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Abstract
Modular assertion checkers are plagued with false alarms due to
the need for precise environment specifications (preconditions and
callee postconditions). Even the fully precise checkers report as-
sertion failures under the most demonic environments allowed by
unconstrained or partial specifications. The inability to preclude
overly adversarial environments makes such checkers less attrac-
tive to developers and severely limits the adoption of such tools in
the development cycle.

In this work, we propose a parameterized framework for priori-
tizing the assertion failures reported by a modular verifier, with the
goal of suppressing warnings from overly demonic environments.
We formalize almost-correct specifications as the minimal weak-
ening of an angelic specification (over a set of predicates) that pre-
cludes any dead code intraprocedurally. Our work is inspired by and
generalizes some aspects of semantic inconsistency detection. Our
formulation allows us to lift this idea to a general class of warnings.
We have developed a prototype ACSPEC, which we use to explore a
few instantiations of the framework and report preliminary findings
on a diverse set of C benchmarks.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords Program verifiers, false alarms, predicate abstraction

1. Introduction
Talking about false positive rate is simplistic since false
positives are not all equal. The initial reports matter in-
ordinately; . . . Furthermore, you never want an embar-
rassing false positive. A stupid false positive implies the
tool is stupid. ( ”It’s not even smart enough to figure that
out?” ). [2]

Automatic program verifiers are doomed to report false alarms.
False alarms can be the result of analysis imprecision or the re-
sult of underspecified environment assumptions. The problem is
relevant not only to modular checkers that analyze each procedure
in isolation [12] (and therefore need specification of inputs and
callees), but also to the more general setting when interprocedural
specification inference (e.g., based on abstract interpretation [4])
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converges with the best invariants expressible in the domain. Fi-
nally, this problem is inevitable when analyzing any open program
that has under-constrained inputs and external procedures without
source code.

This is unfortunate because excessive false alarms (especially
stupid ones) act as a deterrent to the initial adoption of verification
tools by average developers. Current best practices (often undocu-
mented) in designing usable static analysis tools mitigate this issue
by using several less-than-ideal techniques for reducing false pos-
itives. For example, a tool may bake unsound decisions into the
analysis, which precludes the tool from finding a class of bugs. A
tool may require user annotations, which often hurts initial adop-
tion by average developers. Finally, a tool may suppress alarms us-
ing domain-specific and often ad-hoc heuristics, which makes the
tool brittle and unpredictable. In spite of the severity of the prob-
lem, the subject of prioritizing warnings from program verifiers
systematically is relatively under-studied.

In this work, we focus on a post-processing framework for prior-
itizing alarms in an intraprocedural setting. We assume that the in-
terprocedural specification inference [4] has converged with a set of
invariants expressible in the underlying analysis. This assumption
allows us to decouple the analysis and the framework for display-
ing warnings, which is important because our goal is not to define
a new static analysis technique. We seek to solve a problem similar
to one addressed by statistical methods for ranking alarms [17] or
user-guided classification of alarms [10]. Our method is based on
deep semantic reasoning of a program (unlike [17]), and can com-
plement the work in [10] by identifying the initial set of warnings
to display to the user for further classification.

In this work, we propose a framework for reporting a high-
confidence subset of the assertion failures reported by a modular
verifier. Our framework is parameterized by a set of predicates Q.
We use the following heuristic: if a warning can be suppressed by a
simple environment specification overQ, it is likely to be a “stupid”
false alarm. On the other hand, if a warning can only be suppressed
by a complicated environment specification, it is more more likely
to be a true alarm. In this work, we limit ourselves to three metrics
for characterizing simple specifications: (i) the specification should
not preclude the set of angelic environments, (ii) the specification
should at least be permissive enough to allow all program locations
in a procedure to be reachable (unless they are unreachable even in
an unconstrained environment), and (iii) the representation of the
specification should satisfy some quality measures such as (but not
limited to) the number of disjunctions in a clausal representation.

This paper describes a framework for inferring these almost-
correct specifications. We refer to the high-confidence warnings
that these specifications reveal as abstract inconsistency bugs.
When the set of predicates Q contains all the atomic predicates
in the representation of the weakest precondition for a procedure,
our framework reports a set of warnings corresponding to semantic



void Foo(int *c, char *buf, CMD cmd) {
1: if (*) {
2: free(c);//A1:assert(!Freed[c]);Freed[c] := true;
3: free(buf);//A2:assert(!Freed[buf]);Freed[buf] := true;
4: return;
5: }
6: if (cmd == READ) {
7: if (*) {
8: free(c);//A3:assert(!Freed[c]);Freed[c] := true;
9: free(buf);//A4:assert(!Freed[buf]);Freed[buf] := true;
10: /* ERROR: missing return */
11: }
12: }
13: free(c);//A5:assert(!Freed[c]);Freed[c] := true;
14: free(buf);//A6:assert(!Freed[buf]);Freed[buf] := true;
15: return;
}

Figure 1. An example of a C double free bug.

inconsistency bugs [9, 11, 21], a class of high-confidence bugs that
can be identified in a modular fashion. On the other hand, when
the set of predicates Q is empty, our framework reports all of the
warnings from the underlying modular verifier. Our framework can
be instantiated with other predicate sets between these extremes in
order to construct various schemes for filtering warnings.

1.1 Overview
We begin by providing an informal overview of our work with the
help of two illustrative examples.

1.1.1 Semantic inconsistency detection
Consider the C program in Figure 1, which is a simplified version
of a real program [11]. Initially, we will ignore the “//”-commented
text. The program frees the pointers c and buf by invoking the
free procedure. The “*” denotes a non-deterministic choice. The
procedure free has a precondition that the argument should not al-
ready be freed; the effect of the procedure is to free the pointer. The
procedure has a double-free bug when the sequence of locations
1,6,7,8,9,10,11,13,14,15 is executed; the pointers c and buf
would be freed twice. The error in the program is the missing return
in line 10.

The comments in “//” encode the program statements into a
simple intermediate language (described in detail in § 2.1). The
program makes the type-state for freed explicit by maintaining
an array Freed that is indexed by an integer address. The free
procedure is replaced by its precondition and the update to the
Freed array.

Demonic environments. Given this program, let us consider
what a sound and precise modular program verifier (such as BOO-
GIE [1]) would do: (1) It would report a violation of the assertion
at A1 by pretending that Freed[c] could be true at entry to Foo.
Looking at the code, it seems likely that the programmer does not
expect this scenario. (2) It would next report a violation of the as-
sertion at A2 by pretending that Freed[buf] holds on input, or that
the c and buf pointers could be aliased (assuming we don’t trust the
static types of C). Looking at the code, there is no indication that
the programmer expects any such aliasing (probably because he/she
trusts the static types). (3) It would next complain about locations
A3 and A4 for similar reasons. (4) Finally, it would complain about
A5 and A6 by assuming that c and buf are not freed on entry and
that they are not aliased, which corresponds to the real bug.

The exercise illustrates the most severe limitation of modular
checking: the absence of precise environment assumptions yields a
flood of stupid false alarms that obscure interesting alarms. For this
example, the environment consists of inputs c, buf, cmd and the

void Bar(..) {
twoints * data = NULL; /* Initialize data */

L1: data = (twoints *)calloc(100, sizeof(twoints));
L2: if(static_returns_t()) {

/* FLAW: should check if memory allocation failed */
A1: data[0].a = 1; ...

