
A Calculus of Atomic Actions

Tayfun Elmas
Koç University, İstanbul, Turkey

telmas@ku.edu.tr

Shaz Qadeer
Microsoft Research, Redmond, WA

qadeer@microsoft.com

Serdar Tasiran
Koç University, İstanbul, Turkey

stasiran@ku.edu.tr

Abstract
We present a proof calculus and method for the static verification
of assertions and procedure specifications in shared-memory con-
current programs. The key idea in our approach is to use atom-
icity as a proof tool and to simplify the verification of assertions
by rewriting programs to consist of larger atomic actions. We pro-
pose a novel, iterative proof style in which alternating use of ab-
straction and reduction is exploited to compute larger atomic code
blocks in a sound manner. This makes possible the verification of
assertions in the transformed program by simple sequential rea-
soning within atomic blocks, or significantly simplified application
of existing concurrent program verification techniques such as the
Owicki-Gries or rely-guarantee methods. Our method facilitates a
clean separation of concerns where at each phase of the proof, the
user worries only about only either the sequential properties or the
concurrency control mechanisms in the program. We implemented
our method in a tool called QED. We demonstrate the simplicity and
effectiveness of our approach on a number of benchmarks includ-
ing ones with intricate concurrency protocols.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification — assertion checkers, correct-
ness proofs, formal methods; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs
— assertions, invariants, pre- and post-conditions, mechanical ver-
ification; D.1.3 [Programming Techniques]: Concurrent Program-
ming — parallel programming

General Terms Languages, Theory, Verification

Keywords Concurrent Programs, Atomicity, Reduction, Abstrac-
tion

1. Introduction
This paper is concerned with the problem of statically verifying the
(partial) correctness of shared-memory multithreaded programs.
This problem is undecidable and, in theory, no harder than the prob-
lem of verifying single-threaded programs. In practice, however,
it is significantly more difficult to verify multithreaded programs.
For single-threaded programs, the undecidability of program ver-
ification is circumvented by the use of contracts–pre-conditions,
post-conditions, and loop invariants– to decompose the problem
into manageable pieces. These contracts need to refer only to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’09, January 18–24, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

locally visible part of the program state, and can usually be stated
with little difficulty. Reasoning about multithreaded programs, on
the other hand, requires significantly more intellectual effort. For
example, invariant-based reasoning [1, 21] requires for each line1

of the program an annotation that is guaranteed to be stable un-
der interference from other threads. Writing such a specification is
challenging because of the need to consider the effect of all thread
interleavings. The resulting annotations in each thread are often
non-local and complicated because they refer to the private state
of other threads. The rely-guarantee approach [16] provides more
flexibility in specifying the interference from the environment but
the complexity of the required annotations is still significant.

The fundamental difficulty in reasoning about multithreaded
programs is the need to reason about concurrent execution of fine-
grained atomic actions. In this paper, we introduce an iterative ap-
proach to proving assertions in multithreaded programs aimed at
circumventing this difficulty. In our approach, in each step of the
proof, we rewrite the program by locally transforming its atomic
actions to obtain a simpler program. Each rewrite performs one of
two different kinds of transformations—abstraction and reduction.
Abstraction replaces an atomic action with a more relaxed atomic
action allowing more behaviors. Abstraction transformations in-
clude making shared variable reads or writes non-deterministic, and
prefacing atomic statements with extra assertions. Reduction [18]
replaces a compound statement consisting of several atomic actions
with a single atomic action if certain non-interference conditions
hold. This transformation has the effect of increasing the granular-
ity of the atomic actions in the program. Abstraction and reduction
preserve or expand the set of behaviors of the program, so that as-
sertions proved at the end of a sequence of transformations are valid
in the original program.

While reduction and abstraction have been studied in isolation,
the iterative and alternating application of abstraction and reduction
is a distinguishing and essential aspect of our method. Abstraction
and reduction are symbiotic. Reduction creates coarse-grained ac-
tions from fine-grained actions and allows a subsequent abstrac-
tion step to summarize the entire calculation much as precondi-
tions and post-conditions summarize the behavior of a procedure
in a single-threaded program. Conversely, suitably abstracting an
atomic action allows us to reason that it does not interfere with
other atomic actions, and later application of reduction are able to
merge it with other actions. The examples in Sections 2 and 6 show
that the combined iterative application of these techniques is a sur-
prisingly powerful proof method able to prove intricate examples
correct by a sequence of simple transformations and few annota-
tions. In most cases, we are able to simplify the program enough so
that assertions in the final program can be validated by purely se-
quential reasoning within a single abstract atomic action. In other
cases, the atomic actions in the program become large enough for

1 For brevity, we use the word “line” to refer to the granularity of atomically
executed statements.

a straightforward application of existing techniques such as rely-
guarantee reasoning.

Another distinguishing feature of our approach is the possibil-
ity of introducing assertions at any point during the sequence of
transformations while deferring their proof until later, when large
enough atomic blocks make their proof easy. In our framework, an-
notating any atomic statement with any assertion is a valid program
abstraction. The interpretation is that the action is relaxed so that if
the assertion is violated, the execution is made to “go wrong.” An-
notating an action with an assertion, e.g. one that indicates that it
is not simultaneously enabled with another action, may enable fur-
ther reduction steps. In other proof methods, when an additional
assertion is introduced, one is forced to prove that it is valid and
preserved under interference by other threads. In our approach, we
use the introduced assertion without first proving it and take fur-
ther proof steps that simplify the program. Yet, the soundness of
our method is not compromised as long as all assertions are proved
eventually.

We have implemented our verification method in a tool called
QED. Our tool accepts as input a multithreaded program written
in an extension of the Boogie programming language [2] and a
proof script containing a sequence of proof commands. A proof
command is used for one of two purposes. First, it may provide a
high-level tactic for rewriting the input program using abstraction,
reduction or a combination of the two. Second, it may provide
a concise specification of the behavior of the current version of
the program; common specifications include locking protocols and
data invariants. After executing each step in the proof script, QED
allows the user to examine the resulting program, intercept the
proof, and give new commands. The tool automatically generates
the verification conditions justifying each step of the proof and
verifies them using Z3 [6], a state-of-the-art solver for satisfiability-
modulo-theories.

We have evaluated QED by verifying a number of multithreaded
programs with varying degree of synchronization complexity.
These examples include programs using fine-grained locking and
non-blocking data structures. We have found that the iterative ap-
proach embodied in QED provides a simple and convenient way of
communicating to the verifier the programmer’s understanding of
the computation and synchronization in the program. The proofs
in our method are invariably simpler and more intuitive than the
proofs based on existing approaches.

To summarize, this paper makes the following contributions:

• A novel proof technique for multithreaded programs, based
upon rewriting of the input program iteratively using abstrac-
tion and reduction, producing in the limit a program that can be
verified by sequential reasoning methods.
• A tool QED that implements our proof method using a set of

intuitive, concise, and machine-checked proof commands.
• Evaluation of our technique and tool on a variety of small to

medium-sized multithreaded programs.

2. Motivating examples
In this section, we provide an overview of our method using sev-
eral examples. We begin by illustrating reduction and abstraction
and, in Section 2.1, present a nontrivial interaction between them.
In these examples, each line of code performs at most one access to
a global variable. For example, we split the increment of x in Fig-
ure 1 and the assignment of newsize to currsize (lines 15–16) in
Figure 4 into multiple lines. We use if(*) and while(*) to denote
nondeterministic choice. The statements assume e and assert e

cause the execution to block or go wrong, respectively, if e eval-
uates to false; otherwise, they are equivalent to a skip statement.

void inc() {
int t;
acquire(lock);

t := x;
t := t+1;
x := t;

release(lock);
}

void inc() {
int t;
[havoc t; x := x+1];

}

Figure 1. Lock-based atomic increment

The statement havoc x assigns x a nondeterminstic value of proper
domain.

Reduction produces a single atomic action from the sequential
composition of two atomic actions if either the first action is a right
mover or the second action is a left mover. An action R commutes
to the right of X if the effect of thread t executing R followed
by a different thread u executing action X can be “simulated” by
first thread u executing X followed by thread t executing R. If R
commutes to the right of all actions in the program, it is said to
be right mover. Common cases where R is a right mover are if R
and X do not conflict (i.e., read or write any common variables), if
R is non-deterministic (i.e. independent of the program store) or if
R disables X . A left mover is defined similarly. Lock acquires are
right movers and lock releases are left movers. Accesses to local
variables and race-free accesses to shared variables are both right
and left movers.

In Figure 1, the procedure inc on the left is a lock-based imple-
mentation for atomically incrementing a shared variable x. Through
an iterative application of reduction, our method can transform the
body of this procedure into a single atomic action as shown on the
right and indicated by square brackets.

In Figure 2, the procedure inc on the left uses the CAS (Compare-
And-Swap) primitive for a lock-free implementation of the same
behavior. CAS(x,t,t+1) atomically compares the value of x with t,
writing t+1 into x and returning true if the two are identical, and
leaving x unchanged and returning false if the two are different.
Note that this program has conflicting accesses to x that are si-
multaneously enabled, and is consequently more difficult to reason
about than the previous version. However, through an iterative ap-
plication of abstraction and reduction, our method can just as easily
show that this procedure atomically increments x; the sequence of
transformations are shown from left to right in Figure 2.

First, we perform a simple transformation (as in [10]) that peels
out the last iteration of the loop, thereby arriving at the version
of inc in Figure 2(b). Next, we argue that it is a valid abstraction
to replace the read of x in t := x with havoc t since this only
increases the set of possible behaviors. We do not expect this
abstraction to lead to additional assertion violations since the result
of the read action is later verified by CAS(x,t,t+1); reading a value
other than the actual value of x would simply lead to a failed
CAS operation. We also abstract each unsuccessful execution of
CAS(x,t,t+1) inside the loop with the statement skip to arrive at
the version of inc in Figure 2(c).

In the version of inc in Figure 2(c), every operation except for
the last one accesses only local state and is consequently both a
right and a left mover. Therefore, we can use reduction to sum-
marize the entire loop with a single havoc t statement to arrive at
the version of inc in Figure 2(d). Finally, we reduce the resulting
sequential composition to arrive at a single atomic action in the
version of inc in Figure 2(e).

