
CAFE: A Configurable pAcket Forwarding Engine for Data
Center Networks

Guohan Lu
Microsoft Research Asia

Beijing, China
lguohan@microsoft.com

Yunfeng Shi
∗

Peking University
Beijing, China

shiyunfeng@gmail.com
Chuanxiong Guo

Microsoft Research Asia
Beijing, China

chguo@microsoft.com

YongguangZhang
Microsoft Research Asia

Beijing, China
ygz@microsoft.com

ABSTRACT
Recently, Data Center Networking (DCN) has attracted many
research attentions and innovative DCN designs have been
proposed [1, 2]. All these designs need specialized packet
forwarding engines due to their special routing algorithms,
which are either based on commonly used packet headers or
self-defined ones. Although programmable forwarding de-
vices are available, it is difficult to use them to prototype
these DCN designs, especially when self-defined headers are
introduced. In this paper, we present a hardware based Con-
figurable pAcket Forwarding Engine (CAFE) to facilitate
the prototyping process. Through simple APIs, CAFE can
be easily configured to forward self-defined packets, mod-
ify, insert, and delete arbitrary packet header fields without
re-designing the hardware. We have implemented CAFE us-
ing NetFPGA. Evaluation demonstrates that CAFE can be
easily configured and it can forward packets at line-rate.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks—ethernet, highspeed ; C.2.6 [Computer-
Communication Networks]: Internetworking—routers

General Terms
Design

Keywords
Configurable packet forwarding engine, data center network-
ing, NetFPGA

∗This work was performed when Yunfeng was an intern at
Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PRESTO’09, August 21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-446-1/09/08 ...$5.00.

1. INTRODUCTION
Data centers with hundreds of thousands of servers are be-

coming important infrastructures for cloud computing. As
a data center is always under complete control of a sin-
gle organization, the underlying assumption for data center
networking (DCN) becomes very different from that of the
Internet. Recently, DCN has attracted many research at-
tentions. Many innovative designs have been proposed to
interconnect servers in data centers to build high capacity
networks using commodity devices [1, 2, 3, 4, 5].

Currently there are mainly two approaches for DCN de-
signs. One is to leverage servers for packet forwarding [2,
3, 5], and the other is to program the switches to build
Clos networks such as fat-tree [1, 4]. Yet it is difficult to
prototype these DCN designs due to two reasons. First,
all these designs have special routing requirements, such as
load-balancing and fault-tolerance. To meet these require-
ments, these designs use special forwarding schemes by ei-
ther reusing existing headers or introducing new L2.5 head-
ers. Hence, conventional packet forwarding devices such as
Ethernet switches and IP routers cannot support these for-
warding schemes without modification. Second, compared
with the hardware approach, although software based for-
warding devices can be easily programmed to support these
forwarding schemes, currently they cannot achieve compara-
ble high forwarding performance (with low CPU overhead),
which is an important goal of these DCN designs.

A fully programmable hardware such as NetPFGA [6]
becomes a good candidate for prototyping DCN designs.
However, designing hardware on FPGA is time consuming
and needs special skills, especially for achieving high per-
formance. Besides, it is quite painful to debug designs on
FPGA. To this end, a high performance hardware forward-
ing engine which can be easily configured to support self-
defined packets will greatly facilitate DCN prototyping.

In this paper, we present a Configurable pAcket Forward-
ing Engine (CAFE) which provides simple yet powerful APIs
to control its forwarding behavior. Compared with a fully
programmable FPGA, it requires no hardware re-designing
which greatly eases the development while guarantees high
performance. Through simple APIs, CAFE allows users to
define their own rules to classify packets into different types,
and use different forwarding schemes for different packet
types. This feature enables CAFE to forward packets of

multiple protocols simultaneously. Thus, CAFE can also
virtualize the physical substrate to enable different proto-
cols running on the same physical infrastructure [7].

We have implemented CAFE on top of NetFPGA. Ac-
cording to our experience, only tens or hundreds of lines of
configuration scripts can configure CAFE into the forward-
ing device of a different DCN design. Experiments also show
that all the ports of CAFE can forward packets at line-rate.