} else {
if (data != NULL) {

A2: data[0].a = 1; ...
L3: } else { }

}
}

Figure 2. Example for abstract semantic inconsistency bug.

global Freed. Sound modular checkers assume the most demonic
environments not precluded by the existing procedure contracts
(preconditions and callee postconditions).

Angelic environments. Now consider the other extreme. The
weakest (liberal) precondition WP(Foo) is the largest set of in-
put states for Foo that do not fail any assertion; in other words,
the weakest angelic environment specification. WP(Foo) can be
represented as:

(cmd != READ && !Freed[c] && !Freed[buf] && c != buf)

However, the weakest precondition for this example is too
strong. It makes code unreachable (namely A3, A4), which prevents
the bug from being reported. This intuition has been exploited by
prior work on semantic inconsistency detection [9, 11, 21], and has
inspired our work.

Our insight is that if the weakest precondition is too strong
according to some metric (such as the absence of intraprocedurally
dead code), then we can progressively weaken it until it satisfies
the metric (makes all code reachable). The weakening process will
reveal assertion failures that were previously suppressed by the
weakest precondition. We formalize the notion of almost-correct
specifications as the set of specifications that can be obtained by
minimally weakening the representation of weakest precondition as
a conjunction of maximal clauses (§3.3). For the current example,
our method infers a single almost-correct specification:

(!Freed[c] && !Freed[buf] && c != buf)

which fails only A5, the assertion failure corresponding to the true
bug.1

1.1.2 Abstract semantic inconsistency bug
Consider the following C example in Figure 2 from the SAMATE
suite of benchmarks [20]. Let us assume that there is an assertion
data != 0 before the access to data in lines A1 and A2. The en-
vironment for this example consists of the variables modified or re-
turned by the two procedure calls calloc and static returns t.
In the absence of any specification about the two procedures, a de-
monic environment would suggest that the assertion at line A1 can
fail. However, the code alone does not give us enough information
to determine if this the environment is too demonic. On the angelic
end, the weakest precondition conjures up a correlation between
the two procedures and makes it a precondition to the procedure
under analysis:

θL1.static returns t.return =⇒ θL2.calloc.return ! = 0

1 In our semantics, assertion failures terminate execution and therefore two
assertion failures cannot happen for the same input. Since every input that
fails A6 also fails A5 under this environment, A6 is unreachable and never
reported as a failure.



Here θL.pr.return is a fresh constant that denotes the return
value of the call to a procedure pr at some location L. The angelic
weakest precondition tries to create correlations between various
values in the program (parameters, returns, globals) in order to
avoid an assertion failure.

Unlike the previous example, the metric of creating unreachable
code cannot be used to counter the angelic specification. There
is little evidence to suggest that either the angelic or demonic
specification is (or isn’t) the intended one.

Our insight is that we can report this warning (albeit with lesser
confidence) by lifting semantic inconsistency detection to a more
abstract setting. The idea is to take away some of the angelic
power of the weakest precondition by restricting the vocabulary
over which it can be expressed (i.e., the set of predicates Q). One
natural abstraction that we describe in this paper is treating condi-
tionals in a program as non-deterministic for the purpose of collect-
ing the set of predicates inQ. This abstraction prevents the correla-
tion between the return values of calloc and static returns t
that the (concrete) weakest precondition inferred for this example.
Instead, the most angelic specification possible under this abstrac-
tion of Q is θL2.calloc.return ! = 0, which creates dead code
by making location L3 unreachable. The almost-correct specifica-
tion (overQ) for this example is true, which reveals the bug in lo-
cation A1. We call such bugs abstract semantic inconsistency bugs,
as they are parameterized by the set of predicates Q.

The example shows that we are able to lift the idea of semantic
inconsistency detection from the concrete domain to an abstraction,
which allows us to classify more failures using the same underly-
ing principle. This greatly increases the applicability of semantic
inconsistency detection.

1.2 Contributions
In this work, we propose a parameterized post-processing frame-
work for prioritizing the assertion failures reported by a modular
verifier. Specifically, we make the following contributions: (1) We
generalize the notion of semantic inconsistency bugs ( [9, 11, 21])
by parameterizing it with a set of predicates. This allows us to ap-
ply the idea of semantic inconsistency to larger classes of warnings.
(2) We formalize the concept of almost-correct specifications as the
minimal weakening of the angelic specifications over a set of pred-
icates. These specifications can be used to report high-confidence
warnings to the user. (3) We provide a set of generic predicate
choices that can be automatically constructed and instantiate our
framework with them. (4) We have implemented our techniques in
a tool called ACSPEC. Our tool is based on BOOGIE program ver-
ifier, but can be used with any off-the-shelf program verifier. (5)
We have applied our tool on a diverse set of C programs measur-
ing over 1.5 million LOC from open source and Windows software,
and report our preliminary findings.

2. Background
In this section, we describe a simple programming language that
we use to formalize the ideas in the paper.

2.1 Programs
Figure 3 defines the syntax of a simple loop-free and call-free pro-
gramming language. A program consists of a set of procedures.
Each program consists of a set of integer valued variables denoted
by Vars . Variables are partitioned into globals, procedure parame-
ters, returns, and locals. Integer expressions (denoted by Expr ) can
be constructed from variables, or by applying a function symbol f
to a (possibly empty) list of expressions. Boolean expressions (de-
noted by Formula) can be constructed from Boolean constants, or
by applying a predicate symbol p to a (possibly empty) list of ex-
pressions. The expressions are closed under Boolean connectives

x, y ∈ Vars
e ∈ Expr :: x | f(e, . . . , e)
φ, ψ ∈ Formula :: true | false | p(e, . . . , e) | φ ∧ φ | ¬φ
s, t ∈ Stmt :: skip | assert φ | assume φ | x := e |

havoc x | s; s | if (φ) then s else s

Figure 3. A simple programming language.

{∧,¬}. Array expressions are modeled with the use of special
function symbols read (to read a location in an array) and write
(to return a new array updated at a location) that are constrained by
the theory of arrays [6].

A (simple) statement can be either a skip (skip), an assertion
(assert φ), an assumption (assume φ), or an assignment to a
variable. In addition to the usual assignment x := e, the statement
havoc x assigns a non-deterministic value to the variable x — this
is used to model a non-deterministic value “*” in an expression.
A (compound) statement can be either a sequential composition of
two statements or a conditional statement if (φ) then s else t
that executes the statement s if φ is true, or t otherwise.

Procedure calls are not part of the programming language. In-
stead, a procedure call is replaced by its specification. Consider a
procedure pr(x) : ret that takes a parameter x, returns ret, and
modifies a global gl ∈ Vars . Further, it has a precondition ψ1 (a
formula over parameters and globals) and a postconditionψ2 (a for-
mula over parameters, globals, and returns). A call to a procedure
r := call pr(e) at a control location l is expressed as:

assertψ1[e/x] ; r, gl := θl.pr.r, θl.pr.gl ; assumeψ2[r/ret] ;

where θl.pr.r, θl.pr.gl are fresh constants unique to the location
l.