Figure 3(a) shows procedure add, a client of inc. Procedure add

has a parameter n required to be at least 0 and calls inc repeat-
edly in a loop n times. Once the procedure inc has been trans-
formed into an atomic increment of x, we can reason about add

by replacing the call to inc with an atomic increment of x to ob-

void inc() {
int t;
while (true) {

t := x;
if (CAS(x,t,t+1))

break;
}

}
(a)

void inc() {
int t;
while (*) {

t := x;
assume x!=t;

}
t := x;
[assume x==t;
x := t+1];

}
(b)

void inc() {
int t;
while (*) {

havoc t;
skip;

}
havoc t;
[assume x==t;
x := t+1];

}
(c)

void inc() {
int t;
havoc t;

havoc t;
[assume x==t;
x := t+1];

}
(d)

void inc() {
int t;

[havoc t;
x := x+1];

}
(e)

Figure 2. Lock-free atomic increment

void add(int n) {
while (0<n) {

inc();
n := n-1;

}
}

(a)

void add(int n) {
while (0<n) {

[x := x+1];
n := n-1;

}
}

(b)

void add(int n) {
[assert 0<=n;
x := x+n;
n := 0];

}
(c)

Figure 3. Client of inc

tain the version in Figure 3(b). In this version, every action other
than the atomic increment accesses only local variables. Moreover,
atomic increments commute with each other. Therefore, every ac-
tion in the second version of inc is both a right and a left mover.
Consequently, the entire loop is reducible to a single atomic action.
Now, using purely sequential reasoning techniques and by writing
an appropriate invariant for the loop in add, we perform abstraction
on this atomic action. The resulting atomic action is semantically
equivalent to the body of the version of add in Figure 3(c).

2.1 A device cache
We have illustrated abstraction and reduction using a collection
of small examples. We now demonstrate the symbiotic nature of
these two techniques using a larger and nontrivial example. In the
following, in order to make it easier to follow the proof steps,
sentences that constitute a proof step are indicated by (S1), (S2),
etc.

Device cache operation: Procedure Read in Figure 4 reads a
number of bytes from a device’s physical storage, modeled by
the variable device. Client threads call Read to request to read
(up to) size bytes from device into the output parameter buffer,
starting from index start in the device. Read returns the number of
bytes it was able to read (possibly less than size) from the device
in the output parameter bytesread. In order to make subsequent
requests to Read faster, the implementation of Read caches the bytes
read into an (unbounded) memory buffer cache. In this example,
the type int is the set of non-negative integers. The reader can
informally assume that all integers are initialized to 0. Initial states
will be treated more formally later in the paper. The variables
device, cache and buffer are all integer-indexed maps starting
from 0.

The variable currsize stores the number of bytes from the de-
vice that are already available in the cache. When there are enough
bytes in the cache (lines 2-4), Read jumps to COPY TO BUFFER to
copy the contents of cache to buffer (lines 18-22). In this case, the
number of bytes read is the same as the number of bytes requested
by the client.

If the cache does not contain all the bytes requested, there are
two possibilities:

• If in line 5 a thread t observes newsize > currsize, this means
another thread is in the process of copying bytes from the device
to the cache as will be explained below. In this case, t can read

the portion of cache between 0 and currsize (lines 18-21). If
bytesread < size at return, the client thread t may retry later
for the rest of the bytes.
• Otherwise, thread t reads the missing bytes from the device

into the cache. The driver allows only one thread to read from
the device and write to the cache. This is implemented by
the following synchronization policy. The first thread that at-
tempts to read from the device sets the variable newsize to
start + size (line 9), and then performs the actual read by
jumping to READ DEVICE (line 11). While newsize is greater
than currsize, no other thread attempts to access the section
of cache and device between currsize and newsize. As ex-
plained above, during this period, another thread can read the
portion of cache between 0 and currsize. The thread that
jumped to READ DEVICE sets currsize to newsize (lines 14-17),
which makes the recently read bytes from the device available
for further calls to Read by all threads.

Synchronization mechanisms: This example uses two differ-
ent mechanisms to synchronize the client threads.

• A lock protects accesses to currsize and newsize, thereby
allowing us to reduce the code blocks from lines 1-10 and
lines 14-17 into atomic actions (S1). This increased granularity
of atomicity also allows us to introduce and prove the invariant
currsize <= newsize.
• Only one thread at a time is allowed to update newsize, make

the jump to READ DEVICE from line 10, and update cache.
We capture this synchronization by introducing an abstract
lock variable al that is associated with the locking predicate
currsize < newsize.

Acquiring al: The lock al is available to a thread in a state
where currsize == newsize. A thread increases newsize

(line 9), making the locking predicate true, to acquire al.

Releasing al: A thread sets currsize to newsize (line 15–
16), making the locking predicate false to release al.

Thus, the lock al is acquired just before the jump to READ DEVICE

and held during the execution of lines 11–17.

Specification: We would like to verify that if the input pa-
rameters of Read satisfy 0 <= start && 0 <= size at entry, then
the output parameters of Read satisfy (forall x:int. start <=

procedure Read (start : int, size : int)
returns (buffer : [int]int, bytesread : int)

{
var i, j, tmp : int;

1 acquire();
2 i := currsize;
3 if (start + size <= i) {
4 release(); goto COPY_TO_BUFFER;
5 } else if (newsize > i) {
6 size := (start <= i) ? i - start : 0;
7 release(); goto COPY_TO_BUFFER;
8 } else {
9 newsize := start + size;

10 release(); goto READ_DEVICE;
} // end if

READ_DEVICE:
11 while (i < start + size) {
12 cache[i] := device[i];
13 i := i + 1;

}
14 acquire();
15 tmp := newsize;
16 currsize := tmp;
17 release();

COPY_TO_BUFFER:
18 j := 0;
19 while(i < size) {
20 buffer[j] := cache[start + j];
21 j := j + 1;

}
22 bytesread := size; return;
}

Figure 4. Original device cache program

procedure Read (start : int, size : int)
returns (buffer : [int]int, bytesread : int)

{
var i, j, tmp : int;

A [if (*) {
havoc i, size;
assume (size == 0 || start + size <= currsize);
goto COPY_TO_BUFFER;

} else {
i := currsize;
assume newsize <= i && i < start + size;
newsize := start + size;
goto READ_DEVICE;

}]

READ_DEVICE:
B while (i < start + size) {
C [assert currsize <= i; cache[i] := device[i]];
D i := i + 1;

}
E [tmp := newsize;

currsize := tmp];

COPY_TO_BUFFER:
F j := 0;
G while (j < size) {
H [assert start + j < currsize; buffer[j] := cache[start + j]];
I j := j + 1;

}
J bytesread := size; return;

}

Figure 5. Transformed device cache program

x && x < start + bytesread ==> buffer[x] == device[x]) at
exit. This task is straightforward if Read executes without any in-
terference. Our goal in the following is to convert the entire body of
Read into an abstract atomic action that is strong enough to verify
the aforementioned property.

Verification: We will argue that lines and actions that access
shared variables are of the desired mover types in order to allow us
to convert the body of Read into an atomic action. We will argue
that

• the update of cache at line 12 is a right mover (S2), and
• the read of cache at line 20 is a left mover (S3)

Note that buffer is a local variable and device is immutable, so the
only possible conflict among these lines could be due to the variable
cache. The execution of line 12 is not simultaneously enabled in
two different threads because of the lock al. The argument that
line 12 does not conflict with line 20 requires the introduction
of assertions just prior to the execution of these actions. These
assertions are shown on lines C and H in Figure 5; they are checked
atomically with the execution of the action (shown by surrounding
square brackets). These assertions capture why the update and read
of cache do not conflict: from a state in which both hold, the update
and read access different indices of cache!

The transformation of line 12 and line 20 in Figure 4 into
line C and line H in Figure 5 introduces a dependency on the
variable currsize because of the assertion annotations. Therefore,
we must also argue that lines C and H commute to the right and left
respectively of the action updating currsize on line E. Due to the
abstract lock al, line C is not enabled simultaneously with line E.
Also, line H commutes to the left of line E when executed from a
state satisfying the already proved invariant currsize <= newsize.

We now show how to transform the atomic action in lines 1-
10 of Figure 4 into a right mover. In its original form, this action

does not commute to the right of the atomic action in lines 14-17.
To see this, consider the scenario where lines 1-10 are executed
by a thread t from a state in which currsize < (start + size)

< newsize; consequently size is reduced to either 0 or currsize-
start. Suppose that this were followed by another thread u execut-
ing the action in lines 14-17 and increasing currsize to newsize.
Clearly, this scenario is not equivalent to one in which u executes
first followed by t, since in this case t would not modify size.

To transform lines 1-10 into a right mover, we perform two ab-
stractions to get the action shown on line A in Figure 5. We first ab-
stract the check at line 5 of Figure 4 to a non-deterministic decision
and enable lines 6-7 to run even when currsize == newsize (S4).
This causes a thread to return fewer bytes than size even though it
could jump to READ DEVICE and read all bytes it needs from device.
The second abstraction is to update the variable size nondetermin-
istically to a value less than or equal to that assigned by the orig-
inal program in the case when control jumps to COPY TO BUFFER

(S5). This allows the code to read fewer than the number of bytes
available to it in the cache. This abstraction is justified since the
additional behavior in the transformed Read (Figure 5) might have
occurred if the call had taken place while an update of cache was
being executed by another thread. This abstraction is also safe from
the point of view of proving that the buffer contains a valid snap-
shot of device for the first bytesread bytes. The transformed Read

in Figure 5 can now be reduced into an atomic action, because
lines A-D are right movers and lines F-J are left movers (S6). Fi-
nally, we can prove the relevant condition about output parameters
at exit using purely sequential reasoning techniques.

We introduce and verify the invariant (forall x:int. 0 <= x

< currsize ==> cache[x] == device[x]) once the code in Fig-
ure 5 has been converted into a single atomic action (S7). A proof
of Read in Owicki-Gries at the line-level granularity would require
all introduced invariants to be included in the annotations at several

Atomic : α ::= ϕ . τ
Stmt : s ::= α | ρ() | s	 | s ; s | s 2 s | s ‖ s

Figure 6. The language

lines. In addition, it would require facts about global variables es-
tablished at assignments and conditional checks to be propagated
through the annotations in subsequent lines. Our method can han-
dle this example much more simply by introducing invariants such
as those in (S7) when atomic blocks are large enough.

