
Regularized Minimum Error Rate Training

Michel Galley
Microsoft Research
mgalley@microsoft.com

Chris Quirk
Microsoft Research
chrisq@microsoft.com

Colin Cherry
National Research Council

colin.cherry@nrc-cnrc.gc.ca

Kristina Toutanova
Microsoft Research
kristout@microsoft.com

Abstract

Minimum Error Rate Training (MERT) re-
mains one of the preferred methods for tun-
ing linear parameters in machine translation
systems, yet it faces significant issues. First,
MERT is an unregularized learner and is there-
fore prone to overfitting. Second, it is com-
monly used on a noisy, non-convex loss func-
tion that becomes more difficult to optimize
as the number of parameters increases. To ad-
dress these issues, we study the addition of
a regularization term to the MERT objective
function. Since standard regularizers such as
`2 are inapplicable to MERT due to the scale
invariance of its objective function, we turn to
two regularizers—`0 and a modification of `2—
and present methods for efficiently integrating
them during search. To improve search in large
parameter spaces, we also present a new direc-
tion finding algorithm that uses the gradient of
expected BLEU to orient MERT’s exact line
searches. Experiments with up to 3600 features
show that these extensions of MERT yield re-
sults comparable to PRO, a learner often used
with large feature sets.

1 Introduction

Minimum Error Rate Training emerged a decade
ago (Och, 2003) as a superior training method for
small numbers of linear model parameters of machine
translation systems, improving over prior work using
maximum likelihood criteria (Och and Ney, 2002).
This technique quickly rose to prominence, becom-
ing standard in many research and commercial MT
systems. Variants operating over lattices (Macherey
et al., 2008) or hypergraphs (Kumar et al., 2009) were
subsequently developed, with the benefit of reducing
the approximation error from n-best lists.

The primary advantages of MERT are twofold. It
directly optimizes the evaluation metric under consid-
eration (e.g., BLEU) instead of some surrogate loss.

Secondly, it offers a globally optimal line search. Un-
fortunately, there are several potential difficulties in
scaling MERT to larger numbers of features, due
to its non-convex loss function and its lack of reg-
ularization. These challenges have prompted some
researchers to move away from MERT, in favor of lin-
early decomposable approximations of the evaluation
metric (Chiang et al., 2009; Hopkins and May, 2011;
Cherry and Foster, 2012), which correspond to easier
optimization problems and which naturally incorpo-
rate regularization. In particular, recent work (Chiang
et al., 2009) has shown that adding thousands or tens
of thousands of features can improve MT quality
when weights are optimized using a margin-based
approximation. On simulated datasets, Hopkins and
May (2011) found that conventional MERT strug-
gles to find reasonable parameter vectors, where a
smooth loss function based on Pairwise Ranking Op-
timization (PRO) performs much better; on real data,
this PRO method appears at least as good as MERT
on small feature sets, and also scales better as the
number of features increases.

In this paper, we seek to preserve the advantages
of MERT while addressing its shortcomings in terms
of regularization and search. The idea of adding a
regularization term to the MERT objective function
can be perplexing at first, because the most common
regularizers, such as `1 and `2, are not directly appli-
cable to MERT. Indeed, these regularizers are scale
sensitive, while the MERT objective function is not:
scaling the weight vector neither changes the predic-
tions of the linear model nor affects the error count.
Hence, MERT can hedge any regularization penalty
by maximally scaling down linear model weights.

The first contribution of this paper is to analyze var-
ious forms of regularization that are not susceptible
to this scaling problem. We analyze and experiment
with `0, a form of regularization that is scale insen-
sitive. We also present new parameterizations of `2

regularization, where we apply `2 regularization to
scale-senstive linear transforms of the original linear
model. In addition, we introduce efficient methods
of incorporating regularization in Och (2003)’s exact
line searches. For all of these regularizers, our meth-
ods let us find the true optimum of the regularized
objective function along the line.

Finally, we address the issue of searching in a
high-dimensional space by using the gradient of ex-
pected BLEU (Smith and Eisner, 2006) to find better
search directions for our line searches. This direction
finder addresses one of the serious concerns raised
by Hopkins and May (2011): MERT widely failed
to reach the optimum of a synthetic linear objective
function. In replicating Hopkins and May’s experi-
ments, we confirm that existing search algorithms for
MERT—including coordinate ascent, Powell’s algo-
rithm (Powell, 1964), and random direction sets (Cer
et al., 2008)—perform poorly in this experimental
condition. However, when using our gradient-based
direction finder, MERT has no problem finding the
true optimum even in a 1000-dimensional space.

Our results suggest that the combination of a reg-
ularized objective function and a gradient-informed
line search algorithm enables MERT to scale well
with a large number of features. Experiments with
up to 3600 features show that these extensions of
MERT yield results comparable to PRO (Hopkins
and May, 2011), a parameter tuning method known
to be effective with large feature sets.

2 Unregularized MERT

Prior to introducing regularized MERT, we briefly
review standard unregularized MERT (Och, 2003).
We use fS1 = {f1 . . . fS} to denote the S input sen-
tences of a given tuning set. For each sentence fs, let
Cs = {es,1 . . . es,M} denote the list of M -best can-
didate translations. Each input and output sentence
pair (fs, es,m) is weighted using a linear model that
applies model parameters w = (w1 . . . wD) ∈ RD
to D feature functions h1(f , e,∼) . . . hD(f , e,∼),
where ∼ is the hidden state associated with the
derivation from f to e, such as phrase segmenta-
tion and alignment. Furthermore, let hs,m ∈ RD
denote the feature vector representing the translation
pair (fs, es,m).