The rest of paper is organized as follows: In § 2, we de-
scribe the background of three DCN designs. We present
the design and implementation of CAFE in § 3. We evaluate
our NetFPGA-based CAFE in § 4 and present two concrete
DCN examples built from CAFE. We discuss related work
in § 5 and conclude in § 6.

2. BACKGROUND
In this section, we discuss the special packet forwarding

mechanisms used by three DCN designs.
Fat-tree [1] is a DCN design in which multiple layers of

switches are used to provide high network capacity. There
are two types of switches: the core switches and the pod
ones. The core switches are normal IP routers. The pod
switches use specialized two-level lookup algorithm to for-
ward IP packets based on their destination addresses. The
32-bit destination IP address is divided into two spaces. For
the IP addresses assigned to that pod, the three most sig-
nificant octets of the destination IP address are used as the
lookup key. For other IP addresses, the least significant octet
of the destination IP address is used as the lookup key.

DCell [2] is another DCN design which targets for very
large data centers. In this design, every server is equipped
with a multi-port NIC and needs to forward packets for
other servers. To support its routing algorithm, DCell adds
a header between the Ethernet and IP headers and servers
forward packets based on the DCell header. DCell header is
very similar to IP header. The main difference lies in that
apart from a destination DCell Address, DCell header has a
Proxy DCell Address and 1-bit Proxy Flag (PF) field. When
PF is zero, the packet forwarding is based on the destina-
tion address. Otherwise, it is based on the proxy address.
The proxy address is similar to the idea of IP loose source
routing option.

BCube [5] is a DCN design targeting for modular data cen-
ters. BCube is similar to DCell in that servers are equipped
with a multi-port NIC to forward packets for other servers.
However, BCube uses source routing and designs a new layer
2.5 header to support the routing schema. The header has
an array of Next Hop Address (NHA) fields and a Next Hop
Index (NHI) field. The NHA fields store the addresses of all
the nodes along the forwarding path. When an intermedi-
ate node receives a BCube packet, it uses the NHI field to
locate the current NHA field and uses NHA to lookup the
forwarding table. Then, the node increases NHI by one and
sends the packet to the next hop.

3. DESIGN OF CAFE
We have three design goals for our forwarding engine:

• Configurable forwarding behaviors: As DCN de-
signs have special routing algorithms, the underlying
forwarding device should be configurable in order to
support different forwarding schemes for both existing
protocol headers and self-defined headers.

Device Operations Type

IPv4
router

Check Version, Header Length and TTL
fields. Verify checksum.

1

Forwarding table lookup based on the
destination IP.

2

Decrease TTL field. Update checksum. 3

Fat-tree
switch

Check Version, Header Length and TTL
fields. Verify checksum.

1

Two-level forwarding table lookup based
on the destination IP.

2

Decrease TTL field. Update checksum. 3

DCell
server

Check DCell Version, Header Length
and TTL fields. Verify checksum.

1

Forwarding table lookup based on either
destination or proxy DCell address.

2

Decrease TTL field. Update checksum. 3

BCube
server

Check BCube Version, Header Length
and TTL fields. Verify checksum.

1

Forwarding table lookup based on the
NHA field indexed by the NHI field.

2

Decrease TTL field. Update checksum. 3

MPLS
router

Check TTL field. 1
Forwarding table lookup based on the
MPLS label field

2

Rewrite, push or pop MPLS label. De-
crease TTL.

3

Table 1: All required operations in fast forwarding
path for five devices.

• Clear and simple interface to users: A clear and
simple interface can tell the exact capability of this
hardware device and let users configure it easily.

• Line-rate forwarding performance: As DCN de-
signs all aim at high capacity, the hardware forwarding
device should provide high performance to make the
prototype meaningful to researchers.

In the following sections, we first investigate the necessary
operations in the fast forwarding path. Then we present our
hardware design, and the software interface to control its
forwarding behavior.