The constructs in the programming language are fairly standard,
and we refer the reader to earlier work for an operational seman-
tics of the language [7]. The expressive power of the simple lan-
guage suffices to precisely provide semantics to many imperative
languages such as C, C#, and Java. Fields and objects can be mod-
eled by a map indexed by object identifiers. Object allocation and
deallocation can be simulated using extra ghost variables. We refer
the reader to previous work on modeling Java [12] and C [3].

2.2 Program to logic
DEFINITION 1 (WP(pr)). For a procedure pr, the weakest pre-
condition WP(pr) is the largest set of input states from which no
execution fails an assertion.

A procedure satisfies its contracts if WP(pr) is the set λx.true.
For a loop-free and call-free procedure, the check for partial cor-
rectness can be reduced to checking satisfiability (modulo the back-
ground theories) of a logical formula by variants of Dijkstra’s weak-
est (liberal) precondition predicate transformer [8]. The predicate
transformer wp(s, ψ) takes as inputs a statement s ∈ Stmt and
a formula ψ ∈ Formula , and constructs a formula. It is defined
recursively over the structure of statements as follows:

wp(skip, ψ) = ψ
wp(assume φ, ψ) = ¬φ ∨ ψ
wp(assert φ, ψ) = φ ∧ ψ
wp(x := e, ψ) = ψ[e/x]
wp(havoc x, ψ) = ∀x.ψ[x/x]
wp(s; t, ψ) = wp(s,wp(t, ψ))
wp(if (c) then s else t, ψ) = (¬c ∨ wp(s, ψ)) ∧ (c ∨ wp(t, ψ))

To verify that pr(. . .){body} does not fail any assertions, we check
that the formula ¬wp(body , true) is unsatisfiable. Since comput-
ing wp(body , true) can incur an exponential blowup, program
verifiers compute an equisatisfiable formula by first passifying the



program [13]. We often overload the expression wp(pr, true) to
mean wp(body , true), where body is the body of pr. The satisfia-
bility of the resultant formula can be checked by suitable decision
procedures such as modern Satisfiability Modulo Theories (SMT)
solvers [6]. We will refer to the process of converting a program to
a formula as verification condition (VC) generation.

2.3 Dead and fail set
For a procedure pr, let Locs denote the set of locations inside pr,
and Asserts denote the set of assertions inside pr. For rest of the
discussion, the procedure pr, the set of assertions Asserts and the
set of locations Locs are implicit in every context, unless otherwise
noted.

For a formula φ ∈ Formula representing a set of input states,
we define the following concepts:

1. The set of dead locations Dead(φ)
.
= {l ∈ Locs | l is not

reachable for any state in φ}.
2. The set of failed assertions Fail(φ)

.
= {a ∈ Asserts | a can

fail on at least one execution from an input in φ}.
Note that for non-deterministic programs, both Dead(φ) and

Fail(φ) account for all possible executions starting from a given
input state.

We assume that Dead(true) = {}; that is, that there are no
dead locations from the local perspective of pr. In practice, we
can ensure that this assumption holds by removing Dead(true)
from Locs before starting our analysis. To determine the set of
dead locations, it suffices to restrict ourselves to only a subset of
locations — namely the locations that appear immediately inside
“then”, and “else” branches as well as the locations that appear after
each assume statement. The former ensures that each branch can
be taken both ways, and the latter ensures that assume statements
do not block subsequent statements.

Although we choose to define Dead(φ) in terms of branch cov-
erage in this paper, the definition of Dead(φ) can be a parameter
of our analysis. We can easily replace our definition with any com-
putable metric for expressing when a specification is too strong. For
example, we could have defined Dead(φ) as the set of paths that
are infeasible under φ (i.e., in terms of path coverage rather than in
terms of branch coverage), or as the set of observed runtime values
at some locations that are precluded by φ.

2.4 Clauses
A predicate p is an atomic formula over some theory (say arith-
metic) without any Boolean connectives (¬,∧,∨) at the outermost
scope. A literal l is either a predicate or its negation. A clause
c
.
= l1 ∨ l2 . . . lk is a disjunction over literals. Dually, a cube

d
.
= l1 ∧ l2 . . . lk is a conjunction over literals. For a set of clauses

C, we denote Π(C) to be the formula
(
true ∧

∧
c∈C c

)
.

LEMMA 1. For any two sets of input clauses C1 ⊆ C2,

• Dead(Π(C1)) ⊆ Dead(Π(C2)), and
• Fail(Π(C2)) ⊆ Fail(Π(C1)).

3. Semantic inconsistency and almost-correct
specifications

In this section, we formalize the notion of abstract semantic in-
consistency bugs (SIB). First, we capture the essential intuition be-
hind semantic inconsistency [11] in the context of modular asser-
tion checking (§ 3.1). We then lift the idea of inconsistency to a
more general setting by parameterizing it with a set of predicates
(abstract SIB). In § 3.3, we describe almost-correct specifications
as a witness for abstract SIBs.

3.1 Semantic inconsistency bugs
Let us start by formalizing semantic inconsistency bugs in the con-
text of modular assertion checking and explaining their relationship
with weakest precondition.

DEFINITION 2 (SIB). A procedure pr has a semantic inconsis-
tency bug (SIB) if the largest set of input states φ that satisfies all
assertions (i.e. Fail(φ) = {}) creates dead code (i.e. Dead(φ) 6=
{}).

We can establish a connection between inconsistency bugs and
weakest precondition for a procedure:

PROPOSITION 1. A procedure pr containing at least one assertion
has a SIB if and only if Dead(WP(pr)) 6= {} .

Note that the above formulation is purely semantic and only
relies on the assertions present in the code. For the double free()
example in § 1.1.1, the weakest precondition can be expressed as:

(cmd != READ && !Freed[c] && !Freed[buf] && c != buf)

However, this causes A3 and A4 to become unreachable, and thus
the procedure has a SIB.

The case where WP(pr) is equivalent to {} (that is, when every
input fails at least one assertion) is a special case of SIB bugs where
Dead(WP(pr)) contains every statement in the procedure.

3.2 Abstract semantic inconsistency bugs
Although SIBs are interesting and useful to detect, they represent
only a small fraction of all possible bugs. As the example in § 1.1.2
shows, the concrete WP(pr) is the most angelic specification on
the environment, and therefore examining the dead locations it cre-
ates will not reveal any errors except SIBs. Our goal in this sec-
tion is to lift the connection between WP(pr) and SIBs to a more
general setting. Our intuition is simple: by restricting the abstrac-
tion (or vocabulary) over which we can describe the environment
specifications, some warnings can be categorized as SIB bugs with
respect to that abstraction, even though there may be no SIB bugs
by the concrete definition defined earlier in Proposition 1.

We lift the notion of SIB to abstract semantic inconsistency
bugs by parameterizing the definition of inconsistency with respect
to a predicate abstraction [4, 14]. Given a set of atomic formulas
Q, the abstraction function αQ : Formula → Formula maps
a formula φ to the strongest approximation of φ expressible as
Boolean combinations of Q. For example, if Q = {x = 0, y = 0}
and φ

.
= (x = 0 ∧ y = 0) ∨ (x = 1 ∧ y = 1), then

αQ(φ)
.
= (x = 0 ∧ y = 0) ∨ (x 6= 0 ∧ y 6= 0). For a

given formula φ ∈ Formula , we denote βQ as the weakest under-
approximation of φ with respect to a given set of predicates Q. It
is represented as ¬αQ(¬φ). We can establish a partial order on the
set of all predicate abstractions by a subset relation ⊆ on the set
of predicates. It is not hard to see that given a formula φ and two
sets of predicates Q ⊆ P, φ =⇒ αP(φ) =⇒ αQ(φ) and
βQ(φ) =⇒ βP(φ) =⇒ φ. In other words, a larger set of
predicates provides a more precise approximation (both over and
under) of φ.