In MERT, the goal is to minimize a loss function
E(r, e) that scores translation hypotheses against a

set of reference translations rS1 = {r1 . . . rS}. This
yields the following optimization problem:

ŵ = argmin
w

{ S∑
s=1

E(rs, ê(fs;w))

}
=

argmin
w

{ S∑
s=1

M∑
m=1

E(rs, es,m)δ(es,m, ê(fs;w))

}
(1)

where

ê(fs;w) = argmax
m∈{1...M}

{
wᵀhs,m

}
(2)

While the error surface of Equation 1 is only an
approximation of the true error surface of the MT
decoder, the quality of this approximation depends
on the size of the hypothesis space represented by the
M -best list. Therefore, the hypothesis list is grown
iteratively: decoding with an initial parameter vector
seeds the M -best lists; next, parameter estimation
and M -best list gathering alternate until the cumula-
tive M -best list no longer grows, or until changes of
w between two decoding runs are deemed too small.
To increase the size of the hypothesis space, subse-
quent work (Macherey et al., 2008) instead operated
on lattices, but this paper focuses on M -best lists.

A crucial observation is that the unsmoothed error
count represented in Equation 1 is a piecewise con-
stant function. This enabled Och (2003) to devise a
line search algorithm guaranteed to find the optimum
point along the line. To extend the search from one
to multiple dimensions, MERT applies a sequence
of line optimizations along some fixed or variable
set of search directions {dt} until some convergence
criteria are met. Considering a given point wt and
a given direction dt at iteration t, finding the most
probable translation hypothesis in the set of candi-
dates translations Cs = {es,1 . . . es,M} corresponds
to solving the following optimization problem:

ê(fs; γ) = argmax
m∈{1...M}

{
(wt + γ · dt)ᵀhs,m

}
(3)

The function in this equation is piecewise linear (Pa-
pineni, 1999), which enables an efficient exhaustive
computation. Specifically, this function is optimized
by enumerating the up to M hypotheses that form
the upper envelope of the model score function. The
error count, then, is a piecewise constant function

defined by the points γfs1 < · · · < γfsM at which an in-
crease in γ causes a change of optimum in Equation 3.
Error counts for the whole corpus are simply the sums
of sentence-level piecewise constant functions aggre-
gated over all sentences of the corpus.1 The optimal γ
is finally computed by enumerating all piecewise con-
stant intervals of the corpus-level error function, and
by selecting the one that has the lowest error count
(or, correspondingly, highest BLEU score). Assum-
ing the optimum is found in the interval [γk−1, γk],
we define γopt = (γk−1 + γk)/2 and change the pa-
rameters using the update wt+1 = wt + γopt · dt.

Finally, this method is turned into a global D-
dimensional search using algorithms that repeat-
edly use the aforementioned exact line search algo-
rithm. Och (2003) first advocated the use of Powell’s
method (Powell, 1964; Press et al., 2007). Pharaoh
(Koehn, 2004) and subsequently Moses (Koehn et al.,
2007) instead use coordinate ascent, and more recent
work often uses random search directions (Cer et al.,
2008; Macherey et al., 2008). In Section 4, we will
present a novel direction finder for maximum-BLEU
optimization, which uses the gradient of expected
BLEU to find directions where the BLEU score is
most likely to increase.

3 Regularization for MERT

Because MERT is prone to overfitting when a large
number of parameters must be optimized, we study
the addition of a regularization term to the objective
function. One conventional approach is to regularize
the objective function with a penalty based on the

Euclidean norm ||w||2 =
√∑

iw
2
i , also known as `2

regularization. In the case of MERT, this yields the
following objective function:2

ŵ = argmin
w

{ S∑
s=1

E(rs, ê(fs;w)) +
||w||22
2σ2

}
(4)

1This assumes that the sufficient statistics of the metric under
consideration are additively decomposable by sentence, which
is the case with most popular evaluation metrics such as BLEU
(Papineni et al., 2001).

2The `2 regularizer is often used in conjunction with log-
likelihood objectives. The regularization term of Equation 4
could similarly be added to the log of an objective—e.g.,
log(BLEU) instead of BLEU—but we found that the distinc-
tion doesn’t have much of an impact in practice.

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

MERT
Max at 0.225

×

×

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

MERT− `2
Max at -0.018

×

×
−`2

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
γ, the step size in the current direction

MERT− `0
Max at 0

×
×

`0

Figure 1: Example MERT values along one coordi-
nate, first unregularized. When regularized with `2, the
piecewise constant function becomes piecewise quadratic.
When using `0, the function remains piecewise constant
with a point discontinuity at 0.

where the regularization term 1/2σ2 is a free param-
eter that controls the strength of the regularization
penalty. Similar regularizers have also been used
in conjunction with other norms, such as `1 and `0
norms. The `1 norm, defined as ||w||1 =

∑
i |wi|,

applies a constant force toward zero, preferring vec-
tors with fewer non-zero components; `0, defined as
||w||0 = |{i | wi 6= 0}|, simply counts the number of
non-zero components of the weight vector, encoding
a preference for sparse vectors.

Geometrically, `2 is a parabola, `1 is the wedge-
shaped absolute value function, and `0 is an impulse
function with a spike at 0. The original formulation
(Equation 1) of MERT consists of a piecewise con-
stant representation of the loss, as a function of the
step size in a given direction. But with these three reg-

ularization terms, the function respectively becomes
piecewise quadratic, piecewise linear, or piecewise
constant with a potential impulse jump for each dis-
tinct choice of regularizer. Figure 1 demonstrates this
effect graphically.