3.1 Operations in Fast Forwarding Path
Table 1 lists all the required operations in fast forward

path (FFP) for five devices, i.e. IPv4 router, Fat-tree switch,
DCell server, BCube server and MPLS router. In the table,
column type denotes the type of operation listed below. As
we only target for the most basic operations in packet for-
warding, firewalls and Intrusion Detection Systems are not
investigated. IPv4 router is the most widely deployed packet
forwarding device and has the most basic operations along
FFP. Fat-tree switch also forwards IP packets but uses a
different forwarding table lookup algorithm based on the
destination IP, i.e. two-level lookup algorithm (see § 2).
DCell header is similar to IP header, but the forwarding ta-
ble lookup can be based on different fields in the header.
The uniqueness of forwarding table lookup of BCube header
lies in that the position of the lookup key is not fixed, but is
determined by another field in the header. MPLS router rep-
resents another type of switching technology, circuit switch-
ing. To sum up, there are following three types of operations
along the FFP for these five devices.

1. Header verification. When a packet is received, the
forwarding device checks its header to determine whether
the packet is to be discarded, delivered to the slow path, or

forwarded. There are two types of verifications. The first
type is header field verification. It compares the value of a
certain field with a given value. For example, an IPv4 router
checks whether TTL is zero, and whether the header length
is 5. When TTL is zero, the packet is discarded. When the
header length is not 5, it is delivered to slow path for further
processing. To note, IPv4 header length is a 4-bit field.

The other type is checksum verification. It is different
from the first type in that it uses 16-bit addition operations
to sum up the whole packet header.

2. Forwarding table lookup. The device first builds a
lookup key by extracting a set of fields from packet header,
and then uses the key to locate an entry in the forwarding
table. However, the device may use different lookup keys to
forward packets. For example, the lookup key for a fat-tree
switch can either be the three most significant octets or the
least significant octet of destination IP. The lookup key for a
DCell server can either be the destination address or proxy
DCell address. Besides, the position of the lookup key can
be determined by another field in the packet header, e.g.
BCube packet forwarding.

3. Header modification, insertion and deletion.
After the forwarding decision is made, the packet usually
needs to be modified before sent. The operation can be field
modification such as TTL decrement, checksum update, and
MPLS label swapping. Or it can be header insertion and
deletion such as MPLS label insertion and deletion when
packets enter and exit the MPLS network.

As for the field modification, a new value can be used
to overwrite the field such as swapping the MPLS label,
or a new value is used to update the original value of the
field such as decreasing TTL by one and updating check-
sum. As checksum protects the whole header, any changes
in the header lead to its checksum update. For the com-
monly used Internet checksum, an adjusted value is added
to the old checksum and the value only depends on the dif-
ferences between the original and updated header [8]. Thus,
the adjusted value can be decided when all the other header
modification rules are known. Some modification operations
are type-specific, which means they are the same for all the
packets of a certain type, such as TTL decrement for IP
packets. The others are flow-specific as they may differ from
flow to flow. For example, MPLS label swapping is flow-
specific. The new label depends on the old label.

The header insertion and deletion are flow-specific too.
For example, an edge MPLS router gateway may have mul-
tiple internal MPLS links and external IP links. Only the
flows across the two types of links need to perform these
two operations. As for the content of the inserted header,
some fields are flow-specific while others may vary packet-
by-packet. For example, when an MPLS header is inserted
into an IP packet, the 20-bit label, 3-bit experimental field
and 1-bit stack field are flow-specific. On the other hand,
the 8-bit TTL may vary packet-by-packet, as it is equal to
IPv4 TTL minus one.

3.2 Hardware Design
Based on the analysis above, a desired forwarding engine

for DCN must meet the following requirements:

• Bit-level field verification. The engine must allow
user to select any bits from a header and compare them
with the given data.

Filters
FiltersHeader field verifier

ArbiterTTL & Checksum CalculatorChecksum Verifier

Field

Seizer

Lookup Key

Extractor

Lookup

Engine

Pktype

Identifier Header

Modifier

Input FIFO

Figure 1: Block diagram of CAFE

• Bit-level lookup key extractor. The engine must
allow user to extract any combination of bits from a
header as the lookup key.