3. Preliminaries
A program P is represented by a tuple P = 〈Var ,Main,Body〉.
We refer to elements of the tuple using dotted notation (e.g.,
P .Main) and omit reference to P when clear from the context.
Var is the set of uniquely-named global variables. The program
heap is modeled by using a map similarly to ESC/Java [11] and
Boogie [2]. The statement Main is the body of the program. Body
is a map from procedure names to statements to be executed when
a procedure is called.

Figure 6 shows the language that we use to describe pro-
grams formally. In our language, we express each atomic statement
(Atomic) with a gated action ϕ . τ . The store predicate ϕ is the
gate of the action. If executed at a state that violates ϕ, the action
“goes wrong”. From states that satisfy ϕ, the set of state transitions
allowed by this gated action are described by transition predicate τ .
Statements (Stmt) are either procedure calls (ρ()) or are built from
atomic statements by sequential (;) or parallel (‖) composition,
non-deterministic choice (2) or looping (s). We model argument
passing using global variables, so a call to ρ is simply denoted by
ρ().

We sometimes express transition predicates in the compact no-
tation: 〈τ〉M ≡ τ ∧

∧
x∈Var\M (x ′ = x) where M is list of vari-

ables written by α and x ′ is a variable that refers to the value of
x after the transition described by τ is taken. For example, we
can express the Boogie statements assume e, assert e and x :=

e (where e is an expression and x is a variable) with the gated ac-
tions true . 〈e〉∅, e . 〈true〉∅ and true . 〈x′ = e〉x, respectively.

Atoms(s), the set of all gated atomic actions in s , is computed
recursively as follows:

Atoms(ϕ . τ) = {ϕ . τ}
Atoms(s) = Atoms(s)

Atoms(s1; s2) = Atoms(s1) ∪Atoms(s2)
Atoms(s12s2) = Atoms(s1) ∪Atoms(s2)
Atoms(s1‖s2) = Atoms(s1) ∪Atoms(s2)

Atoms(ρ()) = ∅

We extend the definition of Atoms to programs as follows:
Atoms(P) = Atoms(Main)∪

⋃
ρ∈Dom(Body) Atoms(Body(ρ))

3.1 Execution semantics
The program state evolves over time as threads execute gated ac-
tions. Each thread has a unique identifier from a set Tid . tmain is
a distinguished thread id that runs the statement P .Main , i.e., the
program body. The operational semantics of our programming lan-
guage is given in Figure 7.

To represent the fact that a statement s ∈ Stmt is executed by
a thread t ∈ Tid , we use the dynamic statement t : s . The state-
ments skip and error are also dynamic statements representing a
program that has terminated normally and with an assertion viola-
tion, respectively. The semantics only allows dynamic statements
(Dynamic) to be executed, so, before being executed, each static
statement must be labeled by the id of the executing thread. The

gate and the transition predicate of a gated action may refer to the
current thread id through the special variable tid ∈ Var . When the
gated action ϕ . τ is being executed by a thread t ∈ Tid , t is sub-
stituted for tid in both ϕ and τ . To represent the creation of new
threads by the parallel composition statement, we make use of two
functions left , right : Tid → Tid . We assume that left and right
together define a tree over Tid with tmain being the root of the tree.

A state of P is a tuple (σ, d) where σ is the current store, and d
is the dynamic statement representing a partially executed program.
We express a feasible state transition derivable from the operational
semantics in Figure 7, as (σ1, d1)→ (σ2, d2), where d1 and d2 are
dynamic statements. We denote the transitive closure of → with
→∗. The program starts with an arbitrary store and the dynamic
statement tmain : P .Main .

Let ϕ[t/tid] and τ [t/tid] be formulas obtained by substitut-
ing t for tid in ϕ and τ , respectively. σ � ϕ[t/tid] states that
ϕ[t/tid] is satisfied given the valuation of the variables in σ. Sim-
ilarly, (σ1, σ2) � τ [t/tid] states that τ [t/tid] is satisfied given the
valuation of unprimed variables in σ1 and primed variables in σ2.
We will denote with (ϕ. τ)[t] the gated action ϕ[t/tid] . τ [t/tid].

The semantics of a gated action t : ϕ . τ is given in the rules
ATOMIC and ERROR. We call transitions obtained from ATOMIC and
ERROR atomic transitions of the program. ATOMIC states that if the
current store satisfies ϕ[t/tid], the store is modified atomically
consistent with τ [t/tid] and the current dynamic statement be-
comes skip. Otherwise, ERROR states that the execution goes wrong,
where the store does not change but the statement becomes error.

An execution of s is a sequence of feasible transition steps
(σ1, t : s) → (σ2, d2) → · · · → (σn, dn), where t is a thread
id from Tid . An execution is terminating if it ends in skip or error.
An execution is blocking if it cannot be extended. Clearly, any
terminating execution is also a blocking execution. An execution
succeeds if it ends in skip and fails (or goes wrong) if it ends
in error. In the following, we define Good(t, s, ϕ) as the set of
pre- and post-store pairs associated with succeeding executions of
s executed by thread t from stores satisfying ϕ. Bad(t, s, ϕ) is the
set of pre-stores associated with failing executions. Formally,

Good(t, s, ϕ) = {(σ1, σ2) | σ1 � ϕ, (σ1, t : s)→∗ (σ2, skip)}
Bad(t, s, ϕ) = {σ1 | σ1 � ϕ, ∃σ2. (σ1, t : s)→∗ (σ2, error)}

A statement s may go wrong from ϕ if there exists a failing run
of s from ϕ, i.e. ∃t ∈ Tid . Bad(t, s, ϕ) 6= ∅. A program P may
go wrong from ϕ if P .Main may go wrong from ϕ.
σ|V represents the projection of σ to the set of variables V ⊆

Var . The projections of Good and Bad to V are defined as as
follows:

Good |V(t, s, ϕ) = {(σ1|V, σ2|V) | (σ1, σ2) ∈ Good(t, s, ϕ)}
Bad |V(t, s, ϕ) = {σ1|V | σ1 ∈ Bad(t, s, ϕ)}

The definitions of Good and Bad are also extended to pro-
grams: Good(P , ϕ) and Bad(P , ϕ) are shorthands for Good(tmain ,
P .Main, ϕ) and Bad(tmain ,P .Main, ϕ), respectively.

4. The proof method
In our approach, a proof of a program is performed by a sequence
of steps each of which modifies the current proof context. The proof
context consists of the current program P and a store predicate I.
A proof context P , I specifies a set of executions of P that start
from stores satisfying I. I not only constrains initial stores from
which P is run, but also is an invariant guaranteed to be preserved
by every atomic transition of P . We give a formal definition of I in
Section 4.1. A proof step is denoted P1, I1 99K P2, I2. The core
proof rules are given in Figure 8.

(σ1, d1)→ (σ2, d2)

Dynamic : d ::= skip | error | t : s | d ; d | d ‖ d
E ::= [·] | E ; d | E ‖ d | d ‖ E

ATOMIC
σ1 � ϕ[t/tid] (σ1, σ2) � τ [t/tid]

(σ1, t : ϕ . τ)→ (σ2, skip)

ERROR
σ � ¬ϕ[t/tid]

(σ, t : ϕ . τ)→ (σ, error)

FORK
u = left(t) w = right(t)

(σ, t : (s1‖s2))→ (σ, u : s1‖w : s2)

EVALUATE
(σ1, t : s1)→ (σ2, t : s2) s2 6= error

(σ1, E[t : s1])→ (σ2, E[t : s2])

EVALUATE-ERROR
(σ1, t : s)→ (σ2, error)

(σ1, E[t : s])→ (σ2, error)

LABEL

(σ, t : (s1 ; s2))→ (σ, t : s1; t : s2)

SEQUENTIAL

(σ, skip ; t : s)→ (σ, t : s)

PROC-CALL
Body(ρ) = s

(σ, t : ρ())→ (σ, t : s)

CHOOSE-FIRST

(σ, t : (s1 2 s2))→ (σ, t : s1)

CHOOSE-SECOND

(σ, t : (s1 2 s2))→ (σ, t : s2)

LOOP-SKIP

(σ, t : s)→ (σ, skip)

LOOP-ITER

(σ, t : s)→ (σ, t : s ; t : s)

JOIN-FIRST

(σ, skip ‖ t : s)→ (σ, t : s)

JOIN-SECOND

(σ, t : s ‖ skip)→ (σ, t : s)

Figure 7. The operational semantics

P1, I1 99K P2, I2

INVARIANT
� I2 ⇒ I1 P ` I2

P , I1 99K P , I2

AUX-ANNOTATE
Atoms(P) = {ϕ1 . τ1

1 , . . . , ϕ
n . τn1 } ϕ1 . τ1

2 ` I . . . ϕn . τn2 ` I
a /∈ Var � (ϕ1 ∧ τ1

1)⇒ ∀a.∃a ′. τ1
2 . . . � (ϕn ∧ τn1)⇒ ∀a.∃a ′. τn2

P , I 99K P [Var 7→ Var ∪ {a}, ϕ1 . τ1
1 7→ ϕ1 . τ1

2 , . . . , ϕ
n . τn1 7→ ϕn . τn2], I

SIMULATE
I ` α1 � α2 α2 ` I
P , I 99K P [α1 7→ α2], I

REDUCE-SEQUENTIAL
P , I ` α1 : R or P , I ` α2 : L
P , I 99K P [α1;α2 7→ α1 ◦ α2], I

REDUCE-CHOICE

P , I 99K P [α12α2 7→ α1 ⊕ α2], I

REDUCE-LOOP
P , I ` α : m m ∈ {R,L} ϕ . τ ` I

� ϕ⇒ τ [Var/Var ′] I ` (ϕ . τ ◦ α) � ϕ . τ
P , I 99K P [α	 7→ ϕ . τ], I

EXPAND-PARALLEL
α3 = α1[left(tid)/tid] α4 = α2[right(tid)/tid]

P , I 99K P [α1‖α2 7→ (α3;α4)2(α4;α3)], I

Figure 8. The core proof rules of our method

Each proof step is governed by a proof rule which either rewrites
the program or changes the program invariant. A rewrite of P is
denoted P [x 7→ y] where an element x of the program is replaced
with another element y of the same type. A rewrite may modify
Var by adding new variables to it, or may replace statements in
Main or Body by others.