As discussed in (McAllester and Keshet, 2011),
the problem with optimizing Equation 4 directly is
that the output of the underlying linear classifier, and
therefore the error count, are not sensitive to the scale
of w. Moreover, `2 regularization (as well as `1 reg-
ularization) is scale sensitive, which means any op-
timizer of this function can drive the regularization
term down to zero by scaling down w. As special
treatments for `2, we evaluate three linear transforms
of the weight vector, where the vector w of the regu-
larization term ||w||22/2σ2 is replaced with either:

1. an affine transform: w− w0

2. a vector with only (D − 1) free parameters, e.g.,
(1, w′2, · · · , w′D)

3. an `1 renormalization: w/||w||1

In (1), regularization is biased towards w0, a weight
vector previously optimized using a competitive yet
much smaller feature set, such as core features of
a phrase-based (Koehn et al., 2007) or hierarchical
(Chiang, 2007) system. The requirement that this
feature set be small is to prevent overfitting. Other-
wise, any regularization toward an overfit parameter
vector w0 would defeat the purpose of introducing
a regularization term in the first place.3 In (2), the
transformation is motivated by the observation that
the D-parameter linear model of Equation 2 only
needs (D − 1) degrees of freedom. Fixing one of
the components of w to any non-zero constant and
allowing the others to vary, the new linear model re-
tains the same modeling power, but the (D − 1) free
parameters are no longer scale invariant, i.e., scaling
the (D − 1)-dimensional vector now has an effect on
linear model predictions. In (3), the weight vector
is normalized as to have an `1-norm equal to 1. In
contrast, the `0 norm is scale insensitive, thus not
affected by this problem.

3.1 Exact line search with regularization
Optimizing with a regularized error surface requires
a change in the line search algorithm presented in

3(Gimpel and Smith, 2012, footnote 6) briefly mentions the
use of such a regularizer with its ramp loss objective function.

Section 2, but the other aspects of MERT remain the
same, and we can still use global search algorithms
such as coordinate ascent, Powell, and random di-
rections exactly the same way as with unregularized
MERT. Line search with a regularization term is still
as efficient as in (Och, 2003), and it is still guar-
anteed to find the optimum of the (now regularized)
objective function along the line. Considering again a
given point wt and a given direction dt at line search
iteration t, finding the optimum γopt corresponds to
finding γ that minimizes:

S∑
s=1

E(rs, ê(fs; γ)) +
||wt + γ · dt||22

2σ2
(5)

Since regularization does not affect the points at
which ê(fs; γ) changes its optimum, the points
γfs1 < · · · < γfsM of intersection in the upper enve-
lope remain the same, so the points of discontinuity
in the error surface remain the same. The difference
now is that the error count on each segment [γi−1, γi]
is no longer constant. This means we need to adjust
the final step of line search, which consists of enu-
merating all [γi−1, γi], and keeping the optimum of
Equation 5 for each segment. ê(fs; γ) remains con-
stant within the segment, so we only need to consider
the expression ||wt + γ · dt||22 to select a segment
point. The optimum is either at the left edge, the right
edge, or in the middle if the vertex of the parabola
happens to lie within that segment.4 We compute
this optimum by finding the value γ for which the
derivative of the regularization term is zero. There is
an easy closed-form solution:

d
dγ

[
||wt + γ · dt||22

2σ2

]
= 0

d
dγ

[∑
i

(w2
t,i + 2 · γ · wt,i · dt,i + γ2 · d2t,i)

]
= 0∑

i

(2 · wt,i · dt,i + 2 · γ · d2t,i) = 0

γ = −
(∑

i

wt,i · dt,i
)/(∑

i

d2t,i
)
= −wt

ᵀdt
dt

ᵀdt

This closed-form solution is computed in time pro-
portional to D, which doesn’t slow down the com-

4When the optimum is either at the left edge γi−1 or right
edge γi of a segment, we select a point at a small relative distance
within the segment (.999γi−1 + .001γi, in the former case) to
avoid ties in objective values.

putation of Equation 5 for each segment (the con-
struction of each segment of the upper envelope is
proportional to D anyway).

We also use `0 regularization. While minimiza-
tion of the `0-norm is known to be NP-hard in gen-
eral (Hyder and Mahata, 2009), this optimization is
relatively trivial in the case of a line search. Indeed,
for a given segment, the value in Equation 5 is con-
stant everywhere except where we intersect any of
the coordinate hyperplanes, i.e., where one of the
coordinates is zero. Thus, our method consists of
evaluating Equation 5 at the intersection points be-
tween the line and coordinate hyperplanes, returning
the optimal point within the given segment. For any
segment that doesn’t cross any of these hyperplanes,
we evaluate the objective function at any point of the
segment (since the value is constant across the entire
segment).

4 Direction finding

4.1 A Gradient-based direction finder

Perhaps the greatest obstacle in scaling MERT
to many dimensions is finding good search direc-
tions. In problems of lower dimensions, iterating
through all the coordinates is computationally feasi-
ble, though not guaranteed to find a global maximum
even in the case of a perfect line search. As the
number of dimensions increases by orders of mag-
nitude, this coordinate direction approach becomes
less and less tractable, and the quality of the search
also suffers (Hopkins and May, 2011).

