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ABSTRACT
In this paper, we introduce and investigate a novel class
of multipath routing games with elastic traffic. Users open
one or more connections along different feasible paths from
source to destination and act selfishly— seeking to trans-
fer data as fast as possible. Users only control their routing
choices , and once these choices have been made, the connec-
tion rates are elastic and determined via congestion control
algorithms (e.g. TCP) which ultimately maximize a certain
notion of the network utility. We analyze the existence and
the performance of the Nash Equilibria (NEs) of the result-
ing routing games.

1. INTRODUCTION
Our motivation is a fundamental routing and allocation

problem, common to data communication networks, multi-
path routing, distributed systems and load balancing. We
formalize the problem as a routing game. Consider a data
network of m links with capacities C = (C1, . . . , Cm). n self-
ish users share the resources of these links (where n ≥ 2).
To transmit data, user i may open at most bi connections
from source to destination, and for each such connection, it
has to choose one route from a set Ri of possible routes -
A route is just a subset of the set of links. Denote by si a
pure routing strategy for user i, i.e. a set of routes, and let
s = (s1, . . . , sn) denote the vector representing the strate-
gies of all users. Let S denote the set of allowed strategies.
Under strategies s ∈ S, nij(s) is the number of connections
user i opens on route j ∈ Ri. Strategies s are feasible if for
any user i,

∑

j∈Ri
nij(s) ≤ bi.

Once users have chosen the routes on which they open
connections, the network capacities are shared via conges-
tion control algorithms (e.g. TCP). To model the way these
algorithms share the resources, we use Kelly’s optimization
framework [1], where the achieved rates on the various routes
maximize some notion of network utility. When users open
several connections, we distinguish two types of congestion
control: (i) uncoordinated control, where each user controls
the rates on the different connections independently, (ii) co-
ordinated control, where these rates are jointly controlled.
In the former case, if rij denotes the rate achieved on route
j ∈ Ri, then the rate allocation solves the following social
welfare maximization problem:

max Wu(s) =
∑

i

∑

j
nij(s)U(rij)− Γ(r),

s.t. rij ≥ 0, nij(s) = 0 =⇒ rij = 0,
(1)

where U is the concave and increasing utility function, r =
(r1, . . . , rm) represents the aggregate rate of connections on

the various links rl =
∑

i

∑

j∈Ri:l∈j
nij(s)rij , and where Γ

is a convex penalty function that captures the network costs,
e.g. for (uncorrelated) capacity constraints

Γ(r) =

{

0 if rl ≤ Cl, ∀l

∞ otherwise.
(2)

In the case of coordinated control, the rates solve a global
social welfare problem:

max Wc(s) =
∑n

i=1
U(

∑

j
nij(s)rij)− Γ(r),

s.t. rij ≥ 0, nij(s) = 0 =⇒ rij = 0.
(3)

Denote by r(s) = (rij(s), i ∈ [n], j ∈ Ri) the solution of
(1) or (3). We restrict our attention to the wide class of
α-fair congestion control algorithm corresponding to utility
function U(·) = (·)1−α/(1− α), for α > 0 and α 6= 1.

We assume that each user i acts strategically, choosing a
strategy si (a set of routes) that maximizes their global rate
∑

j∈Ri
nij(s)rij(s), and we analyze the resulting routing

game. We are interested in the existence and performance
of Nash Equilibria (NE). In particular we are interested in
comparing the performance of NE to the socially optimal
routing choices s⋆ solving:

max
s∈S

maxW(s),

s.t. rij ≥ 0, nij(s) = 0 =⇒ rij = 0,
(4)

where W = Wu for uncoordinated congestion control and
W = Wc for coordinated control. Let w⋆ = W(s⋆). The
notion of a Price of Anarchy is a convenient way to quantify
the efficiency of Nash Equilibria, and is defined as follows.
When the utility function considered takes positive values
only, i.e. when α < 1, (resp. negative values only, i.e., when
α > 1), the price of anarchy is for pure NEs:

max
s∈PNE

w⋆

w(s)
, (resp. max

s∈PNE

∣

∣

∣

∣

w(s)

w⋆

∣

∣

∣

∣

),

where PNE denotes the set of pure NEs.

2. NON-ATOMIC GAMES
In this section, we analyze routing games when the popu-

lation of users n is large (the size of the network being fixed).
Formally, we consider a sequence of systems indexed by n,
and we categorize users into a finite set C of classes. Users of
class c may open at most bc connections on routes from a fi-
nite set Rc. These users represent a proportion βc > 0 of the
total population of users, and we define nc = βc×n. Now we



let n be arbitrarily large, and study the corresponding rout-
ing games. First, one can easily show that pure NEs exist.
Then their performance is given in the following proposition.