A program is proved correct by a sequence of proof steps
P , true 99K P1, I1 99K P2, I2 · · · 99K Pn, In if the final program
Pn is one in which all the gated actions are validated. A gated
actionϕ.τ is validated by showing that In ⇒ ϕ is a valid formula.
Since In is an invariant of Pn, no execution of Pn starting from a
state in In causes an assertion violation. The soundness theorem
(Theorem 1 below) asserts that in this case the initial program P
cannot go wrong starting from a state in In.
Soundness. The following lemma states that the application of
each core proof rule given in Figure 8 preserves the soundness of
assertion checking, i.e., failing runs of the original program are
preserved after an application of any rule. In addition, the new
program “simulates” succeeding runs of the original program from
a store σ as long as the former does not go wrong from σ. We give
a proof outline for Lemma 1 below. The complete proofs are given
in our technical report [8].

LEMMA 1 (Preservation). Let P1, I1 99K P2, I2 be a proof step.
Let V = P1.Var and X = P2.Var\P1.Var . Then the following
hold:

1. Bad(P1, ∃X. I2) ⊆ Bad |V(P2, I2)
2. For each (σ1, σ2) ∈ Good(P1,∃X. I2) :

(a) σ1 ∈ Bad |V(P2, I2), or
(b) (σ1, σ2) ∈ Good |V(P2, I2))

PROOF SKETCH: We prove that for each execution E1 of P1 start-
ing from a store σ1 in I2 and ending in state σ2, there exists a “wit-
ness” execution E2 of P2 from σ1 that leads to σ2 or goes wrong.
To obtain E2, we provide in each case a sequence of local trans-
formations to E1. Each transformation is either the swap of two
adjacent actions justified by their mover types, or the replacement
of an action by a more abstract one. The correctness of the exe-
cution transformations are justified by the antecedents of the proof
rules. 2

The following theorem generalizes the lemma to an arbitrary
number of proof steps and states the soundness of our proof
method.

THEOREM 1 (Soundness). Let P1, true 99K · · · 99K Pn, In
be a sequence of proof steps. Let V = P1.Var and X =
Pn.Var\P1.Var . If Pn cannot go wrong from In, then P1 cannot
go wrong from In and Good(P1, ∃X. In) ⊆ Good |V(Pn, In).

The P1, I1 notation implicitly requires that I1 be an invariant of
program P1. Furthermore, any transformation P1, I1 99K P2, I2
has the property that I2 ⇒ I1. This connection between I1 and I2
becomes significant while proving Theorem 1.

In the rest of this section, we present the proof rules of our
system, which are the building blocks of the higher-level proof
tactics presented in Section 5. We anticipate that most users of QED
will reason at the level of these higher-level, combined steps. In this
section, we have made an attempt at motivating each proof rule by
providing forward pointers to Section 5.

4.1 Invariants
The second component of the proof context, I, is a store predicate
that specifies the stores from which each execution of P preserves
I for each atomic transition of P . A gated action ϕ . τ preserves
I, denoted ϕ . τ ` I, if from stores satisfying I, ϕ . τ either goes
wrong or preserves I at the post-store, i.e., (ϕ ∧ τ) ⇒ (I ⇒ I′).
Here, for a store predicate ψ, the store predicate ψ′ is obtained by
replacing each free occurrence of each v ∈ Var with v′. Then I is
an invariant of a program P , denoted P ` I, if all gated actions
in Atoms(P) preserve I. Each proof starts from the proof context
P , true. New program invariants are introduced by strengthening
the current invariant by using INVARIANT.

4.2 Auxiliary variables
The rule AUX-ANNOTATE adds a fresh auxiliary variable a to the
program and replaces each gated action ϕi . τ i1 in P with a new
gated action ϕi . τ i2. We require that ϕi . τ i2 preserves the current
invariant. The new action τ i2 specifies how a is updated by the gated
action (or left unmodified) for each value of a in the current state,
but preserves the effect of τ i1 on other variables. In particular, the
introduction of auxiliary variables cannot cause an action to block
at a state s if the original action did not. This proof rule is typically
used to annotate gated actions with synchronization information;
see Section 5.2 for details.

4.3 Simulation
The simulation relation, defined in this section, enables us to decide
when SIMULATE can replace a gated action with another. Let I
be a store predicate. ϕ2 . τ2 simulates ϕ1 . τ1 from I, denoted
I ` ϕ1 . τ1 � ϕ2 . τ2, if the following two conditions hold:

1. � I ∧ ϕ2 ⇒ ϕ1

2. � I ∧ ϕ2 ∧ τ1 ⇒ τ2

The first condition above states that whenever ϕ1 . τ1 goes wrong
from I, so does ϕ2 . τ2. The second condition states that whenever
ϕ2 . τ2 does not go wrong from I, it simulates succeeding runs of
ϕ1 . τ1 from I.

Common ways of rewriting a gated action ϕ1 . τ1 to ϕ2 . τ2 are
strengthening the gate, i.e., ϕ2 ⇒ ϕ1 and τ1 = τ2, or weakening
the transition predicate, i.e., τ1 ⇒ τ2 and ϕ1 = ϕ2. In both
cases, the new action is an abstraction of the old one. While the
former adds extra failing behaviors to the gated action by adding
new assertions for the pre-store, the latter adds extra succeeding
behaviors.
Borrowing assertions. A special case of the simulation proof rule
is the annotation of gated actions with assertions. When a gated
action ϕ1 . τ1 is annotated with an assertion ψ, it is transformed
to the gated action (ϕ1 ∧ ψ) . τ1. We use assertions to enable later
applications of the simulation rule. Consider the case where we
would like to replace ϕ1 . τ1 with ϕ2 . τ2 but it is not the case that
I ` ϕ1 .τ1 � ϕ2 .τ2 because the invariant I is not strong enough.
Instead of having to strengthen I by reasoning about the entire
program, we simply express our belief about the program state
when ϕ1 . τ1 is reached using an assertion ψ. The new simulation
check I ` (ϕ1 ∧ ψ) . τ1 � (ϕ2 ∧ ψ) . τ2 is more likely to pass.
We often insert assertions to express beliefs about synchronization
mechanisms; see Section 5.2 for details.

Our method allows program transformations to proceed while
the verification of the introduced assertion is deferred to later proof
stages. Borrowing assertions in this manner (instead of proving
them right away) is a powerful tool, since in the transformed pro-
gram with larger atomic actions, validation of assertions can often
be done automatically.
Validating gated actions. Another special case of SIMULATE

is using the invariant to validate gated actions, i.e. proving their
their gates (assertions) are valid. We use the following derived rule
RELAX for the purpose of proving and eliminating the gates.

RELAX
� I ⇒ ϕ

P , I 99K P [ϕ . τ 7→ true . τ], I

A program is proved correct when all the gates of Atoms(P)
are replaced with true. The rule emphasizes the fact that validating
assertions in ϕ . τ , in essence, is nothing more than sequential rea-
soning where the invariant is used as the pre-condition to discharge
the assertions in sequential code represented by τ . Here, ϕ is ob-
tained by propagating the assertions in the sequential code to the
beginning of the code block using weakest preconditions [7].

4.4 Reduction

P , I ` s : m

LEFT-MOVER
α = ϕ . τ

∀t, u ∈ Tid . ∀β ∈ Atoms(P) :
(t 6= u)⇒ (I ` (β[u] ◦ α[t]) � (α[t] ◦ β[u]))

P , I ` ϕ . τ : L

RIGHT-MOVER
α = true . (ϕ ∧ τ)

∀t, u ∈ Tid . ∀β ∈ Atoms(P) :
(t 6= u)⇒ (I ` (α[t] ◦ β[u]) � (β[u] ◦ α[t]))

P , I ` ϕ . τ : R

Figure 9. Right and left movers

Our reduction rules are based on Lipton’s theory [18]. Figure 9
shows how we determine whether an action is a right or a left mover
using the judgment P , I ` s : m. These judgments are used for
reducing sequential composition, nondeterministic choice, loops,
and parallel composition.

The rules LEFT-MOVER and RIGHT-MOVER define the mechanism
by which we label atomic actions in the program as a left or right
mover. These rules correspond to performing a pairwise commu-
tativity check with all other atomic actions and are performed au-
tomatically by QED. The rule LEFT-MOVER is straightforward; an
action ϕ.τ is a left mover if it commutes to the left of every action
in the program. The rule RIGHT-MOVER is similar; however, to es-
tablish whether ϕ . τ is a right mover, we check the commutativity
of true . (ϕ ∧ τ) to the right of actions in the program. We have
introduced this asymmetry deliberately to increase the applicabil-
ity of the RIGHT-MOVER rule in the case when the program contains
blocking actions. To see why this was needed, observe that an ac-
tion ϕ . τ that may go wrong cannot commute to the right of an
action β that blocks.
Sequential composition. The REDUCE-SEQUENTIAL makes use
of the ◦ operator defined in terms of wp(τ, ϕ), the (sequential)
weakest-precondition of ϕ with respect to the transition τ . It is
applicable to α1;α2 if either α1 is a right mover or α2 is a left
mover.

P1, I1 99K P2, I2
INLINE-CALL

Body(ρ) = s

P , I 99K P [ρ() 7→ s], I

REDUCE-RECURSIVE
M = {ρ1, ..., ρn} is closed under call

There exists an annotation function Annot where for each ρi ∈M : Annot(ρi) = (mi, ϕi, τi)
∀ρi ∈M : ϕi . τi ` I P , I, Annot ` Body(ρi) : mi P , I, Annot ` {ϕi, τi}ρi Finalizable(ρi, ϕi)

P , I 99K P [Body(ρ1) 7→ ϕ1 . τ1, . . . ,Body(ρn) 7→ ϕn . τn], I

Figure 10. Rules for procedures

ϕ1 . τ1 ◦ ϕ2 . τ2 = (ϕ1 ∧ wp(τ1, ϕ2)) . (τ1 ◦ τ2)

wp(τ, ϕ) = ∀Var ′. τ ⇒ ϕ′

τ1 ◦ τ2 = ∃Var ′′. τ1[Var ′′/Var ′] ∧ τ2[Var ′′/Var]

Nondeterministic choice. The REDUCE-CHOICE makes use of the
⊕ operator defined as follows.