Optimization has traditionally relied on finding the
direction of steepest ascent: the gradient. Unfortu-
nately, the objective function optimized by MERT is
piecewise constant; while it may admit a subgradi-
ent, this direction is generally not very informative.
Instead we may consider a smoothed variation of the
original approximation. While some variants have
been considered (Och, 2003; Flanigan et al., 2013),
we use an expected BLEU approximation, assum-
ing hypotheses are drawn from a log-linear distri-
bution according to their parameter values (Smith
and Eisner, 2006). That is, we assume the proba-
bility of a translation candidate es,m is proportional
to (exp (wᵀhs,m))

µ, where w are the parameters be-
ing optimized, hs,m is the vector of the features for
es,m, and µ is a scaling parameter. As µ approaches

infinity, the distribution places all its weight on the
highest scoring candidate.

The log of the BLEU score may be written as:

min

(
1− R

C
, 0

)
+

1

N

N∑
n=1

(logmn − log cn)

where R is the sum of reference lengths across the
corpus, C is the sum of candidate lengths, mn is the
number of matched n-grams (potentially clipped),
and cn is the number of n-grams in all candidates.

Given a distribution over candidates, we can use
the expected value of the log of the BLEU score. This
is a smooth approximation to the BLEU score, which
asymptotically approaches the true BLEU score as
the scaling parameter µ approaches infinity. While
this expectation is difficult to compute exactly, we
can compute approximations thereof using Taylor se-
ries. Although prior work demonstrates that a second-
order Taylor approximation is feasible to compute
(Smith and Eisner, 2006), we find that a first-order
approximation is faster and very close to the second-
order approximation.5 The first order Taylor approxi-
mation is as follows:

min

(
1− R

E[C]
, 0

)
+

1

N

N∑
n=1

(logE[mn]− logE[cn])

where E is the expectation operator using the proba-
bility distribution P (h;w, µ).

First we note that the gradient ∂
∂wi

P (h;w, µ) is

P (h;w, µ)

(
hi −

∑
h′

h′iP (h
′;w, µ)

)
Using the chain rule, the gradient of the first order
approximation to BLEU is as follows:

1

N

N∑
n=1

(1

E[mn]

∑
h

mn(h)
∂P (h;w, µ)

∂wi

− 1

E[cn]
∑
h

cn(h)
∂P (h;w, µ)

∂wi

)
+

{
0 if E[C] > R
R

E[C]2
∑

h c1(h)
∂P (h;w,µ)

∂wi
otherwise

5Experimentally, we compared our analytical gradient of
the first-order Taylor approximation with the finite-difference
gradients of the first- and second-order approximations, and we
found these three gradients to be very close in terms of cosine
similarity (> 0.99). We performed these measurements both at
arbitrary points and at points of convergence of MERT.

In the case of `2-regularized MERT, the final gradi-
ent also includes the partial derivative of the regular-
ization penalty of Equation 4, which is wi/σ2 for a
given component i of the gradient. We do not update
the gradient in the case of `0 regularization since the
`0-norm is not differentiable.

4.2 Search

Our search strategy consists of looking at the direc-
tions of steepest increase of expected BLEU, which
is similar to that of Smith and Eisner (2006), but with
the difference that we do so in the context of MERT.
We think this difference provides two benefits. First,
while the smooth approximation of BLEU reduces
the likelihood of remaining trapped in a local opti-
mum, we avoid approximation error by retaining the
original objective function. Second, the benefit of
exact line searches in MERT is that there is no need
to be concerned about step size, since step size in
MERT line searches is guaranteed to be optimal with
respect to the direction under consideration.

Finally, our gradient-based search algorithm oper-
ates as follows. Considering the current point wt, we
compute the gradient gt of the first order Taylor ap-
proximation at that point, using the current scaling pa-
rameter µ. (We initialize the search with µ = 0.01.)
We find the optimum along the line wt+γ ·gt. When-
ever any given line search yields no improvement
larger than a small tolerance threshold, we multiply
µ by two and perform a new line search. The increase
of this parameter µ corresponds to a cooling schedule
(Smith and Eisner, 2006), which progressively sharp-
ens the objective function to get a better estimate of
BLEU as the search converges to an optimum. We
repeatedly perform new line searches until µ exceeds
1000. The inability to improve the current optimum
with a sharp approximation (µ > 1000) doesn’t mean
line searches would fail with smaller values, so we
find it helpful to repeat the above procedure until a
full pass of updates of µ from 0.01 to 1000 yields no
improvement.

4.3 Computational complexity

Computing the gradient increases the computational
cost of MERT, though not its asymptotic complexity.
The cost of a single exhaustive line search is

O (SM(D + logM + logS))

where S is the number of sentences, each with M
possible translations, andD is the number of features.
For each sentence, we first identify the model score
as a linear function of the step size, requiring two
dot products for an overall cost of O(SMD).6 Next
we construct the upper envelope for each sentence:
first the equations are sorted in increasing order of
slope, and then they are merged in linear time to form
an envelope, with an overall cost of O(SM logM).
A linear pass through the envelope converts these
into piecewise constant (or linear, or quadratic) repre-
sentations of the (regularized) loss function. Finally
the per-sentence envelopes are merged into a global
representation of the loss along that direction. Our
implementation successively merges adjacent pairs
of piecewise smooth loss function representations
until a single list remains. These logS passes lead to
a merging runtime of O(SM logS).

The time required to compute a gradient is pro-
portional to O(SMD). For each sentence, we first
gather the probability and its gradient, then use this to
compute expected n-gram counts and matches as well
as those gradients in time O(MD). A constant num-
ber of arithmetic operations suffice to compute the
final expected loss value and its gradient. Therefore,
computing the gradient does not increase the algo-
rithmic complexity when compared to conventional
approaches using coordinate ascent and random di-
rections. Likewise the runtime of a single iteration
is competitive with PRO, given that gradient finding
is generally the most expensive part of convex opti-
mization. Of course, it is difficult to compare overall
runtime of convex optimization with that of MERT,
as we know of no way to bound the number of gradi-
ent evaluations required for convergence with MERT.
Therefore, we resort to empirical comparison later in
the paper, and find that the two methods appear to
have comparable runtime.

