)
that takes a query as input and returns a set of queries. As a result,
the only resource shared between different threads of execution is
the summary database SUMDB. This provides a natural framework
where program analysis designers can plug in their intraprocedu-
ral analyses and automatically produce parallelized interprocedural
analyses, without having to be faced with the intricacies of paral-
lelizing individual analyses.

The instance of PUNCH that we have implemented is a variant
of the may-must DASH algorithm [9] as described in Section 4.
Our implementation of PUNCH uses the Z3 SMT solver [12] for
satisfiability checking and can handle C programs with primitive
datatypes, structured types, pointers, and function pointers. Check-
ing if a summary answers a query is done via a call to the SMT
solver.

5.1 Experiments
We now present our experimental setup and results for the BOLT
algorithm.

Statistic
Total time taken (sequential) 26 hours
Total time taken (parallel) 7 hours
Average observed speedup 3.71x
Maximum observed speedup 7.41x

Table 2. Cumulative results for BOLT on 50 checks (#threads=64,
#cores=8).

Experimental Setup Our goal is to study the scalability of BOLT.
We do this by measuring the speedup of BOLT over a sequential
may-must top-down analysis. To precisely measure and study the
scalability of the algorithm, we introduce an artificial throttle that
allows us to limit the number of threads that can perform queries
in parallel. The artificial throttle has the effect of limiting the
total number of physical cores available to the algorithm, when
the number of maximum threads is less than the total physical
cores available, which also imposes a bound on the number of
Ready queries processed by PUNCH in the MAP stage. In cases
where the number of allowed maximum threads is greater than the
number of physical cores available, the .NET environment (since
BOLT is implemented using F#), thread scheduling, and contention
play an important part in determining the final overall speedup. It
should be noted that the theoretical limit of the speedup that can
be achieved on a given test machine is N , where N is the total
number of available physical cores, unless super linear speedup
can be achieved by the parallel algorithm eliminating work that the
sequential algorithm must perform.

We ran our experiments on an HP workstation with 8 Intel Xeon
2.66 GHz cores and 8 GB of memory. We set our initial number
of maximum concurrent threads to be 1 (representing a sequential
analysis) and doubled it for every subsequent run. The upper limit
for the maximum number of concurrent threads is 128. All the
experiments were run with resource limitations of 3000 seconds
(wall clock time) and 1800 MB of memory.

Our evaluation of BOLT was over a test suite consisting of
45 Microsoft Windows device drivers and 150 safety properties1.
For the purposes of reporting results, we select all checks (that
is, driver-property pairs) where the sequential version of BOLT re-
quires at least 1000 seconds to generate a proof. These are inter-
esting checks (total of 50 checks) where a lot of computation is
required and, in some cases, the sequential analysis is unable to
produce a result. Therefore, they serve as challenge problems for
BOLT. It turns out that all these checks were cases where the pro-
gram satisfies the property (and thus a proof is reported by BOLT).
For a study of effects of may-must summaries on the efficiency of
the analysis, we refer the reader to [19, 33].

Results The cumulative results are presented in Table 2. For the
50 checks, where the sequential algorithm takes at least 1000 sec-
onds for generating a proof, the average observed speedup us-
ing BOLT was 3.71x. The maximum observed speedup was 7.41x.
These results were obtained using 8 cores, and a maximum of 64
threads.

We now analyze a sample of the 50 checks in greater detail. Ta-
ble 1 shows the detailed results for 6 checks. Each row represents
a single check and the time/speedup observed for different config-
urations of the maximum number of concurrent threads allowed.
The speedup is calculated as the ratio of the time taken by the par-
allel version of BOLT (with 2 threads, 4 threads, etc.) to that of the
sequential version of BOLT (with 1 thread).

1 A subset of our benchmarks is available as part of the SDV-RP toolkit:
http://research.microsoft.com/en-us/projects/slam.