DEFINITION 3 (Abstract SIB). A procedure pr has an abstract se-
mantic inconsistency bug (abstract SIB) with respect to a set of
predicates Q if Dead(βQ(wp(pr, true))) 6= {}.

The intuition behind this definition is quite simple: the set of
environments βQ(wp(pr, true)) is the weakest set of angelic en-
vironments expressible using Q that do not fail any assertion in
the procedure. If this set of states gives rise to dead code, then the
procedure has an abstract SIB. Henceforth, we will implicitly as-
sume Q as the set of predicates under consideration unless other-
wise noted.



Note that when Q contains all the atomic predicates from
wp(pr, true), then abstract SIBs (with respect to Q) and SIBs
coincide. Unlike concrete SIBs, abstract SIBs are not guaranteed to
correspond to either true bugs or dead code. However, the exam-
ple in § 1.1.2 illustrates that some true bugs can be categorized as
abstract SIBs, but not as concrete SIBs. At the other extreme when
Q

.
= {}, any assertion failure will manifest itself as an abstract

SIB since the only specifications allowed over Q = {} are true
and false. We can establish the following relationship between two
sets of predicates:

PROPOSITION 2. For two sets of predicates Q ⊆ P, if pr has an
abstract SIB under P, then pr has an abstract SIB under Q.

3.3 Almost-correct specifications
So far, we have only shown how to determine whether a procedure
has an abstract SIB or not. In this section, we explain how to find
the assertions that might fail in a procedure with a SIB (abstract
or concrete). We provide a witness for each potential assertion fail-
ure by providing an almost-correct specification under which that
assertion might fail. For this section, we assume that the procedure
pr is fixed and therefore implicit in the definitions.

Let FormulaQ ⊆ Formula be the set of all formulas that can
be constructed by a Boolean combination over the predicates in Q.

DEFINITION 4 (AlmostCorrectSpecs(Q)). For a set of predi-
cates Q and an integer k ≥ 0, AlmostCorrectSpecsK (Q, k) ⊆
FormulaQ is defined as set of formulas φ where

1. βQ(wp(pr, true)) =⇒ φ, and
2. Dead(φ) = {}, and
3. |Fail(φ)| = k, and
4. for any ψ ∈ FormulaQ such that βQ(wp(pr, true)) =⇒
ψ =⇒ φ, either φ =⇒ ψ or Dead(ψ) 6= {}.

AlmostCorrectSpecs(Q) is AlmostCorrectSpecsK (Q, k) for
the smallest k ≥ 0 such that AlmostCorrectSpecsK (Q, k) 6= {}.

AlmostCorrectSpecsK (Q, k) contains precisely those formu-
las φ that are at least as weak as the βQ(wp(pr, true)), do not
create any dead code, induce k assertion failures, and cannot be
strengthened over the vocabulary Q without creating dead code.
AlmostCorrectSpecs(Q) contains the set of specifications that in-
duce the minimum number of failures. When a procedure has no
abstract SIBs, then AlmostCorrectSpecs(Q) is precisely the set
of formulas representing βQ(wp(pr, true)), which (by definition)
induce k = 0 failures.

Algorithm 1 FindAbstractSIBs(pr, Q)

Require: A procedure pr with a set of assertions Asserts
Require: A set of predicates Q

1: φ← βQ(wp(pr, true))
2: if Dead(φ) 6= {} then
3: s← SIB /* abstract */
4: else
5: s← MAYBUG /* low confidence warnings */
6: end if
7: Ψ← FindAlmostCorrectSpecs(pr, Q)
8: E ←

⋃
ψ∈Ψ Fail(ψ)

9: return (s, E)

Algorithm 1 shows how to find abstract SIBs. Line 7 invokes a
method for generating a set of almost-correct specifications overQ;
we describe this method in the next section. Finally, line 8 collects
the set of assertion failures that are possible under the almost-
correct specifications.

4. Computing almost-correct specifications
In this section, we describe one method to compute the set of
almost-correct specifications formulated in Definition 4. The steps
consist of obtaining a canonical representation of βQ(wp(pr, true))
in a conjunctive normal form (§ 4.1), and then performing a greedy
search (with pruning) to find the almost-correct specifications
(§ 4.2). We discuss Boolean simplification of the resultant spec-
ifications and further weakening the specifications based on some
syntactic clause quality measures (§ 4.3). Finally, we provide dif-
ferent methods for constructing the set of predicates Q starting
with the precise set of predicates for representing wp(pr, true).

4.1 Predicate cover PredicateCoverQ(pr)

For a procedure pr, let VC (pr) ∈ Formula be the verification
condition (VC) that is equisatisfiable with ¬wp(pr, true) — the
size of VC (pr) is usually almost linear in the size of pr [1] when
pr is converted to static single assignment (SSA) form. Given a
set of predicates Q, the predicate cover βQ(wp(pr, true)) is
computed by enumerating all the assignments (ALL-SAT) over
Q that satisfy VC (pr) and then obtaining a set of clauses by
negating these assignments. The clauses obtained this way are
maximal — i.e., each predicate in Q either appears in a posi-
tive or negative polarity in each clause. Let us denote this op-
eration as PredicateCoverQ(pr). Such a conjunctive normal
form over maximal clauses provides a canonical representation of
βQ(wp(pr, true)). The canonical representation is important for
computing the almost-correct specifications, as we will describe
in the next section. The algorithm is fairly standard in predicate
abstraction and we refer readers to earlier work [19].

4.2 Weakening predicate cover
The algorithm FindAlmostCorrectSpecs(pr, Q) finds the set of
almost-correct specifications. It first computes the set of maximal
clauses C using the predicate cover operation described earlier. It
performs a greedy search over the space of clauses by selecting a
clause to drop and then inspecting the Dead() and Fail() counts
of the resulting clause sets. The algorithm starts with the set of
clausesC satisfying Fail(Π(C)) = {} and computes the minimum
number of failures that can result from dropping clauses from C
to make all the code reachable. The procedure returns a set of
formulas, each representing an almost-correct specification.

For the purpose of this section, we will treat the operations
Normalize and PruneClauses as identity functions that simply
return the input set of clauses — we will consider more interesting
uses in § 4.3. The algorithm maintains a frontier set S of sets
of clauses that have a non-empty dead set and iterates (via the
outer while loop) until S is empty. It also maintains the minimum
failure count (MinFail ) for any clause set with an empty dead set.
This count is initialized to the size of Asserts . At each step, the
algorithm extracts a clause setC1 ∈ S, and enumerates each subset
of clauses C2 (the inner for loop) by dropping a clause c from C1.
Each sub-clause C2 is either added to S (if Dead(C2) 6= {} and
|Fail(C2)| ≤ MinFail , or Dead(C2) = {} and |Fail(C2)| = 0)
or pruned (if Dead(C2) 6= {} and |Fail(C2)| > MinFail ). If
|Dead(C2)| = 0 and |Fail(C2)| ≤ MinFail , then we add C2 to
the output set U . When |Fail(C2)| < MinFail , then the output set
is flushed and the MinFail is reduced to |Fail(C2)|.