ϕ1 . τ1 ⊕ ϕ2 . τ2 = (ϕ1 ∧ ϕ2) . (τ1 ∨ τ2)

Loops. REDUCE-LOOP reduces a loop α	 to a single gated action
ϕ.τ . Intuitively, ϕ is a predicate that is true at the beginning of the
loop and τ specifies a relation between the beginning of the loop
and the end of any iteration. The conditions needed to apply this
rule are the following: 1) ϕ . τ preserves the current invariant, 2)
the body of the loop is a right or left mover, and 3) ϕ . τ simulates
by zero or more iterations of the loop body α.
Parallel composition. We reduce parallel statements composed
of gated actions to sequential compositions using three rules. The
first rule EXPAND-PARALLEL eliminates the parallel composition by
explicitly enumerating the two possible interleavings of the gated
actions. The following derived rules REDUCE-PARALLEL-I/II exploit
the gated actions being right/left movers to directly eliminate the
parallel composition.

REDUCE-PARALLEL-I
P , I ` α1 : L or P , I ` α2 : R

α3 = α1[left(tid)/tid] α4 = α2[right(tid)/tid]

P , I 99K P [α1‖α2 7→ α3;α4], I

REDUCE-PARALLEL-II
P , I ` α1 : R or P , I ` α2 : L

α3 = α1[left(tid)/tid] α4 = α2[right(tid)/tid]

P , I 99K P [α1‖α2 7→ α4;α3], I

4.5 Procedures
In this section, we show how our proof method deals with proce-
dures. The rules are given in Figure 10. The rule INLINE-CALL is
particularly simple; it simply inlines Body(ρ) at the call site. All
the other rules discussed previously can be used to transform the
body of a procedure iteratively making it smaller and simpler. In the
limit, the procedure body could be transformed to a single atomic
action. Once the procedure body has been simplified enough, it can
be inlined at call sites without any significant increase in the pro-
gram size.

The rule INLINE-CALL is inadequate if there is recursion in the
program. In this case, we use the proof rule REDUCE-RECURSIVE,
which takes a set M of procedures that are closed under the call
relation and gives a mechanism whereby the body of each method
inM is replaced by a gated action. To break circular dependencies,
REDUCE-RECURSIVE requires an annotation function Annot that

P , I ` s : m

BOTH-MOVER
P , I ` s : L P , I ` s : R

P , I ` s : B

SUP-MOVER
P , I ` s : n n v m

P , I ` s : m

ATOMIC-NON-MOVER

P , I ` ϕ . τ : A

CALL-MOVER
Annot(ρ) = (m,ϕ, τ)

P , I ` ρ() : m

COMBINE-MOVERS
P , I ` s1 : m P , I ` s2 : n • ∈ {; ,2, ‖}

P , I ` s1 • s2 : m • n

LOOP-MOVER
P , I ` s : m

P , I ` s	 : m	

Definitions of m;n, m2n, m‖n, and m	

m;n B R L A m2n B R L A m‖n B R L A m	

B B R L A B B R L A B B R L A B B
R R R A A R R R A A R R R - - R R
L L - L - L L A L A L L - L - L L
A A - A - A A A A A A A - - - A -

Figure 11. Rules for deciding movers

provides a specification for each procedure ρi inM and for each
loop occurring in a ρi as explained later in this section.

To define the procedure specifications provided by Annot, we
must first introduce two new mover types—atomic non-mover (A)
and both-mover (B). The partial order v defines a lattice over
movers as specified as follows: B v L v A and B v R v A
Figure 11 extends the judgment P , I ` s : m to all statements and
all mover types [12]. The symbol − indicates that no conclusion
about the mover type can be reached and rules in Figure 11 cannot
be applied. The rule CALL-MOVER allows us to use the mover type
annotation for the body of a procedure at the call site. We call
the statement s atomic if P , I ` s : m is proved for any mover
m v A. The function Annot is defined as follows:

• For each ρi ∈ M, Annot(ρi) returns a tuple (mi, ϕi, τi),
where mi ∈ {A,L,R,B} specifies the mover type of the
body of ρi, and ϕi and τi are the pre-condition and the post-
condition of ρi, respectively. If the rule REDUCE-RECURSIVE

succeeds, then it is sound to replace the body of each procedure
ρi ∈ M with ϕi . τi. While ϕi is a store predicate for the
call point of the procedure, τi is a transition predicate and
specifies a relationship between the call and return points of
the procedure. For soundness of the REDUCE-RECURSIVE rule,
we require that every execution of ρi from ϕi can be extended
to a blocking execution. We express this requirement using the
predicate Finalizable(ρi, ϕi). We currently assume that the
programmer has ensured that this requirement is met and do not
provide a mechanical check for it in our tool. This condition

is similar to a termination requirement, in fact, termination
is a sufficient condition for being finalizable. We leave the
mechanization of this check to future work.
• For each loop s	 in the body of a procedure ρi ∈ M,
Annot(s) returns a store predicate ϕ. ϕ is a loop invariant
for s	.

The above specifications are written only for loops and proce-
dures that are proved to be atomic as required by REDUCE-RECURSIVE.
Therefore, the problem of deriving these specifications is the same
as providing loop invariants and procedure specifications for se-
quential code.

Given an annotation function Annot, REDUCE-PROCEDURE

checks each procedure ρi in three phases. First, it checks that the
specification of ρi indicates an action that preserves the invari-
ant. In the rule, this is described by the condition ϕi . τi ` I.
Second, it checks that given the mover types for procedures in
Annot, the body of ρi in P conforms to its mover type pro-
vided by Annot. In the statement of the rule, this is expressed
with the condition P , I, Annot ` Body(ρi) : mi. The rules in
Figure 11 are used in this phase; for brevity, we have elided the
implicit argument Annot to all the judgments. Third, it verifies
that the body of ρi implements the specification described by the
pre-condition ϕi and the post-condition τi. This is described by the
condition P , I, Annot ` {ϕi, τi}ρi. Formally, P , I, Annot `
{ϕi, τi}ρi if for all t ∈ Tid , the following two conditions hold:
(1) (σ1, σ2) � τi for all (σ1, σ2) ∈ Good(t,Body(ρi), ϕi), and
(2) Bad(t,Body(ρi), ϕi) = ∅.

The third requirement described above is verified by generating
a verification condition (VC) and checking its validity using an au-
tomatic theorem prover. Since the body of ρi is atomic, checking
whether ρi implements its specification requires sequential reason-
ing only. We use a VC generation technique based on weakest pre-
conditions, similar to that implemented in the Boogie verifier [2].
To handle the use of the parallel composition operator within pro-
cedure bodies, we define the weakest precodition of s1‖s2 with re-
spect to a post-store ϕ as follows:
wp(s1‖s2, ϕ) = wp(s1[left(tid)/tid], wp(s2[right(tid)/tid], ϕ))

Notice that the weakest precondition for the parallel composition is
similar to the one for the sequential composition [2]. Since s1‖s2 is
part of a procedure body that has been proved to be atomic, s1‖s2
is atomic as well. The correctness of the weakest precondition of
parallel composition crucially depends on this observation.

5. Implementation with high-level tactics
The proof rules introduced in Section 4 are low-level rules that
are the building blocks of proofs. In this section, we will present
higher-level, more intuitive-to-use proof tactics: coarser-grained
proof rules built out of lower-level ones. Figure 12 summarizes the
tactics, their usage and the low-level rules justifying the application
of the tactic. By construction, each tactic preserves the soundness
of assertion checking.

We implemented our proof method in an interactive tool called
QED. QED uses the Boogie framework [2] as its front end and
forwards the validity checks to the Z3 SMT solver [6]. Our tool
accepts as input a multithreaded program written in an extension
of the Boogie programming language [2] and a proof script. The
transformed program after the application of each proof rule or
tactic is available for the user to examine. If required, the tool
automatically generates the verification conditions necessary to
prove the antecedents of proof rules and checks them using Z3.
The commands are rejected if this check fails.
Proof strategy. We view a proof of a concurrent program as a
sequence of steps, each applying a tactic presented in this section.
We have found the proof strategy sketched below to be a good start:

while exist unverified assertions :
while not done { do reduction with reduce stmt/loop/proc }
eliminate assertions with check
if exist unverified assertions :

repeat { do abstraction with abstract or mutex }
repeat { introduce a specification with invariant, annot }

In each iteration we first apply reduction and then verify as-
sertions. When there are still unverified assertions, we do abstrac-
tion and introduce specifications, which allows reduction to obtain
coarser atomic actions at the next iteration. In the following sec-
tions we elaborate on the operations of the tactics referred to above
and give examples of how these tactics are used during the proof in
Section 2.1.

5.1 Introducing invariants and specifications
The tactic invariant ψ introduces a new invariant into the proof
context. The current invariant I is replaced with the conjunction
I ∧ψ. The tactic fails to change the invariant if any gated action in
Atoms(P) does not preserve I ∧ ψ.

The tactics annot pre, annot post and annot inv allow us to
introduce specifications for loops and procedures. The specifica-
tions can be introduced partially, where newly introduced spec-
ifications are conjoined with the existing specifications. This al-
lows the annotation function referred to in Section 4.5 to be de-
fined partially while the proof progresses. While annot pre ρ, ϕ
adds a new pre-condition, an assertion, ϕ, annot post ρ, τ adds a
new post-condition τ to the specification of procedure ρ. The tactic
annot mover ρ,m (needed for REDUCE-PROCEDURE) specifies that
the body of ρ is of mover typem. The tactic2 annot inv s	, ϕ adds
a loop invariant ϕ to the specification of the loop s	.
Example: The specification for Read in Figure 4 is introduced
in step S7 by the tactics annot pre Read,0 <= start && 0 <=

size and annot post Read,(forall x:int. start <= x && x <

start + bytesread ==> buffer[x] == device[x]).