Property / Max. Number of Threads 1 2 4 8 16 32 64 128
Time Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup

Driver: toastmon (25KLOC)
PendedCompletedRequest 1006 328 3.07 345 2.91 373 2.70 297 3.39 221 4.55 219 4.59 223 4.51
PnpIrpCompletion 2224 929 2.39 827 2.69 1041 2.14 599 3.71 300 7.41 300 7.41 300 7.41

Driver: parport (2KLOC)
MarkPowerDown 1821 688 2.65 573 3.18 543 3.35 460 3.96 313 5.82 326 5.58 328 5.55
PowerDownFail 1916 673 2.85 566 3.38 524 3.65 398 4.81 305 6.28 315 6.08 318 6.03
PowerUpFail 2040 718 2.84 691 2.95 689 2.96 565 3.61 306 6.67 315 6.48 300 6.80
RemoveLockMnSurpriseRemove 1794 678 2.65 576 3.11 538 3.33 405 4.43 311 5.77 315 5.69 315 5.69

Table 1. Average observed time (in seconds) and speedup of parallel BOLT compared to sequential BOLT for varying number of maximum
concurrent threads (#cores=8).

Result
Driver Property Seq Parallel Time
daytona IoAllocateFree TO Proof 2800
mouser NsRemoveLockMnRemove TO Proof 2743
featured1 ForwardedAtBadIrql TO Proof 2966
incomplete2 RemoveLockForwardDeviceControl TO Proof 1205
selsusp IrqlExAllocatePool TO Proof 1951

Table 3. Driver and property combinations where BOLT was able
to produce a proof (#cores = 8) and the sequential (Seq) version ran
out of time (TO).

For the toastmon driver and the PnpIrpCompletion2 prop-
erty, we see that the speedup achieved with a maximum of 2 con-
current threads is 2.39. As the number of threads is increased to
128, the observed speedup of 7.41 reaches close to the theoreti-
cal maximum speedup achievable on the test machine (8 cores).
For other checks in the table, we see that, in general, the observed
speedup increases as the number of maximum concurrent threads is
increased. Figure 6 illustrates the speedups reported in Table 1. The
super linear speedup observed in some cases is related to the query
processing order, which is discussed in the latter part of this sec-
tion. In general, we find that the BOLT algorithm always achieves
speedup, with the possibility of providing super linear speedup in
some cases.

Table 3 shows checks where BOLT successfully produces a
proof, whereas the sequential analysis runs out of resources. As
can be seen from the table, in many cases, the time taken by
BOLT is very close to the timeout limit of 3000 seconds, indicating
the degree of difficulty and high amount of computation that is
necessary to successfully complete the verification. In general, the
speedups achieved by BOLT are due to parallelism, as well as the
scheduling of queries. That is, sequential implementations tend to
have a fixed deterministic exploration strategy of the query tree
and are therefore unable to discover invariants in many cases. On
the other hand, BOLT, due to its inherent parallel exploration, may
compute invariants that the sequential version cannot discover.

In-depth Analysis To further understand the behavior of BOLT,
we make the following measurements in our experiments.

• The number of queries that are processed as verification pro-
gresses. Figure 7 shows the number of queries processed in
parallel for varying numbers of maximum threads (2 – 128) on
the PnpIrpCompletion property of the toastmon driver. Note
that, in Figure 7(f), there are two lines present on the chart, but
due to the fact that they are exactly equivalent, it appears as only
a single line.
From the graphs, we see that when the number of maximum
concurrent threads is less than 16, there is always a constant
amount of work that is to be performed and all the threads

2 Visit http://msdn.microsoft.com/en-us/library/ff551714.aspx for a
list of properties.
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Figure 6. Measured speedup of the BOLT algorithm relative to the
sequential version (#cores=8).

are always close to 100% utilization. When the number of
maximum threads is increased to more than 16, depending on
the nature of the input program, mostly, an insufficient number
of queries are produced. This results in only a few threads being
utilized in an efficient and maximal manner, which explains
the lower than expected observed speedup. Figures 7(e) and (f)
clearly illustrate this fact. We can see that the number of queries
processed in parallel is very inconsistent and never reaches the
allowed maximum of 64 or 128. In particular, since a small
number of queries need to be made, the graph for 64 and 128 is
exactly the same.