THEOREM 1. The following statements are true:

1. FindAlmostCorrectSpecs(pr, Q) ⊆ AlmostCorrectSpecs(Q).
2. For each φ ∈ AlmostCorrectSpecs(Q), there exists a ψ ∈

FindAlmostCorrectSpecs(pr, Q) such that φ⇔ ψ.

The set AlmostCorrectSpecs(Q) may contain different syntac-
tic representations of the same specification and therefore may con-



Algorithm 2 FindAlmostCorrectSpecs(pr, Q)
Require: A procedure pr with a set of assertions Asserts
Require: A set of predicates Q
Ensure: Set of formulas representing AlmostCorrectSpecs(C)

1: C ← PredicateCoverQ(pr)
2: if Dead(Π(C)) = {} then
3: return {Π(PruneClauses(Normalize(C)))}
4: end if
5: S ← {C} /*Frontier set */
6: T ← {} /* Visited set */
7: U ← {} /* Output set */
8: MinFail ← |Asserts| /* Smallest set of failures*/
9: while S 6= {} /* Frontier is non-empty */ do

10: C1 ← Choose(S)
11: for each clause c ∈ C1 do
12: C2 ← C1 \ {c} /* Weaken by one clause */
13: if C2 ∈ T then
14: continue /* Visited already */
15: end if
16: T ← T ∪ {C2} /* Add to Visited */
17: if |Fail(C2)| > MinFail then
18: continue /* MinFail can only decrease */
19: end if
20: if |Dead(C2)| 6= 0 then
21: S ← S ∪ {C2} /* Add to the frontier set */
22: else if |Fail(C2)| = 0 then
23: S ← S ∪ {C2} /* Add to the frontier set */
24: else if |Fail(C2)| = MinFail then
25: U ← U ∪ {C2} /* Add it to U */
26: else
27: /* |Fail(C2)| < MinFail */
28: MinFail ← |Fail(C2)| /* Decrease MinFail */
29: U ← {C2} /* Clear U and add C2 */
30: end if
31: end for
32: end while
33: return

⋃
C1∈U Π(PruneClauses(Normalize(C1)))

tain more formulas than FindAlmostCorrectSpecs(pr, Q). The
proof follows from the observations that (a) the set of maximal
cubes (negation of maximal clause) over Q partitions the set of all
states, and (b) dropping a maximal clause from the set of maximal
clauses representing a formula weakens the formula by exactly one
maximal cube.

4.3 Clause simplification and pruning
We can additionally parameterize the almost-correct specifications
by providing a syntactic quality measure for the set of clauses. For
instance, the number of literals in a clause can be a measure of
goodness of a specification. Under the hypothesis that good speci-
fications are usually simple and do not contain many disjunctions,
we can prune clauses that contain a large number of literals. Alter-
nately, we might try to avoid clauses that correlate the return values
of multiple procedure calls.

However, such quality measures cannot be applied directly on
the maximal clauses. Consider the maximal clauses (a ∨ b) ∧ (a ∨
¬b) over Q = {a, b}. These clauses have two literals per clause
and may be undesirable, whereas an equivalent clause (a) has only
one literal. We address this problem by first performing Boolean
simplification of the maximal clauses.

The operation Normalize(C) takes a set of clauses C and
performs Boolean clause simplification on the set of clauses. It
applies the following three rules to a set of clauses (starting withC)

until a fix-point is reached: (1) Resolution: If there are two clauses
(c ∨ l), (d ∨ ¬l) ∈ C, then add (c ∨ d) to C. (2) Subsumption: If
there are two clauses c, (c ∨ l) ∈ C, then remove (c ∨ l) from C.
(3) Tautologies: If there is a clause (c ∨ l ∨ ¬l) ∈ C, then remove
it from C.

The function PruneClauses takes a set of clauses and re-
turns a subset of clauses that satisfy the quality measure. Note
that the pruning makes the almost-correct specifications weaker
and can reveal more warnings — it is not just a syntactic trans-
formation. For the example in § 1.1.2, both schemes (limiting the
number of literals per clause to one, or removing clauses con-
taining returns from multiple procedures) will reveal the warn-
ing by pruning the clause θL1.static returns t.return =⇒
θL2.calloc.return ! = 0.

4.4 Mining predicates
We now describe a few choices for constructing the set of predi-
cates inQ automatically for any given procedure pr. We start with a
method for collecting all the atomic predicates that appear in the ex-
pression representing the weakest precondition (§ 4.4.1), followed
by two methods that generate smaller sets of predicates (§ 4.4.2 and
§ 4.4.3).

4.4.1 Predicates in wp(pr, true)

Recall that if Q contains all the atomic predicates that con-
stitute wp(pr, true), then βQ(wp(pr, true)) is equivalent to
wp(pr, true), and abstract SIBs and SIBs coincide. For a pro-
cedure pr with body body , the set of predicates collected is
Preds(body , {}), wherePreds(, ) is defined recursively as follows:

Preds(skip, Q) = Q
Preds(assume φ,Q) = Atoms(φ) ∪Q
Preds(assert φ,Q) = Atoms(φ) ∪Q
Preds(x := e,Q) = Atoms(Q[e/x])
Preds(havoc x, Q) = Drop(Q, x)
Preds(s; t, Q) = Preds(s,Preds(t, Q))
Preds(if (c) then s else t, Q) = Atoms(c) ∪ Preds(s,Q)

∪ Preds(t, Q)

Here Atoms(φ) collects the set of atomic predicates (those do
not contain any Boolean connectives), and Drop(Q, x) removes
any atomic predicate in Q that contains the variable x. Note the
similarity with the wp(s, φ) transformer from § 2.2, as the goal of
the predicate collection above is to collect the atomic predicates
that may appear in the wp(pr, true). We describe a few important
details about the predicates in Preds(body , {}).

First, recall that a variable x that is modified by a call to a
procedure pr1 at line l is assigned a special constant θl.pr1 .x
(§ 2.1). These constants appear in the set of predicates Q and in
the specifications (see the example in § 1.1.2).

Second, consider the problem of generating atomic predicates
in the presence of arrays or maps. For example,

wp(x := write(x, e1, e2), p(read(x, e3), e4))

results in the formula p(read(write(x, e1, e2), e3), e4) that con-
tains write symbol. We apply rewrite rules (omitted for brevity)
to eliminate the write symbols in the predicates in order to make
input specifications more readable and intuitive. After eliminating
write , the above expression corresponds to e1 = e3 ? p(e2, e4) :
p(read(x, e3), e4). The set of atomic predicates in this expression
are {e1 = e3, p(e2, e4), p(read(x, e3), e4)}. This explains the
presence of the predicate c = buf in the weakest precondition
for the example of double-free (§ 1.1.1).