• Bit-level field modification. The engine must allow
user to select any bits to be modified by a user-supplied
value. Addition and replacement must be provided to
support field updating and overwriting. The engine
must support both type-specific and flow-specific mod-
ification operations.

• Byte-level header insertion and deletion. The
engine must allow user to insert a multi-byte data
into the header, or to delete a multi-byte data from
the header. As for the insertion, its position, length
and data must be flow-specific and the engine must be
able to apply bit-level field modification to the inserted
data. As for the deletion, its position and length must
be flow-specific too.

• Type-based operation. As packets may need differ-
ent forwarding processes, the engine must be able to
classify packets into different types and apply different
operations to each type.

Based on these requirements, we designed CAFE as shown
in Figure 1. CAFE processes packets in three phases. When
a packet arrives, Pktype Identifier module first identifies the
type of the packet. When its type cannot be identified, it
means the packet cannot be forwarded by hardware, and the
packet will be delivered to the slow path.

In the second phase, CAFE pushes the packet data into
its input FIFO, and sends its copy to do header verifica-
tion and forwarding table lookup at the same time. There
are multiple header field verifiers, lookup key extractors and
checksum verifiers. Based on the packet type, one key ex-
tractor, one checksum verifier and several header field ver-
ifiers are selected to perform header verification and table
lookup operations.

A header field verifier filters the packets which should not
be forwarded by hardware. The checksum verifier verifies
the packet’s checksum. The lookup key extractor extracts a
set of packet fields as the lookup key, and the Lookup Engine
looks up the forwarding table using this key. Every entry in
the forwarding table represents a flow. The entry contains
the flow-specific modification and insertion data of that flow.

The arbiter checks the results of these selected operations.
If the packet is filtered by a header field verifier, has wrong
checksum or fails to match to a forwarding table entry, the
packet is delivered to the slow path or discarded without
modification. Otherwise, the header modifier module will
further modify the packet before sending it out.

In the third phase, the packet is associated with not only
a packet type but also a flow entry. So the header modifier
can use both the type-specific data and flow-specific data to
modify the packet header.

3.2.1 Packet identifier and Header field verifier
The packet identifier consists of a number of parallel fil-

ters. When a packet matches a filter, it is marked as the
packet type associated with the filter. When it matches
more than one filters, the filter with the highest priority
overrides. When it does not match any filter, its type can-
not be identified and the packet will be delivered to the slow
path. The header field verifier is also a filter. When a packet
matches this filter, the packet should not be forwarded by
hardware.

A filter performs multiple independent comparisons be-
tween packet header fields and the corresponding user-supplied
data. If all the comparisons of a filter return true, the packet
matches the filter. A header field is selected by a direct Field
Seizer (FS). User can configure a direct FS with a field ad-
dress and a 1-byte mask. The seizer directly extracts a 1-
byte field at that address and uses the mask to select the
needed bits within that byte. The field address is counted
from the beginning of Ethernet header to that field in unit
of byte.

The power of the filter is that the seizers are all inde-
pendent and can extract fields in different positions. Thus
they can extract arbitrary combination of bits in the packet
header, such as 16-bit ethertype plus 32-bit IP address to
filter packets towards a certain IP address. Obviously, the
number of seizers in each filter determines the CAFE’s match-
ing capability.

3.2.2 Lookup Key Extractor and Lookup Engine
A lookup key extractor consists of several direct FSs and

indirect FSs. The FS is described in previous section. The
indirect FS is used for source routing. It has three param-
eters: two addresses and one mask. It first selects 1-byte
data from the 1st address as an offset, and then sums the
offset and the 2nd address to obtain a new byte position. Fi-
nally, it selects 1-byte data at the new position and uses the
mask to get the final data. Each FS can be independently
enabled and disabled. When it is disabled, it outputs zero.
The lookup key consists of the packet type and outputs of all
the seizers. The packet type is used to differentiate lookup
keys for different packet types so that they can share the
same forwarding table.