6In the special case where the difference between the prior
direction and the current direction is sparse, we may update the
individual linear functions in time proportional to the number of
changed dimensions. Coordinate ascent in particular can update
the linear functions in time O(SM): to the intercept of the
equation for each translation, we may add the prior step size
multiplied by the feature value in the prior coordinate, and the
slope becomes the feature value in the new coordinate. However,
this optimization does not appear to be widely adopted, likely
because it does not lead to any speedup when random vectors,
conjugate directions, or other non-sparse directions are used.

Language pair Train Tune Dev Test
G

B
M

Chinese-English 0.99M 1,797 1,000 1,082
(mt02+03) (mt05)

Finnish-English 2.20M 11,935 2,001 4,855

S
pa

rs
eH

R
M Chinese-English 3.51M 1,894 1,664 1,357

(mt05) (mt06) (mt08)
Arabic-English 1.49M 1,663 1,360 1,313

(mt06) (mt08) (mt09)

Table 1: Datasets for the two experimental conditions.

5 Experimental Design

Following Hopkins and May (2011), our experimen-
tal setup utilizes both real and synthetic data. The
motivation for using synthetic data is that it is a way
of gauging the quality of optimization methods, since
the data is constructed knowing the global optimum.
Hopkins and May also note that the use of an ob-
jective function that is linear in some gold weight
vector makes the search much simpler than in a real
translation setting, and they suggest that a learner
that performs poorly in such a simple scenario has
little hope of succeeding in a more complex one.

The setup of our synthetic data experiment is al-
most the same as that performed by Hopkins and
May (2011). We generate feature vectors of dimen-
sionality ranging from 10 to 1000. These features are
generated by drawing random numbers uniformly in
the interval [0, 500]. This synthetic dataset consists
of S=1000 source “sentences”, and M=500 “trans-
lation” hypotheses for each sentence. A pseudo
“BLEU” score is then computed for each hypothe-
sis, by computing the dot product between a prede-
fined gold weight vector w∗ and each feature vector
hs,m. By this linear construction, w∗ is guaranteed
to be a global optimum.7 The pseudo-BLEU score is
normalized for each M -best list, so that the transla-
tion with highest model score according to w∗ has
a BLEU score of 1, and so that the translation with
lowest model score for the sentence gets a BLEU of
zero. This normalization has no impact on search,
but makes results more interpretable.

For our translation experiments, we use multi-
stack phrase-based decoding (Koehn et al., 2007).
We report results for two feature sets: non-linear
features induced using Gradient Boosting Machines
(Toutanova and Ahn, 2013) and sparse lexicalized

7The objective function remains piecewise constant, and the
plateau containing w∗ maps to the optimal value of the function.

reordering features (Cherry, 2013). We exploit these
feature sets (GBM and SparseHRM, respectively) in
two distinct experimental conditions, which we de-
tail in the two next paragraphs. Both GBM and
SparseHRM augment baseline features similar to
Moses’: relative frequency and lexicalized phrase
translation scores for both translation directions; one
or two language model features, depending on the
language pair; distortion penalty; word and phrase
count; six lexicalized reordering features. For both
experimental conditions, phrase tables have maxi-
mum phrase length of 7 words on either side. In
reference to Table 1, we used the training set (Train)
for extracting phrase tables and language models; the
Tune set for optimization with MERT or PRO; the
Dev set for selecting hyperparameters of PRO and
regularized MERT; and the Test set for reporting fi-
nal results. In each experimental condition, we first
trained weights for the base feature sets, and then
decoded the Tune, Dev, and Test datasets, generating
500-best lists for each set. All results report rerank-
ing performance on these lists with different feature
sets and optimization methods, based on lower-cased
BLEU (Papineni et al., 2001).

The GBM feature set (Toutanova and Ahn, 2013)
consists of about 230 features automatically induced
using decision tree weak learners, which derive fea-
tures using various word-level, phrase-level, and mor-
phological attributes. For Chinese-English, the train-
ing corpus consists of approximately one million sen-
tence pairs from the FBIS and Hong Kong portions
of the LDC data for the NIST MT evaluation and the
Tune and Test sets are from NIST competitions. A
4-gram language model was trained on the Xinhua
portion of the English Gigaword corpus and on the
target side of the bitext. For Finnish-English we used
a dataset from a technical domain of software man-
uals. For this language pair we used two language
models: one very large model trained on billions of
words, and another language model trained from the
target side of the parallel training set.

The SparseHRM set (Cherry, 2013) contains 3600
sparse reordering features. For each phrase, the fea-
tures take the form of indicators describing its orienta-
tion in the derivation, and its lexical content in terms
of word clusters or frequent words. For both Chinese-
English and Arabic-English, systems are trained on
data from the NIST 2012 MT evaluation. 4-gram

 0

 0.2

 0.4

 0.6

 0.8

 1

50 100 500 1000 20 200

B
LE

U

number of features

expected BLEU gradient
random directions

Powell
coordinate ascent

 0

 0.2

 0.4

 0.6

 0.8

 1

50 100 500 1000 20 200

co
si

ne

number of features

expected BLEU gradient
random directions

Powell
coordinate ascent

Figure 2: Change in BLEU score and cosine similarity
to the gold weight vector w∗ as the number of features
increases, using the noisy synthetic experiments. The
gradient-based direction finding method is barely affected
by the noise. The increase of the number of dimensions en-
ables our direction finder to find a slightly better optimum,
which moved away from w∗ due to noise.

language models were trained on the target side of
the parallel training data for both Arabic and Chinese.
The Chinese systems development set is taken from
the NIST mt05 evaluation set, augmented with some
material reserved from our NIST training corpora in
order to better cover newsgroup and weblog domains.