5.2 Abstraction
Abstraction is applied by adding either extra transitions or extra
assertions to a gated action. We use the abstract tactic for the
former by having a gated action read or write a nondeterministic
value from/to a variable. The tactic mutex is used for the latter
to infer extra assertions to the gated actions using synchronization
information.
Read and write abstractions. A read abstraction is performed
by the tactic abstract read x , ϕ . τ . It makes the gated action ϕ .
τ read a nondeterministic value from x at the beginning of the
action thus making the operation of the action independent of
the initial value of x when its execution starts. For this purpose,
abstract read x , ϕ . τ replaces the given action ϕ . τ with the
following:

P , I 99K P [ϕ . 〈τ〉M 7→ ϕ . τ], I

τ =

{
ϕ . 〈∃x .τ〉M if x ∈ M
ϕ . 〈x = x ′ ∧ ∃x .τ〉M if x /∈ M

A write abstraction is performed through the tactic abstract write
x ,ϕ . τ . It makes the gated action ϕ . τ write a nondeter-
ministic value to x at the end of the action. For this purpose,
abstract write x , ϕ . τ replaces the given action ϕ . τ with the
following:

2 In our implementation, we assign each statement a unique “label”. The
tactics that require a statement as a parameter are given the label of the
statement.

Tactic Usage Low-level rules
invariant ψ Add a new invariant to the proof context. INVARIANT

annot pre ρ, ϕ Introduce a pre-condition specification to a procedure. –
annot post ρ, τ Introduce a post-condition specification to a procedure. –

annot mover ρ,m Specify that the body of procedure ρ is of mover type m. –
annot inv s	, ϕ Introduce a loop invariant specification to a loop. –

reduce stmt Apply reduction iteratively on the program body and procedure bodies. REDUCE-SEQUENTIAL/CHOICE/PARALLEL
reduce loop α	, ϕ . τ Reduce the loop to its previously given specification. REDUCE-LOOP
reduce proc ρ1, ..., ρn Reduce the procedures to their previously given specifications and do inlining. REDUCE-PROCEDURE, INLINE-CALL

inline ρ Inline the body of the procedure ρ at all call sites. INLINE-CALL
abstract read x , ϕ . τ Abstract the value of x at the entry of the action ϕ . τ . SIMULATE
abstract write x , ϕ . τ Abstract the value of x at the exit of the action ϕ . τ . SIMULATE

assert ψ,ϕ . τ Add new assertion by strengthening the gate of the action ϕ . τ SIMULATE
mutex φ, x1, ..., xn Add assertions for a mutual exclusion access policy for variables x1, ..., xn AUX-ANNOTATE, INVARIANT, SIMULATE

check ρ Validate assertions in the procedure body using sequential analysis and I. RELAX

Figure 12. The high-level proof tactics.

P , I 99K P [ϕ . 〈τ〉M 7→ ϕ . τ], I
τ = 〈∃x ′.τ〉M∪{x}

By the definition of simulation, both read and write abstractions
are sound by construction. We do not allow abstractions that violate
the program invariant I.
Example: We do two read abstractions in our running example.

First, in step S4, we abstract the read of newsize for the action
corresponding to the branch of the if statement at lines 5-7 of
Figure 4. This allows Read to take this branch even though newsize

==currsize holds, as a result, reading from the cache the available
bytes (fewer than the initially requested size) and returns them,
although it could have fetched all the requested bytes from device.

Second, in step S5, we abstract size at the beginning of the ac-
tion that spans lines 3-7 of Figure 4 (after reducing the first two
branches of if to a single atomic action by REDUCE-CHOICE). This
allows Read to return fewer bytes than the original size. The as-
sumption (size == 0 || start + size <= i) obtained from the
condition of if guarantees that the abstraction leaves size still in
the safe bounds.

These two abstractions allow us to prove that the branches of
if are all right-movers and reduce the entire statement to the one
given at line 1 of Figure 5. Notice that, neither abstraction breaks
the specification of Read and each corresponds to a behavior that
could have occurred in a different interleaving. 2

Adding assertions. We use the tactic assert ψ,ϕ . τ to add the
assertion p to the gated action to yield ψ ∧ ϕ . τ . In the following,
we describe a tactic that, using hints about mutual exclusion syn-
chronization in the program, infers appropriate assertions for gated
actions.

The tactic mutex φ, x1, ..., xn takes a store predicate φ and a
set of program variables x1, ..., xn ∈ Var . The hint communicated
through this tactic is that φ specifies a mutual exclusion condition
that holds at all the program states from which a gated action reads
from or writes to a variable xi. In this regard, φ can be thought
of as a high-level description of a locking discipline that can be
implemented by any program variables. The tactic automatically
adds to the program a fresh auxiliary variable a with domain
Tid ∪{0}3, and generates the following invariant over Var ∪{a}:

I = (a 6= 0)⇔ φ

I associates the auxiliary variable with φ. Intuitively, φ is true
whenever it is acquired and a stores the id of the thread that
acquired φ, and φ is false whenever φ is not acquired by any

3 We assume that 0 is not an element of Tid , and represents “no thread”.

thread and a stores 0. The operation of the tactic includes 1) by
AUX-ANNOTATE, adding a to the set of program variables, 2) by
INVARIANT, adding the invariant I, and then 3) by annotating gated
actions as follows:

1. Replace every gated action ϕ . τ such that � (ϕ ∧ τ) ⇒
(¬φ ∧ φ′) with ϕ . (τ ∧ (a ′ = tid)).

2. Replace every gated action ϕ . τ such that � (ϕ ∧ τ) ⇒ ¬φ′
with (ϕ ∧ (a = tid)) . (τ ∧ (a ′ = 0)).

3. Replace every gated action ϕ . τ such that � (ϕ ∧ τ)⇒ (φ⇔
φ′) with ϕ . (τ ∧ (a ′ = a)).

4. Replace every gated action ϕ . τ that read from or write to the
variable xi with (ϕ ∧ (a = tid)) . τ .

The above operations are justified by the rules AUX-ANNOTATE

and SIMULATE. The assertion a = tid is the key to showing that
actions annotated with a = tid are movers in later reduction steps
because they are non-conflicting.
Example:
1. The application of mutex in our running example of Sec-
tion 2.1 (in step S1) expresses the fact that newsize and currsize

are protected by a variable lock, which is modified by acquire

and release primitives. We used the tactic mutex lock == true,
currsize,newsize. The assertion a = tid were added to the lines
accessing currsize and newsize between acquire and release.
2. In order to reduce the code in Figure 5 into one atomic ac-
tion, it is crucial to prove that the lines between READ DEVICE and
COPY TO BUFFER commute over each other. This enabled the reason-
ing in S2 and S3. In fact, only one thread can execute these lines.
Recall that the synchronization mechanism in Read allows only the
thread that establishes currsize < newsize to access the device. In
order to prove that this is the case and to use this fact in later reduc-
tions, we use the tactic mutex currsize < newsize, device. As a
result, the assertion a = tid is added to the actions spanning the
block of code between the labels READ DEVICE and COPY TO BUFFER.
2

5.3 Reduction

Reducing statements. The tactic reduce stmt is used to compute
coarser atomicities in the program by iteratively applying reduction
rules in Figure 8.
Example: In our running example, we apply reduce stmt twice.
The first reduction (in step S1), after using the mutex tactic as
described in Section 5.2, combines branches of the if statement
between lines 3-4, 5-7 and 9-10 of Figure 4 to separate atomic
blocks, each having the code at line 1-2 at the beginning. Then
it merges the branches of if to a single atomic action. In addition,

the block at lines 14-17 is also reduced to a single action. Figure 5
shows the state of the program at this point. The second reduction
(in step S6), using the assertions at lines 3 and 8 reduces the loops
as described below and combines the entire body into a single
action. 2

Reducing loops. The tactic reduce loop is used to reduce
an entire loop to a gated action given with the same tactic.
reduce loop s	 ϕ . τ uses REDUCE-LOOP to reason about possi-
bility of reducing s	 to ϕ . τ .
Example: The loops in our running example at lines B-D and
G-I of Figure 5 are reduced to single actions using the tac-
tic reduce loop. After steps S2 and S3, the body of the first
loop is a right-mover, and the body of the latter is a left-mover.
We use the specification (currsize <= i) .〈 ((i <= i’) &&

forall x:int. ((i’-1) <= x <= start + size)==>(cache’[x]

== device[x])) 〉(i,cache) for the first loop and (start + i <

currsize) .〈 (i <= i’) && forall x:int. ((i’-1) <= x <=

size)==>(buffer’[x] == cache[start + x]) 〉(i,buffer) for the
latter. Notice that, these gated actions specify the copying from
device to cache and from cache to buffer properly. In addition,
these actions are right- and left- movers themselves, and are used
later in the reduce stmt tactic. 2

Reducing procedures. For the cases where the body of a pro-
cedure is small, we provide the tactic inline ρ, which replaces
all the calls to ρ with its body after doing proper substitutions
for formals. In other cases, the tactic reduce proc ρ1, ..., ρn is
used to eliminate calls to the procedures ρ1, ..., ρn, which are
closed under call. reduce proc does the checks specified in the
rule REDUCE-PROCEDURE whereM = {ρ1, ...ρn}, and the existing
specifications for loops and procedures given as described in Sec-
tion 5.1 define the annotation function Annot. The tactic fails if a
procedure or loop does not implement its given specification, or the
body of a procedure is not of the given mover type. If all the checks
pass, it replaces all the calls to ρ1, ..., ρn with their corresponding
specifications.
Example: Suppose that the loops at lines B-D and F-I of Fig-
ure 5 are implemented as separate procedures, and the loops are re-
placed with the calls copy from device(start,size) and buffer

:= copy from cache(start,size), respectively. In this case, we
could still reduce the bodies of the procedures copy from device

and copy from cache, the loops, to single actions by reduction. In
this case, the specifications to be inlined at the call sites in Read will
be similar to the loop specifications given above while describing
reduce loop on Read. 2

6. Experience
In this section we present our experience with several benchmark
algorithms4. We were able to prove the benchmarks, except for the
non-blocking stack, using our tool QED. All the proof steps driven
by high-level tactics were fully mechanized; QED required only
a few seconds to finish each proof. We have generated and veri-
fied the verification conditions for the non-blocking stack manu-
ally; currently, we are trying to mechanize this proof as well. Our
experience with the benchmarks is summarized in the following
conclusions:

• Our proofs did not require complicated global invariants that
capture possible interference at each interleaving point. Instead,
we attempted to achieve the correct level of atomicity by rea-
soning locally about the effect of synchronization on individual

4 We will use pseudocode for brevity; the verified versions of the
benchmarks in the Boogie programming language can be found at:
http//home.ku.edu.tr/∼telmas/popl09bench.tar.gz

actions. The iterative use of reduction and abstraction was cru-
cial in this endeavor.
• The benchmarks, while operating with fine-grained concur-

rency, ensure a coarse level of atomicity through a variety of
sophisticated synchronization protocols. We were able capture
these protocols with few uses of abstraction through the assert,
mutex and rwlock tactics.
• In many benchmarks, after aggressive use of reduction and ab-

straction, the atomic blocks obtained were large enough so that
global program invariants stated for the transformed program
were almost as simple as invariants for sequential programs.