4.4.2 Ignoring conditionals
Consider the following example:



Alias Havoc Ignore
returns conditionals

Conc F F
A0 T F
A1 F T
A2 T T

A0 A1

A2

Conc

Figure 4. The four abstract configurations defined by combining
our two abstractions, along with their aliases. Arrows flow from
higher precision to lower precision.

void Foo(bool c1, bool c2, int *x) {
if (c1) {...; if (x) {*x = 1;} ... }
if (c2) {... ; *x = 2; ...}

}

The weakest precondition avoids non-null errors by conjur-
ing c2 =⇒ x 6= 0 as a possible precondition. This precon-
dition does not create any concrete SIBs. One way to take away
this angelic power (and reveal warnings as abstract SIBs) is to
avoid considering the predicates that guard conditionals. We can
obtain this by treating a conditional if (c) then s else t as
{havoc x; if (x) then s else t; } during predicate collection
(where x is a fresh program variable). The set of predicates col-
lected for this examples is Q = {x 6= 0}.

4.4.3 Havoc returns
Another way to restrict the set of predicates is to avoid predicates
about callee modifications. Instead of assigning fresh constants
(e.g. θl.pr1 .x) to modified variables (as done by default in § 2.1),
we can havoc these variables. However, this can also lead to
undesired imprecision in cases such as:

void Bar(...) {
havoc x; // x = getValidPointer(..);
M[x] := 1; // *x = 1;

}

For this example, wp(Bar, true) will be false because the predi-
cate set is empty.

We henceforth refer to the first abstraction described as “ignore
conditionals” (§ 4.4.2) and the second as “havoc returns” (§ 4.4.3).
The product of the these two abstractions naturally yields 22 = 4
abstract configurations which we name and describe in Figure 4.
The configuration Conc refers to concrete SIBs (§ 4.4.1). The rest of
the configurationsA0, A1, A2 correspond to abstract SIBs resulting
from combining the schemes in the previous two sections (§ 4.4.2
and § 4.4.3).

5. Implementation and evaluation
Implementation. We have constructed a prototype tool ACSPEC
(Almost-Correct SPECifications) that implements the ideas pre-
sented in the paper. The tool consists of around 2000 lines of C#
code. It accepts a source file in the BOOGIE language [7] and a list
of abstractions as input. It outputs whether the procedure has a SIB
under the abstractions, searches for the set of almost-correct spec-
ifications in the predicate vocabulary allowed by the abstractions,
and prints the set of errors induced by the specifications. We lever-
age BOOGIE’s optimized verification condition generation along
with the Z3 SMT solver [6] for checking the satisfiability of the
verification conditions. The current prototype does not yet use the
incremental interface to the Z3 prover and regenerates VC for ev-
ery call to Z3 — this is a major source of inefficiency in the current
implementation.

The main modules implemented in the tool are (a) computing
the Fail() and Dead() sets, (b) generating the set of predicates

Bench LOC (C) LOC (BPL) Procs Asserts
CWE476 24582 267510 561 228
CWE690 85855 941045 1865 1009
ansicon 2972 38145 289 325
space 9566 185878 263 2144
cancel 827 7411 9 9
event 872 6430 7 4
firefly 622 8669 9 22

moufilter 631 7073 7 25
vserial 1396 21617 23 102
Drv1 97615 1401949 799 14402
Drv2 77180 1536078 1218 13843
Drv3 31011 77760 67 692
Drv4 82720 542049 401 3582
Drv5 151516 981682 661 11250
Drv6 18577 562477 490 7381
Drv7 1171514 21845268 21626 227573
Lib1 96158 1121121 1158 10051
Total 1853614 29552162 29453 292642

Figure 5. Benchmark statistics. For each benchmark, we give the
lines of code in both C and BOOGIE, the number of procedures, and
number of assertions.

under the different options from Figure 4, (c) computing the pred-
icate cover and checking for SIBs, (d) searching for almost-correct
specifications over a set of clauses, and (e) normalizing clauses and
performing clause pruning. We only mention the computation of
Dead() briefly here. For each location l ∈ Locs (one for each
block that has an assume statement), we introduce an assertion
assert bl. To compute Dead(φ), we ask for all assertion failures
(over the location asserts) under φ — the set of assertions that do
not fail constitute Dead(φ). For computing Dead(), we rely on the
completeness of the theorem prover. For the logics we use (equali-
ties, arithmetic, arrays), Z3 ensures completeness.

Benchmarks. We chose a set of 17 C benchmarks drawn from
open source programs and the Windows codebase (Figure 5). The
CWE benchmarks are from the NIST SAMATE test suite for static
analysis2, space is a flight control software3, ansicon is a con-
sole text processor, and the rest of the small benchmarks are sam-
ple drivers from Windows Driver Kit4. The set of larger Windows
benchmarks has been anonymized. Each Drv* is a set of multiple
drivers in Windows and Lib1 is a core component of the Windows
kernel. All benchmarks were compiled from C to the BOOGIE pro-
gramming language using the HAVOC tool [3]. Although our tech-
nique works for arbitrary assertions, the only assertions contained
in these programs are assertions of the form x != null automati-
cally inserted by HAVOC before each pointer dereference *x. For
each procedure, we unroll the loops twice. This allows us to focus
on the (still substantial) subset of warnings from program verifiers
that do not arise from analysis imprecision in handling loops.

Experiments. We performed experiments with the goal of eval-
uating both the reduction in warnings (Section 5.1.1) and the pre-
cision/completeness trade offs (Section 5.1.2) induced by the ab-
stractions and clause pruning. Finally, we evaluated the usability of
ACSPEC on larger programs by running the tool on over 1M lines
of Windows code (Section 5.1.3). We triaged the highest priority
warnings and compiled statistics on the performance of the tool.

Experimental setup. For each benchmark we checked for SIBs
with the Conc configuration and abstract SIBs with the A0, A1,
and A2 configurations. Cons refers to the conservative verifier we

2 http://samate.nist.gov/SRD/testsuite.php
3 http://sir.unl.edu/portal/index.html
4 http://www.microsoft.com/whdc/devtools/ddk/default.mspx



Bench Proc Asrt Conc k=3 k=2 k=1 A1 k=3 k=2 k=1 A2 k=3 k=2 k=1 Cons TO
CWE476 561 228 32 32 32 34 32 32 32 34 36 36 36 36 126 0
CWE690 1865 1009 36 36 36 60 54 54 54 60 105 105 105 105 348 0
ansicon 289 325 1 4 5 5 2 17 18 20 5 26 26 28 60 9
space 263 2144 2 94 131 150 6 27 18 243 9 22 28 30 313 39
cancel 9 9 0 0 0 0 0 0 0 2 0 0 0 2 2 1
event 7 4 0 0 0 1 0 0 0 0 0 0 0 0 1 0
firefly 9 22 0 2 4 5 0 0 2 2 4 4 4 4 7 0

moufilter 7 25 0 0 0 0 0 0 0 0 5 5 5 5 8 0
vserial 23 102 0 10 2 11 0 0 10 11 8 10 12 12 24 1
Total 3033 3868 71 178 210 266 94 130 134 372 172 208 216 222 889 50

Figure 6. Comparison of abstract configurations and clause prun-
ing on small benchmarks. For each abstract configuration (Conc,
A1 , A2 ), we show results with no clause pruning (k =∞) and with
pruning from k = 3 to 1.“TO” denotes the number of timeouts.

use (BOOGIE). We omit results for A0 because it performed the
same as A2 on all benchmarks we tried. Timeout was set to 10
seconds; we omit procedures that timed out in any configuration.
Experiments were run on a Windows 7 desktop machine with a
2.66 GHz processor and 6 GB of RAM and a Windows 7 laptop
with a 1.3 GHz processor and 4 GB of RAM.