• Total number of queries that have to be performed when varying
the degree of allowed concurrency/parallelism. As the number
of maximum concurrent threads is increased, the order of the
queries performed changes. This can have two possible out-
comes. First, the order of the queries may impact the verifica-
tion positively, since an important fact can be learned earlier in
the verification, which in turn reduces the number of queries
that have to be performed. The net effect is that in some cases
super linear speedup is observed (as seen in Table 1). Second,
the order of the queries may result in an increased number of
queries (due to redundancy), which elongates the verification
task and reduces the observed speedup relative to the maxi-
mum theoretical speedup. Table 4 shows the total number of
queries made for different numbers of maximum concurrent
threads allowed for the two properties listed for the toastmon
driver. As we can see in the the case of the PnpIrpCompletion
property, the algorithm performs only 1.2 times as many
queries for 128 threads as it did for 2 threads. But for the
PendedCompletedRequest property, the algorithm performs
3.5 times as many queries. This fact directly relates to the lower
observed speedup for the PendedCompletedRequest check,
in comparison with the PnpIrpCompletion check (shown in
Table 1).
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Figure 7. Number of concurrent queries performed over time for the driver toastmon and the property PnpIrpCompletion (#cores=8).
Maximum number of threads for subfigures (a), (b), (c), (d) , (e) and (f) are 2, 4, 8, 16, 32, and 64 respectively. For 128 threads, the results
are identical to 64 threads.

Maximum Number of Threads
Property 2 4 8 16 32 64 128
PendedCompletedRequest 873 1374 2213 2479 2529 3005 3078
PnpIrpCompletion 1198 1369 1614 1854 1383 1429 1429

Table 4. Total number of queries performed during verification for
various degrees of parallelism on the toastmon driver (#cores=8).

Discussion. Our implementation and experiments shows that for
may-must-analysis BOLT provides an average speedup of 3.7x and
maximum speedup of 7.4x with 8 cores. This has enabled us to
complete verification runs that sequential analyses have been un-
able to analyze previously. In particular, we have been able to com-
plete every driver-property benchmark we have with BOLT, several
of which we have previously found impossible to complete. Fur-
thermore, each run of PUNCH needs to load only the procedure
under analysis into memory, except for whole program information
such as alias analysis, which can be stored in the database. Thus,
we get significant advantages in memory savings, in addition to
savings in time.

Our detailed investigation into the amount of parallelism avail-
able showed that, for the current set of benchmarks we have, in-
creasing thread-level parallelism stops speeding up the analysis af-
ter 64 threads, since each MAP stage analyzes small number of
queries. To this end, we see two avenues for efficiently utilizing a
larger number of cores: (1) getting larger benchmarks with poten-
tial for even larger parallelism; and (2) designing a speculative ex-
tension to BOLT, where we can speculate on potential queries that
will be made and analyze them even before the queries are actually
created, thereby, generating more parallelism using speculation. We
leave these directions for future work.

6. Related Work
Parallel and distributed algorithms for static analysis and testing is
an active area of research [15, 29, 32, 34]. The unique feature of the
BOLT framework is that it parallelizes interprocedural analyses that
work in a top-down and demand-driven manner. Also, in contrast
to earlier efforts to parallelize static and dynamic analysis, BOLT
offers a pluggable architecture which inherits the nature of its
underlying intraprocedural analysis (as described in Section 4).
In this section, we place BOLT in the context of related work.
Specifically, we compare BOLT with other parallel static analyses,

as well as parallel finite state verification (model checking) and
exploration techniques.

Parallel/Distributed Static Analysis Techniques As discussed in
Section 1, bottom-up interprocedural analyses are amenable to par-
allelization due to the decoupling between callers and callees. For
example, the SATURN software analysis tool [1] employs a bottom-
up analysis and has been shown to scale to the entire Linux ker-
nel, both in the interprocedurally path-insensitive [37] and path-
sensitive settings [14]. In comparison, BOLT targets demand-driven
top-down analyses, and is parameterized by the algorithm used for
intraprocedural analysis. Therefore, BOLT can be easily applied to
parallelizing existing software model checking and dynamic test
generation techniques, for example, as we have shown with our in-
stantiation of PUNCH to a DASH-like [9, 19] may-must algorithm.

Microsoft’s Static Driver Verifier toolkit uses manually created
harnesses [7], which specify a set of independent device driver en-
try points in order to create an embarrassingly parallel workload.
On the other hand, BOLT is automatically able to exploit paral-
lelism that occurs at finer levels of granularity. We believe that both
techniques complement each other and their combination has the
potential for greater scalability.

Lopes et al. [29] propose a distributed tree-based [25] software
model checking algorithm based on the CEGAR [11] framework.
The tree unrolling of the control flow graph of a program, consist-
ing of a single procedure, is distributed amongst multiple machines.
We summarize the differences between [29] and BOLT as follows:
(1) [29] is intraprocedural and does not reuse procedure summaries
as BOLT does. (2) BOLT is not restricted to a specific intraproce-
dural analysis. In fact, we believe that the distributed algorithm
of [29] can be easily adapted to be an implementation of the in-
traprocedural parameter PUNCH. (3) The instantiation of PUNCH
we present here does not use predicate abstraction and, therefore,
skips the expensive step of computing an abstract post transformer
required in [29].