The Lookup Engine has a forwarding table. It locates an
entry in the forwarding table according to the key. Each
entry represents a flow. It contains the lookup key, per-
flow modification data and insertion data, and the index to
the neighbor table. The hardware forwarding table is main-
tained by the software. When a packet does not match any
entry, it is delivered to the slow path. Software will perform
the forwarding and table updating, so that the subsequent
packets can then be processed by the hardware. The neigh-
bor table has two columns, the output port number and next
hop MAC address. The first one denotes the output port of
the packet and the second one is used to replace the desti-
nation MAC address of the packet. The neighbor table is
also maintained by software.

&

M F

M2

M2

+

M

S1 S2 D

step1

M1

M1

To output buffer

step3

step2

Figure 2: 64-bit field modification engine

3.2.3 Header Modifier
The header modifier first uses a selector to perform header

insertion and deletion. The selector has two inputs and one
output. The two inputs are the original packet data from
the input FIFO and the insert data from a flow entry. The
output is the field modification engine. Normally, the se-
lector pops data from the input FIFO and pushes it to the
output. To achieve insertion, the selector suspends popping
and pushes insert data to the output. To achieve deletion,
the selector pops data from the input FIFO and simply drops
it.

The field modification engine shown in Figure 2 achieves
bit-level field modification. It is designed for 64-bit wide
data bus. All three inputs and the output are 64-bit wide. S1

is supplied by user. It is from either type-specific registers or
modification data in the flow entry. S2 is seized from original
packet. D is from the output of the selector. M1 and M2

are two fields used to replace field F in D. In step 1, M1 and
M2 are shifted to be aligned with F and a mask is applied
to them to zero all other bits in S1 and S2. In step 2, we
sum M1 and M2. Depending on the configuration, the carry
bit is either cleared or added back into the resulting sum.
The latter operation is used in updating Internet checksum.
Meanwhile, F is zeroed. In step 3, M replaces F by OR
operation. To note, when M1 or M2 is zero, M is the same
as M2 or M1.

This engine can perform addition and replacement oper-
ations with two sources and one destination. It can be used
to decrease TTL, update checksum, rewrite MPLS label and
etc. For example, to decrease IPv4 TTL by one, we can set
M1 to 0xFF, set both M2 and F to the original TTL field,
and set the mask and two shifts accordingly.

3.3 Software API
It is difficult to directly use over 300 registers provided by

the hardware to configure its packet forwarding behaviors.
As several registers need to be configured cooperatively for
one behavior, e.g. building the forwarding table lookup key,
we use one software API to configure all registers related to
one function. These software APIs let users easily configure
every functional module in CAFE, such as the filter in packet
type identifier, the lookup key extractor, and etc. APIs
for writing forwarding table are also provided. Altogether,
there are 13 core APIs plus a few auxiliary APIs. Due to
space limitation, we can only show some of these APIs in an
example in the next section.

4. IMPLEMENTATION AND EVALUATION
We’ve implemented CAFE using NetFPGA. Due to its re-

sources limitation, CAFE supports two different user-defined
packet types in current implementation. For each packet
type, there are one lookup key extractor, one checksum ver-
ifier and two filters as header field verifiers. Each filter has
eight direct FSs, which are enough for our experiments. Also
due to limited FPGA resources, the lookup key is set to be
128-bit. It consists of 1-byte packet type, and 15-byte seized
data from 11 direct FSs and 4 indirect FSs. For each flow
entry, we have 16 bytes modification data and a maximum
of 24 bytes insertion data.

The forwarding table is implemented using the combina-
tion of a hash table of 1K entries and a TCAM table of 32
entries. As NetFPGA can not support a large TCAM, the
hash table is taken as the main storage for the flow entries,
while the TCAM table is used to resolve hash conflicts.

CAFE uses 60% LUTs, 44% BRAMs of Virtex2Pro50
FPGA. We also downloaded the source code of openflow
0.8.9-1 and synthesised it. It (excluding I/O modules) uses
about 40% LUTs, 24% BRAMs of Virtex2Pro50 FPGA.
Thus, to provide the flexibility to forward self-defined pack-
ets and its header modification function, CAFE only uses an
extra 20% LUTs and 20% BRAMs of the same FPGA than
the Openflow.