6 Results

We conducted experiments with the synthetic data
scenario described in the previous section, as well
as with noise added to the data (Hopkins and May,
2011). The purpose of adding noise is to make the
optimization task more realistic. Specifically, af-
ter computing all pseudo-BLEU scores, we added
noise to each feature vector hs,m by drawing from
a zero-mean Gaussian with standard deviation 200.
Our results with both noiseless and noisy data yield
the same conclusion as Hopkins and May: standard
MERT struggles with many dimensions, and fails
to recover w∗. However, our experiments with the
gradient direction finder of Section 4 are much more
positive. This direction finder not only recovers w∗

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000

B
LE

U

line search iteration

expected BLEU gradient
(noisy) expected BLEU gradient

coordinate ascent
(noisy) coordinate ascent

Figure 3: Comparison of rate of convergence between
coordinate ascent and our expected BLEU direction finder
(D = 500). Noisy refers to the noisy experimental setting.

(cosine > 0.999) even with 1000 dimensions, but its
effectiveness is also visible with noisy data, as seen
in Figure 2. The decrease of its cosine is relatively
small compared to other search algorithms, and this
decrease is not necessarily a sign of search errors
since the addition of noise causes the true optimum
to be different from w∗. Finally, Figure 3 shows our
rate of convergence compared to coordinate ascent.

Our experimental results with the GBM feature
set data are shown in Table 2. Each table is di-
vided into three sections corresponding respectively
to MERT (Och, 2003) with Koehn-style coordinate
ascent (Koehn, 2004), PRO, and our optimizer featur-
ing both regularization and the gradient-based direc-
tion finder. All variants of MERT are initialized with
a single starting point, which is either uniform weight
or w0. Instead of providing MERT with additional
random starting points as in Moses, we use random
walks as in (Moore and Quirk, 2008) to attempt to
move out of local optima.8 Since PRO and our opti-
mizer have hyperparameters, we use a held-out set
(Dev) for adjusting them. For PRO, we adjust three
parameters: a regularization penalty for `2, the pa-
rameter α in the add-α smoothed sentence-level ver-
sion of BLEU (Lin and Och, 2004), and a parameter
for scaling the corpus-level length of the references.
The latter scaling parameter is discussed in (He and

8In the case of the gradient-based direction finder, we also
use the following strategy whenever optimization converges to
a (possibly local) optimum. We run one round of coordinate
ascent, and continue with the gradient direction finder as soon as
the optimum improves. If the none of the coordinate directions
helped, we stop the search.

Chinese-English Finnish-English
Method Starting pt. # feat. Tune Dev Test # feat. Tune Dev Test
MERT uniform 14 33.2 19.9 32.9 15 53.0 52.6 54.8
MERT uniform 224 33.0 19.2 32.1 232 53.2 51.7 53.8
MERT w0 224 34.1 20.1 33.0 232 53.9 52.5 54.7
PRO w0 224 33.4 20.1 33.3 232 53.3 52.9 55.3
`2 MERT (v1: ||w −w0||) w0 224 33.2 20.3 33.5 232 53.2 52.7 55.2
`2 MERT (v2: D − 1 dimensions) w0 224 33.0 20.4 33.2 232 52.9 52.6 55.0
`2 MERT (v3: `1-renormalized) w0 224 33.1 20.0 33.3 232 53.1 52.5 55.1
`0 MERT w0 224 33.4 20.3 33.2 232 53.2 52.6 55.1

Table 2: BLEU scores for GBM features. Model parameters were optimized on the Tune set. For PRO and regularized
MERT, we optimized with different hyperparameters (regularization weight, etc.), and retained for each experimental
condition the model that worked best on Dev. The table shows the performance of these retained models.

 51.2

 51.4

 51.6

 51.8

 52

 52.2

 52.4

 52.6

 1e-05 0.0001 0.001 0.01 0.1 1 10

B
LE

U

regularization weight

expected BLEU gradient
coordinate ascent

Figure 4: BLEU score on the Finnish Dev set (GBM)
with different values for the 1/2σ2 regularization weight.
To enable comparable results, the other hyperparameter
(length) is kept fixed.

Deng, 2012; Nakov et al., 2012) and addresses the
problem that systems tuned with PRO tend to pro-
duce sentences that are too short. On the other hand,
regularized MERT only requires one hyperparameter
to tune: a regularization penalty for `2 or `0. How-
ever, since PRO optimizes translation length on the
Dev dataset and MERT does so using the Tune set, a
comparison of the two systems would yield a discrep-
ancy in length that would be undesirable. Therefore,
we add another hyperparameter to regularized MERT
to tune length in the same manner using the Dev set.

Table 2 offers several findings. First, unregular-
ized MERT can achieve competitive results with a
small set of highly engineered features, but adding a
large set of more than 200 features causes MERT to
perform poorly, particularly on the test set. However,
unregularized MERT can recover much of this drop
of performance if it is given a good sparse initializer
w0. Regularized MERT (v1) provides an increase in
the order of 0.5 BLEU on the test set compared to

the best results with unregularized MERT. Regular-
ized MERT is competitive with PRO, even though the
number of features is relatively large. Using the same
GBM experimental setting, Figure 4 compares regu-
larized MERT using the gradient direction finder and
coordinate ascent. At the best regularization setting,
the two algorithms are comparable in terms of BLEU
(though coordinate ascent is slower due to its lack of
a good direction finder), but our method seems more
robust with suboptimal regularization parameters.