In [32], Monniaux describes a parallel implementation of the
Astrée abstract interpretation-based static analyzer. At certain
branching locations (dispatch points), instead of analyzing pro-
gram paths in sequence, they are analyzed in parallel. On three
embedded software applications, the experiments showed around
2x speedup on 5 processors.

Several other parallel static analysis techniques have been re-
cently proposed. One prominent example is EigenCFA [34], where



GPUs are used to parallelize higher-order control-flow analysis.
The authors report up to 72x speedup, when compared to other se-
quential techniques.

Parallel/Distributed Exploration Techniques In the finite state
verification arena, several parallel/distributed model checking al-
gorithms have been proposed, e.g., [8, 21, 36]. At a high level,
the methodology adopted by these techniques involves partition-
ing the state space and distributing the search to several threads or
processors. Both [8] and [36], propose distribution strategies for
explicit state model checking, where each node is responsible for
exploring a partition of the state space. The authors of [27] propose
a load balancing strategy to improve the performance of the state
space partitioning algorithms to achieve higher speedup. Similarly,
the technique in [21] partitions BDDs in symbolic model checking
and distributes them to several threads. In [26], a multi-core algo-
rithm along with load balancing techniques geared towards shared
memory systems is proposed. In [15], a method is proposed for dis-
tributed randomized state space search in the context of Java Path
Finder (JPF) [23]. In contrast to the above techniques, BOLT ex-
ploits a program’s procedural decomposition in order to efficiently
parallelize top-down demand-driven analyses.

7. Conclusion and Future Work
Modularity plays a central role in most scalable program analyses.
Modular analyses are either top-down, where analysis starts at the
main procedure and descends through the call-graph, or bottom-up,
where analysis starts with the leaves of the call-graph and goes up-
wards to the main procedure. Top-down analyses are extensively
used in software model checking and test generation. However, un-
like their bottom-up counterparts, they are hard to parallelize due to
the fine-grained interactions between analysis instances (queries).

In this paper, we have presented BOLT: a parameterized frame-
work for parallelizing top-down interprocedural analyses. BOLT
adopts a MapReduce-like strategy for parallelizing processing of
reachability queries over multiple procedures in a top-down analy-
sis. We have shown how a number of may-, must-, and may-must-
analyses can be parallelized using BOLT. We have also demon-
strated the strength of BOLT by parallelizing a may-must analy-
sis. Our experimental results on device drivers showed that BOLT
scales well on an 8-core machine, and is able to verify several
checks where the sequential version runs out of resources.

We see a number of opportunities for continuing research in this
direction:

• Distributed BOLT: BOLT’s MapReduce architecture permits it
to be easily implemented as a distributed application using pro-
gramming models for large scale distributed systems [38]. As
noted in [1], the limiting factor for scaling any analysis to very
large programs is memory and not time, and this forms the pri-
mary motivation for performing a bottom-up analysis. Indeed,
our experience with BOLT also indicates that its memory usage
is significantly smaller than that the corresponding sequential
top-down analysis. Therefore, we believe that we can distribute
the parallelism that BOLT exposes across large-scale clusters of
machines and, thereby, scale top-down analysis to very large
programs.

• Deriving value out of larger number of cores: Our investiga-
tion showed that, on our set of benchmarks, increasing thread-
level parallelism stops speeding up the analysis beyond 64
threads, due to limitations in the number of queries available
for the MAP stage. Thus, we see two directions for efficiently
utilizing a larger number of cores and, potentially, distributing
the analysis: (1) getting larger benchmarks with potential for
even larger parallelism, and (2) designing a speculative exten-

sion to BOLT, where we can predict what queries will be made
and analyze them even before the queries are actually created,
thereby, generating more parallelism using speculation.

• Other instantiations of BOLT: We would also like to experi-
ment with other instantiations of PUNCH. For example, it would
be interesting to apply BOLT for fuzz testing large scale sys-
tems in the style of SAGE [18]. Another interesting application
for BOLT is the verification of concurrent programs. Recent re-
search on reducing concurrent analysis to a sequential analy-
sis [28] makes it possible to instantiate PUNCH so that BOLT is
able to verify properties of concurrent programs.
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