In the remainder of this section, we discuss the proof of each
benchmark at a high level.

6.1 Purity benchmarks

apply_f()
1 var x, fx : int;
2 acquire(m);
3 x := z;
4 release(m);
5 while(true) {
6 fx := f(x);
7 acquire(m);
8 if(x == z) {
9 z := fx; release(m);

10 break;
11 } else {
12 x := z; release(m);
13 }
14 }

Figure 13. Optimistic concurrency control using transaction retry

We verified the examples in [10], thereby demonstrating that our
approach generalizes existing work on enforcing atomicity through
abstractions. We were able to handle all the examples by simple
applications of abstract read and abstract write on variables that
are accessed but left unmodified in the pure blocks. Consider an
example (Figure 13) from Section 5 of [10]. This program reads
a shared variable z in one critical section, performs a long com-
putation f on its value, and then attempts to writes back the result
into z in another critical section. The tactic “mutex m==true, z ”
allows the code block 2-4 and both branches of the if statement to
be proved atomic. The reads of z at line 3 and 12 are unnecessary
for correctness and could therefore be abstracted.

Notice that the loop in this example and other examples in
this section contain the break statement. Such loops cannot be
translated directly to the loop statement in Figure 6. Instead of
rewriting the programs to eliminate break, we provide the user
tactics to hoist the final, successful iteration out of the loop. In this
particular example, we hoist the successful if branch at lines 8-10
out of the loop. This is a sound operation since every terminating
execution of the loop contains these lines once at the end. We apply
similar transformations to the loops in other examples given below.

The rest of the loop after the above transformation does not
touch global variables, and also implements a simple “skip” op-
eration. Thus this portion of the program is a both-mover. Finally
we apply reduction and convert the body of apply f into a single
atomic action that assigns f(z) to z.

6.2 Multiset
Figure 14 shows a concurrent multiset of integers with InsertPair

and Delete operations. The implementation contains an array M of
cells for storing the multiset elements; the elt field of the cell
stores the element and the vld field indicates whether the value
stored in elt is valid. Procedures acq and rel acquire and release

FindSlot(x:int)
returns r:int

1 for (i=0; i<N; i++) {
2 acq(M[i]);
3 if (M[i].elt==nil && !(M[i].vld)){
4 M[i].elt := x; rel(M[i]);
5 r := i; return;
6 } else { rel(M[i]); }
7 } r := -1; return;

Delete(x:int)
returns r:bool

1 for (i=0; i<N; i++) {
2 acq(M[i]);
3 if (M[i].elt==x && M[i].vld){
4 M[i].elt:=nil; M[i].vld:=false;
5 rel(M[i]; r := true; return;
6 } else { rel(M[i]); }
7 } r := false; return;

InsertPair(x:int, y:int)
returns r:bool

1 i := FindSlot(x);
2 if (i == -1) {
3 r := false; return;
4 }
5 j := FindSlot(y);
6 if (j == -1) {
7 M[i].elt = nil;
8 r := false; return;
9 }

10 acq(M[i]);
11 acq(M[j]);
12 M[i].vld = true;
13 M[j].vld = true;
14 rel(A[i]);
15 rel(A[j]);
16 r := true; return;

Figure 14. The multiset data structure

(M[i].lck), the lock of cell i. In [9], we proved that InsertPair
and Delete are atomic using an abstraction map from M to an ab-
stract specification variable S representing the multiset contents.
The variable S was required to abstract away from the concrete
values of the indices of M into which multiset elements are stored.
Using our method, we transformed the bodies of InsertPair and
Delete implementations to atomic actions, indicated by [...],
given below. Thus, we replaced a proof based on abstraction map-
pings with a simpler, layered correctness proof that ends with se-
quential reasoning.

Delete(x:int)
returns r:bool {

var i : int;
[havoc i;
if(*) {

r := false; return;
} else {

assume 0 <= i < N;
assume M[i].elt == x;
assume M[i].vld;
M[i].elt:=nil; M[j].vld:=false;
r := true; return;

}]
}

InsertPair(x:int, y:int)
returns r:bool {

var i,j : int;
[havoc i,j;
assume 0 <= i,j < N;
if(*) {
r := false; return;

} else {
assume M[i].elt == nil;
assume M[j].elt == nil;
assume !(M[i].vld);
assume !(M[i].vld);
M[i].elt:=x; M[i].vld:=true;
M[j].elt:=y; M[j].vld:=true;
r := true; return;

}]
}

We first proved the following specification for FindSlot and
inlined the specification at call points in InsertPair. This proof
required reasoning similar to the example in Figure 13: we hoisted
the last iteration of the loop in FindSlot, which allocates an empty
slot, outside and performed abstractions on the other iterations. The
abstractions were done on the elt and vld fields of M[i]. Then we
used the tactic “mutex (M[x].lck==true), M[x].elt, M[x].vld”
to reduce the code blocks between calls to acq and rel to atomic
actions, including the succeeding iteration in FindSlot.

FindSlot(x:int)
returns r:int {

[havoc r;
if(*) {

r := -1; return;
} else {

assume (0 <= r < N && M[r].elt == nil && !(M[i].vld));
M[i].elt := x; return;

}]
}

The tactic “mutex (M[x].elt != nil && !M[x].vld), M[x].elt,
M[x].vld” allowed us to capture the property that, once FindSlot

returns an allocated slot, its elt and vld fields are not modified
by other threads. This fact is essential for proving that the atomic

actions spanning the blocks 1-3 and 5-9 of InsertPair are right-
movers. Then we were able to merge the three atomic blocks (lines
1-3, 5-9 and 10-16) in InsertPair into a single atomic action.
We also introduced the invariant (forall x:int. 0 <= x && x

< N && M[x].vld ==> M[x].elt != nil) at the very end of the
proof. It is crucial to introduce this invariant only after the body of
InsertPair has been transformed into a single action because the
individual actions in InsertPair do not preserve this invariant. The
correctness proof for a sequential multiset implementation would
have required the same simple invariant.

6.3 Non-blocking algorithms
Our experience with the following collection of non-blocking al-
gorithms demonstrates that our method can also be used to verify
highly-concurrent algorithms from the literature.

rightpush(v) returns r:bool
1 while(true) {
2 k := oracle(right);
3 prev := A[k-1];
4 cur := A[k];
5 if(prev.val != RN && cur.val = RN) {
6 if (k = MAX + 1) { r := false; return; }
7 if (CAS(&A[k-1], prev, <prev.val,prev.ctr+1>))
8 if (CAS(&A[k], cur, <v,cur.ctr+1>))
9 { r := true; return; }

10 }
11 }

Figure 15. Example operation of obstruction-free deque

Obstruction-free deque. The double-ended queue (deque)
from [14] provides four operations –rightpop, rightpush, leftpop,
and leftpush– operation with similar designs, to insert/remove
elements to/from both ends of the queue. Figure 15 shows the
rightpush operation, which inserts an element into the right end
of the deque. After reading two consecutive array elements in lines
3-4 to local variables prev and cur, rightpush inserts the given
value v if CAS operations at lines 7-8 both succeed. Because of
the reads at lines 3-4, the CAS operations cannot be proved to be
movers in the original program. We abstracted these reads using
the “abstract read” tactic, which made prev and cur point to ar-
bitrary elements. In addition, we abstracted the write to k at line
2, using the “abstract write tactic. This abstraction does not affect
the correctness of the operation, since the function oracle can re-
turn any index from the deque; its purpose is to return the optimum
index for having fewer failing attempts.

The above proof steps allowed us to reason about the operation
of two consecutive CAS operations. We then hoisted the part of
the loop body with the successful CAS operations out of the loop.
Then it was easy, by using the specification of CAS, to prove that
the remaining part of the loop was a skip operation. By adding the
deque invariants indicated in the algorithm description in [14], we
were able to prove that the CAS operations, which were hoisted out
of the loop, are left-movers in the abstracted program. This gave us
an atomic block that contains two CAS operations with the desired
behavior. We proved the other operations using a similar approach.
Non-blocking stack. Figure 16 shows the pop and push oper-
ations from Michael’s non-blocking stack algorithm [19]. The op-
erations make use of a hazard pointer per thread in order to solve
the well-known ABA problem. [22] gave a proof of this algorithm
using concurrent separation logic. Since the algorithm uses fine-
grained concurrency, the proof in [22] required reasoning about in-
variants at each interleaving point throughout the code. Using our
method, we performed a simpler proof that transforms the bodies
of pop and push to the following atomic actions:

pop()
returns r:ref

1 var t,n : ref;
2 while (true) {
3 t := TOP;
4 if(t == null) break;
5 H[tid] := t;
6 if(t != TOP) continue;
7 n := TL[t];
8 if(CAS(&TOP, t, n)) break;
9 }

10 H[tid] := null;
11 r := t; return;

push(b:ref)
returns r:bool

1 var t : ref, n : int = 1;
2 while(n <= THREADS) {
3 if (H[n] == b) {
4 r := false; return;
5 } n := n + 1;
6 }
7 while (true) {
8 t := TOP;
9 TL[b] := t;