Our results with the SparseHRM feature set data
are shown in Table 3. As with the GBM feature set,
we find again that the version of `2 MERT regular-
ized towards ||w −w0|| is competitive with PRO,
even though we train MERT with a large set of 3601
features.9 One remaining question is whether MERT
remains practical with large feature sets. As noted
in the complexity analysis of Section 4.3, MERT
has a dependence on the number of features that is
comparable to PRO, i.e., it is linear in both cases.
Practically, we find that optimization time is com-
parable between the two systems. In the case of
Chinese-English for the GBM feature set, one run of
the PRO optimizer took 26 minutes on average, while
regularized MERT with the gradient direction finder
took 37 minutes on average, taking into account the
time to compute w0. In the case of Chinese-English
for the SparseHRM feature set, average optimization
times for PRO and our method were 3.10 hours and
3.84 hours on average, respectively.

9We note that the experimental setup of (Cherry, 2013) inte-
grates the Sparse HRM features into the decoder, while we use
them in an M -best reranking scenario. The reranking setup of
this paper yields smaller improvements for both PRO and MERT
than those of (Cherry, 2013).

Chinese-English Arabic-English
Method Starting pt. # feat. Tune Dev Test # feat. Tune Dev Test
MERT uniform 14 25.7 34.0 27.8 14 43.2 42.8 45.5
MERT uniform 3601 25.4 33.1 27.3 3601 45.7 42.3 44.9
MERT w0 3601 27.7 33.5 27.5 3601 46.0 42.4 45.2
PRO w0 3601 25.9 34.3 28.1 3601 44.6 43.4 46.1
`2 MERT (v1: ||w −w0||) w0 3601 26.3 34.3 28.3 3601 45.2 43.2 46.0
`2 MERT (v2: D − 1 dimensions) w0 3601 26.4 34.1 28.2 3601 45.0 43.4 45.9
`2 MERT (v3: `1-renormalized) w0 3601 26.1 34.0 27.9 3601 44.9 43.3 45.7
`0 MERT w0 3601 26.5 34.2 28.1 3601 45.4 43.1 46.0

Table 3: BLEU scores for SparseHRM features. Notes in Table 2 also apply here.

Finally, as shown in Table 2, we see that MERT ex-
periments that rely on a good initial starting point w0

generally perform better than when starting from
a uniform vector. While having to compute w0 in
the first place is a bit of a disadvantage compared
to standard MERT, the need for good initializer is
hardly surprising in the context of non-convex op-
timization. Other non-convex problems in machine
learning, such as deep neural networks (DNN) and
word alignment models, commonly require such ini-
tializers in order to obtain decent performance. In
the case of DNN, extensive research is devoted to the
problem of finding good initializers.10 In the case of
word alignment, it is common practice to initialize
search in non-convex optimization problems—such
as IBM Model 3 and 4 (Brown et al., 1993)—with
solutions of simpler models—such as IBM Model 1.

7 Related work

MERT and its extensions have been the target of ex-
tensive research (Och, 2003; Macherey et al., 2008;
Cer et al., 2008; Moore and Quirk, 2008; Kumar et
al., 2009; Galley and Quirk, 2011). More recent work
has focused on replacing MERT with a linearly de-
composable approximations of the evaluation metric
(Smith and Eisner, 2006; Liang et al., 2006; Watan-
abe et al., 2007; Chiang et al., 2008; Hopkins and
May, 2011; Rosti et al., 2011; Gimpel and Smith,
2012; Cherry and Foster, 2012), which generally
involve a surrogate loss function incorporating a reg-
ularization term such as the `2-norm. While we are
not aware of any previous work adding a penalty on

10For example, (Larochelle et al., 2009) presents a pre-trained
DNN that outperforms a shallow network, but the performance
of the DNN becomes much worse relative to the shallow network
once pre-training is turned off.

the weights in the context of MERT, (Cer et al., 2008)
achieves a related effect. Cer et al.’s goal is to achieve
a more regular or smooth objective function, while
ours is to obtain a more regular set of parameters.
The two approaches may be complementary.

More recently, new research has explored direction
finding using a smooth surrogate loss function (Flani-
gan et al., 2013). Although this method is successful
in helping MERT find better directions, it also exac-
erbates the tendency of MERT to overfit.11 As an
indirect way of controlling overfitting on the tuning
set, their line searches are performed over directions
estimated over a separate dataset.

8 Conclusion

In this paper, we have shown that MERT can scale to
a much larger number of features than previously
thought, thanks to regularization and a direction
finder that directs the search towards the greatest
increase of expected BLEU score. While our best
results are comparable to PRO and not significantly
better, we think that this paper provides a deeper un-
derstanding of why standard MERT can fail when
handling an increasingly larger number of features.
Furthermore, this paper complements the analysis
by Hopkins and May (2011) of the differences be-
tween MERT and optimization with a surrogate loss
function.

Acknowledgments

We thank the anonymous reviewers for their helpful
comments and suggestions.

11Indeed, in their Table 3, a comparison between HILS and
HOLS suggests tuning set performance improves substantially,
while held out performance degrades.

References

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: parameter estimation.
Comput. Linguist., 19(2):263–311.