4.1 Experimental setup
We use a NetFPGA packet generator to connect all the

four Gigabit ports of CAFE. The generator are used to gen-
erate packets at wire speed and check the output packets
forwarded by CAFE. We have done two experiments on this
testbed. First we configure CAFE as a fat-tree switch, and
then configure it to forward DCell packets.

Fat-tree. In this experiment, we configure CAFE as a
fat-tree pod switch. The pod switch uses /24 prefix to look
up the IP space assigned to the pod, and it uses /8 suffix
to look up the rest of IP addresses. Thus for CAFE, we
simply treat these two spaces as two packet types and build
different lookup keys for them.

Figure 3 shows the script to configure pod switch 10.2.2.1
(see Figure 3 in [1]). In all these APIs, the first argument
denotes the packet type index.

Line 1-4 define that IPv4 packets whose destination ad-
dress is 10.2. ∗ .∗ as type 0. Line 5-6 define the rest IPv4
packets as type 1. set pktype configures a comparison of a
filter for a packet type. The args are packet type index, filter
index, seizer index, the address of the 1-byte field, its mask,
the user supplied value and a flag. A filter with smaller in-
dex has higher priority. The address is counted from the
beginning of Ethernet header to this field in unit of byte.
The comparison result returns true when flag is 0 and two
inputs are equal, or when flag is 1 and two inputs are not
equal.

Line 7-14 perform IP header verification for type 0 and 1.
Line 7-8 verifies the IPv4 version, header length and TTL
fields. Line 9-10 says that when the packet is to 10.2.2.1,
deliver the packet to slow path. Line 11 verifies its IP
checksum. set filter configures a comparison of a header
field verifier. The args are exactly the same as set pktype.
set csum verify verifies the Internet checksum of a data
block. The args are packet type index, the starting address
of the block and the length of the block.

Line 15-17 configure the first three destination IP octets

configure packet type identifier
1: set_pktype(0, 0, 0, 13, 0xFF, 0x08, 0) // ethertype
2: set_pktype(0, 0, 1, 14, 0xFF, 0x00, 0) // ethertype
3: set_pktype(0, 0, 2, 31, 0xFF, 0x0A, 0) // dst ip
4: set_pktype(0, 0, 3, 32, 0xFF, 0x02, 0) // dst ip
5: set_pktype(1, 1, 0, 13, 0xFF, 0x08, 0) // ethertype
6: set_pktype(1, 1, 1, 14, 0xFF, 0x00, 0) // ethertype
header verification
7: set_filter(0, 0, 0, 15, 0xFF, 0x45, 1) // ver & hdrlen
8: set_filter(0, 1, 0, 23, 0xFF, 0x00, 0) // ttl
9: set_filter(0, 2, 0, 33, 0xFF, 0x02, 0) // dst ip
10: set_filter(0, 2, 1, 34, 0xFF, 0x01, 0) // dst ip
11: set_csum_verify(0, 15, 20) // ip header checksum
12: set_filter(1, 0, 0, 15, 0xFF, 0x45, 1) // ver & hdrlen
13: set_filter(1, 1, 0, 23, 0xFF, 0x00, 0) // ttl
14: set_csum_verify(1, 15, 20) // ip header checksum
build lookup key extractor
15: set_direct_key(0, 0, 31, 0xFF) // 1st octet of dst ip
16: set_direct_key(0, 1, 32, 0xFF) // 2nd octet of dst ip
17: set_direct_key(0, 2, 33, 0xFF) // 3nd octet of dst ip
18: set_direct_key(1, 0, 34, 0xFF) // 4th octet of dst ip
decrease TTL, update checksum
19: set_type_modify_data(0, 0xFF01000000000000)
20: set_type_modify_rule(0, 0, 3, 0x000000000000FF00,