10 if(CAS(&TOP, t, b)) break;
11 } r := true; return;

Figure 16. Michael’s algorithm with hazard pointers

pop()
returns r:ref {

var m, n : ref;
[havoc m,n;
if(*) {

assume (TOP == nil);
r := nil;

} else {
assume (m != nil && m == TOP);
n := tl[m]; TOP := n; r := m;

}]
}

push(b:ref) {
var m : ref, i : int;
[assert b != nil;
if(*) {

r := false;
} else {

tl[b] = TOP;
TOP := b; r := true;

}]
}

The proof of the non-blocking stack required the application of
11 tactics, in three of which we introduced invariants. Our proof
strategy was aimed at making the successful executions of the code
at lines 7-8 of pop and 9-10 of push atomic. We performed read
abstractions on TOP at lines 4 and 6 of pop and 8 of push since
these reads do not affect correctness. For each loop, we hoisted
the loop iteration containing a successful CAS operation outside the
loop. There is an ownership protocol implicit in the use of the stack.
A thread should only push into the stack an element that it owns.
The push operation transfers the ownership of the element to the
stack. Ownership is transferred back to the thread that manages
to pop that element from the stack. We used an auxiliary variable
owner , a map from stack elements to thread ids, to capture this
ownership transfer protocol. We also introduced assertions into the
code to check that the ownership protocol is not being violated. As
with other examples, we delayed the introduction of invariants until
the atomic actions in the program had become coarse enough; all
invariants were consequently fairly simple.

bakery(i:int)
1 choosing[i] := 1;
2 number[i] := 1 + max(number[1],...,number[N]);
3 choosing[i] := 0;
4 for(i:=1; i<=N ; ++i) {
5 while(choosing[j] != 0) /*wait*/;
6 while(number[j] != 0 && (number[j],j)<(number[i], i))/*wait*/;
7 }
8 c := c + 1;
9 assert c == 1; // critical section

10 c := c - 1
11 number[i] := 0; return;

Figure 17. The bakery algorithm

The bakery algorithm. The bakery algorithm (Figure 17) pro-
vides non-blocking critical sections [17]. We encoded the mutual
exclusion property by adding a global variable c that counts the
number of threads in the critical section and adding the assertion c

== 1 in the critical section. We proved the property by obtaining a
single action that spans the code between lines 1-7 that is enabled
only when (number[i],i) is greater that (number[k],k) for all k
different from i. We abstracted the waiting iterations of the for

loop, which allowed us to eliminate the loop from the code. We ap-
plied the mutex tactic twice. The first application encoded the fact

that that choosing[i]==0 prohibits the values of number[i] that are
smaller than number[k] to be read by a different thread k at line 6.
The second application of the mutex tactic modeled lines 1-7 as an
acquire for a conceptual lock, and line 11 as the release of this lock.
This conceptual lock protects c so that the code between lines 8-10
is atomic and the assertion never fails.

7. Related work
In this section, we compare our work with other approaches for
compositional verification of multithreaded programs. In a nutshell,
our method is orthogonal and complementary to existing methods
that do not make direct use of reduction and abstraction, and sub-
sumes others that do.

In the Owicki-Gries approach [21], each potential interleav-
ing point in a program must be annotated with an invariant that
is valid under interference from other concurrently-executing ac-
tions. Rely-guarantee methods [25, 5, 4] make this approach more
modular by obviating the need to consider each pair of concur-
rent statements separately. Instead, the guarantee and rely condi-
tions of a thread provide a summary for transitions taken by this
thread and the transitions taken by environment threads, respec-
tively. Both these methods require the programmer to reason about
interleavings of fine-grained actions; consequently, the required an-
notations are complex. Concurrent separation logic [20, 3] has the
ability to maintain separation between shared and local memory
dynamically. Similarly to our method, it enables sequential reason-
ing for multithreaded programs. By converting the original program
into a simpler program that uses coarse-grained atomic actions, our
method enhances the applicability of all of these approaches. At the
same time, our method can benefit from these approaches as well.
For example, the ability of concurrent separation logic to reason
about dynamic ownership transfer of heap objects could be use-
ful for establishing that heap accesses are non-conflicting, thereby
enabling the key step of reduction in our method. The same sym-
biotic relationship applies to the approach in [15] where method
contracts and object invariants are used to specify sharing and own-
ership constraints on Spec# objects.

Several verification approaches in the literature use reduction as
a key ingredient [12, 24, 10, 23]. These approaches are different
from ours in that (i) they are limited to simple synchronization dis-
ciplines and (ii) can only reason about commutativity of accesses
that are not simultaneously enabled. [13] addresses the first issue
by using auxiliary variables and access predicates to enable wider
application of reduction. In addition to regular locking primitives,
[23] applies mover-analysis to non-blocking synchronization prim-
itives LL, SC and CAS under certain execution patterns of these prim-
itives. As demonstrated in this paper, our method supports intricate
synchronization mechanisms naturally, with moderate annotation
burden. Further, our check for mover types is general and able to
deduce that certain simultaneously enabled accesses commute. Ab-
stractions have been used as a mechanism to prove atomicity in the
work on purity [10, 23]. The abstraction step in our method sub-
sumes purity and allows us to deduce pure code blocks through
simple variable abstractions.

8. Conclusion
We introduced a proof method that iteratively simplifies a program
by rewriting it in terms of coarser-grained atomic actions. When
applied iteratively, reduction and abstraction enable further use
of each other and significantly simplify programs. Our tool QED
automates the proof steps in our approach, and our experience
suggests that our approach provides a useful strategy to simplify
the verification of assertions in concurrent programs. Future work
includes extending our framework to verify programs written in

C and Spec#, developing tactics to support more synchronization
idioms such as barriers and events, and applying our method to
larger verification problems.

Acknowledgments
This research was supported by a career grant (104E058) from the
Scientific and Technical Research Council of Turkey, the Turk-
ish Academy of Sciences Distinguished Young Scientist Award
(TUBA-GEBIP), and a research gift from the Software Reliability
Research group at Microsoft Research, Redmond, WA. We would
like to thank the Spec# team, particularly Rustan Leino and Mike
Barnett, for their support with using the Boogie/Spec# framework.

References
[1] E. A. Ashcroft. Proving assertions about parallel programs. J.

Comput. Syst. Sci., 10(1):110–135, 1975.

[2] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino. Boogie: A modular reusable verifier for object-oriented
programs. FMCO ’05: 4th International Symposium on Formal
Methods for Components and Objects, pages 364–387, 2005.

[3] S. Brookes. A semantics for concurrent separation logic. Theor.
Comput. Sci., 375(1-3):227–270, 2007.

[4] J. W. Coleman and C. B. Jones. Guaranteeing the soundness of
rely/guarantee rules. Journal of Logic and Computation, 17(4):807–
841, 2007.

[5] F. S. de Boer, U. Hannemann, and W.-P. de Roever. A compositional
proof system for shared variable concurrency. In FME’97: 4th
International Symposium of Formal Methods Europe, volume 1313,
pages 515–532. Springer-Verlag, 1997.

[6] L. M. de Moura and N. Björner. Z3: An efficient SMT solver. In
TACAS ’08: Proceedings of the 14th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems,
volume 4963 of Lecture Notes in Computer Science, pages 337–340.
Springer, 2008.

[7] E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1997.

[8] T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions.
Technical Report MSR-TR-2008-99, Microsoft Research, 2008.

[9] T. Elmas, S. Tasiran, and S. Qadeer. VYRD: Verifying concurrent
programs by runtime refinement-violation detection. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on Programming
Language Design and Implementation, pages 27–37, New York, NY,
USA, 2005. ACM Press.

[10] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity for
atomicity. IEEE Trans. Softw. Eng., 31(4):275–291, 2005.

[11] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In PLDI ’02:

Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, pages 234–245, New York,
NY, USA, 2002. ACM Press.

[12] C. Flanagan and S. Qadeer. Types for atomicity. In TLDI ’03:
Proceedings of the 2003 ACM SIGPLAN International Workshop on
Types in Language Design and Implementation, pages 1–12, New
York, NY, USA, 2003. ACM.

[13] S. Freund and S. Qadeer. Checking concise specifications for
multithreaded software. Journal of Object Technology, 3(6):81–101,
2004.

[14] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free syn-
chronization: Double-ended queues as an example. In ICDCS ’03:
Proceedings of the 23rd International Conference on Distributed
Computing Systems, pages 522–529, Washington, DC, USA, 2003.
IEEE Computer Society.

[15] B. Jacobs, J. Smans, F. Piessens, and W. Schulte. A simple sequential
reasoning approach for sound modular verification of mainstream
multithreaded programs. Electron. Notes Theor. Comput. Sci.,
174(9):23–47, 2007.

[16] C. B. Jones. Development Methods for Computer Programs including
a Notion of Interference. PhD thesis, Oxford University, June 1981.

[17] L. Lamport. A new solution of Dijkstra’s concurrent programming
problem. Commun. ACM, 17(8):453–455, 1974.

[18] R. J. Lipton. Reduction: a method of proving properties of parallel
programs. Commun. ACM, 18(12):717–721, 1975.

[19] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491–504,
2004.

[20] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and
information hiding. In POPL ’04: Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 268–280, New York, NY, USA, 2004. ACM.

[21] S. Owicki and D. Gries. Verifying properties of parallel programs: an
axiomatic approach. Commun. ACM, 19(5):279–285, 1976.

[22] M. Parkinson, R. Bornat, and P. O’Hearn. Modular verification of a
non-blocking stack. SIGPLAN Not., 42(1):297–302, 2007.

[23] L. Wang and S. D. Stoller. Static analysis for programs with non-
blocking synchronization. In PPoPP ’05: Proceedings of the ACM
SIGPLAN 2005 Symposium on Principles and Practice of Parallel
Programming, pages 61–71. ACM Press, June 2005.

[24] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-
threaded programs. IEEE Transactions on Software Engineering,
32:93–110, Feb. 2006.

[25] Q. Xu, W. P. de Roever, and J. He. The rely-guarantee method for
verifying shared variable concurrent programs. Formal Aspects of
Computing, 9(2):149–174, 1997.