Daniel Cer, Dan Jurafsky, and Christopher D. Manning.
2008. Regularization and search for minimum error
rate training. In Proceedings of the Third Workshop on
Statistical Machine Translation, pages 26–34.

Colin Cherry and George Foster. 2012. Batch tuning
strategies for statistical machine translation. In Pro-
ceedings of the 2012 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 427–436.

Colin Cherry. 2013. Improved reordering for phrase-
based translation using sparse features. In Proceedings
of the 2013 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 22–31.

David Chiang, Yuval Marton, and Philip Resnik. 2008.
Online large-margin training of syntactic and structural
translation features. In Proceedings of the 2008 Con-
ference on Empirical Methods in Natural Language
Processing, pages 224–233.

David Chiang, Kevin Knight, and Wei Wang. 2009.
11,001 new features for statistical machine translation.
In Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 218–226.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

Jeffrey Flanigan, Chris Dyer, and Jaime Carbonell. 2013.
Large-scale discriminative training for statistical ma-
chine translation using held-out line search. In Pro-
ceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 248–258.

Michel Galley and Chris Quirk. 2011. Optimal search
for minimum error rate training. In Proceedings of
the 2011 Conference on Empirical Methods in Natural
Language Processing, pages 38–49.

Kevin Gimpel and Noah A. Smith. 2012. Structured ramp
loss minimization for machine translation. In Proceed-
ings of the 2012 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 221–231.

Xiaodong He and Li Deng. 2012. Maximum expected
BLEU training of phrase and lexicon translation mod-
els. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long
Papers - Volume 1, pages 292–301.

Mark Hopkins and Jonathan May. 2011. Tuning as rank-
ing. In Proceedings of the 2011 Conference on Empir-
ical Methods in Natural Language Processing, pages
1352–1362.

M. Hyder and K. Mahata. 2009. An approximate L0
norm minimization algorithm for compressed sens-
ing. In Acoustics, Speech and Signal Processing,
2009. ICASSP 2009. IEEE International Conference
on, pages 3365–3368.

Philipp Koehn, Hieu Hoang, Alexandra Birch Mayne,
Christopher Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proc. of ACL, Demonstration Session.

Philipp Koehn. 2004. Pharaoh: a beam search decoder
for phrase-based statistical machine translation models.
In Proc. of AMTA, pages 115–124.

Shankar Kumar, Wolfgang Macherey, Chris Dyer, and
Franz Och. 2009. Efficient minimum error rate train-
ing and minimum bayes-risk decoding for translation
hypergraphs and lattices. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 163–171.

Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and
Pascal Lamblin. 2009. Exploring strategies for training
deep neural networks. J. Mach. Learn. Res., 10:1–40.

P. Liang, A. Bouchard-Côté, D. Klein, and B. Taskar.
2006. An end-to-end discriminative approach to ma-
chine translation. In International Conference on Com-
putational Linguistics and Association for Computa-
tional Linguistics (COLING/ACL).

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE:
a method for evaluating automatic evaluation metrics
for machine translation. In Proceedings of the 20th
international conference on Computational Linguistics,
Stroudsburg, PA, USA.

Wolfgang Macherey, Franz Och, Ignacio Thayer, and
Jakob Uszkoreit. 2008. Lattice-based minimum error
rate training for statistical machine translation. In Pro-
ceedings of the 2008 Conference on Empirical Methods
in Natural Language Processing, pages 725–734.

David McAllester and Joseph Keshet. 2011. Generaliza-
tion bounds and consistency for latent structural probit
and ramp loss. In Advances in Neural Information
Processing Systems 24, pages 2205–2212.

Robert C. Moore and Chris Quirk. 2008. Random restarts
in minimum error rate training for statistical machine
translation. In Proceedings of the 22nd International
Conference on Computational Linguistics - Volume 1,
pages 585–592.

Preslav Nakov, Francisco Guzman, and Stephan Vogel.
2012. Optimizing for sentence-level BLEU+1 yields
short translations. In Proceedings of COLING 2012,
pages 1979–1994.

Franz Josef Och and Hermann Ney. 2002. Discriminative
training and maximum entropy models for statistical
machine translation. In Proceedings of 40th Annual
Meeting of the Association for Computational Linguis-
tics, pages 295–302.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of the
41st Annual Meeting of the Association for Computa-
tional Linguistics, pages 160–167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. BLEU: a method for automatic evalu-
ation of machine translation. In Proc. of ACL.

Kishore Papineni. 1999. Discriminative training via linear
programming. In Proceedings IEEE International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP), volume 2, pages 561–564, Vol. 2.

M.J.D. Powell. 1964. An efficient method for finding
the minimum of a function of several variables without
calculating derivatives. Comput. J., 7(2):155–162.

William H. Press, Saul A. Teukolsky, William T. Vetter-
ling, and Brian P. Flannery. 2007. Numerical Recipes:
The Art of Scientific Computing. Cambridge University
Press, 3rd edition.

Antti-Veikko Rosti, Bing Zhang, Spyros Matsoukas, and
Richard Schwartz. 2011. Expected BLEU training
for graphs: BBN system description for WMT11 sys-
tem combination task. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
159–165.

David A. Smith and Jason Eisner. 2006. Minimum risk
annealing for training log-linear models. In Proceed-
ings of the COLING/ACL 2006 Main Conference Poster
Sessions, pages 787–794.

Kristina Toutanova and Byung-Gyu Ahn. 2013. Learn-
ing non-linear features for machine translation using
gradient boosting machines. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 406–411.

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki
Isozaki. 2007. Online large-margin training for sta-
tistical machine translation. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 764–773.