3, 6, 0, 1)
21: set_type_modify_rule(0, 1, 4, 0xFFFF000000000000,

4, -1, 0, 2)
22: set_type_modify_data(1, 0xFF01000000000000)
23: set_type_modify_rule(1, 0, 3, 0x000000000000FF00,

3, 6, 0, 1)
24: set_type_modify_rule(1, 1, 4, 0xFFFF000000000000,

4, -1, 0, 2)
set hash table
25: set_hash_table(393, 0x000A0200 00000000

00000000 00000000, 0x0, 0x0)
26: set_hash_table(139, 0x000A0201 00000000

00000000 00000000, 0x0, 0x1)
27: set_hash_table(323, 0x01020000 00000000

00000000 00000000, 0x0, 0x2)
28: set_hash_table(386, 0x01030000 00000000

00000000 00000000, 0x0, 0x3)
set neighbor table
29: set_nb_table(0, 0x0, 0x0018FE2ED6EA)
30: set_nb_table(1, 0x1, 0x0018FE2E046E)
31: set_nb_table(2, 0x2, 0x0018FE2ED24A)
32: set_nb_table(3, 0x3, 0x0018FE2E00F2)

Figure 3: Configuration script for a fat-tree pod
switch

as the lookup key for packet type 0. Line 18 configures the
last destination IP octet as the lookup key for packet type
1. set direct key configures a direct FS of the lookup key
extractor for a packet type. The args are packet type index,
seizer index, the address of the 1-byte field and its mask.

Line 19-24 decrease TTL by one and update the checksum
accordingly. set type modify data configures S1 in the
field modify engine. The args are packet type index and S1.
In this case, S1 is used to modify TTL and checksum. The
1st byte of S1 (0xFF) is used to decrease TTL. The 2nd and
3rd bytes of S1 (0x0100) are used to update the checksum.
set type modify rule configures other parameters of the
field modify engine. The args are packet type index, rule
index, 64-bit block count of S2, mask, 64-bit block count of
D, shift for S1, shift for S2 and a flag. The block counts
are which 64-bit blocks of S2 and D locate. The shift is
the number of bytes to shift. Negative number means the
direction is from right to left. As the source field M2 and the
target field F are the same for TTL decrement and checksum
update, the shift for S2 is zero. When the flag is 1, the carry

bit is cleared. When it is 2, the carry bit is added back in.
Line 25-28 configure the forwarding lookup table. The

forwarding table is configured according to Figure 4 in [1].
set hash table sets a forwarding table entry. The args are
the index of the entry, the 128-bit lookup key, the per-flow
modification data and the neighbor table index. The hash
function is CRC-16. As the hash table has only 1024 entries,
only last 10 bits of the hash value is used as the index. In
this case, as there is no per-flow modification data, the 3rd
arg is set to zero.

Line 29-32 configure the neighbor table. set nb table
sets a neighbor table entry. The args are the entry index,
the output port and the next hop MAC address.

DCell. In this experiment, we configure CAFE to forward
packets as a DCell server. We classify packets according
to their PF flag. When it is zero, it uses the destination
DCN address as the lookup key. Otherwise, it uses proxy
DCN address as the lookup key. Other configurations such
as header verification, TTL and checksum modifications are
similar to those of fat-tree.

4.2 Forwarding Performance
The packet generator evenly sends traffic from every port

to all other three ports at wire speed. Table 2 shows that
CAFE is capable of forwarding packets almost at the line-
rate across 64, 512, 1024, and 1514 packet sizes. The per-
formance of CAFE to act as fat-tree and DCell switch are
the same.

Pkt Size (Bytes) 64 512 1024 1514
Fwd Rate (Gbps) 4.0 3.8 3.8 3.8

Table 2: Forwarding rate of NetFPGA-based CAFE

5. RELATED WORK
Openflow proposes a standard interface to manipulate the

forwarding table of a proprietary switch. Openflow type-
0 can only handle standard TCP/UDP + IP + Ethernet
packets and cannot fully meet the requirements of DCN.
For example, Openflow type-0 cannot meet the requirement
of DCell in which new DCell header is introduced. And
it cannot be applied in BCube and Monsoon where source
routing is used. Our work may be considered to provide a
concrete example on what kind of functionalities are needed
in Openflow type-1.