5.1 Evaluation
5.1.1 Warning reduction
In our first experiment, we compared the the number of warnings
reported by Conc, A1 , and A2 abstract configurations both without
clause pruning and with k-clause pruning for k = 1 to 3 (Figure
6). In k-clause pruning, we prune clauses with > k literals out of
specifications (§ 4.3). We observe that:

• Without clause pruning, all abstract configurations report many
fewer warnings than Cons . Even the coarsest abstract configu-
ration (A2) reported at least 2X fewer alarms than the conser-
vative verifier on almost all benchmarks.
• Clause pruning steadily increases the number of alarms re-

ported as k decreases. This effect is relatively stable across ab-
stract configurations, but is much more dramatic for Conc and
A1. Even with clause pruning, all configurations still report less
than half as many alarms as Cons on most benchmarks.

Interestingly, combining aggressive clause pruning with a
coarser abstraction can sometimes result in a lower number of
errors than a finer abstraction at the same level of clause pruning
(for example, the firefly benchmark under 1-clause pruning in the
Conc and A1 configurations). This is because abstractions remove
predicates and consequently force the generation of simpler (and
less disjunctive) specs. An example illustrates how this can occur:

L1: grid_ptr = malloc();
L2: if (grid_ptr == NULL) return;
L3: x = *key;

The weakest specification for Conc (θL1.malloc.return ==
0 || key != 0) has a disjunction. However, A1’s predicate vo-
cabulary does not allow predicates from conditionals, so the angelic
specification is the simpler key != 0. Though both specs prove
the program correct without creating dead code, the former con-
tains one disjunction, so it is pruned to true by 1-clause pruning
and reports a warning.

5.1.2 Precision and completeness trade offs
Our next experiment investigated whether the additional alarms re-
vealed by adding abstractions and/or clause pruning to the Conc
configuration were real bugs or false positives. We performed a
complete classification of the error reports for Cons , Conc, and

Conc A1 A2 Cons
Bnch Asrt C FP FN C FP FN C FP FN C FP FN

CWE476 228 179 0 49 179 0 49 179 2 47 183 45 0
CWE490 1009 775 0 234 793 0 216 844 0 165 931 78 0

Total 1237 954 0 283 972 0 265 1023 2 212 1114 123 0

Figure 7. Full classification of alarms for the SAMATE bench-
mark suite across abstract configurations with no clause pruning.
We give the number of assertions classified correctly (C), number
of false positives (FP), and number of false negatives (FN).

the abstract configurations for two benchmarks: CWE476 and
CWE690. We chose these because they are from a NIST test suite
for static analysis tools in which dereferences are labeled as safe
or buggy (with 36% and 27% assertions buggy for CWE476 and
CWE690 respectively). We omit the results for clause pruning be-
cause they were nearly identical to the results shown. Figure 7
shows the results. We can observe the following:

• Adding abstractions (such as A1 and A2) to Conc allows us
to report more real bugs than the concrete domain while barely
increasing the number of false positives. The few false positives
our abstract domains report are due to the “havoc return values”
abstraction as shown in § 4.4.2 and § 4.4.3.
• Even the coarsest abstraction fails to report lots of real bugs.

This is expected — our stated goal is to report a small number of
high confidence bugs with a low false positive rate. Many false
negatives occur because there is no (abstract) inconsistency
when the procedures bodies are simple, but buggy (e.g. void
Foo(x) { *x = 1;}). To catch such bugs, we plan to extend
our current method to assert the weakest precondition of simple
procedures at call sites.

5.1.3 Larger benchmarks
In this section, we evaluate ACSPEC on the set of core Windows
benchmarks, measuring over a million lines. The results are shown5

in Figure 8.

Bench Proc Asrt Conc A1 A2 Cons TO
Drv1 799 14402 2 5 44 399 401
Drv2 1218 13843 0 0 61 766 370
Drv3 67 692 0 0 1 63 18
Drv4 401 3582 0 0 12 262 61
Drv5 661 11250 0 0 31 353 294
Drv6 490 7381 0 0 84 287 114
Drv7 16753 172973 1 11 876 12596 1369
Lib1 1158 10051 1 3 171 552 317
Total 21547 234174 4 19 1280 15278 2944

Figure 8. Comparison of abstract configurations on large bench-
marks. “TO” denotes the number of timeouts.

We briefly comment on trends in the data:

• As on the smaller benchmarks, the abstract configurations pro-
vide a “knob” through which gradually more errors can be
viewed by adding abstractions to Conc.
• With the possible exception of A2, the abstract configurations

show a number of warnings small enough that a willing user
could feasibly examine them. As expected, the conservative ver-
ifier reports more warnings than most users would reasonably
want to examine.

5 Our tool did not analyze around 5000 procedures in Drv7 due to an
out-of-memory error. The results do not include these procedures or their
assertions.



We investigated most of the warnings reported by the Conc and
A1 configurations. All of the reports we examined were false pos-
itives, which is perhaps not entirely surprising since the property
we are testing for is very shallow and these benchmarks are old and
well-tested Windows code.

Many false positives were due to expansion of macros (a prob-
lem also encountered by [11] [21]). One extensively used macro
pattern defensively checks for NULL before dereferencing a field:

#define CheckFieldF(x, a) (x != NULL && x->f == a)

The short-circuiting semantics of “&&” causes us to view this as a
conditional expression, which means that a code snippet such as y
= *x; if(CheckFieldF(x, a)) ... is expanded to y = *x;
if (x != NULL) {...} else {L1: ...}. Conc flags this as a
SIB since the location L1 is unreachable for the specification x !=
NULL. We manually validated that x can never be never be NULL in
each of these cases, which means that this check is too defensive,
but not buggy. Another cause for the Conc warnings is the presence
of macros that encode an assertion in terms of assert false as
follows:

#define SL_ASSERT(e) if (!e) assert(false)

Our tool insists that the “then” branch of such code be reachable,
although the user expects it to be reachable only when the assertion
fails. Macro expansion corresponds to a form of inlining callees,
and the heuristic of absence of dead code can sometimes be too
strong interprocedurally [9] (due to defensive coding in the callees).

Most of the A1 warnings happen either due to one of the reasons
above, or due to the removal of correlations that appear to be
true preconditions. A common pattern that we observe (names
anonymized) is the following:

void Process(size_t mBufferLength, char *mBuffer, ..){ ...
1: if (mBufferLength >= 0) { ...
2: for (size_t i = 0; i < mBufferLength; ++i) { ...
3: assert(mBuffer != null); mBuffer[i] = ..;

}
....

}
5: if (mBuffer != null) { .... }

where the tool avoids the error in Line 3 during Conc analysis by
inferring the correct precondition: mBufferLength >= 0 =⇒
mBuffer != 0, which does not create any dead code. However,
A1 results in a stronger specification mBuffer != 0, which cre-
ates dead code for the “else” branch for Line 5 and reveals a SIB.