Theorem 1. (i) With uncoordinated control, the price of
anarchy tends to 1 when n → ∞ for any α-fair allocation
with α < 1. For α > 1, it tends to w⋆

1/w
⋆
2 , where w⋆

1 and
w⋆

2 are respectively the maximal values in the following op-
timization problems:

max
∑

c∈C

(bcβc)
α
(
∑

j∈Rc
rj)

1−α

1− α
, s.t.rj ≥ 0, ∀j, rl ≤ Cl, ∀l,

max
∑

c∈C

βα
c

(
∑

j∈Rc
rj)

1−α

1− α
, s.t.rj ≥ 0, ∀j, rl ≤ Cl, ∀l,

(ii) With coordinated control, the price of anarchy tends to
1 when n → ∞.

The proofs of all results in this paper can be found in [2].

3. ATOMIC GAMES
We now consider a fixed and finite population of users.

In general it is difficult to analyze the corresponding atomic
routing game, even when all routes consist of a single link
only, i.e., in so-called parallel link networks. In such net-
works, the rate allocation does not depend on the choice
of the utility function, both for uncoordinated and coor-
dinated control. When uncoordinated control is used, the
rate achieved by user i on a connection to link j is rij(s) =
Cj/nj(s), where nj(s) =

∑

i
nij(s) is the total number of

connections on link j. When coordinated control is used,
the allocation is more complicated to describe, but remains
independent of the chosen utility function, see [3].
Parallel networks have an alternative interpretation, ap-

plicable to load-balancing questions: we may interpret each
link as a server, where users may connect to different servers.
As shown in the following example, pure NEs are not guar-
anteed to exist in the case of uncoordinated control. Possible
non-existence of NEs is basically due to the fact that multi-
path routing games are not congestion games: one may show
that in general, they admit no potential function.

Example 1. Consider a 2-link parallel homogeneous net-
work whose resources are shared by users 1 and 2, where each
link has unit capacity. User 1 can only open one connec-
tion on either link, while user 2 can open three connections
and chose where to direct them. That is, b1 = 1, b2 = 3,
R1 = R2 = {1, 2}. The allocation is independent of the
rate control used by the users, and each link splits is the
rate equally among the connections offered to it. For exam-
ple, if user 1 creates one connection on link 1, while user 2
creates 2 connection on link 1 and one to link 2, which we
write as {(1, 0), (2, 1)} then user 1 receives 1/3 while user
2 receives 5/3. It is straightforward to show that this an
ǫ − NE [4], where ǫ = 1/6. ǫ > 0 is equivalent to the ex-
istence of an improvement cycle (corresponding to the cycle
{{(1, 0), (2, 1)}, {(0, 1), (2, 1)}, {(0, 1), (1, 2)}, {(1, 0), (1, 2)}},
which since the game if finite, implies the game is not an or-
dinal potential game [5] (and hence not a potential game).

We now restrict our attention to parallel link networks
where all links have unit capacity. The following two propo-
sitions characterize the existence and the performance of
pure NEs in these networks. Let b = maxi bi.

Theorem 2. (i) For uncoordinated control, pure NEs ex-
ist when Ri = R for all i, in the case of all α-fair allocations.
(ii) With coordinated control, pure NEs exist for all α-fair
allocations.

Theorem 3. Assume that m ≤ n, and for all i, Ri = R
and bi = b.
(i) With uncoordinated control, the price of anarchy is equal
to 1 for α-fair allocations with α < 1, and when α > 1, it is
equal to:

(nb− ⌊nb
m
⌋m)(⌊nb

m
⌋+ 1)α + (m− nb+ ⌊nb

m
⌋m)⌊nb

m
⌋α

(n− ⌊ n

m
⌋m)(⌊ n

m
⌋+ 1)α + (m− n+ ⌊ n

m
⌋m)⌊ n

m
⌋α

.

(ii) With coordinated control, the price of anarchy is 1.

4. DISCUSSION
In multipath routing games with elastic traffic, we have

seen that when the population is large, pure NEs exist and
the price of anarchy is strictly greater than 1 only when con-
sidering uncoordinated α-fair congestion control with α > 1.
In such a scenario (with α > 1), the inefficiency of NEs stems
from the fact that a user has an incentive to open as many
connections as possible, which increases network congestion
and hence decreases the social welfare.

When the population is finite, pure NEs do not necessar-
ily exist. However, in the case of parallel link networks, we
have been able to provide conditions under which pure NEs
exist. In such cases, we observe that once again, one has
to pay the price of users selfishness only in the case of un-
coordinated α-fair congestion control with α > 1 (due to a
similar phenomenon).

Some important issues remain to be solved. For example,
it would be interesting to study the performance mixed Nash
Equilibria. We believe that the price of anarchy is then no
longer always equal to 1, even when the population of users
is large. Some preliminary results [3] indicate that the price
of anarchy can remain bounded in the case of coordinated
control, but can be arbitrarily large when uncoordinated
control is used (just as in traditional routing games [4]).

Characterizing the existence and the performance of NEs
may be seen as a static analysis of multi-path routing games,
whereas in reality users would dynamically adapt their rout-
ing choices as a function of the achieved rates, and leave the
system once the transfer of their data flow has been com-
pleted. We reserve for future work the study of the resulting
dynamic routing games.
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