Casado et al. propose a new flow-oriented approach for
packet forwarding hardware [9], in which the forwarding de-
cision is done in software and the hardware just mimics what
the software tells it. CAFE can be used to implement their
design. Its generic packet field extractor can be used to
match a packet to a forwarding table. CAFE also addresses
other important issues such as header modification, insertion
and deletion in the hardware forwarding path.

Orphal [10] defines a set of APIs to control forwarding
behavior on proprietary switches or routers. The APIs are
mainly limited to TCAM, which provides similar function-
alities as CAFE’s lookup engine. CAFE focuses more on
flexible header extraction and modification which are not
addressed in Orphal but are important for non-IP packet
forwarding in DCN.

Many packet processing engines [11, 12] are available to
process complex network protocols such as IPSec and TCP,
or to perform deep packet inspections, such as application

classification and signature matching. Our design mainly
targets for the common operations in packet forwarding,
which are much more simpler than those protocol states and
packet content analysis.

6. CONCLUSION AND FUTURE WORK
CAFE is a configurable packet forwarding engine which

provides simple APIs to control its packet forwarding be-
havior. Due to its configurability, packet header verifica-
tion, forwarding table lookup, header modification, inser-
tion and deletion can all be performed without understand-
ing the packet header semantics. Our initial experimental
experience with CAFE is promising as we can now easily
re-configure CAFE to forward self-defined packet headers
without any hardware re-designing.

CAFE is still in active development. Current header in-
sertion and deletion design can only achieve 8-byte level op-
eration. We are working towards a genuine byte-level design.
As one might expect, there are limitations on the types of
operations that CAFE can provide. For example, CAFE
right now only supports Internet checksum verification, and
packet modification rule is limited to simple replacement and
addition with limited inputs. As part of our future work, we
are trying to make CAFE a generic and high performance
hardware forwarding engine for DCN research.

7. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable,

Commodity Data Center Network Architecture,” in Proc.
SIGCOMM, 2008.

[2] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu,
“DCell: A Scalable and Fault Tolerant Network Structure
for Data Centers,” in SIGCOMM, 2008.

[3] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu,
“FiConn: Using Backup Port for Server Interconnection in
Data Centers,” in IEEE INFOCOM, 2009.

[4] A. Greenberg, D. Maltz, P. Patel, S. Sengupta, and
P. Lahiri, “Towards a Next Generation Data Center
Architecture: Scalability and Commoditization,” in
SIGCOMM PRESTO Workship, 2008.

[5] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu, “BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers,” in SIGCOMM, 2009.

[6] J. Naous, G. Gibb, S. Bolouki, and N. McKeown,
“NetFPGA: Reusable Router Architecture for Experimental
Research,” in PRESTO, 2008.

[7] T. Anderson, L. Peterson, S. Shenker, and J. Turne,
“Overcoming the Internet Impasse Through Virtualization,”
in ACM HOTNETS III, 2004.

[8] T. Mallory and A. Kullberg, “Incremental updating of the
Internet checksum,” 1990. RFC1141.

[9] M. Casado, T. Koponen, D. Moon, and S. Shenker,
“Rethinking Packet Forwarding Hardware,” in ACM
HotNets-VII, 2008.

[10] J. C. Mogul, P. Yalagandula, J. Tourrilhes, R. McGeer,
S. Banerjee, T. Connors, and P. Sharma, “API Design
Challenges for Open Router Platforms on Proprietary
Hardware,” in ACM HotNets-VII, 2008.

[11] Netronome, “Network Flow Processor NFP-3200 Product
Brief.” http://www.netronome.com/files/file/Netronome%
20NFP%20Product%20Brief%20(3-09).pdf.

[12] C. L. Hayes and Y. Luo, “Dpico: a high speed deep packet
inspection engine using compact finite automata,” in
ANCS, (New York, NY, USA), pp. 195–203, ACM, 2008.