A vast majority of the A2 warnings are due to an overly con-
servative modeling of calls in HAVOC, where all fields (modeled
as maps) are present in the set of modified globals for a call. Any
nested dereference of a field x->f->g (modeled as g[f[x]]) after
a call to (say) bar results in a warning since A2 can’t capture that
x->f != 0 (expressed as f[x] != 0) after the call to bar. On the
other hand, both Conc andA1 can add a specification θ.bar.f[x]
!= 0 since the modified values have associated symbolic constants.

5.1.4 Performance
Figure 9 describes the performance of our tool on the large bench-
mark set. We do not report any statistics for procedures that the con-
servative verifier labels as correct. We note that: (1) As expected,
A1 and A2 collect fewer predicates than Conc. (2) Interestingly,
the number of clauses in the predicate cover is relatively stable
across all three configurations even though Conc runs noticeably
slower than the other two domains.

Conc A1 A2

Bench P C T P C T P C T
Drv1 3.5 1.1 2.7 2.0 1.0 2.2 1.8 0.9 2.1
Drv2 4.5 1.1 2.0 2.4 1.1 1.3 2.2 1.0 1.2
Drv3 3.6 1.3 2.3 2.8 1.3 1.6 2.6 1.3 1.6
Drv4 4.1 1.6 2.7 2.6 1.5 1.9 2.5 1.5 1.9
Drv5 3.6 1.0 2.3 1.7 0.9 1.4 1.4 0.8 1.4
Drv6 5.3 1.6 2.8 2.8 1.5 1.7 2.8 1.3 1.9
Drv7 3.3 1.3 1.1 2.5 1.2 0.8 2.4 1.1 0.8
Lib1 6.1 1.5 2.3 3.1 1.2 1.3 2.0 1.0 1.2

Figure 9. Performance on large benchmarks expressed as per-
procedure averages. P is av. predicates/procedure, C is av. clauses
in the predicate cover/procedure, and T is av. time/procedure in
seconds.

Finally, as we can see from Figure 8, we time out on 14% of the
procedures that the conservative verifier does not label as correct6.
We found that the sources of timeouts are mixed. Some of the
larger procedures take more than 10 seconds to compute Fail()
and Dead(); others time out during the predicate cover generation,
and a smaller number time out during the search for almost-correct
specifications. In the latter case, we can at least answer the question
about the existence of a SIB in the procedure. We believe that using
the incremental Z3 interface will significantly reduce timeouts by
preventing redundant VC generation.

6. Related work
Engler et al. introduced inconsistency detection [11] as a practical
approach for finding bugs in real programs. They identify a set of
templates for inconsistent programmer beliefs such as “*<p> . . .
if (<p> != null)” that can be matched to patterns in real code
in order to find likely bugs. They rank occurrences of these pat-
terns using statistical analysis and use this simple but powerful
combination to discover hundreds of new bugs in open source soft-
ware. They build on this work with techniques for suppressing false
alarms stemming from “polluted” analysis results [17] and a com-
bination of this approach with factor-based statistical techniques
to automatically infer rich function specifications, such as which
functions allocate and de-allocate memory [18].

Dillig et al. provide the first semantic formulation of inconsis-
tency errors [9]. In their framework, an inconsistency is a discrep-
ancy between two related “checks” (i.e., a dereference): an incon-
sistency exists when there are two checks on the same predicate
such that one check always succeeds, but the other may fail. They
formally distinguish inconsistency errors from source-sink errors
which require directly tracking the flow of a bad value across the
program. Finally, they provide a scheme for interprocedural incon-
sistency detection based on inlining failure summaries for proce-
dures at their call sites.

The recent work of Tomb and Flanagan [21] is the closest to
identifying a connection between weakest precondition and (con-
crete) inconsistency checking in terms of assertions. Their incon-
sistency detection works by splitting a procedure pr with c con-
ditionals into 2c wedge programs, where each wedge blocks one
of the two branches of a conditional statement. An inconsistency
is reported if any wedge program fails on all inputs. Both of these
works [9, 21] validate that numerous bugs can be found using se-
mantic inconsistency checking.

Our approach is inspired by both of these formulations of incon-
sistency checking, although our goal is not limited to finding incon-
sistency bugs. There are several differences between our work and

6 We ignore the 5000 procedures that were not analyzed due to the memory
problem.



theirs. First, our formulation of inconsistency checking can be pa-
rameterized with an abstraction, which allows us to apply the idea
to a more general class of errors. Second, we compute the almost-
correct specifications for a procedure, which allows us to witness
inconsistency bugs as the failures induced by these specifications.

Finally, there are subtle discrepancies in the definition of incon-
sistency due to differences in formalism. For example, [21] would
not report an inconsistency error for the procedure Foo in § 4.4.2,
whereas [9] would [21]. Our formulation agrees with [21] in that
we would characterize this program as an abstract SIB rather than
a concrete SIB. On the other hand, we would report a concrete SIB
for the program if (∗) then assert e else assert ¬e, since
there are no inputs that satisfy both assertions. [21] would not flag
this program since neither of the two wedge programs is guaranteed
to fail. We believe that [9] would not report this as an error since
neither assertion is guarded by a check that guarantees its success.
Similar reasoning (due to the presence of non-determinism) shows
that [21] will miss reporting a SIB for the example in Figure 1.

In addition to prior work on semantic inconsistency, there are
other generic approaches to reducing false alarms in static analy-
sis. Necessary preconditions [5] are conditions that are shared by
all non-faulting execution traces. Even without abstraction, the pre-
conditions inferred by our approach are (in general) incomparable
to necessary preconditions. For the program if (x) { assert
x; } assert x, the necessary precondition is x, but the almost-
correct specification is true, and thus the necessary precondition
is stronger. For the program if (*) assert x, the necessary pre-
condition is true, and the almost-correct specification is x, and so
the almost-correct specification is stronger. The work on doomed
program points [15] reduces false alarms by looking for assertions
that will fail for all possible inputs. Such assertions are a special
case of our SIBs. Recent work by Dillig et al. [10] use abductive
inference with user feedback to classify alarms. We believe that the
two approaches are largely complementary. The framework in [10]
mainly addresses the problem of false alarms resulting from anal-
ysis imprecision instead of imprecision from the environment. Our
framework can aid this work by identifying the initial set of warn-
ings to display to the user for further classification. On the other
hand, the use of quantifier elimination for abduction can provide an
alternate way to discover almost-correct specifications. The work
on interleaved bugs [16] addresses the underspecified precondition
problem for the specific case of checking concurrency bugs by us-
ing the “simpler” sequential executions as a filter. Our approach
applies in the sequential setting and does not use any simpler be-
haviors as oracles.

7. Conclusions and future work
In this paper, we make the case for using semantic methods to
make program verifiers less demonic in the face of uncertainty.
We introduce the concepts of abstract semantic inconsistency bugs
and almost-correct specifications, which allow program verifiers to
avoid reporting a class of stupid false alarms without being overly
angelic. We show that our framework can be instantiated to find
the demonstrably useful class of semantic inconsistency bugs. Our
preliminary results demonstrate that the technique can be useful in
suppressing many obviously demonic environments and improving
the quality of warnings.

There are several directions for extending this work: We would
like to discover more interesting abstractions, possibly by using
user feedback for guidance. Extending our current work to perform
limited interprocedural analysis [9] by asserting failure precondi-
tions at call sites will increase the scope of analysis and increase
the set of abstract SIBs. Finally, we plan to conduct a user study to
understand the quality of the alarms we report initially.
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